N

N

Pyrates: A Serious Game Designed to Support the
Transition from Block-Based to Text-Based
Programming
Matthieu Branthome

» To cite this version:

Matthieu Branthome. Pyrates: A Serious Game Designed to Support the Transition from Block-Based
to Text-Based Programming. Educating for a New Future: Making Sense of Technology-Enhanced
Learning Adoption (EC-TEL 2022), 13450, Springer International Publishing, pp.31-44, 2022, Lecture
Notes in Computer Science, 10.1007/978-3-031-16290-9_3 . hal-03768957

HAL Id: hal-03768957
https://hal.science/hal-03768957

Submitted on 5 Sep 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03768957
https://hal.archives-ouvertes.fr

Pyrates: A Serious Game Designed to Support
the Transition from Block-Based to Text-Based
Programming

Matthieu Branthomel[0000—0002—9795-0760]

Université de Bretagne Occidentale, CREAD - EA 3875, F-29238 Brest, France
matthieu.branthome@univ-brest.fr

Abstract. This paper presents a design-based research which focuses
on the design and the evaluation of the Pyrates online application. This
serious game aims to introduce Python programming language support-
ing the transition from block-based languages. The layout of Pyrates’
learning environment is inspired from beneficial features of block-based
programming editors. In order to evaluate this design, the application has
been tested in eight classrooms with French 10-th grade students (n =
240). Self-generated activity traces have been collected (n = 69,701) and
supplemented by a qualitative online survey. The data analysis shows
that some of the design choices conduct to the expected effects. The cre-
ation of a “programming memo” (synthesized documentation) allows the
discovery of algorithmic notions while offering a reference support for the
Python syntax. The ease of copy-paste from this memo limits keyboard-
ing. The integration of a syntax analyzer designed for beginners gives
students a high level of autonomy in handling errors. However, other
choices have rather deleterious impacts. For instance, the creation of a
control panel for program executions proves to be dedicated to a trial-
and-error programming approach or to “notional bypassing” strategies.

Keywords: Block-based programming - Text-based programming - Python
- Scratch - Serious game - Design-based research - Learning analytics

1 Introduction

Over the years, block programming has become one of the preferential modalities
for introducing computer coding to younger children [6]. Research has demon-
strated the benefits of this approach over the traditional introduction using text-
based languages [3,18,25]. At the same time, text-based programming remains
overwhelmingly used in high school and college contexts for more advanced com-
puter science instruction. This is even more true in industry, where languages
like Python and Java are ubiquitous [19]. Learners who started programming
with blocks may therefore have to switch to text-based programming. How could
they be helped in this transition? This is one of the open questions occupying
the research field that focuses on introductory programming [24,16,14,26].

2 M. Branthoéme

A way to assist them is to design intermediate digital environments offering
features that support the transition from one coding modality to the other. These
bridging environments are intended to be used transitionally before moving to
text-based development tools. Pyrates online application [20,21] was developed
with this objective. It’s a serious game [1] which aims at introducing the Python
textual language to high school students.

According to Brousseau [8], one of the drivers of learning is feedback from the
“learning environment”. He defined this learning environment (called milieu in
French) as the antagonistic system of the learner, the objects (physical, cultural,
social, or human) they interacts with. The Pyrates’ learning environment was
designed taking inspiration from block-based programming editors hoping to
take advantage of their features.

This contribution focuses on the evaluation of this design. Hence, the ad-
dressed research questions are:

— RQ1: During classroom testing, do students adopt the designed features? If
so, how do they use them?
— RQ2: How do students rate these features regarding clarity and utility?

In this paper, the state-of-the-art related to block-to-text transition is first
presented (sect. 2). Next, the design of Pyrates’ learning environment is outlined
(sect. 3). Then, the methodology adopted to evaluate this conception is described
(sect. 4) and the ensuing results are exposed and discussed (sect. 5). Finally, the
conclusion is followed by some perspectives and extensions (sect. 6).

2 State-of-the-art

This literature review is divided into two parts. First, existing applications de-
signed to support the transition from blocks to text are presented. Secondly, the
results of scientific works analyzing the intrinsic differences between these two
kinds of environments are outlined.

2.1 Existing applications

Several avenues based on digital applications have been explored to support
the block-to-text transition. Following Lin & Weintrop classification [16], three
types of environments are distinguished: one-way transition, dual-modality, and
hybrid.

One-way transition environments have two views. One view allows the
editing of programs using blocks, these programs being automatically converted
into a target textual language in the other view. This target language cannot be
directly modified, it can only be consulted and possibly executed by users. This
is for example the case of the EduBlocks application [10] which automatically
translates assembled block-based programs in Python scripts (see Fig. 1-a). The
Patch environment [23] presents a similar operation based on Scratch blocks.

Pyrates: a serious game designed to support block-to-text transition 3

(a) EduBlocks one-way transition environment

1 # Start Code Here
2 names = ["Jack","Mary"]
name names :

Imports

print("Hi "+name+"!")

for name ¥ 'in names ¥ :

Statements

Logic

e Variables

(b) BlockPy dual-modality environment

®»® BlockPy
m 22 Blocks m = Text H < Reset ‘ & Import datasets H B Upload '1 9 History
Variables 1 names = ['Jack', 'Mary']
set = - =
. [names -} (%) create list with [B Jack ERRNERT vary EAS 5| for name in names:
I teration for each item (' CETD | in st | CEEEED | - S print(('Hi' + name) + ')
I Func'ions Mn‘((@) ‘
| «gD» [name —JIL=
I Outnut
(c) Strype hybrid environment
STRYPE ® @
'V My code: i if
names & [Jack!/Mary'] e else
. f for
for name in names :
_ w while
\print('Hi '+ name+'"") ‘
- b break

Fig. 1. Examples of the three types of environments

Dual-modality environments are structured in the same manner as one-
way ones. In addition, programs can be created or modified directly in the tex-
tual view. This automatically results in updating the program in the block view.
Existing implementations include PencilCode [5], which is aimed at learning
Javascript and more recently Python [2]. BlockPy [4] provides another environ-
ment dedicated to Python programming (see Fig. 1-b).

Finally, hybrid environments are combining blocks and text in a single
view. High-level structures (loops, conditionals, etc.) can be inserted by drag-
and-drop or from keyboard shortcuts. Expression-level code is introduced by
traditional text editing supported by auto-completion. Stride provides teach-
ers with an operational implementation for the Java language [14]. The freshly
released Strype [15] offers a “frame-based” environment dedicated to Python edi-
tion (see Fig. 1-c).

4 M. Branthoéme

With respect to this classification, there are actually two types of environ-
ments: those based on translation (one-way transition and dual-modality) and
those based on the fusion of modalities. Each of them has different objectives. On
the one hand, to support the transition on the syntactic and concepts transpo-
sition aspects. On the other hand, to temporarily hide the drawbacks of textual
languages while still benefiting from the advantages of blocks.

2.2 Advantages of block-based environments: synthesis of the
research literature

Several authors [6,14,24] have analyzed the inherent differences between block-
based and text-based programming environments. Their most salient results are
summarized below.

Availability of a Command Catalog (ACC). Block programming envi-
ronments present the user with a browsable “palette” listing all existing blocks
organized thematically or conceptually. This allows novice users to discover new
concepts or to recall previously acquired ones. In text-based environments, the
existence and syntax of code structures must be well-known to programmers.

Reduced number of Significant Elements (RSE). Textual program-
ming languages are made up of many units of information (keywords, typo-
graphical signs, etc.). This dense notation is an obstacle for novices because it
can overwhelm their working memory. Experienced programmers have learned
over time to interpret code in larger chunks. Blocks help to reduce the cognitive
load of beginners by showing them how to apprehend commands in wider parts.

Drag and Drop Composition (DDC). Composing programs by dragging
and dropping blocks limits the difficulty of typing and searching for typographi-
cal signs on the keyboard. The purely mechanical act of typing the program text
can be a cognitive and motor obstacle for young learners. The need of keyboard-
ing adds cognitive distractions when correcting the inevitable typing errors.

Absence of Syntactic Errors (ASE). Block-based systems avoid most of
the syntax errors thanks to a global and constrained manipulation of the struc-
tures. In text-based systems, these errors are numerous and the error messages
are generally unclear in their formulation. Interpreting these messages is a far
from trivial skill which takes a long time for novices to master.

Execution control and visibility (ECV). Block-based environments ease
control and improve visibility of program execution. They allow to highlight the
block being executed in order to make visible the correspondence between code
and action. They may provide a step-by-step mode (set speed, stop and resume
execution) or make apparent the current state of variables. These features, not
necessarily found in text-based environments, offer to beginners a better under-
standing of programs execution.

The above comparisons are based on basic code editors. However, some edu-
cational text-based environments, like PyScripter [22], offer facilitating features
such as syntax highlighting, automatic completion, or syntax checking during
typing which can help to reduce semantic errors and to limit keyboard input.

Pyrates: a serious game designed to support block-to-text transition 5

3 Design of the learning environment

This section reports on Pyrates’ learning environnement design. The presenta-
tion is based on Fig. 2 which shows the graphical interface and the different
areas of the application.

PES

Startup Guide

[1D : Kp65pSN
1o

Goal : Pick up the key and open the chest.
Constraints : In this level your program must not
exceed 10 lines.
Control functions :
« walk() : move one block forward.

£() : tum to the left side.

ht() : turn to the right side.

5 |
i ESn
«+ EE B

hest() : open the chest f itis in front of

you (or in your location) and if you own the key. Teacheronly (3] @

Programming Memo gpython

Application 1
Basic concepts
Game 0
Variable

Syntax 2
Conditional

Semantics 0
For loop

While loop Weilton @

Other 1

Survey

Fig. 2. Different areas of Pyrates’ graphical interface.

This online application consists of a platform game allowing to control a
character using a Python program. This avatar must accomplish various play-
ful objectives. The different levels of this game were designed by implementing
the constructivist paradigm which is based on Piaget’s psychological hypothesis
about adaptive learning [17]. In this way, the algorithmic notions at stake in
each level are not explicit but are made necessary by the game problem to be
solved. Brousseau [9] qualified these kind of learning situations as “adidactical
situations”. For the sake of brevity, the game levels’ design will not be studied
in this paper.

The conception of Pyrates’ learning environment is presented below. It was
designed grounding on the research findings described in section 2.2. Therefore,
the features of block programming environments (ACC to ECV) have been
incorporated hoping to take advantage of their benefits.

First, a fixed sidebar was created on the left side of the screen containing,
among other elements, a programming memo (see Fig. 2-b). This area is in-
spired by the command catalog present in block-based environments (ACC).
The memo contents are classified by concepts (basic concepts, variable, condi-
tional, for loop, and while loop) and are accessible by clicking on the different
blue buttons. The exposed concepts have been chosen in coherence with the

6 M. Branthoéme

French mathematics and computer science curriculum. In an effort to guide the
students in the exploration of this memo, mouse hovering on a button changes
its title by giving an idea of the usefulness of the notion. For example, “variable”
becomes “Store information in memory”.

(a) Side panel extract about the « For loop » notion (b) Side panel extract about the « Conditional» notion

For loop Conditional

- Two branches conditional
Utility
. . . Allows instructions to be executed if a condition is true and
Allows instructions to be repeated a specified number of times. . . . i N
other instructions if not (if the condition is false).

Allows instructions to be repeated a specified number of times. Model

instructions
Model

range(number): instructions
instructions

Example
Example Example .
my_var = get_height()
- ()8 my_var < 7:
jump, Jump () turn()
s attack() walk()
Jump()

e The number in brackets in range(number) indicates the . attack()

number of times the instructions are repeated.
* Repeated instructions in the loop (body) must be offset using
the tab key.

e S — o Instructions in the and branches (body) must be

offset using the tab key.

Fig. 3. Two extracts of the programming memo side panel

Clicking on a button causes a side panel appearance detailing the concept
in sub-notions (see Fig. 3). Each sub-notion is explained and then illustrated
by a translated generic model and example. These two programs are ex-
pressed both in Python and Scratch languages. Indeed, in France, programming
is mainly introduced at lower secondary school using the Scratch block-based lan-
guage. In this transitional context, Scratch translations of these text-programs
are provided. The presence of the Python generic model and its Scratch equiv-
alent is intended to help the learners reducing the number of significant text
elements. The goal is to foster the apprehension of Python programs in chunks
and not element by element (RSE). For example, in the simple repetition case
(see Fig. 3-a), students should focus on the number in brackets and consider the
rest of the code as a single aggregate.

To limit keyboarding, each piece of Python code is accompanied by a copy
button. The goal is to encourage the practice of copy-paste to the text editor (see

Pyrates: a serious game designed to support block-to-text transition 7

Fig. 2-e). This usage is a kind of substitute to the drag-and-drop characteristic
of block-based environments (DDC).

Despite these design efforts, it seems presumptuous to consider the disappear-
ance of syntactic errors (ASE). Since interpreting error messages is a hindrance
for novice programmers, the learning environment has been enhanced with a
research-based syntax analyzer especially designed for beginners [13]. This
module parses the Python code before interpreter execution. It formulates error
messages in users’ language (only French and English are currently set up) and
in a practical register which novices can understand. Moreover, these messages
has been marginally amended according to the programming memo terminol-
ogy. Thus, when a syntax error occurs, an enhanced message is displayed in the
console area of the interface (see Fig. 2-d) and the involved code line is red high-
lighted in the code editing area. An error-free program does not mean that the
code is interpretable. Semantic errors (e.g. related to typing) may still appear
during interpretation.

Finally, a control panel was created (see Fig. 2-¢) to improve the supervision
of execution (ECV). Users can thus launch and stop program execution and
adjust its speed using a slider which changes the speed of characters movements
by acting on a multiplying factor. This factor is set to 1 (tortoise) at the launch
of the game and can go up to 3 (hare). The visualization of the execution (ECV)
is ensured by the highlighting of the executed line in the code editor area. In
this way, the correspondence between code and current action is apparent.

4 Methodology

This section describes the methodology used to evaluate the design choices ex-
posed in the previous section. This methodology relies on field experiments in
classrooms. The Pyrates software was tested in eight high school classes in France
(10th-grade: 14-15 years old). The 240 involved students were Python beginners.

The students used the application during two or three sessions of 55 minutes
each, one or two weeks apart, depending on the class. During the first session,
the application and its functioning were quickly introduced before letting the
students use it independently during the remaining time. The teacher was asked
to intervene only on students’ request, or when they had been stuck for a long
time. When the teacher interacted with a student, they had to report the content
of the given help (application, game, syntax, semantics, notion, other) by clicking
on buttons in a reserved frame of the application (see Fig. 2-f).

During these sessions, the application traces the interactions of the students
with the learning environment: consultation and copy-paste of contents, syn-
tactic and semantic errors, helps brought by the teacher, launched programs,
manipulation of the control panel, etc. These activity traces are automatically
generated according to the students’ behavior and then exported in a standard-
ized zAPI format [12]. This data are completed by an online survey filled in
by the students at the end of the experiment. The purpose of this survey is to
collect their qualitative point of view on the application.

8 M. Branthoéme

Consequently, this study data set consists of 69,701 activity traces and 224
survey responses (some students were unable to answer for technical reasons).
It was analyzed in an automated way by means of Python programs. Data ma-
nipulation and processing relied on Pandas library, graphs are generated by
Maitplotlib and Seaborn libraries. In an open science approach, the data and the
code that led to this paper’s figures are shared in an online notebook [7].

5 Results and discussion

The choices described in section 3 have been evaluated by analyzing the stu-
dents activity traces. In this study, the following traces were taken into account:
consultations of the memo, copy-paste from the memo to the code editor, errors
detected by the syntax analyzer and by the interpreter, syntactic and semantic
aids given by the teachers during their interventions, manipulations of the speed
cursor, and chosen speed during the programs’ execution.

(a) Python memo consultations by students

= 104 109 === Basic concepts
8 10 == Variable (var)
% 8.5 mmm Conditional (con)
5 81 o mmm For loop (for)
2 6.5 : 6.6 mmm While loop (whi)
@ - 6.1
o 6 >
g 49 6 48 45

39
S 4 3.8 38
o
o
g
<

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
(for) (for) (var,for) (con,var,for) (con,var,for) (for,var) (for,var) (whi,var,for)
Levels and concepts involved

(b) Copy and paste of the Python memo by students

201 18 19 == Basic concepts
wmm Variable (var)
1.5 4 = Conditional (con)
13 mmm For loop (for)
11 = mmm While loop (whi)

Average number per student
o -
w o

o
o
1

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
(for) (for) (var,for) (con,var,for) (con,var,for) (for,var) (for,var) (whi,var,for)
Levels and concepts involved

Fig. 4. Consultations and copy-pastes of the Python memo by level

Let us look at programming memo usage. First, Fig. 4-a shows that this memo
is frequently consulted by students. It can be noticed that, like the catalog of
block-based environments, it supports the discovery of notions. Indeed, each time
a new notion is involved in a level (lev 1, lev 3, lev 4, and lev 8), a great variety
can be found in the consulted notions. This appears to be the manifestation
of a research process. When the concepts have already been used (lev 2, lev 5,

Pyrates: a serious game designed to support block-to-text transition 9

and lev 6), the consultation seems to be more focused on the concepts at stake.
The hypothesize can be stated that, in this case, the students need to remember
concepts’ implementing syntax. This reminds the recall function of the block
catalog.

Fig. 4-b allows to assert that the students almost systematically use the
copy-paste function when implementing a notion. Each time a notion is involved
in a level, there is, on average, at least one use of copy-paste associated with
it. Except for the notion of variable which has a much simpler implementation
syntax than the other notions. This practice is similar to the drag-and-drop of
blocks, and is able to limit keyboard input and help establish code structures.

(a) Errors detected by the syntax analyser and (b) Help received by students from
the Python interpreter the teacher
175 16.5 mmm Syntactic error 0.44 mmm Syntactic help

-
w
o

mmm Semantic error

o
IS

=== Semantic help

==

w N o N

o U o
e o
N W
N

N

o]
o
-

Average number per student
Average number per student

e
5]

= 0.0-
Lev.1 Lev.2 Lev.3 Lev.4 Llev.5 Lev.6 Lev.7 Lev. 8 Lev.1 Lev.2 Lev.3 Lev.4 Lev.5 Lev.6 Lev.7 Lev.8

Fig. 5. Errors detected by the application and teacher helps received by students.

Considering errors analysis, the examination of Fig. 5-a shows that syntactic
errors (issued from the syntax analyzer) are numerous and in a much higher
proportion than semantics ones (issued from the interpreter). Looking at the
aids provided by the teachers (see Fig. 5-b), it is remarkable to note that the
interventions related to the syntax are very rare. Actually, there is one interven-
tion for every thirty to forty syntactic errors in the first four levels. The students
are therefore presumably able to adjust their syntax-erroneous code thanks to
feedback from the environment, without asking the teacher.

(a) Clarity of explanations (b) Utility of Scratch-Python (c) Clarity of error
in the memo comparisons messages

Density
Density
Density

170

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Clarity level Utility level Clarity level

Fig. 6. Results extract from the student survey (score distribution and median).

10 M. Branthome

The traces generated by the application give quantitative insight concerning
the use of the memo and the occurrences of the error messages. To go further,
these analyses can be qualitatively completed by the survey results. The students
had to evaluate several aspects of the application by placing cursors between two
extremes (“Not clear” - “Very clear”, “Not useful” - “Very useful”), which had the
effect of generating a score between 0 and 100. The survey included questions
related to the Python memo and the error messages. Fig. 6 presents the scores
distribution (density) and median for the these questions.

In addition to being extensively consulted by students, the memo’s explana-
tions are considered as clear by the majority of them (see Fig. 6-a). Despite this,
a group of students can be distinguished around the score of 30 for whom these
contents are more confusing. The comparisons with Scratch are judged as useful
or even very useful by the great majority of the students (see Fig. 6-b). Finally,
the error messages, which we have shown to foster to students’ autonomy, are
also deemed to be clear by the largest number of respondents.

(a) Average number of actions on programs per student

N 307 mmm Erroneous programs launched 27.8
3 mmm Correct programs launched
g 20 - mmm Launched programs stopped
c
1)
o
£ 104
2

04

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
(b) Average number of execution speed changes per student
2.19
5 2.0
2
g 1.5
=
& 1.0
g 0.73 0.71 0.68
> - - -
z 0.32 0.34 0.25
0.0 [| [| 0.05 e |
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
(c) Distribution of programs execution speed by level

@) @] @ @ @ @

c < c c < c c c

v Q v v [v GJ [

o a [a) o) a a)

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Fig. 7. Data concerning the execution control by level.

Let us now evaluate the use of the program control features. According to
Fig. 7-a, there is a very large number of programs run on average per stu-
dent. Many of them are erroneous, suggesting that students are adopting a trial-
and-error programming approach.Numerous correct programs are also launched,
which shows that students progress through the game levels in incremental in-
termediary steps. Program stops are scarce. It is possible to distinguish two
types of behaviors depending on the way the levels routes are generated. For a
first set of levels with fixed non-random routes (Lev.1, Lev.2, Lev.6, and Lev.7),

Pyrates: a serious game designed to support block-to-text transition 11

students use on average between fifteen and twenty launches and almost no
stops. In levels containing random-based routes which change with each run
(Lev.3, Lev.4, Lev.5, and Lev.8), students tend to use more launches and to
stop some of them. For these random-levels some students adopt a transient
operating mode consisting of a series of launch-stop actions until they obtain a
random route configuration suitable for their program. This strategy, which can
be coined as “notional bypassing”, makes it possible to succeed at these levels
without implementing the algorithmic notions at stake. These notions are the
coding structures based on tests (conditional and while loop). This procedure
has very little chance of success because of the large number of different level
random routes. These students who remain at any costs in the playful domain
are unwilling or unable to enter into notional learning by exploring the learning
environment seeking a notion that might allow them to complete the level.

Finally, let us pay attention to the speed change cursor. It is on average rarely
used and decreasingly over time (see Fig. 7-b). Fig. 7-¢ shows the distribution
(density) of launched programs’ execution speeds for each level. From level 2
onwards, the programs are almost all launched at the maximum speed (multi-
plying factor of 3). The trial-and-error and incremental programming approach
earlier described is consistent with this high execution speed. Indeed, three stu-
dents remarked in the open-ended field of the survey that “the character does
not move fast enough”. Nevertheless, a marginal practice can be noted in more
advanced levels (level 4 and level 5). It consists of returning to slower execution
speeds. Observations during the experiments indicate that some students need
to follow more easily the executed lines in a step-by-step action mode.

6 Conclusion and perspectives

To conclude this contribution, its main results can be recalled. The Pyrates’
learning environment has been designed by incorporating block-based environ-
ments features that are thought to be beneficial to students. This design was
evaluated by analyzing students’ activity and answers to an online survey. Some
design choices have the following positive consequences:

— the programming memo is very frequently consulted by the students, it is
the support of the discovery and the recall of the concepts ;

— the included comparisons with Scratch are considered useful by a large ma-
jority of students, they should help the apprehension of Python structures
in larger chunks ;

— copy and paste from the programming memo is widely practiced, this has
the effect of limiting keyboarding;

— the feedback provided by the syntax analyzer via “clear” error messages
makes it possible to correct the programs with very little teacher involve-
ment.

The control panel should allow the students to better understand the execu-
tion of the programs. We note, very marginally, a reduction in the speed of the

12 M. Branthome

character in order to follow the executions in a step-by-step fashion. However,
in general, it does not produce the expected results:

— the program launch button is frequently used and the speed control slider is
very early set to the maximum in order to adopt a trial-and-error program-
ming approach which do not foster reflection ;

— the button allowing to stop the executions is little used, and when it is,
it is mostly to try to succeed in some random-based levels using “notional
bypassing”.

Beyond these results, in comparaison with the applications presented in sec-
tion 2, it can be stated that Pyrates allows to ease the block-to-text transition
at the level of syntax and notions transposition (translated generic model and
example). The design environment also partially erase the inconveniences of
the text modality while profiting from the benefits of the blocks (programming
memo, copy button, control panel and syntax analyser). This application there-
fore offers an intermediate step, a kind of island, allowing a gradual progression
from the block bank to the text bank. However, there is still a step to go towards
a more classical practice of programming in Python using a text editor and a
command line interpreter.

These results must be considered in light of the limitations of the methodol-
ogy. Since the students were in a naturalistic context, it was difficult to maintain
totally similar experimental conditions between different groups, particularly
concerning the teacher’s activity and the temporal distance between sessions.
Moreover, reasoning only on averages allows to identify trends, but masks the
disparities of levels and practices between the students observed in classrooms.
Lastly, we did not have the opportunity to measure students’ actual learning
while playing the Pyrates game.

Finally, let us mention some perspectives that can extend this work. Ed-
wards [11] argues that beginners in computer science are more successful at
learning if they move from a trial-and-error approach to a “reflection-in-action”
practice. Therefore, it would be advantageous to modify the execution control
possibilities in our application in such a way as to force students to do less action
and more reflection. One way could be to limit the number of executions with
scores penalties. Furthermore, it would be interesting to exploit activity traces
using data mining algorithms in order to highlight different coding strategies
used by students. Clustering algorithms could also be used to identify different
student profiles.

Acknowledgements This research was funded by Region Bretagne, Université
de Bretagne Occidentale and IE-CARE ANR project. We thank students and
teachers who participated in the game evaluation sessions.

Pyrates: a serious game designed to support block-to-text transition 13

References

10.
11.

12.

13.

14.

15.

16.

Alvarez, J.: Du jeu vidéo au serious game : approches culturelle, pragma-
tique et formelle. Ph.D. thesis, Université de Toulouse (2007), https://hal.
archives-ouvertes.fr /tel-01240683

Andrews, E., Bau, D., Blanchard, J.: From droplet to lilypad: Present and future of
dual-modality environments. In: 2021 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). pp. 1-2 (2021). https://doi.org/10.1109/
vl/hce51201.2021.9576355

Armoni, M., Meerbaum-Salant, O., Ben-Ari, M.: From scratch to “real” pro-
gramming. ACM Transactions on Computing Education 14(4), 1-15 (feb 2015).
https://doi.org/10.1145 /2677087

Bart, A., Tibau, J., Tilevich, E., Shaffer, C.A., Kafura, D.: Blockpy: An open access
data-science environment for introductory programmers. Computer 50(05), 18-26
(may 2017). https://doi.org/10.1109/mc.2017.132

Bau, D., Bau, D.A., Dawson, M., Pickens, C.S.: Pencil code: Block code for a text
world. In: Proceedings of the 14th International Conference on Interaction Design
and Children. pp. 445-448. IDC ’15, Association for Computing Machinery, New
York, NY, USA (2015). https://doi.org/10.1145/2771839.2771875

Bau, D., Gray, J., Kelleher, C., Sheldon, J., Turbak, F.: Learnable programming;:
Blocks and beyond. Communications of the ACM 60(6), 72-80 (may 2017). https:
//doi.org/10.1145/3015455

Branthéme, M.: Paper’s data visualisation notebook (2022), https://nbviewer.org/
url /storage.py-rates.org/EC-TEL /data_ visualisation.ipynb

Brousseau, G.: Le contrat didactique: le milieu. Recherches en didactique des math-
ématiques 9(3), 309-336 (1990)

Brousseau, G.: Théorie des situations didactiques. La Pensée sauvage, Grenoble
(1998)

Edublocks home page, https://app.edublocks.org/, last accessed 14 Apr 2022
Edwards, S.H.: Using software testing to move students from trial-and-error to
reflection-in-action. In: Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education. pp. 26-30. SIGCSE ’04, Association for Computing
Machinery, New York, NY, USA (2004). https://doi.org/10.1145/971300.971312
Kevan, J.M., Ryan, P.R.: Experience api: Flexible, decentralized and activity-
centric data collection. Technology, Knowledge and Learning 21(1), 143-149 (Apr
2016). https://doi.org/10.1007/s10758-015-9260-x

Kohn, T.: Teaching Python Programming to Novices: Addressing Misconceptions
and Creating a Development Environment. Ph.D. thesis, ETH Zurich, Ziirich
(2017). https://doi.org/10.3929 /ethz-a-010871088

Kolling, M., Brown, N.C.C., Altadmri, A.: Frame-based editing: Easing the tran-
sition from blocks to text-based programming. In: Proceedings of the Workshop in
Primary and Secondary Computing Education. pp. 29-38. WiPSCE ’15, Associ-
ation for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.
1145/2818314.2818331

Kyfonidis, C., Weill-Tessier, P., Brown, N.: Strype: Frame-based editing tool for
programming the micro:bit through python. In: The 16th Workshop in Primary and
Secondary Computing Education. pp. 1-2. Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3481312.3481324

Lin, Y., Weintrop, D.: The landscape of block-based programming: Characteristics
of block-based environments and how they support the transition to text-based

https://hal.archives-ouvertes.fr/tel-01240683
https://hal.archives-ouvertes.fr/tel-01240683
https://doi.org/10.1109/vl/hcc51201.2021.9576355
https://doi.org/10.1109/vl/hcc51201.2021.9576355
https://doi.org/10.1109/vl/hcc51201.2021.9576355
https://doi.org/10.1109/vl/hcc51201.2021.9576355
https://doi.org/10.1145/2677087
https://doi.org/10.1145/2677087
https://doi.org/10.1109/mc.2017.132
https://doi.org/10.1109/mc.2017.132
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/3015455
https://doi.org/10.1145/3015455
https://doi.org/10.1145/3015455
https://doi.org/10.1145/3015455
https://nbviewer.org/url/storage.py-rates.org/EC-TEL/data_visualisation.ipynb
https://nbviewer.org/url/storage.py-rates.org/EC-TEL/data_visualisation.ipynb
https://app.edublocks.org/
https://doi.org/10.1145/971300.971312
https://doi.org/10.1145/971300.971312
https://doi.org/10.1007/s10758-015-9260-x
https://doi.org/10.1007/s10758-015-9260-x
https://doi.org/10.3929/ethz-a-010871088
https://doi.org/10.3929/ethz-a-010871088
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/3481312.3481324
https://doi.org/10.1145/3481312.3481324

14

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

M. Branthome

programming. Journal of Computer Languages 67, 1-18 (2021). https://doi.org/
10.1016/j.cola.2021.101075

Piaget, J.: L’équilibration des structures cognitives. Presse Universitaire de France,
Paris (1975)

Price, T.W., Barnes, T.: Comparing textual and block interfaces in a novice pro-
gramming environment. In: Proceedings of the Eleventh Annual International
Conference on International Computing Education Research. pp. 91-99. ICER
’15, Association for Computing Machinery, New York, NY, USA (2015). https:
/ /doi.org/10.1145/2787622.2787712

Pypl - popularity of programming language home page, https://pypl.github.io/
PYPL.html, last accessed 14 Apr 2022

Pyrates home page, https://py-rates.org, last accessed 14 Apr 2022

Pyrates pedagogical guide, https://py-rates.org/guide/EN/, last accessed 14 Apr
2022

Pyscripter github page, https://github.com/pyscripter/pyscripter, last accessed 14
Apr 2022

Robinson, W.: From scratch to patch: Easing the blocks-text transition. In: Pro-
ceedings of the 11th Workshop in Primary and Secondary Computing Education.
pp- 96-99. WiPSCE ’16, Association for Computing Machinery, New York, NY,
USA (2016). https://doi.org/10.1145/2978249.2978265

Weintrop, D.: Block-based programming in computer science education. Commu-
nications of the ACM 62(8), 22-25 (jul 2019). https://doi.org/10.1145/3341221
Weintrop, D., Wilensky, U.: Comparing block-based and text-based programming
in high school computer science classrooms. ACM Transactions on Computing
Education 18(1), 1-25 (oct 2017). https://doi.org/10.1145/3089799

Weintrop, D., Wilensky, U.: Transitioning from introductory block-based and
text-based environments to professional programming languages in high school
computer science classrooms. Computers & Education 142, 1-17 (2019). https:
//doi.org/10.1016/j.compedu.2019.103646

https://doi.org/10.1016/j.cola.2021.101075
https://doi.org/10.1016/j.cola.2021.101075
https://doi.org/10.1016/j.cola.2021.101075
https://doi.org/10.1016/j.cola.2021.101075
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2787622.2787712
https://doi.org/10.1145/2787622.2787712
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://py-rates.org
https://py-rates.org/guide/EN/
https://github.com/pyscripter/pyscripter
https://doi.org/10.1145/2978249.2978265
https://doi.org/10.1145/2978249.2978265
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3089799
https://doi.org/10.1145/3089799
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1016/j.compedu.2019.103646

	Pyrates: A Serious Game Designed to Support the Transition from Block-Based to Text-Based Programming

