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We provide some non asymptotic bounds, with explicit constants, that measure the rate of convergence, in expected Wasserstein distance, of the empirical measure associated to an i.i.d. N -sample of a given probability distribution on R d .

, see a few lines below.

Introduction

Let d ≥ 1. We consider µ ∈ P(R d ), the set of probability measures on R d , and an i.i.d. sequence (X k ) k≥1 of µ-distributed random variables. For N ≥ 1, we introduce the empirical measure [START_REF] Ajtai | On optimal matchings[END_REF] µ

N = 1 N N k=1 δ X k .
Estimating the rate of convergence of µ N to µ is of course a fundamental problem, and it seems that measuring this convergence in Wasserstein distance is nowadays a widely adopted choice. Some seminal works on the subject are those by Dudley [START_REF] Dudley | The speed of mean Glivenko-Cantelli convergence[END_REF], Ajtai-Komlós-Tusnády [START_REF] Ajtai | On optimal matchings[END_REF] and Dobrić-Yukich [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF]. More recently, some results have been established by Bolley-Guillin-Villani [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF], Boissard-Le Gouic [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF], Le Gouic [START_REF] Gouic | Localisation de masse et espaces de Wasserstein[END_REF], Dereich-Scheutzow-Schottstedt [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF] and Fournier-Guillin [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]. In particular, we can find in [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] the following result.

Fix some norm | • | on R d and consider, for p > 0 and µ, ν ∈ P(R d ), the transport cost

T p (µ, ν) = inf R d ×R d |x -y| p ξ(dx, dy) : ξ ∈ H(µ, ν) ,
where H(µ, ν) stands for the set of probability measures on R d × R d with marginals µ and ν. It holds that T p = W p p , with the usual notation, if p ≥ 1. For q > 0, we also define

M q (µ) = R d |x| q µ(dx).
There exists a constant C d,p,q such that for all µ ∈ P(R d ), for all N ≥ 1, with µ N defined in [START_REF] Ajtai | On optimal matchings[END_REF],

E[T p (µ N , µ)] ≤ C d,p,q [M q (µ)] p/q ×      N -1/2
if p > d/2 and q > 2p, N -1/2 log(1 + N ) if p = d/2 and q > 2p, N -p/d if p ∈ (0, d/2) and q > dp/(d -p).

It seems that applied scientists really need some explicit values for the constant C d,p,q . If following the proofs in [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF][START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF], one finds some rather large constants. But revisiting these proofs and optimizing as often as possible the computations, which is the purpose of the present paper, we obtain some rather reasonable constants, when using the maximum norm |•| ∞ on R d . In particular, they remain finite as the dimension tends to infinity (but of course, the rate of convergence in N -p/d is worse and worse).

The reason why the maximum norm |•| ∞ is used in [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF][START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] it that the proofs rely on a partitioning of the unit ball, and that a cube is very easy to cut into smaller cubes. We of course deduce some bounds for the more natural Euclidean norm | • | 2 , multiplying the constant by d p/2 . This leads to a constant (for the Euclidean norm) that explodes as d → ∞.

Using similar arguments, together with some ideas found in Boissard-Le Gouic [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF] and Weed-Bach [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF], Lei [START_REF] Lei | Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces[END_REF]Theorem 3.1] proves that one can also find, in the case of the Euclidean norm, some constants (that he does not make explicit) that remain finite as d → ∞. We also produce, in the present paper, some explicit constants in this context.

Finally, let us mention that Dudley [START_REF] Dudley | The speed of mean Glivenko-Cantelli convergence[END_REF] and more recently Boissard-Le Gouic [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF], Le Gouic [START_REF] Gouic | Localisation de masse et espaces de Wasserstein[END_REF] and Weed-Bach [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF] study the very interesting problem of obtaining some rates of convergence depending on the true dimension of the problem: if e.g. µ is a measure on R d but is actually carried by a manifold of lower dimension, what about the rate of convergence ? They introduce some notion of dimension of the measure µ and get some bounds of E[T p (µ N , µ)] in terms of this dimension. Let us mention the following formula, that can be found in the work of Le Gouic [9, Theorem 3.2] (after correcting two small mistakes, with the agreement of the author): for any metric space (E, d) with finite diameter D, for µ a probability measure on E and for µ N the associated empirical measure, it holds that for all N ≥ 1, all p ≥ 1, all k ≥ 0,

E[T p (µ N , µ)] ≤ 2 2p-1 D p 2 1-kp + 2 p √ N D p 2 -p D p 2 -(k+1)p N (E, u 1/p ) -1 du ,
where N (E, ε) is the minimal number of balls of radius ε required to cover E. This is a very deep and elegant formula. Let us mention that when applied to the case where E = B(0, 1) in R d , after optimizing in k, this produces some good bounds, with some constants that are a little greater than what we will find below. Le Gouic [START_REF] Gouic | Localisation de masse et espaces de Wasserstein[END_REF] also studies the non compact case E = R d , without really tracking the constants.

We refer to the introductions of [START_REF] Boissard | On the mean speed of convergence of empirical and occupation measures in Wasserstein distance[END_REF][START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF][START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF][START_REF] Gouic | Localisation de masse et espaces de Wasserstein[END_REF][START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF] for some much more detailed presentations of the subject and its numerous applications. Let us also mention the closely related topic of optimal matching, see Barthe-Bordenave [START_REF] Barthe | Combinatorial optimization over two random point sets[END_REF] and the references therein.

Let us emphasize that the present paper contains no new idea: all the deep arguments have been previously introduced in the above mentioned papers. We only try to handle some slightly more precise computations.

Main results

Basic notation. For

m ∈ [1, ∞) and x = (x 1 , . . . , x d ) ∈ R d , we set |x| m = d i=1 |x i | m 1/m and |x| ∞ = max{|x 1 |, . . . , |x d |}.
For p > 0, for µ, ν in P(R d ) and for m ∈ [1, ∞) ∪ {∞}, we set

T (m) p (µ, ν) = inf R d ×R d |x -y| p m ξ(dx, dy) : ξ ∈ H(µ, ν) ,
where H(µ, ν) is the set of probability measures on R d × R d with marginals µ and ν. For q > 0, for µ ∈ P(R d ) and for m ∈ [1, ∞) ∪ {∞}, we define

M (m) q (µ) = R d |x| q m µ(dx).
We of course have, since

| • | ∞ ≤ | • | m ≤ d 1/m | • | ∞ , (2) T (∞) p (µ, ν) ≤ T (m) p (µ, ν) ≤ d p/m T (∞) p (µ, ν) and M (∞) q (µ) ≤ M (m) q (µ) ≤ d q/m M (∞) q (µ).
2.2. Covering number. Our proofs are based on a suitable partitioning of the unit ball. The case of the maximum norm is not hard, because it is easy to cut a cube into smaller cubes. The other cases are more intricate. For ε ∈ (0, 1] and m ∈ [1, ∞), we define

(3) N (m) ε = min k ∈ N : ∃ x 1 , . . . , x k ∈ B m (0, 1) such that B m (0, 1) ⊂ ∪ k i=1 B m (x i , ε) , where B m (x, ε) = {y ∈ R d : |x -y| m < ε}, as well as (4) K (m) d = sup ε∈(0,1] ε d N (m) ε , so that for all ε ∈ (0, 1], N (m) ε ≤ K (m) d ε -d .
See ( 7) and ( 8) below for some estimates of these covering numbers.

2.3. Main result. For x > 0 and q > s > 0, we set (5) H(x, s, q) = x q -s s + (1 + x) q s q/(q-s) s/q q q -s .

Observe that for each x > 0, each s > 0, lim q→∞ H(x, s, q) = 1. The following formulas, that constitute the main results of the paper, are a little complicated, but rather easy to calculate explicitly with a computer.

Theorem 1. We fix p > 0 and µ ∈ P(R d ), we set ε p = max{2 -1 , 2 -p } and we recall [START_REF] Ajtai | On optimal matchings[END_REF].

(i) If p > d/2 and q > 2p, then for m ∈ [1, ∞) ∪ {∞}, for all N ≥ 1, E[T (m) p (µ N , µ)] ≤ 2 p κ (m) d,p √ N [M (m) q (µ)] p/q θ (m) d,p,q , where θ (m) d,p,q = H ε p κ (m) d,p , 2p, q , with κ (∞) d,p = 2 d/2-1 1 -2 d/2-p , and with, if m ∈ [1, ∞), κ (m) d,p = min{κ (m) d,p,r : r ≥ 2}, where κ (m) d,p,r = K (m) d 2 p-1-d/2 r p+d/2 (r -1) p (1 -r d/2-p ) . (ii) If p = d/2 and q > 2p, then for m ∈ [1, ∞) ∪ {∞}, for all N ≥ 1, E[T (m) p (µ N , µ)] ≤ 2 p κ (m) d,p,N √ N [M (m) q (µ)] p/q θ (m) d,p,q,N , where θ (m) d,p,q,N = H ε p κ (m) d,p,N
, 2p, q , with (here log + (x) = max{log x, 0})

κ (∞) d,p,N = 2 p-1 p log 2 log + (2 1-p -2 1-2p ) √ N + 2 p-1 1 -2 -p , and with, if m ∈ [1, ∞), κ (m) d,p,N = min{κ (m) d,p,N,r : r ≥ 2}, where κ (m) d,p,N,r = K (m) d 2 r 2p (r -1) p p log r log + 2 p+1 (r -p -r -2p ) N K (m) d + K (m) d 2 r 3p (r -1) p (r p -1)
.

(iii) If p ∈ (0, d/2) and q > dp/(d -p), then for m ∈ [1, ∞) ∪ {∞}, for all N ≥ 1, E[T (m) p (µ N , µ)] ≤ 2 p κ (m) d,p N p/d [M (m) q (µ)] p/q θ (m) d,p,q , where θ (m) d,p,q = H 2 1-2p/d ε p κ (m) d,p , dp d -p , q , with κ (∞) d,p = 2 p-2p/d (1 -2 -d/2 ) 1-2p/d 1 -2 p-d/2 , and with, if m ∈ [1, ∞), κ (m) d,p = min{κ (m) 
d,p,r : r ≥ 2}, where κ

(m) d,p,r = K (m) d 4 p/d r 2p (1 -r -d/2 ) 1-2p/d (r -1) p (1 -r p-d/2
) .

2.4.

Comments. By invariance by translation, we can replace M (m) q (µ), in all the formulas, by inf

R d |x -x 0 | q m µ(dx) : x 0 ∈ R d .
Let us next observe, and we will see that this is often advantageous, that concerning the bound of

E[T (m) p (µ N , µ)] when m ∈ [1, ∞), we can replace, by (2), • κ (m) d,p by d p/m κ (∞) d,p and θ (m) d,p,q by θ (∞)
d,p,q in items (i) and (iii);

• κ (m) d,p,N by d p/m κ (∞) d,p,N and θ (m) d,p,q,N by θ (∞) d,p,q,N in item (ii).
In each case, we present the bound under the form

diameter of B m (0, 1) p × bound in the compact case ×[M (m) q (µ)] p/q × θ (m) d,p,q or θ (m) d,p,q,N ,
where diameter of B m (0, 1) equals 2 and where by compact case we mean the case where µ is supported by the ball B m (0, 1/2) with diameter 1.

One can tediously check that in each case, q → θ (m) d,p,q (or q → θ (m) d,p,q,N ) is decreasing and tends to 1 as q → ∞. Hence if we are in the compact case, i.e. if µ is supported in B m (0, 1/2), then M (m) q (µ) ≤ 2 -q for all q > 0, and we find that

lim q→∞ diameter of B m (0, 1) p ×[M (m) q (µ)] p/q × θ (m) d,p,q or θ (m) d,p,q,N = 1,
which justifies the denomination bound in the compact case.

One can tediously check from (iii) that p → (κ (m) d,p ) 1/p is increasing for p ∈ (0, d/2), which is natural by monotony in p of [T p (µ, ν)] 1/p . Actually, when m ∈ [1, ∞), it holds that p → (κ (m) d,p,r ) 1/p is increasing for p ∈ (0, d/2) for each r ≥ 2.

However, in the non compact case, we did not manage to guarantee such a property: it does not hold true that in item (iii), p → [κ

(m) d,p θ (m)
d,p,q ] 1/p is increasing for p ∈ (0, d/2), as it should. Hence it may be sometimes be preferable to use the bound: for p ∈ (0, d/2) and q > dp/(d -p),

(6) E[T (m) p (µ N , µ)] ≤ inf p ∈[p,d/2) E[T (m) p (µ N , µ)] p/p ≤ inf p ∈[p,d/2) 2 p [κ (m) d,p ] p/p N p/d [M (m) q (µ)] p/q [θ (m) d,p ,q ] p/p ,
with the convention that θ

(m) d,p ,q = ∞ if q ≤ dp /(d -p
). This is the major default of this work. We identified some computations that might be done more carefully, but this led to awful complications, without producing some marked improvements. Concerning the Euclidean case, we use [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF] below which implies that lim d→∞ (K

d ) 1/d = 1, we find that lim d→∞ κ (2) (2) 
d,p,r = (r -1) -p r 2p for each r ≥ 2, and this (optimally) equals 4

p with r = 2. When m ∈ [1, ∞) \ {2}, we deduce from (7) that lim sup d→∞ κ (m) d,p ≤ 12 p .

2.5.

Numerical values in the compact case. We start with the maximum norm.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 100 d = 500 2.42 N 1/2 0.73 log N +1 N 1/2 3.72 N 1/3 2.45 N 1/4 2.09 N 1/5 1.94 N 1/6 1.87 N 1/7 1.84 N 1/8 1.82 N 1/9 1.98 N 1/100 2.00 N 1/500 Table 1. Bound of E[T (∞) 1 (µN , µ)] for N ≥ 1 (actually N ≥ 4 when d = 2), if µ ∈ P(B∞(0, 1/2)). d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 100 d = 500 1.05 N 1/4 1.42 N 1/4 2.20 N 1/4 √ 0.73 log N +1.26 N 1/4 2.75 N 1/5 2.20 N 1/6 2.01 N 1/7 1.92 N 1/8 1.87 N 1/9 1.98 N 1/100 2.00 N 1/500 Table 2. Bound of E[T (∞) 2 (µN , µ)] for N ≥ 1 (actually N ≥ 8 when d = 4), if µ ∈ P(B∞(0, 1/2)).
For all m ∈ [1, ∞), we have the classical easy estimate ( 7)

K (m) d ≤ 3 d , d ≥ 1.
Concerning the Euclidean norm, when d is large enough, some much better results are available. By Verger-Gaugry [13, (1.1)-(1.3)-(1.4)], where (1.1) is due to Rogers [START_REF] Rogers | Covering a sphere with spheres[END_REF] (we know from the author that there is a typo in [START_REF] Verger-Gaugry | Covering a ball with smaller equal balls in R n[END_REF] and

d ≥ 8 is the correct condition, instead of d ≥ 2), K (2) 
d ≤ max{K (2) d,1 , K (2) 
d,2 , K (2) 
d,3 }, d ≥ 8, (8) 
where (recall (3)-( 4); we have N r = ν T,n with 2T = 1/r and n = d in the notation of [START_REF] Verger-Gaugry | Covering a ball with smaller equal balls in R n[END_REF]) 2 (µN , µ)] for N ≥ 1 if µ ∈ P(B2(0, 1/2)), using the bound proposed for the Euclidean norm in Theorem 1-(iii) (second line) and using √ d times the bound proposed for the maximum norm (third line). In bold the one to be used.

K (2) d,1 = d 2 [log d + log log d + 5], K (2) d,2 = 7 4(log 7)/7 4 π 2 d 3/2 2(d -1) log d + 1 2 log d + log( π √ 2d √ πd-2 ) (1 -2/ log d)(1 -2/ √ πd)(log d) 2 , K (2) 
d,3 = √ 2πd (d -1) log(2d) + (d -1) log log d + 1 2 log d + log( π √ 2d √ πd-2 ) (1 -2/ log d)(1 -2/ √ πd) .
As we can see, in large dimension, the bounds concerning p = 1 and p = 2 are very similar. We also see that, for p = 1 and p = 2, it is better to use √ d times the bound proposed for the maximum norm when d ∈ {8, . . . , 12}. If using [START_REF] Dudley | The speed of mean Glivenko-Cantelli convergence[END_REF], we find that for d ∈ {2, . . . , 7}, it is also better to use √ d times the bound proposed for the maximum norm.

2.6. Numerical values in the non-compact case. Here we study how θ

(m) d,p,q is far from 1. When p = d/2, we observe that N → θ (m)
d,p,q,N is decreasing, and we e.g. study θ (m) d,p,q,100 (which controls θ (m) d,p,q,N for all N ≥ 100). We start with the maximum norm. Here p = 1. Minimum value of q so that θ Here p = 2. Minimum value of q so that θ

(∞) d,1,q ≤ c if d = 2 or θ (∞) d,1,q,100 ≤ c if d = 2,
(∞) d,2,q ≤ c if d = 4 or θ (∞) d,2,q,100 ≤ c if d = 4, with c = 4 (second line), c = 2 (third line), c = 1.25 (fourth line).
Comparing Tables 5 and6, it seems clear that, at least for large values of d, it is preferable to use the bound [START_REF] Dobrić | Asymptotics for transportation cost in high dimensions[END_REF].

We do the same job concerning the Euclidean norm. We only deal with θ

(2) d,1,q as defined in Theorem 1 for simplicity, even if we recall that it is preferable to use (2) and the bound concerning the maximum norm for low dimensions. Table 7. Here p = 1. Minimum value of q so that θ Comparing Tables 7 and8, it seems again clear that it is not vain to use the bound (6). 2.7. On a possible lowerbound. As mentioned to us by Pagès, we have the following lowerbound, holding for any m ∈ [1, ∞) ∪ {∞}. Consider X 1 , . . . , X N independent and µ-distributed.

It holds that T (m) p (µ N , µ) ≥ S (m) p (µ; X 1 , . . . , X N ), where S (m) p (µ; x 1 , . . . , x d ) = inf T (m) p µ, N i=1 α i δ xi : (α i ) i=1,...,N ∈ [0, 1] N , N i=1 α i = 1 ,
and Luschgy-Pagès show in [START_REF] Luschgy | Marginal and functional quantization of stochastic processes[END_REF] that, under some technical conditions on µ, lim

N →∞ N -p/d E[S (m) p (µ; X 1 , . . . , X n )] = Γ(1 + p/d) [λ d (B (m) (0, 1))] p/d R d [f (x)] 1-p/d dx,
where f is the density of µ, where λ d is the Lebesgue measure on R d and where Γ is the classical Γ function. Choosing for µ the uniform law on B m (0, 1/2), we find that lim inf

N →∞ N -p/d E[T (m) p (µ N , µ)] ≥ lim N →∞ N -p/d E[S (m) p (µ; X 1 , . . . , X n )] = Γ(1 + p/d) 2 p =: γ d,p ,
to be compared with κ (m) d,p when p ∈ (0, d/2). This may be a rough lowerbound, because this is an asymptotic bound as N → ∞, and because S (m) p (µ; X 1 , . . . , X N ) is likely to be really smaller than T (m) p (µ N , µ) (in particular it decreases in N -p/d when p > d/2 while T (m) p (µ N , µ) decreases in N -1/2 in general when p > d/2).

We have γ d,1 ∈ (0.44, 0.5) for all d ≥ 3, to be compared with the numerators in Tables 1 and3. Hence when p = 1 and say d ≥ 4, see 

d,2 ) 1/2 , √ d(κ (∞) d,2 ) 1/2
} is at worst (6.76/0.47) 14.4 times too large. Again, we hope this is pessimistic.

We do not discuss the non compact case, but the numerical results do not seem quite favorable.

2.8. The case with a low order finite moment. Since this last result is likely to be much less useful for applications, we only treat the case of the maximum norm.

Theorem 2. Let q > p > 0 such that q < min{2p, dp/(d -p)}, i.e. q ∈ (p, 2p) if p ≥ d/2 and q ∈ (p, dp/(d -p)) if p ∈ (0, d/2]. Fix µ ∈ P(R d ). For all N ≥ 1, E[T (∞) p (µ N , µ)] ≤ 2 p [M (∞) q (µ)] p/q ζ (∞) d,p,q
N (q-p)/q , where, setting

ε p = max{2 -1 , 2 -p }, ζ (∞) d,p,q = ε p 2 2p/q-1 + 2 d-1 2 d/2 -1 2(q-p)/q 1 -2 -p 1 -2 d-p-dp/q min a∈(1,∞)
a p a p-q/2 -1 + a p 1 -a p-q .

2.9. Plan of the paper. In Section 3, we provide a general estimate of the transport cost between two measures. In Section 4, we apply this general estimate to derive a bound of E[T p (µ N , µ)], for a general norm, for all the values of p > 0 and in any dimension. In Section 5, we precisely study some elementary series. We obtain a bound of E[T p (µ N , µ)], for a general norm, separating the cases p > d/2, p = d/2 and p ∈ (0, d/2) in Section 6. We conclude the proof of Theorem 1 for the maximum norm in Section 7 and for the other norms in Section 8. Finally, we check Theorem 2 in Section 9.

Upperbound of the transport cost between two measures

The result we prove in this section, Proposition 4, is more or less classical, see Boissard-Le Gouic [3, Proposition 1.1], Dereich-Scheutzow-Schottstedt [5, Lemma 2 and Theorem 3], Fournier-Guillin [8, Lemma 5] and Weed-Bach [14, Proposition 1]. As noted in [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF], similar ideas can already be found in Ajtai-Komlós-Tusnády [START_REF] Ajtai | On optimal matchings[END_REF]. However, we provide a slightly more precise version, that allows us to get some smaller constants. We consider fixed the following objects. For C ⊂ R d and r > 0, we put rC = {rx : x ∈ C}. Recall that ε p = 2 -1 ∨ 2 -p . Proposition 4. We adopt Setting 3 and consider µ, ν ∈ P(R d ). For all a > 1, there are some nonnegative numbers (r a,n, (µ, ν)) n≥0, =0,...,k-1 satisfying

k-1 =0 r a,n, (µ, ν) ≤ 1 (9)
for all n ≥ 0 and, with the convention that 0/0 = 0,

r a,n, (µ, ν) ≤ 1 2 F ∈Q µ(a n F ∩ G a n ) µ(G a n ) ∧ ν(a n F ∩ G a n ) ν(G a n ) C child of F µ(a n C ∩ G a n ) µ(a n F ∩ G a n ) - ν(a n C ∩ G a n ) ν(a n F ∩ G a n ) ( 10 
)
for all n ≥ 0, all = 0, . . . , k -1, and such that for all p > 0,

T p (µ, ν) ≤ n≥0 a pn 2 p ε p |µ(G a n ) -ν(G a n )| + (µ(G a n ) ∧ ν(G a n )) δ p k + k-1 =0 δ p r a,n, (µ, ν) .
The coefficients r a,n, (µ, ν) are actually explicit, but it seems difficult to use more than the properties ( 9)- [START_REF] Lei | Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces[END_REF]. We start with the compact case.

Lemma 5. Let µ, ν ∈ P(B(0, 1)). There is

(u (µ, ν)) =0,...,k-1 ∈ R k + satisfying k-1 =0 u (µ, ν) ≤ 1 (11) and u (µ, ν) ≤ 1 2 F ∈Q (µ(F ) ∧ ν(F )) C child of F µ(C) µ(F ) - ν(C) ν(F ) , = 0, . . . , k -1, (12) 
and such that for all p > 0,

T p (µ, ν) ≤δ p k + k-1 =0 δ p u (µ, ν). Proof. For all 0 ≤ i ≤ ≤ k and C ∈ Q , let f i (C) be the unique element of Q i containing C.
Step 1: construction of the coupling. For all F ∈ Q k , we set

(13) ξ F (dx, dy) = µ| F (dx) µ(F ) ν| F (dy) ν(F ) .
Then by reverse induction, for ∈ {0, . . . , k -1} and F ∈ Q , we build

ξ F (dx, dy) = C child of F ρ C ξ C (dx, dy) + q F α F (dx)β F (dy), (14) 
where

ρ C = µ(C) µ(F ) ∧ ν(C) ν(F ) , which depends only on C ∈ Q +1 since F = f (C), where (15) 
q F = 1 2 C child of F µ(C) µ(F ) - ν(C) ν(F ) ,
and where

α F (dx) = 1 q F C child of F µ(C) µ(F ) - ν(C) ν(F ) + µ| C (dx) µ(C) , β F (dx) = 1 q F C child of F ν(C) ν(F ) - µ(C) µ(F ) + ν| C (dx) ν(C) .
It holds that α F and β F are two probability measures on F , because

(16) q F = C child of F µ(C) µ(F ) - ν(C) ν(F ) + = C child of F ν(C) ν(F ) - µ(C) µ(F ) + .
Step 2. Here we show that ξ G0 ∈ H(µ, ν), so that

T p (µ, ν) ≤ R d ×R d |x -y| p ξ G0 (dx, dy). We recall that G 0 = B(0, 1) is the unique element of Q 0 .
We actually prove by reverse induction that for all ∈ {0, . . . , k}, all F ∈ Q , it holds that ξ F ∈ H( µ| F µ(F ) , ν| F ν(F ) ). The result will then follow by choosing = 0 and F = G 0 . This is obvious if = k, see [START_REF] Verger-Gaugry | Covering a ball with smaller equal balls in R n[END_REF]. Next, we assume that this holds true for some +1 ∈ {1, . . . , k}, and we consider F ∈ Q . For A ∈ B(R d ), we use [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF] to write

ξ F (A × R d ) = C child of F ρ C ξ C (A × R d ) + q F α F (A) = C child of F ρ C µ(A ∩ C) µ(C) + q F α F (A)
by induction assumption. Thus

ξ F (A × R d ) = C child of F µ(C) µ(F ) ∧ ν(C) ν(F ) + µ(C) µ(F ) - ν(C) ν(F ) + µ(A ∩ C) µ(C) = C child of F µ(C) µ(F ) µ(A ∩ C) µ(C) , whence ξ F (A × R d ) = µ(A ∩ F )/µ(F ). One shows similarly that ξ F (R d × A) = ν(A ∩ F )/ν(F ).
Step 3. For i ∈ {0, . . . , k} and

F ∈ Q i , we put m F = R d ×R d |x -y| p ξ F (dx,

dy). In this step, we show by induction that for all

i ∈ {0, . . . , k -1}, (17) m G0 ≤ δ p 0 q G0 + i =1 δ p C ∈Q j=1 ρ fj (C ) q C + Ci+1∈Qi+1 i+1 j=1 ρ fj (Ci+1) m Ci+1 .
Recalling [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF], since the set of all the children of G 0 is Q 1 , and since |x-y| ≤ δ 0 for all x, y ∈ G 0 , so that

R d ×R d |x -y| p α G0 (dx)β G0 (dy) ≤ δ p 0 , we see that m G0 ≤ δ p 0 q G0 + C1∈Q1 ρ C1 m C1 = δ p 0 q G0 + C1∈Q1 ρ f1(C1) m C1 ,
which is (17) with i = 0. Assume now that (17) holds true for some i ∈ {0, . . . , k -2}. For all C i+1 ∈ Q i+1 , we use [START_REF] Weed | Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance[END_REF] and that

R d ×R d |x -y| p α Ci+1 (dx)β Ci+1 (dy) ≤ δ p i+1 to write m Ci+1 ≤ δ p i+1 q Ci+1 + Ci+2 child of Ci+1 ρ Ci+2 m Ci+2 . Hence, since f j (C i+2 ) = f j (C i+1 ) for all j = 1, . . . , i + 1 if C i+2 is a child of C i+1 , Ci+1∈Qi+1 i+1 j=1 ρ fj (Ci+1) m Ci+1 ≤δ p i+1 Ci+1∈Qi+1 i+1 j=1 ρ fj (Ci+1) q Ci+1 + Ci+2∈Qi+2 i+2 j=1 ρ fj (Ci+2) m Ci+2 .
This last formula, inserted in (17), gives (17) with i + 1 instead of i.

Step 4. For all 13) and since x, y ∈ C k implies that |x -y| ≤ δ k . Hence, by definition of ρ F ,

C k ∈ Q k , we have m C k ≤ δ p k by (
C k ∈Q k k j=1 ρ fj (C k ) m C k ≤ δ p k C k ∈Q k k j=1 µ(f j (C k )) µ(f j-1 (C k )) = δ p k C k ∈Q k µ(C k ) = δ p k .
This, inserted in (17

) with i = k -1, tells us that m G0 ≤ δ p 0 q G0 + k-1 =1 δ p C ∈Q j=1 ρ fj (C ) q C + δ p k . Since T p (µ, ν) ≤ m G0 by
Step 2, we conclude that

T p (µ, ν) ≤ k-1 =0 δ p u (µ, ν) + δ p k ,
where

u 0 (µ, ν) = q G0 and u (µ, ν) = C ∈Q ( j=1 ρ fj (C ) )q C for ∈ {1, . . . , k -1}.
Step 5. We now check by induction that for all n = 1, . . . , k,

n-1 =0 u (µ, ν) = 1 - Cn∈Qn n j=1 ρ fj (Cn) , (18) 
and this will imply [START_REF] Luschgy | Marginal and functional quantization of stochastic processes[END_REF]. If first n = 1, by ( 16),

u 0 (µ, ν) = q G0 = C1∈Q1 (µ(C 1 ) -ν(C 1 )) + = 1 - C1∈Q1 [µ(C 1 ) ∧ ν(C 1 )] = 1 - C1∈Q1 ρ C1 as desired. If next (18) holds with some n ∈ {1, k -1}, we write n =0 u (µ, ν) = 1 - Cn∈Qn n j=1 ρ fj (Cn) + Cn∈Qn n j=1 ρ fj (Cn) q Cn = 1 - Cn+1∈Qn+1 n+1 j=1 ρ fj (Cn+1) , because, recalling (16) and that ρ Cn+1 = µ(Cn+1) µ(Cn) ∧ ν(Cn+1) ν(Cn) (if C n+1 is a child of C n ), q Cn = Cn+1 child of Cn µ(C n+1 ) µ(C n ) - ν(C n+1 ) ν(C n ) + = 1 - Cn+1 child of Cn ρ Cn+1 .
Step 6. It only remains to verify [START_REF] Rogers | Covering a sphere with spheres[END_REF]. But for = 1, . . . , k -1, by definition (15) of q C and since

j=1 ρ fj (C ) ≤ µ(C ) ∧ ν(C ), u (µ, ν) = C ∈Q j=1 ρ fj (C ) q C ≤ 1 2 C ∈Q (µ(C ) ∧ ν(C )) C +1 child of C µ(C +1 ) µ(C ) - ν(C +1 ) ν(C ) .
Hence we have [START_REF] Rogers | Covering a sphere with spheres[END_REF] for any = 1, . . . , k -1. Next, since Q 0 = {G 0 } and µ, ν are carried by G 0 ,

u 0 (µ, ν) = q C0 = 1 2 C1∈Q1 |µ(C 1 ) -ν(C 1 )| = 1 2 C0∈Q0 (µ(C 0 ) ∧ ν(C 0 )) C1∈Q1 µ(C 1 ) µ(C 0 ) - ν(C 1 ) ν(C 0 ) ,
whence ( 12) with = 0.

We next consider the non compact case.

Lemma 6. For any µ, ν ∈ P(R d ), any a > 1, any p > 0,

T p (µ, ν) ≤ n≥0 a pn 2 p ε p |µ(G a n ) -ν(G a n )| + (µ(G a n ) ∧ ν(G a n ))T p (R a n µ, R a n ν) , ( 19 
)
where R a n µ is the image measure of

µ| G a n µ(G a n ) by the map x → a -n x.
Proof. We fix a > 1 and p > 0 and consider, for each n ≥ 0, the optimal coupling π n between R a n µ and R a n ν for T p . We define ξ n as the image of π n by the map (x, y) → (a n x, a n y). It holds that

ξ n belongs to H(µ| G a n /µ(G a n ), ν| G a n /ν(G a n )) and satisfies R d ×R d |x -y| p ξ n (dx, dy) = a pn R d ×R d |x -y| p π n (dx, dy) = a pn T p (R a n µ, R a n ν). (20) Next, we introduce q = 1 2 n≥0 |µ(G a n ) -ν(G a n )| and we define ξ(dx, dy) = n≥0 (µ(G a n ) ∧ ν(G a n ))ξ n (dx, dy) + qα(dx)β(dy), (21) 
where

α(dx) = 1 q n≥0 (µ(G a n ) -ν(G a n )) + µ| G a n (dx) µ(G a n ) and β(dy) = 1 q n≥0 (ν(G a n ) -µ(G a n )) + ν| G a n (dy) ν(G a n ) . Using that (G a n ) n≥0 is a partition of R d , that ξ n ∈ H(µ| G a n /µ(G a n ), ν| G a n /ν(G a n )) and that q = n≥0 (ν(G a n ) -µ(G a n )) + = n≥0 (µ(G a n ) -ν(G a n )) + = 1 - n≥0 (ν(G a n ) ∧ µ(G a n )),
it is easily checked that α and β are probability measures and that ξ ∈ H(µ, ν). Furthermore,

setting c p = 1 ∨ 2 p-1 , R d ×R d |x -y| p α(dx)β(dy) ≤c p R d ×R d (|x| p + |y| p )α(dx)β(dy) = c p R d |x| p α(dx) + c p R d |y| p β(dy).
We have |x| < a n for all x ∈ G a n , whence q

R d ×R d |x -y| p α(dx)β(dy) ≤c p n≥0 a pn [(µ(G a n ) -ν(G a n )) + + (ν(G a n ) -µ(G a n )) + ] =2 p ε p n≥0 a pn |µ(G a n ) -ν(G a n )|. (22) Using that T p (µ, ν) ≤ R d ×R d |x -y| p ξ(dx, dy
) and ( 21)-( 20)-( 22) completes the proof. We can now give the Proof of Proposition 4. Fix µ and ν in P(R d ) and a > 1. For each n ≥ 0, the probability measures R a n µ and R a n ν, defined in Lemma 6, are supported in B(0, 1), and

R a n µ(C) = µ(a n C∩G a n ) µ(G a n )
for all C ∈ B(R d ). Hence we know from Lemma 5 that there exists some numbers r a,n, (µ,

ν) = u (R a n µ, R a n ν) satisfying k-1 =0 r a,n, (µ, ν) ≤ 1 and r a,n, (µ, ν) ≤ 1 2 F ∈Q µ(a n F ∩ G a n ) µ(G a n ) ∧ ν(a n F ∩ G a n ) ν(G a n ) C child of F µ(a n C ∩ G a n ) µ(a n F ∩ G a n ) - ν(a n C ∩ G a n ) ν(a n F ∩ G a n )
and such that

T p (R a n µ, R a n ν) ≤ δ p k + k-1 =0 δ p r a,n, (µ, ν).
Inserting this into (19) completes the proof.

A general estimate concerning the empirical measure

To go further, we need a more precise setting.

Setting 7. Same points (a) and (b) as in Setting 3.

(c) There are some constants A, D > 0 and r > 1 such that for each k ≥ 1, there is a family

(Q k, ) =0,...,k of nested partitions of G 0 such that Q k,0 = {G 0 } and such that ∀ = 1, . . . , k, |Q k, | ≤ A r d (23) and ∀ = 0, . . . , k, δ k, = max C∈Q k, sup x,y∈C |x -y| ≤ Dr -. (24) 
Recall that ε p = 2 -1 ∨ 2 -p . The goal of this section is to prove the following result. Proposition 8. We adopt Setting 7, consider µ ∈ P(R d ) and the associated empirical measure µ N , see [START_REF] Ajtai | On optimal matchings[END_REF]. Fix p > 0 and assume that M q (µ) < ∞ for some q > p. For all a > 1, all N ≥ 1,

E[T p (µ N , µ)] ≤ K N + min{L N , M N }, where K N =2 p ε p 2[1 -µ(G a 0 )] ∧ 1 -µ(G a 0 ) N + 2 p ε p n≥1 a pn 2µ(G a n ) ∧ µ(G a n ) N , L N = D p √ Ar d 2 √ N ≥0 r (d/2-p) n≥0 a pn µ(G a n ), M N =D p (1 -r -p ) n≥0 a pn ≥0 r -p µ(G a n ) ∧ √ Ar d /2+d 2(r d/2 -1) µ(G a n ) N .
We simply write K N , L N , M N for readability, but these quantities also depend on p, a and µ.

Proof. We fix µ ∈ P(R d ), a > 1 and p > 0. We also fix k ≥ 1; we will let k → ∞ at the end of the proof. Applying Proposition 4, with the family (Q k, ) =0,...,k , with µ and ν = µ N and taking expectations, we find

E[T p (µ N , µ)] ≤ U N,k + V N,k + W N,k , (25) 
where, setting ρ k,a,n, = E[(µ(G a n ) ∧ µ N (G a n ))r k,a,n, (µ, µ N )] (with r k,a,n, (µ, µ N ) as defined in Proposition 4 with the family (Q k, ) =0,...,k ),

U N,k =2 p ε p n≥0 a pn E[|µ(G a n ) -µ N (G a n )|], V N,k = n≥0 a pn k-1 =0 δ p k, ρ k,a,n, ≤ D p n≥0 a pn k-1 =0 r -p ρ k,a,n, , W N,k =δ p k,k n≥0 a pn µ(G a n ) ≤ D p r -pk n≥0 a pn µ(G a n ). ( 26 
)
We used that δ k, ≤ Dr -for all ∈ {0, . . . , k}, see (24).

Since N µ N (G a n ) is Binomial(N, µ(G a n ))-distributed, it holds that E[µ N (G a n )] = µ(G a n ) and Var [µ N (G a n )] = N -1 µ(G a n )(1 -µ(G a n ))
, from which we deduce that

E[|µ(G a n ) -µ N (G a n )|] ≤ 2[1 -µ(G a n )] ∧ 2µ(G a n ) ∧ µ(G a n )(1 -µ(G a n )) N .
We used that |x -

y| = |(1 -x) -(1 -y)| ≤ 1 -x + 1 -y for all x, y ∈ [0, 1]
for the first bound, that |x -y| ≤ x + y for the second one, and the Bienaymé-Tchebychev inequality for the third one. All this implies that for all k ≥ 1,

U N,k ≤ K N . (27) 
Next, we observe that k-1 =0 ρ k,a,n, ≤ µ(G a n ) by ( 9) and we claim that for = 0, . . . , k -1,

ρ k,a,n, ≤ 1 2 |Q k, +1 |µ(G a n ) N . (28) 
Recalling [START_REF] Lei | Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces[END_REF] and using that (µ(G

a n ) ∧ µ N (G a n ))( µ(a n F ∩G a n ) µ(G a n ) ∧ µ N (a n F ∩G a n ) µ N (G a n ) ) ≤ µ N (a n F ∩ G a n ), ρ k,a,n, ≤ 1 2 F ∈Q k, C child of F E µ N (a n C ∩ G a n )- µ N (a n F ∩ G a n )µ(a n C ∩ G a n ) µ(a n F ∩ G a n ) . (29) But for C a child of F , the conditional law of N µ N (a n C ∩ G a n ) knowing that N µ N (a n F ∩ G a n ) = i is Binomial(i, µ(a n C∩G a n ) µ(a n F ∩G a n ) ), whence E µ N (a n C ∩ G a n ) - µ N (a n F ∩ G a n )µ(a n C ∩ G a n ) µ(a n F ∩ G a n ) N µ N (a n F ∩ G a n ) = i ≤ i N 2 µ(a n C ∩ G a n ) µ(a n F ∩ G a n ) . Hence, since E[ N µ N (A)] ≤ N µ(A) because E[µ N (A)] = E[µ(A)], E µ N (a n C ∩ G a n )- µ N (a n F ∩ G a n )µ(a n C ∩ G a n ) µ(a n F ∩ G a n ) ≤ µ(a n C ∩ G a n ) N 2 µ(a n F ∩ G a n ) E N µ N (a n F ∩ G a n ) ≤ µ(a n C ∩ G a n ) N .
This, inserted in (29), proves the claim (28), since by the Cauchy-Schwarz inequality,

F ∈Q k, C child of F µ(a n C ∩ G a n ) N = C∈Q k, +1 µ(a n C ∩ G a n ) N ≤ |Q k, +1 |µ(G a n ) N .
We deduce from (28) and ( 23) that

k-1 =0 r -p ρ k,a,n, ≤ 1 2 k-1 =0 r -p |Q k, +1 |µ(G a n ) N ≤ Aµ(G a n ) 2 √ N k-1 =0 r -p r d( +1)/2 . Since V N,k ≤ D p n≥0 a pn k-1 =0 r -p ρ k,a
,n, , we conclude that for all k ≥ 1,

V N,k ≤ D p n≥0 a pn Aµ(G a n ) 2 √ N ≥0 r -p r d( +1)/2 = L N (30)
Next, we set S k,a,n, = i=0 ρ k,a,n,i for = 0, . . . , k -1 and S k,a,n,-1 = 0 to write

k-1 =0 r -p ρ k,a,n, = k-1 =0 r -p (S k,a,n, -S k,a,n, -1 ) = (1 -r -p ) k-1 =0 r -p S k,a,n, + r -pk S k,a,n,k-1 .
But for each = 0, . . . , k -1, we both have S k,a,n, ≤ µ(G a n ) (since

k-1 =0 ρ k,a,n, ≤ µ(G a n )
, as already seen) and, by ( 28) and (23),

S k,a,n, ≤ 1 2 i=0 |Q k,i+1 |µ(G a n ) N ≤ Aµ(G a n ) 2 √ N i=0 r d(i+1)/2 ≤ √ Ar d /2+d 2(r d/2 -1) µ(G a n ) N . Hence k-1 =0 r -p ρ k,a,n, ≤ (1 -r -p ) k-1 =0 r -p µ(G a n ) ∧ √ Ar d /2+d 2(r d/2 -1) µ(G a n ) N + r -pk µ(G a n ).
Recalling that V N,k ≤ D p n≥0 a pn k-1 =0 r -p ρ k,a,n, , we conclude that for all k ≥ 1, it holds that

V N,k ≤D p n≥0 a pn (1 -r -p ) ≥0 r -p µ(G a n ) ∧ √ Ar d /2+d 2(r d/2 -1) µ(G a n ) N + D p r -pk n≥0 a pn µ(G a n ) =M N + D p r -pk n≥0 a pn µ(G a n ). (31) 
Gathering ( 25)-( 26)-( 27)-( 30)-(31), we have proved that for all k ≥ 1,

(32) E[T p (µ N , µ)] ≤ K N + min L N , M N + D p r -pk n≥0 a pn µ(G a n ) + D p r -pk n≥0 a pn µ(G a n ).
Since µ(G a n ) ≤ M q (µ)a (1-n)q for all n ≥ 1 because G a n ⊂ B(0, a n-1 ) c , and since q > p, we deduce that n≥0 a pn µ(G a n ) < ∞. Letting k → ∞ in (32) thus completes the proof.

Let us mention that the penultimate paragraph of this proof, where we handle a discrete integration by parts, is crucial to obtain reasonable constants when p ∈ (0, d/2).

Theoretical result for a general norm

Recall that ε p = 2 -1 ∨ 2 -p and that H was defined in [START_REF] Dereich | Constructive quantization: approximation by empirical measures[END_REF]. Here we prove the following general result, to be applied to some specific norms later. Proposition 10. We adopt Setting 7, we fix µ ∈ P(R d ) and consider the associated empirical measure µ N , see [START_REF] Ajtai | On optimal matchings[END_REF]. We fix q > p > 0 and assume that M q (µ) < ∞.

(i) If p > d/2 and q > 2p, then for all N ≥ 1,

E[T p (µ N , µ)] ≤ 2 p κ d,p √ N [M q (µ)] p/q H ε p κ d,p , 2p, q , where κ d,p = D p √ Ar d 2 p+1 (1 -r d/2-p )
.

(ii) If p = d/2 and q > 2p, then for all N ≥ 1,

E[T p (µ N , µ)] ≤ 2 p κ d,p,N √ N [M q (µ)] p/q H ε p κ d,p,N , 2p, q , where κ d,p,N = D p √ Ar p 2 p+1 p log r log + 2(r -p -r -2p ) N A + D p √ Ar 2p 2 p+1 (r p -1)
.

(iii) If p ∈ (0, d/2) and q > dp/(d -p), then for all N ≥ 1,

E[T p (µ N , µ)] ≤ 2 p κ d,p N p/d [M q (µ)] p/q H 2 1-2p/d ε p κ d,p , dp d -p , q , where κ d,p = D p A p/d r p (r d/2 -1) 1-2p/d 2 p+2p/d (r d/2-p -1) . 
Proof. We fix q > p > 0. We have (G

a 0 ) c ⊂ {x ∈ R d : |x| ≥ 1} and G a n ⊂ {x ∈ R d : |x| ≥ a n-1 } for each n ≥ 1, whence (35) 1 -µ(G a 0 ) ≤ M q (µ) and µ(G a n ) ≤ M q (µ)a -q(n-1) if n ≥ 1. We know from Proposition 8 that E[T p (µ N , µ)] ≤ K N + min{L N , M N }.
Case (i): p > d/2 and q > 2p. First, by (35), we have

K N ≤ 2 p ε p M q (µ) N + 2 p ε p n≥1 a pn M q (µ) N a q(n-1) = 2 p ε p M q (µ) N 1 + a p 1 -a p-q/2 . Next, L N ≤ D p √ Ar d 2 √ N ≥0 r (d/2-p) 1 + n≥1 a pn M q (µ) a q(n-1) = 2 p κ d,p √ N 1 + M q (µ) a p 1 -a p-q/2 recall that κ d,p = (D/2) p √ Ar d /[2(1 -r d/2-p )].
All in all, we have proved that

(36) E[T p (µ N , µ)] ≤ 2 p √ N κ d,p + M q (µ) ε p + (ε p + κ d,p ) a p 1 -a p-q/2 .
This holds true for any value of a > 1 and we optimally choose a = [q/(2p)] 2/(q-2p) and set v p,q = a p 1 -a p-q/2 = q q -2p q 2p 2p/(q-2p) .

We thus have

E[T p (µ N , µ)] ≤ 2 p √ N κ d,p + M q (µ)[ε p + (ε p + κ d,p )v p,q ] = 2 p κ d,p √ N 1 + M q (µ)ρ d,p,q ,
where ρ d,p,q = ε p /κ d,p + (ε p + κ d,p )v p,q /κ d,p .

For any α > 0, we may apply this formula to µ α , the image measure of µ by the map x → αx, which satisfies E[T p (µ α N , µ α )] = α p E[T p (µ N , µ)] and M q (µ α ) = α q M q (µ). We thus get

E[T p (µ N , µ)] ≤ 2 p κ d,p √ N 1 α p 1 + α q M q (µ)ρ d,p,q .
We optimally choose α = [(q -2p)ρ d,p,q M q (µ)/(2p)] -2/q and find

E[T p (µ N , µ)] ≤ 2 p κ d,p √ N [M q (µ)] p/q ρ d,p,q q -2p 2p 2p/q q q -2p = 2 p κ d,p √ N [M q (µ)] p/q ε p κ d,p q -2p 2p + ε p + κ d,p κ d,p v p,q q -2p 2p 2p/q q q -2p = 2 p κ d,p √ N [M q (µ)] p/q ε p κ d,p q -2p 2p + ε p + κ d,p κ d,p q 2p
q/(q-2p) 2p/q q q -2p = 2 p κ d,p √ N [M q (µ)] p/q H ε p κ d,p , 2p, q .

Case (ii): p = d/2 and q > 2p. Exactly as in Case (i), K N ≤ 2 p ε p M q (µ) N 1 + a p 1 -a p-q/2 . We next write a pn µ(G a n ) ≤ 1 + n≥1 a pn M q (µ) a q(n-1) = 1 + M q (µ) a p 1 -a p-q/2 , and recalling that ) .

The case of a low order finite moment

We finally handle the case where µ has a low order moment. We only treat the case of the maximum norm for simplicity. We thus may apply Proposition 8 with A = 1, D = 2 and r = 2, see the beginning of Section 7.

Finally
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( 2 )

 2 d,2,q ≤ c with c = 4 (second line), c = 2 (third line), c = 1.25 (fourth line).

Setting 3 .

 3 (a) We fix a norm | • | on R d . We denote by B(x, r) = {y ∈ R d : |x -y| < r} the corresponding balls, by T p (µ, ν) = inf ξ∈H(µ,ν) R d ×R d |x -y| p ξ(dx, dy) the corresponding transport cost, and by M q (µ) = R d |x| q µ(dx) the corresponding moments. (b) Let G 0 = B(0, 1). For a > 1, we set G a 0 = G 0 and, for all n ≥ 1, G a n = B(0, a n )\B(0, a n-1 ). (c) We consider a family (Q ) =0,...,k of nested partitions of G 0 such that Q 0 = {G 0 }. For each = 1, . . . , k, each C ∈ Q , there exists a unique F ∈ Q -1 such that C ⊂ F ; we then say that C is a child of F . For = 0, . . . , k, we denote by |Q | the cardinal of Q and we set δ = max C∈Q sup x,y∈C |x -y|.

M 2 √( 1 - 1 n≥0a

 211 N ≤D p (1 -r -p ) p (1 -r -p ) n≥0 a pn µ(G a n )Ψ r,p,d/Ar d 2(r d/2 -1) N µ(G a n ).By (33) with α = β = p = d/2, we can bound M N by D p (1 -r -p ) n≥0 a pn µ(G a n ) log + (2(r -d/2 -r -d ) N µ(G a n )/A) r -p ) log + (2(r -p -r -2p ) N/A) p log r + pn µ(G a n ) since µ(G a n ) ≤ 1.Observing that, by (35),

  n≥0

1 - 2 8 .D 4 p

 1284 κ d,p,N = (D/2) p √ Ar p log + (2(r -p -r -2p ) N/A) 2p log r + (D/2) p √ Ar 2p 2(r p -1) , If next p = d/2, we have κ (∞) d,p,N = D p √ Ar p 2 p+1 p log r log + 2(r -p -r -2p ) -p .If finally p ∈ (0, d/2), we haveκ (∞) d,p = D p A p/d r p (r d/2 -1) 1-2p/d 2 p+2p/d (r d/2-p -1) = 2 p-2p/d (1 -2 -d/2 ) 1-2p/d 1 -2 p-d/2.Conclusion for the other normsWe now work with m ∈ [1, ∞). The following lemma follows from Le Gouic [9, Lemma 3.18] Recall that K (m) d was defined in[START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF] and thatB m (x, r) = {y ∈ R d : |y -x| m < r}. Lemma 11. For any k ≥ 1, any r ≥ 2, there exists a family (Q k, ) =0,...,k of nested partitions of B m (0, 1) such that Q k,0 = {B m (0, 1)}, with |Q k, | ≤ K (m)d 2 -d r d for all = 1, . . . , k and δ k, = max C∈Q k, sup x,y∈C |x -y| m ≤ (4r/(r -1))r -for all = 0, . . . , k. It suffices to use [9, Lemma 3.18] with E = B m (0, 1), d(x, y) = |x -y| m , D = 2, ε = r -1 and to note that for = 1, . . . , k, since |Q k, | ≤ N (m) 2r -and 2r -∈ (0, 1], we have |Q k, | ≤ K (m) d 2 -d r d . Thus Setting 7-(c) holds with any r ≥ 2, with A = K (m) d 2 -d and D = 4r/(r -1), so that we may apply Proposition 10 with these values. Optimizing in r ≥ 2, this gives Theorem 1 (with the norm | • | m ) with the announced formulas, which we now check. If first p > d/2, we find κ (m) d,p = min{κ (m) d,p,r : r ≥ 2}, where κ (m) d,p,r = D p √ Ar d 2 p+1 (1 -r d/2-p ) = K (m) d 2 p-1-d/2 r p+d/2 (r -1) p (1 -r d/2-p ) . If next p = d/2, we have κ (m) d,p,N = min{κ (m) d,p,N,r : r ≥ 2}, where κ (m) d,p,N,r = D p √ Ar p 2 p+1 p log r log + 2(r -p -r -2p ) 1) p p log r log + 2 p+1 (r -p -r -2p ) 1) p (r p -1) . If finally p ∈ (0, d/2), we have κ p A p/d r p (r d/2 -1) 1-2p/d 2 p+2p/d (r d/2-p -/d r 2p (1 -r -d/2 ) 1-2p/d (r -1) p (1 -r p-d/2

Table 3 .

 3 Bound of E[T

Table 4 .

 4 Bound of E[T

	(2)

Table 5 .

 5 

		4.2	3.3	3.0	2.9	2.8	2.8	2.7	2.7	2.5	2.4
	9.8	9.4	7.3	6.8	6.5	6.4	6.3	6.2	6.1	5.5	5.5
	40.4	39.0	29.9	27.7	26.6	25.9	25.3	25.0	24.6	22.3	22.1

Table 6 .

 6 

		.0	4.9	4.9	4.1	3.7	3.5	3.3	3.2	2.6	2.5
	9.5	8.9	8.4	8.4	6.9	6.4	6.0	5.8	5.7	4.6	4.5
	37.0	34.5	32.4	32.5	26.7	24.6	23.4	22.5	21.9	17.7	17.4

Table 8 .

 8 Here

	3.2	3.0	2.9	2.8	2.7	2.6	2.6	2.5	2.5	2.5	2.5
	5.4	5.1	4.9	4.7	4.5	4.5	4.4	4.3	4.2	4.2	4.2
	20.5	19.3	18.5	17.9	17.3	17.0	16.6	16.4	16.2	16.1	15.9

p = 2. Minimum value of q so that θ

Table 1 ,

 1 κ (∞)d,1 is at worst (2.45/0.44) 5.6 times too large. When p = 1 and d ≥ 8, see Table3, min{κ ∈ (0.47, 0.5) for all d ≥ 5, to be compared with the numerators in Tables2 and 4. When p = 2 and d ≥ 5, see Table2, (κ ) 1/2 is at worst (2.75/0.47) 5.9 times too large. When p = 2 and d ≥ 8, see Table4, min{(κ

	(2) d,1 ,	√	dκ (∞) d,1 } is at worst (6.74/0.44) 15.4 times too

5.

Precise study of some series Lemma 9. Fix r > 1, β ≥ α > 0 and x ≥ 0 and put

With the notation log + x = (log x) ∨ 0, it holds that Ψ r,α,β (x) ≤ log + (1/x)

Proof. We fix α = β > 0 and prove (33). If x > 1, we write

If x ∈ [0, 1], we set t x = log(1/x)/(β log r) ≥ 0, x = t x ∈ N and s x = t xx ∈ [0, 1) and write Ψ r,α,β (x)

where u = xt x + x/(1 -r -α ) is the desired bound and where, since

To show that v ≤ 0, which will complete the proof of (33), it suffices to prove that g(u) = u+ r -αu -1

is nonpositive for all u ∈ [0, 1]. But g (u) = (α log r) 2 1-r -α r -αu ≥ 0, so that g is convex, and g(0) = g(1) = 0. The conclusion follows.

We fix β > α > 0 and prove (34

) is the desired bound and where, since

To show that v ≤ 0, which will complete the proof of (34), it suffices to show that g(u

r (β-α)u + (α log r) 2 1-r -α r -αu ≥ 0, so that g is convex, and it holds that g(0) = g(1) = 0.

we conclude that

All in all, we have proved that

From there we conclude exactly as in Case (i) (compare the above formula to (36)) that

, 2p, q .

Case (iii): p ∈ (0, d/2) and q > dp/(d -p). We write, using that 2p/d ∈ (0, 1) and then (35),

We used that p -q + pq/d < 0 because q > dp/(d -p). Next,

as in Case (ii). Thus, using (34) with α = p and β = d/2,

But, using (35),

All in all, we have

a p 1 -a p-pq/τ , where we have set τ = dp/(d -p). We choose a = [q/τ ] τ /(p(q-τ )) > 1, for which v d,p,q = a p 1 -a p-pq/τ = q q -τ q τ τ /(q-τ )

.

Thus

As in Case (i), we deduce that

for all α > 0. With α = [ρ d,p,q M p/τ q (q -τ )/τ ] -τ /(pq) , which is optimal, we find

, τ, q as desired.

Conclusion for the maximum norm

Here we consider the maximum norm | • | ∞ . We claim that Setting 7-(c) holds true with A = 1, D = 2 and r = 2. Indeed, consider, for each ≥ 0, the natural partition 

Proof of Theorem 2. We consider p > 0, q ∈ (p, min{2p, dp/(d-p)}), µ ∈ P(R d ) and the associated empirical measure µ N . We know that E[T (∞) p (µ N , µ)] ≤ K N + min{L N , M N } by Proposition 8, and we have

as usual. First,

.

Since q/2 > q -p because q < 2p, we may apply (34) with r = a, with α = q -p and β = q/2:

where ρ a = a p [1/(a p-q/2 -1) + 1/(1 -a p-q )]. Next, recalling that A = 1, D = 2 and r = 2,

where we separate the cases n = 0 and n ≥ 1, i.e.

.

By (34) with r = a, α = q -p and β = q/2, recalling that ρ a = a p [1/(a p-q/2 -1) + 1/(1 -a p-q )],

1 -2 -p 1 -2 d-p-dp/q . For any α > 0, we may apply this above formula to µ α , the image measure of µ by the map x → αx, for which E[T (µ α ) = α q M (∞) q (µ). We get

(∞) q (µ)] p/q N (q-p)/q ε p 2 2p/q-1 + 2 d-1 2 d/2 -1 2(q-p)/q 1 -2 -p 1 -2 d-p-dp/q . Letting α → ∞, we find

(µ)] p/q N (q-p)/q ρ a ε p 2 2p/q-1 + 2 d-1 2 d/2 -1 2(q-p)/q 1 -2 -p 1 -2 d-p-dp/q . Since ρ a = a p /(a p-q/2 -1) + a p /(1 -a p-q ) and since this result holds for any a ∈ (1, ∞), the proof is complete.