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Abstract. In this article, we propose algorithms for pixelwise deforma-
tions of digital convex sets preserving their convexity using the combina-
torics on words to identify digital convex sets via their boundary words,
namely Lyndon and Christoffel words. The notion of removable and in-
sertable points are used with a geometric strategy for choosing one of
those pixels for each deformation step. The worst-case time complexity
of each deflation and inflation step, which is the atomic deformation, is
also analysed.

1 Introduction

Convexity is an elementary geometric property of digital sets in digital image
processing. There are various applications which require deforming digital con-
vex sets while preserving their convexity. Various definitions of digital convex
sets exist, among which we choose the one based on the convex hull [15]. Indeed,
Brleck et al. have characterized such digital convex sets via the boundary words,
which are encoded by the Freeman chain code [14]; for short, a 4-connected dig-
ital set is digital convex if and only if the Lyndon factorization of its boundary
word is made of Christoffel words [7]. Thanks to this approach based on combi-
natorics on words, we recently considered the following question: given a finite
4-connected, digital convex set C, how can one find a point x of C (resp. its
complement C) such that C \ {x} (resp. C ∪ {x}) is still 4-connected and dig-
itally convex? In order to answer this question, we characterized the two types
of points; they are called removable and insertable points [21, 22].

In this article, following the approach based on combinatorics on words, we
propose algorithms for pixelwise deformations of digital convex sets that preserve
their convexity using the characterizations of removable and insertable points.
The main contribution of this article is factorizing the inflation and deflation
algorithms, whose time complexities are analysed, in order to propose the general
deformation algorithm. A geometric strategy based on distance map is also used
for choosing one of removal and insertable pixels for each deformation step.
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Fig. 1. Digitally convex sets with and without 4-connectivity (left and center) and
digitally non-convex set (right). The sequence of border points is also illustrated by a
thick black polygonal line for each 4-connected set (left and right).

Given a pair of digital convex sets, we show that the proposed algorithms create
a sequence of digital convex sets, which is such a deformation between them.
Some experimental results are illustrated.

2 Basic notions

2.1 Digital convex set

In R2, a subset S is convex if for any pair of points x, y ∈ R, every point on
the straight line segment joining x and y is also within S. This notion, how-
ever, cannot be straightforwardly applied to subsets in Z2; various notions of
convexity of a subset X of Z2 have been proposed. In this article, we focus on
the following one [15] based on the convex hull, denoted by conv(X) and also
called H-convexity [13].

Definition 1 ([15]). A subset X of Z2 is digitally convex if X = conv(X)∩Z2.

Figure 1 illustrates examples of digital convex and non-convex sets, based on
this notion. The following remark warns us to pay attention to the connectivity
separately from the convexity in Z2 (see Figure 1 (center)).

Remark 1. Digital convexity does not imply connectivity in Z2.

Concerning the connectivity of a digital convex set, there exists a homeomor-
phism that makes the set almost 4-connected [10] while an alternative definition
for digital convexity, called full convexity, that encompasses arithmetic lines and
naturally entails connectivity has been proposed [17].

Let us call convex polygons with vertices in Z2, digital convex polygons. The
following property [1, 3] will help us to analyse the complexity of our deformation
algorithms later.

Property 1 ([1, 3]). Given a digital convex polygon of diameter N , the number
of its vertices is bounded by O(N

2
3 ).
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Fig. 2. The boundary word of a digital convex 4-connected set decomposed into four
parts such that each part consists of a binary word (left), and the Lyndon points (black
points) of the boundary word drawn as the black thick polygonal line (right).

2.2 Boundary words and some basic notions of words

Let C ⊂ Z2 be a finite, 4-connected digitally convex set. The border points of
C can be tracked by classical border following algorithms (for example, see [2]
for “left-hand-on-wall” border following), which generate a 4-connected sequence
of the border points of C. Note that the sequence can include dead-ends and
thus sometimes turnaround sub-sequences if the set contains thin parts of one
pixel width. Here, we encode the sequence with Freeman code [14], called the
boundary word of C, denoted by Bd(C), in the clockwise order of border points.
Boundary words are thus defined over an alphabet of four letters 0, 1, 0̄, 1̄, which
are associated to the right, up, left and down directions, respectively. The bound-
ary word of a digital convex 4-connected set C is decomposed into four parts
such that each part consists of two letters, as seen in Figure 2 (left): WN , NE,
ES and SW .

Let us present some basic notions of words (see [18] for more complete
overview): a nonempty finite set of letters is called an alphabet A; in this article,
we have the four letters 0, 1, 0̄, 1̄ as mentioned above. A word w is a sequence
of concatenated letters from A. The empty word ϵ is a sequence of zero letter.
A∗ denotes the set of all finite words over A. The length of w is denoted by |w|
while |w|a represents the number of occurrences of a in w. The n-times concate-
nation of w is written by wn. A word is said primitive if it is not the power of a
nonempty word. A word w is conjugate of a word w′ if w′ can be obtained from
w by cyclically shifting the letters.

2.3 Lyndon words and Lyndon factorization

We give the definition of Lyndon words, which is a necessary notion for the
sequel.

Definition 2 ([19]). A word w over a totally ordered alphabet is a Lyndon word
if it is the smallest among all its conjugates.

For example, w = 00101 where 0 < 1 is a Lyndon word as w is the smallest
among all its conjugates. The following proposition will play a leading role in
our algorithms.
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Proposition 1 ([8]). Every non-empty word w over a totally ordered alphabet
can be written uniquely as w = ℓn1

1 ℓn2
2 . . . ℓnk

k such that every factor ℓi is a Lyndon
word and {ℓi}i is a lexicographically decreasing sequence.

This decomposition of w into ℓi is called Lyndon factorization. Given a word
w of length N , the Lyndon factorization of w is calculated in O(N) time with
a constant space [12]. The points on a word w that separate different Lyndon
factors are called Lyndon points. Note that the two extremities of w are also
Lyndon points. Let us consider a finite, 4-connected digitally convex set C ⊂ Z2

and its boundary word w. Then, the Lyndon points of w correspond to the
vertices of the convex hull of C geometrically (see Figure 2 (right)).

2.4 Christoffel words

Christoffel words are another important notion in this article. Their geometrical
definition can be formulated as:

Definition 3 ([4]). The lower Christoffel word of slope b
a is determined by en-

coding with Freeman chain code the Christoffel path, which is the discrete path
from the origin O to the point P (a, b) such that:

– the path lies below the line segment OP ;
– the integer points in the region enclosed by the path and the line segment OP

are exactly those of the path.

Any Christoffel word with gcd(a, b) = 1 is called primitive. Some properties of
Christoffel words are presented as follows:

– A Christoffel word describes a shortest discrete path, so that it is always
composed from two letters.

– Let c1, c2 be two Christoffel words over the alphabet {0, 1}. Then lexico-
graphically c1 < c2 iff slope(c1) < slope(c2) [6].

– Every primitive Christoffel word is a Lyndon word [5].

The converse of the last one is not true; for example, 0011 is a Lyndon word but
not a Christoffel word.

In this article, we need the following specific points, called furthest points of
Christoffel words: Figure 3 (left) illustrates an example of the lower Christoffel
word of slope 4

7 with its furthest point.

O

(7, 4)

furthest point

O

w+

w−

P

Q

Fig. 3. The lower Christoffel word of slope 4
7

with the furthest point (left) and its split
(right).
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Definition 4. Given a primitive Christoffel word of slope b
a , the furthest point

is uniquely defined on the path as the point whose vertical distance to the line
segment joining (0, 0) and (a, b) is maximum.

We will also need the diagonally opposite point of a furthest point, which is
above the line segment OP (see Fig. 3), called the closest upper point.

2.5 Digital convex sets with combinatorics on words

By using Lyndon and Christoffel words, digital convex sets are characterized.

Proposition 2 ([7]). A 4-connected set C ⊂ Z2 is digitally convex iff its bound-
ary word is decomposed into four binary subwords and each subword has the
unique Lyndon factorization ℓn1

1 ℓn2
2 . . . ℓnk

k such that all ℓi are primitive Christof-
fel words.

The geometric interpretation of this proposition is that C is digitally convex
iff the Lyndon factorization of Bd(C) exactly corresponds to the segments of the
convex hull of C (see Figure 1 (left and right) for positive and negative examples).
This characterization will be used in the rest of this article.

3 Removable and insertable points

In this section, we consider the following problem: given a finite 4-connected
digitally convex set C, how can one find a point x of C (resp. the complement
C) such that C \ {x} (resp. C ∪ {x}) is still digitally convex and 4-connected?
The former points are called removable points while the latter ones are called
insertable points (see Fig. 4 for examples). Their characterizations have been
studied previously [21, 22]. We recall them in this section.

Fig. 4. Removable and insertable points, depicted in green and red respectively, for
the boundary path of a digitally convex set, drawn as the blue polygonal line.
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Fig. 5. Procedure of insertability verification on the left with propagation: the closest
upper point (19, 15) of ℓi (ℓi in brown) is inserted (left); as ℓi−1 ≤ L0 (ℓi−1 in blue and
L0 = ℓ+ in red) is not satisfied but we have ℓi−1 = ℓiL0, we obtain L1 = ℓi−1L0 (L1 in
green (=red+blue)) (center); as ℓi−2 ≤ L1 (ℓi−2 in pink) is not satisfied but we have
ℓi−2 = ℓi−1L

2
1, we obtain L2 = ℓi−2L1 (L2 in green (=red+blue+pink)) (right).

3.1 Removable points

Let us consider that the boundary word w of a digitally convex 4-connected
set C and its Lyndon factorization L(w) are given. Then we have the following
theorem.

Theorem 1 ([21]). A point x of C is removable iff x is a Lyndon point of L(w)
and a simple point with respect to C.

As the digital convexity does not imply the connectivity, as mentioned above,
we need to add the simpleness condition that is also locally characterized [16].
Thanks to this theorem, we can find a position k where we can apply the fol-
lowing switch operator, which corresponds to removing the point at k. The
switch operator on a word w = a1 . . . an at position k < n is defined by
switchk(w) = a1 . . . ak−1ak+1akak+2 . . . an where each ai is a letter. If akak+1

consists of consecutive reverse letters, namely 00̄, 0̄0, 11̄, 1̄1, this operator will
simply remove both of them, instead of the substitution.

Once a chosen removable point is removed by the switch operator, the follow-
ing proposition tells us that updating the Lyndon factorization, namely updating
the list of Lyndon points, can be made locally.

Proposition 3 ([21]). Let u and v be two consecutive Christoffel words of the
Lyndon factorization of a boundary word such that u > v. After applying the
switch operator at |u| on the binary word uv, if we obtain its Lyndon factorization
L(switch|u|(uv)) = ℓn1

1 . . . ℓnm
m , then u > ℓ1 and ℓ1 > . . . > ℓm.

3.2 Insertable points

Let us consider that the boundary word w of a digitally convex 4-connected
set C and its Lyndon factorization L(w) are given. Then we have the following
proposition.

Proposition 4 ([22]). If a point x of C is insertable, then x is a closest upper
point of L(w).
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It should be mentioned that the converse is not always true. Indeed, an insertable
point is geometrically a point such that its convex hull with C does not contain
any other integer point, and the proposition indicates that the union of C and
a closest upper point is not always digitally convex.

Instead of the switch operator for removable points, here we use the split
operator that is defined for a primitive Christoffel word c, |c| > 1, such that
split(c) = switchk(c) where k is the furthest point of c (see [22] for the definition
in the case of |c| = 1). In order to insert a closest upper point of C, the following
standard factorization is used.

Definition 5 ([5]). Any Christoffel word c with |c| > 1 can be written in a
unique way as a product c = uv such that u and v are both primitive Christoffel
words. The couple (u, v) is called the standard factorization of c.

Note that the standard factorization of c can be computed in O(log |c|) due to
its geometric interpretation [20].

The proposition below implies that the standard factorization gives the result
of the split operator without knowing the position of the furthest point (see Fig.
3 (right) for an example of application of this split operator).

Proposition 5 ([11]). Let c be a primitive Christoffel word, |c| > 1, such that
its standard factorization is given by c = c−c+. Then, we have split(c) = c+c−

with c+ > c−.

The following is the characterization of the insertability of such a closest
upper point x ∈ C .

Proposition 6 ([22]). Given the boundary word w of a digitally convex 4-
connected set C and its Lyndon factorization L(w) = ℓn1

1 . . . ℓnm
m , let x be the

closest upper point in C of the j-th Lyndon factor of ℓni
i in L(w) such that

split(ℓi) = ℓ+i ℓ
−
i where ℓi = ℓ−i ℓ

+
i . Let us say that:

1. x is insertable on the left if ∃k ∈ Z∗, ℓi−k−1 ≥ Lk such that for every h ≤ k,
Lh is recursively defined by

Lh =

{
ℓj−1
i ℓ+i for h = 0
ℓ
ni−h

i−h Lh−1 for h ≥ 1 if ∃mh−1 ∈ Z+, ℓi−h = ℓi−h−1L
mh−1

h−1

2. similarly, x is insertable on the right if ∃k ∈ Z∗, ℓi+k+1 ≤ Rk such that for
every h ≤ k, Rh is recursively defined by

Rh =

{
ℓ−i ℓ

ni−j
i for h = 0

Rh−1ℓ
ni+h

i+h for h ≥ 1 if ∃mh−1 ∈ Z+, ℓi+h = R
mh−1

h−1 ℓi+h−1

Then, x is insertable if x is insertable on both sides.

This proposition indicates that the insertability cannot always be verified
locally; see Figure 5 for an example with propagation. On the other hand, Lyn-
don re-factorization is not necessarily applied after adding an insertable point
as a simple concatenation of Christoffel words provides new Lyndon factors,
multiplicities and points.
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Algorithm 1: Deflation
input : digitally convex 4-connected sets A, B such that A ⊃ B
output : a sequence T⊖ of points to remove from A to obtain B

1 w ← the boundary word of A, L ← Lyndon Factorization of w;
2 calculate dBA(x) for all x ∈ A \ B;
3 set the current deflated set C ← A, T⊖ ← ∅;
4 Q⊖ ← UpdateRemovable(Q⊖,L,∅, (1, . . . , |L|), dBA, C);
5 while Q⊖ ̸= ∅ do
6 i← find_max(Q⊖) ;
7 (ℓ, n, p)← L[i], push p to T⊖, C ← C \ {p} ;
8 Iold ← (i− 1, i);
9 (L, i′)← UpdateLyndonFactorizationDueToSwitch(L, i);

10 Inew ← (i− 1, i, . . . , i′) ;
11 Q⊖ ← UpdateRemovable(Q⊖,L, Iold, Inew, d

B
A, C) ;

12 end
13 return T⊖

Function 2: UpdateLyndonFactorizationDueToSwitch
input : Lyndon factorization L and switch operator position k
output : updated Lyndon factorization L and last new factor index h

1 (ℓ1, n1, p1)← L[k − 1], (ℓ2, n2, p2)← L[k];
2 w ← switch|ℓ1|ℓ1ℓ2;
3 Lnew ← the Lyndon factorization of w;
4 remove L[k − 1],L[k];
5 h = k − 1;
6 if n1 > 1 then insert (ℓ1, n1 − 1, p1) at L[h], h← h+ 1 ;
7 insert Lnew at L[h], h← h+ |Lnew|;
8 if n2 > 1 then insert (ℓ2, n2 − 1, p2 − |ℓ2|0e1 − |ℓ2|1e2) at L[h] ;
9 else h← h− 1;

10 return L, h

4 Deformation preserving digital convexity

We now achieve our purpose of this article: given a pair of 4-connected digital
convex sets, A,B ⊂ Z2, such that A∩B ̸= ∅, we would like to make a sequence of
4-connected digital convex sets, which represents a pixelwise deformation from
A to B. For each step, we remove or add a point of Z2 thanks to the notions
of removable and insertable points. In order to choose a point among all the
removable and insertable points, we use the following geometric information
based on the distance map.

4.1 Priority distance for pixel choices

Let d(x,A) be the Euclidean distance between a point x ∈ Z2 and A. Then
we define the relative distance for x ∈ A \ B from A to B such that dBA(x) =
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Function 3: UpdateRemovable
input : removable point set Q⊖, Lyndon factorization L, old and new factor

lists Iold and Inew, priority d, digital set C
output : updated removable point set Q⊖

1 i← pop(Iold), j ← pop(Inew);
2 replace the Lyndon point of L[i] by that of L[j] in Q⊖;
3 while Iold ̸= ∅ do i← pop(Iold), remove the Lyndon point of L[i] from Q⊖ ;
4 while Inew ̸= ∅ do
5 i← pop(Inew), x← the Lyndon point of L[i];
6 if x is simple with respect to C then
7 push x in Q⊖;
8 foreach x′ ∈ N8(x) \ {x} do
9 if ∃j ∈ Q⊖, x

′ is the Lyndon point of L[j] and not simple to C then
10 remove x′ from Q⊖
11 end
12 end
13 end
14 return Q⊖

d(x,B)

d(x,B)+d(x,A)
. We can observe that dBA(x) is close to 0 when x is close to B, dBA(x)

is close to 1 when x is close to A, and all the distances are between 0 and 1.
Note that discrete points in A\B will be removed during the deformation while
those in B \ A will be added. For the points in B \ A, we use dAB .

4.2 Deflation algorithm

Let us first consider the easiest case such that A ⊃ B. Let L be the Lyndon
factorization of the boundary word of A. During deflation, L is updated for each
step of removing a point, which is chosen by the priority dBA. The priority dBA
is in descending order; the highest priority is given to pixels of largest dBA. The
following data structures are used in the deflation algorithm:

– L: Lyndon factorization of a boundary word whose i-th element is (ℓi, ni, pi);
ℓi is the Lyndon factor, ni is the multiplicity, and pi is the (left) Lyndon
point,

– Q⊖: set of removable points represented by Lyndon factor indices i,
– T⊖: sequence of removed points.

In the following, N represents the length of the boundary word of A (or B) so
that the number of the Lyndon points of the Lyndon factorization L is bounded
by O(N

2
3 ) according to Property 1.

Algorithm 1 shows the procedure of deflation from A to B, which call the two
functions, UpdateLyndonFactorizationDueToSwitch (Function 2) and UpdateR-
emovable (Function 3). All the information of Lyndon factorization is stored in
L. The kernel of the algorithm is updating L efficiently for each removal step,
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Algorithm 4: Inflation
input : digitally convex 4-connected sets A,B such that A ⊂ B
output : a sequence T⊕ of points to add

1 w ← the boundary word of A, L ← Lyndon Factorization of w;
2 calculate dAB (x) for all x ∈ B \ A;
3 set the current inflated set C ← A, T⊕ ← ∅;
4 Q⊕ ← AddInsertable(Q⊕,L, (1, . . . , |L|), dAB );
5 while Q⊕ ̸= ∅ do
6 (i, j, left, right)← find_max(Q⊕) ;
7 (ℓ, n, p)← L[i];
8 (ℓ+, ℓ−)← split(ℓ);
9 x← the closed upper point of the j-th ℓ, push x to T⊕, C ← C ∪ {x};

10 Iold ← (i− left, i− left+ 1, . . . , i+ right);
11 remove L[i− left, . . . , i+ right];
12 insert ℓ

ni−left

i−left . . . ℓ
ni−1

i−1 ℓ− at L[i− left];
13 insert ℓ+ℓ

ni+1

i+1 . . . ℓ
ni+right

i+right at L[i− left+ 1];
14 Inew ← (i− left, i− left+ 1) ;
15 Q⊕ ← DelInsertable(Q⊕, Iold);
16 Q⊕ ← AddInsertable(Q⊕,L, Inew, d

A
B )

17 end
18 return T⊕

which is described in Function 2: only the two Lyndon factors adjacent to a cho-
sen removable point are modified by the Lyndon factorization after the switch
operation. In other words, we can observe that the update is made locally. As
the length of each Lyndon factor is O(N) in worst case, the time complexity
of Function 2 is O(N). Finding the maximum element of Q⊖ (Line 6) and its
update (Line 11) need O(logN) for each removal step, if we store the sorted
removable points of Q⊖ in a tree structure such as a heap [9], as the size of Q⊖
is bounded by O(N

2
3 ), which is the same size of L. Note that simplicity can be

verified efficiently by using its local characterization [16] (see Function 3). Thus,
the overall complexity of each deflation step of Algorithm 1 is O(N).

4.3 Inflation algorithm

Let us consider the case such that A ⊂ B. Here we add points one-by-one to
A until obtaining B with the priority dAB . The inflation algorithm requires the
following data structures with the Lyndon factorization L presented for the
deflation algorithm.

– Q⊕: set of insertable points, each of which is represented by a pair of a
Lyndon factor and a multiplicity index (i, j), and their propagation ranges
for left and right, (left, right)

– T⊕: sequence of inserted points.
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Function 5: AddInsertable
input : insertable point set Q⊕, Lyndon factorization L, indext set I to

verify
output : updated Q⊕

1 while I ̸= ∅ do
2 i← pop(I), (ℓ, n, p)← L[i];
3 foreach j = 1, . . . , n do
4 (insertable−, k−)← InsertableLeft(i, j,L);
5 (insertable+, k+)← InsertableRight(i, j,L);
6 if insertable− ∧ insertable+ then push (i, j, k−, k+) to Q⊕;
7 end
8 end
9 return Q⊕

Function 6: DelInsertable
input : insertable point set Q⊕, Lyndon factorization L, index set I to delete
output : updated Q⊕

1 while I ̸= ∅ do
2 i← pop(I), (ℓ, n, p)← L[i];
3 foreach j = 1, . . . , n do
4 remove the element associated to the point index (i, j) from Q⊕
5 end
6 end
7 return Q⊕

Note that any insertable point is a closest upper point (Proposition 4), which
exists uniquely for each j-th Lyndon factor ℓi.Thus, keeping L in the same
way as the deflation is also enough for the inflation. When we add a point in
the boundary of a digital convex set, the simplicity is obviously satisfied; no
simplicity verification is necessary.

Algorithm 4 shows the inflation procedure from A to B guided by the pri-
ority dAB . Similarly to the deflation, the kernel of the inflation algorithm is also
updating L efficiently for each point insertion. However, this update may affect
left and right neighbors in the left and right propagations where left, right can
be more than 1, contrary to the deflation case, in which left = right = 1. In-
stead, those affected neighboring Lyndon factors are always replaced by exactly
two Lyndon factors (see Lines 12 and 13 in Algorithm 4). In other words, no
Lyndon re-factorization is needed for the insertion. These left and right neigh-
boring ranges, left and right, are respectively calculated in the functions, In-
sertableLeft and InsertableRight, both of which are called in Function 5 (see
Function 7 for the InsertableLeft; InsertableRight is omitted here due to its sim-
ilarity). In fact, those functions verify the instability of the point corresponding
to the given factor and multiplicity indecencies, i and j, in left and right sides
with the propagation verification. This part is based on Proposition 6. As this
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Function 7: InsertableLeft
input : insertion factor index i, multiplicity index j, Lyndon factorization L
output : boolean insertable, left propagation range r

1 (ℓ, n, p)← L[i], (ℓ−, ℓ+)← standard factorization of ℓ;
2 w ← ℓj−1ℓ+;
3 propag ← true, insertable← false, r ← 0;
4 while propag = true do
5 (ℓprev, nprev, pprev)← L[i− r − 1];
6 if ℓ > w then insertable← true, propag ← false ;
7 else if ℓprev = w then insertable← true, propag ← false, r ← r + 1 ;
8 else if ∃n ∈ Z+, ℓprev = ℓwn then w ← ℓ

nprev
prev w, r ← r + 1 ;

9 else propag ← false ;
10 end
11 return (insertable, r)

Iteration: 0 Iteration: 500 Iteration: 1000 Iteration: 1544

Fig. 6. Deformation from a digitized disk to a digitized ellipse, both of which are
digitally convex.

propagation cannot be theoretically bounded, the complexity of Function 5 is in
O(N). In other words, if there is no propagation, this complexity can be reduced
to O(logN). This can be done if we strengthen the insertability condition such
that ℓi−1 ≥ ℓj−1

i ℓ+i and ℓ−i ℓ
nj−1
i ≥ ℓi+1 instead of those of Proposition 6.

Note that the size of Q⊕ is almost equal to the number of furthest points,
which can be given by

∑
i mi where mi is the multiplicity for the i-th factor ℓi of

the Lyndon factorization of the boundary word of the current deformed shape.
If we set M = maxi mi, then we can also say that the size of Q⊕ is in O(MN

2
3 ).

Thus the time complexity of updating Q⊕ (Functions 6 and 5) are in O(logN)
as M ≤ N . Then the overall complexity of each inflation step of Algorithm 4 is
O(N) due to the propagation in the insertability verification. We remind that
Lyndon re-factorization is not necessary for the inflation case, so that this O(N)
comes only from the insertability verification propagation.

4.4 General deformation algorithm

Now let us consider more general case such that A ∩ B ̸= ∅. We start from
an initial digitally convex set A and obtain B by adding points of B \ A and
removing points of A \ B. The algorithm is given by Algorithm 8, which is a



Algorithms for pixelwise shape deformations preserving digital convexity 13

Algorithm 8: Digital convexity preserving deformation
input : overlapped digitally convex 4-connected sets A, B
output : a sequence T of pixels to remove (with −) and to add (with +)

1 w ← the boundary word of A, L ← Lyndon Factorization of w;
2 calculate dBA(x) for x ∈ A \ B and dAB (x) for all x ∈ B \ A;
3 set the current deflated set C ← A, T ← ∅;
4 Q⊖ ← UpdateRemovable(Q⊖,L,∅, (1, . . . , |L|), dBA, C);
5 Q⊕ ← AddInsertable(Q⊕,L, (1, . . . , |L|), dAB );
6 while Q⊖ ∪Q⊕ ̸= ∅ do
7 x← the Lyndon point corresponding to find_max(Q⊖);
8 y ← the closest upper point corresponding to find_max(Q⊕);
9 if dBA(x) ≤ dAB (y) then

10 push (x,−) to T ;
11 . . . // Deflation (Lines 6–10 of Algorithm 1)
12 else
13 push (y,+) to T ;
14 . . . // Inflation (Lines 6–14 of Algorithm 4)
15 end
16 Q⊖ ← UpdateRemovable(Q⊖,L, Iold, Inew, d

B
A, C);

17 Q⊕ ← DelInsertable(Q⊕, Iold), Q⊕ ← AddInsertable(Q⊕,L, Inew, d
A
B );

18 end
19 return T

simple fusion of Algorithms 1 and 4. Figure 6 shows an experimental result for a
deformation from a digitized disk of 2821 points (most left) to a digitized ellipse
(most right).

5 Conclusion

In this article, using the combinatorics on words to identify digital convex sets via
their boundary words, we proposed algorithms for pixelwise inflation, deflation
and more general deformation of digital convex sets preserving their convexity.
Given a pair of digital convex sets, we showed that each proposed algorithm
creates a sequence of digital convex sets, namely a deformation between them.
The worst-case time complexity for each inflation and deflation iteration step
was analyzed: O(N) for both where N is the length of the boundary word of a
given digital convex.
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