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Abstract We study an n-player random game with random payoffs and continuous strategy
profiles sets. The payoff function of each player is defined by its expected value and the
strategy set of each player is defined by a linear joint chance constraint. The random constraint
vectors defining the joint chance constraint are independent and follow normalmean-variance
mixture distributions. We propose a reformulation of the joint chance constraint of each
player. We prove the existence of Nash equilibrium of this game by using the Kakutani
fixed-point theorem under mild assumptions.

Keywords Chance-constrained game · Normal mean-variance mixture · Nash equilibrium.

1 Introduction

We consider an =-player CCG, where � = {1, 2, .., =} is the set of players. Let (8 ⊂
R38 be the strategy set of player 8 which is a non-empty, convex and compact set. The
product set ( =

∏=
8=1 (

8 denotes the set of strategy profiles of all the players. For each
8 ∈ �, (−8 = ∏=

9=1 ; 9≠8 (
9 denotes the set of strategy vectors of all players 9 , 9 ≠ 8. A

strategy profile G = (G1, G2, . . . , G=) ∈ ( is represented as (G8 , G−8) where G8 denotes the
strategy of player 8 and G−8 denotes the vector of strategies of the players other than player
8. In many real life applications, the strategy sets are restricted by random linear constraints,
e.g., i) the constraints on total random electricity loss, energy generation and reserve arising
in electricity market [20, 25], ii) risk constraints in financial market [22]. In this paper,
we consider the case where the random linear constraints are formulated as a joint chance
constraint. The strategy set of player 8, 8 ∈ �, is further restricted by the following joint
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chance constraint

P(+ 8G8 ≤ �8) ≥ U8 , (1)

whereU8 ∈ [0, 1] is a given probability level,�8 = (�8,1, ..., �8, 8 )T ∈ R 8 is a deterministic
vector and+ 8 = [+ 8,1, ..., + 8, 8 ]T is a  8 × 38 random matrix, where+ 8,: denotes the : th row
of matrix + 8 and T denotes the transposition. Let �8 = {1, 2, . . . ,  8} denotes the index set
of 8th player’s constraints. The feasible strategy set of player 8 is defined as

(8U8 =
{
G8 ∈ (8 | P(+ 8G8 ≤ �8) ≥ U8

}
.

We assume that for each 8 ∈ �, (8U8 is a non-empty set. Let U = (U8)8∈� be the confidence
level vector and (U =

∏=
8=1 (

8
U8
be the set of all feasible strategy profiles. The payoff function

of each player is defined using random variables. For each G ∈ (U, the payoff of player 8
is given by 58 (G, Z), where Z is an <-dimensional random vector. We use expected value
approach to model the payoff function of each player. Therefore, the payoff function of player
8 is given by

?8 (G) = E[ 58 (G, Z)], ∀ G ∈ (U .

We assume that the CCG is of complete information, i.e., the payoff function, the strategy
set of each player, and the confidence level vector U are known to all the players.

Definition 1 A strategy profile H∗ is a Nash equilibrium of the CCG at confidence level
vector U if for each 8 ∈ �

?8 (H8∗, H−8∗) ≥ ?8 (G8 , H−8∗), ∀ G8 ∈ (8U8 .

The existence of a Nash equilibrium for a non-cooperative game in various setup has
been extensively studied in the literature. It is mainly based on fixed point theorems which
require the payoff function of a player 8 to be a continuous function of the strategies of all the
players and a concave function of the strategies of player 8 for every fixed strategy profiles
of all other players. Under Assumption 1 given below, the abovementioned continuity and
concavity properties hold [22].

Assumption 1 For each player 8, 8 ∈ �, the following conditions hold:

1. 58 (·, G−8 , Z) is a concave function of G8 for every (G−8 , Z) ∈ (−8 × R<.
2. 58 (·) is a continuous function.
3. ?8 (G) is finite valued for every G ∈ (.

The games with the strategy sets containing chance constraints play an important role in
various applications, e.g in portfolio optimization [14]. Recently, the games with strategy sets
defined by chance constraints have been studied in the literature [20–22, 31, 32]. Singh and
Lisser [31] considered a 2-player zero-sum game with individual chance constraints. When
the row constraint vectors follow elliptical distributions, they showed the equivalence between
a saddle point equilibrium problem and a primal-dual pair of second order cone programs.
Singh et al. [32] considered an n-player general-sum gamewith individual chance constraints.
Under elliptically symmetric distributions, they showed the equivalent between the a Nash
equilibrium problem and the global optimization of a nonlinear optimization problem. Peng
et al. [21] generalized to joint chance constraints n-player games and showed that there exists
a Nash equilibrium if the row constraints vectors follow a mixture of elliptical distributions.
To the best of our knowledge, the most chance-constrained games have been studied in the
literature under elliptically symmetrically distributed assumption on the random constraints
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vectors. However, in some situation, it is interesting to consider the case when the distribution
of the row constraints vectors are not symmetric since symmetrical distributions are generally
not suitable for many practical distributions. In power system scheduling problems, both
wind power forecast errors and load forecasting errors are generally not normally distributed
[13], and can be better fitted by generalized hyperbolic (GH) distributions. Many financial
problems applications are also generally modelled by GH distributions [1, 7, 23, 24].

In this paper, we study the CCG when the strategy profile set of each player is defined
by normal mean-variance mixture (a generalization of GH distributions) independent joint
chance constraints. We derive a new reformulation of the joint chance constraints and show
that there exist a Nash equilibrium under mild assumptions. The remainder of this paper
is organized as follows. In Section 2, we introduce some basic concepts used in the paper.
In Section 3, we show the existence of Nash equilibrium under assumptions on the payoff
function and the threshold defined in the constraint of each player. In Sections 4 and 5, we
propose some algorithm for finding Nash equilibrium and show numerical results. Finally,
some conclusions can be found in Section 6.

2 Basic Concepts and Known Results

Definition 2 (Definition 2.2, [11]) A real function 5 : R → R is A-decreasing for some
real number A ∈ R, if 5 is continuous on (0, +∞) and there exists some strictly positive real
number C∗ such that the function C ↦→ CA 5 (C) is strictly decreasing on (C∗, +∞).

Definition 3 A function 5 : & → (0, +∞) is A-concave on a convex set & ⊂ RB for a given
A ∈ (−∞, +∞) if for any G, H ∈ & and U ∈ [0, 1],

5 (UG + (1 − U)H) ≥ [U 5 (G)A + (1 − U) 5 (H)A ] 1
A , when A ≠ 0,

5 (UG + (1 − U)H) ≥ 5 (G)U 5 (H)1−U, otherwise.

Definition 4 An =-dimensional random vector * follows a normal mean-variance mixture
distribution with parameters (`, W,Σ,,), i.e., * ∼ NMVM(`, W,Σ,,), if we have the
following representation:

*
d
= ` + W, +

√
,Σ

1
2 /,

where:
(i) / is an =-dimension standard Gaussian distribution #= (0, I=).
(ii) , a positive random variable with a density function independent of / .
(iii) Σ ∈ R=×= is a positive definite matrix and Σ 1

2 ∈ R=×= such that Σ 1
2 (Σ 1

2 )T = Σ.
(iv) ` and W are =-dimensional real vectors.

Here, d
= implies that the both sides have the same distribution.

Normal mean-variance mixture distributions are generally not symmetric. They are
symmetric if and only if W = 0 and the distribution is elliptical in this case. The family of
normal mean-variance mixture distributions has an important application in finance. For a
good overview, we refer to [19]. An important subset of the family of normal mean-variance
mixture distributions is generalized hyperbolic (GH) distributions.
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Definition 5 An =−dimensional random vector * follows a GH distribution with param-
eters (`, W,Σ, j, k, _), i.e., * ∼ GH(`, W,Σ, j, k, _) if * ∼ NMVM(`, W,Σ,,) where
, ∼ #− (_, j, k) follows a generalized inverse Gaussian (GIG) distribution whose density
function with respect to the measure of Lebesgue is:

5* (F) = �* .F_−1. exp
(
−1

2
(jF−1 + kF)

)
.1[0,+∞) (F),

where �* is a constant, 1 denotes the indicator function and

j > 0, k ≥ 0 if _ < 0.
j > 0, k > 0 if _ = 0.
j ≥ 0, k > 0 if _ > 0.

The family of GH distributions is a generalization of many elliptical distributions. For
example, the t-multivariate distribution with parameters (Σ, `, a) is a particular case of
hyperbolic distributions when _ = −a2 ; j = a ; k = 0 ; W = 0 . We summarize some selected
?−dimensional elliptical distributions in Table 1.

Table 1 Representation of selected ?−dimensional elliptical distributions in GH form

Distribution ` Σ W _ j k

Normal ` Σ 0 +∞ +∞ 0
t-distribution ` Σ 0 −a

2 a 0
Cauchy ` Σ 0 −1

2 1 0
Laplace ` Σ 0 1 0 -2

Pearson VII ` Σ 0 ?
2 − # < 0

3 Existence of Nash equilibrium

For each 8 ∈ �, we assume that:

+ 8,: ∼ NMVM(`8,: , W8,: ,Σ8,: ,, 8,: ),

where + 8,: are mutually independent, : ∈ �8 . Moreover, the support domain of , 8,: is
an open interval (F8,:l , F

8,:
u ), where 0 < F8,:l ≤ F

8,:
u < +∞ (l and u represent "lower" and

"upper" in short, respectively). Let _8,:,min be the smallest eigenvalue of the positive definite
matrix Σ8,: . Define, (̃8U8 := (8U8 \ {0}. For G

8 ∈ (̃8U8 , let:

68,: (G8 ,, 8,: ) :=
−(G8)TW8,:

‖(G8)T (Σ8,: ) 1
2 ‖2

√
, 8,: + �8,: − (G8)T`8,:

√
, 8,: ‖(G8)T (Σ8,: ) 1

2 ‖2
,

b8,: (G8) :=
/T ((Σ8,: ) 1

2 )TG8

‖(G8)T (Σ8,: ) 1
2 ‖2

, (2)
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where / is defined in Definition 4, | | · | |2 denotes the Euclidean norm. Let Ω8,: be the
set of G8 ∈ (8 such that:

− (G8)TW8,:
√
, 8,: + �

8,: − (G8)T`8,:
√
, 8,:

> 4‖(G8)T (Σ8,: ) 1
2 ‖2

©«
| |W8,: | |2√
_8,:,min

√
F
8,:
u +

||`8,: | |2√
_8,:,min

1√
F
8,:

l

ª®®¬ , for any , 8,: ∈ [F8,:l , F
8,:
u ] .

(3)

It is well known that b8,: (G8) follows 1-dimensional standard Gaussian distribution [9].
We rewrite the constraint (1) as follows:

P
{
+ 8G8 ≤ �8

}
≥ U8 ,

⇔
∏
:∈� 8
P

{
(+ 8,: )TG8 ≤ �8,:

}
≥ U8 (using the independence of the row vectors).

(4)

Since + 8,: ∼ NMVM(`8,: , W8,: ,Σ8,: ,, 8,: ), we deduce that (4) is equivalent to:

∏
:∈� 8
P

(
((`8,: )T +, 8,: (W8,: )T +

√
, 8,:/T ((Σ8,: ) 1

2 )T)G8 ≤ �8,:
)
≥ U8 ,

⇔
∏
:∈� 8
P

(
, 8,:

‖(G8)T (Σ8,: ) 1
2 ‖2
(G8)TW8,: +

√
, 8,:

/T ((Σ8,: ) 1
2 )TG8

‖(G8)T (Σ8,: ) 1
2 ‖2
≤ �8,: − (G8)T`8,:

‖(G8)T (Σ8,: ) 1
2 ‖2

)
≥ U8 .

(5)

Using the notations in (2), (5) can be rewritten as:

∏
:∈� 8
P

(
, 8,:

‖(G8)T (Σ8,: ) 1
2 ‖2
(G8)TW8,: +

√
, 8,:b8,: (G8) ≤ �8,: − (G8)T`8,:

‖(G8)T (Σ8,: ) 1
2 ‖2

)
≥ U8

⇔
∏
:∈� 8
P

(
b8,: (G8) ≤ 68,: (G8 ,, 8,: )

)
≥ U8 . (6)

Using the law of expectation in probability theory, we rewrite (6) as follows:

∏
:∈� 8
E

(
1{b 8,: (G8 ) ≤68,: (G8 ,, 8,: )}

)
≥ U8

⇔
∏
:∈� 8
E

(
E

(
1{b 8,: (G8 ) ≤68,: (G8 ,, 8,: )} | 6

8,: (G8 ,, 8,: )
))
≥ U8 . (7)

Note that / and, 8,: are independent. Since b8,: (G8) depends only on / and 68,: (G8 ,, 8,: )
depends only on, 8,: , we deduce that b8,: (G8) and 68,: (G8 ,, 8,: ) are independent. Then, the
inner expectation can be rewritten as follows:
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E
(
1{b 8,: (G8 ) ≤68,: (G8 ,, 8,: )} | 6

8,: (G8 ,, 8,: )
)
= Φ

(
68,: (G8 ,, 8,: )

)
,

where Φ is the cumulative distribution function of 1−dimensional standard Gaussian
distribution.

Therefore, we rewrite (7) as follows:

∏
:∈� 8
E, 8,:

(
Φ

(
68,: (G8 ,, 8,: )

))
≥ U8

⇔
∑
:∈� 8

log
(
E, 8,:

(
Φ

(
68,: (G8 ,, 8,: )

)))
≥ log(U8). (8)

The convexity of the feasible strategy set (8U8 plays a very important role in showing the
existence of Nash equilibrium. We will show that (8U8 is a convex set for all U8 ∈ (U∗8 , 1],
where U∗

8
is a threshold defined in the following assumption.

Assumption 2 For all 8 ∈ �, let:

U
(1)
8

:= max
:∈� 8

Φ

(
| |W8,: | |2√
_8,:,min

√
F
8,:
u

)
.

U
(2)
8

:= max
:∈� 8

Φ


4
√
F
8,:
u√

F
8,:

l

©«
| |W8,: | |2√
_8,:,min

√
F
8,:
u +

||`8,: | |2√
_8,:,min

√
F
8,:

l

ª®®¬ +
||W8,: | |2 (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

 .
U
(3)
8
= max
:∈� 8

Φ
©«
√

3F8,:u√
F
8,:

l

+
||W8,: | |2 (F8,:u − F8,:; )√

_8,:,min

√
F
8,:

l

ª®®¬
Let U∗

8
:= max(U (1)

8
, U
(2)
8
, U
(3)
8
). Assume that U8 ∈ (U∗8 , 1].

Lemma 1 Let Assumption 2 holds, for all 8 ∈ �. Then, (8U8 is a convex set for allU8 ∈ (U
∗
8
, 1].

In order to prove Lemma 1, we need four following lemmas.

Lemma 2 Let Assumption 2 holds and G8 ∈ (̃8U8 , ∀8 ∈ �. Then �
8,: > (`8,: )TG8 for all

: ∈ �8 .

Proof The proof is given in Appendix A.

Lemma 3 Let G8 ∈ (̃8U8 , ∀8 ∈ �. Then,

E, 8,:

Φ
©«
√
I

√
, 8,:

68,: (G8 , I) +
| |W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

ª®®¬
 ≥ U8 , ∀I ∈ [F

8,:

l , F
8,:
u ], : ∈ �8 .

Proof The proof is given in Appendix B.
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Lemma 4 Let Assumption 2 holds. Then, for all 8 ∈ �:

Conv( ˜(8U8 ) ⊂
⋂
:∈� 8

Ω8,: ,

where Conv represents the convex hull.

Proof The proof is given in Appendix C.

Lemma 5 Let Assumption 2 holds, then for any convex subset &8,: of
⋂
:∈� 8 Ω

8,: such that
0 ∉ &8,: , 68,: (G8 ,, 8,: ) is defined and (−2)-concave according to G8 on &8,: for all 8 ∈ �,
: ∈ �8 and, 8,: ∈ [F8,:l , F

8,:
u ].

Proof The proof is given in Appendix D.

Using Lemmas 2, 4 and 5, we prove Lemma 1.

Proof (of Lemma 1) Let U8 ∈ (U∗8 , 1], _ ∈ [0, 1] and I1, I2 ∈ (8U8 . We need to show that
_I1 + (1 − _)I2 ∈ (8U8 .
Case 1: Let I1 = 0 or I2 = 0. Without loss of generality, we assume that I2 = 0. This gives
�8,: ≥ 0 for all : ∈ �8 , which in turn implies that

P(+ 8_I1 ≤ �8) ≥ P(+ 8I1 ≤ �8) ≥ U8 .

Hence, _I1 + (1 − _)I2 ∈ (8U8 .
Case 2: Let I1 ≠ 0, I2 ≠ 0 and _I1 + (1 − _)I2 = 0. In this case, I2 =

−_
1−_ I1 ∈ (̃8U8 and

I1 ∈ (̃8U8 . It follows from Lemma 2 that

(`8,: )TI1 >
_ − 1
_

�8,: , (`8,: )TI1 < �
8,: , ∀ : ∈ �8 .

This implies that �8,: ≥ 0 for all : ∈ �8 . Therefore, _I1 + (1 − _)I2 = 0 ∈ (8U8 .
Case 3: Let I1 ≠ 0, I2 ≠ 0 and 0 ∈ Seg(I1, I2), where Seg(I1, I2) =
{I1 + ; (I2 − I1), 0 ≤ ; ≤ 1}. Then, the points on the line segment Seg(I1, I2) are either

belong to Seg(I1, 0) or Seg(0, I2). It follows from Case 1 that Seg(I1, 0) and Seg(0, I2) are
subset of (8U8 . Therefore, _I1 + (1 − _)I2 ∈ (8U8 for all _ ∈ [0, 1].
Case 4: Let I1 ≠ 0, I2 ≠ 0 such that 0 ∉ Seg(I1, I2). It is clear that Seg(I1, I2) ⊂ Conv((̃8U8 ).
From Lemmas 4 and 5, 68,: (·,, 8,: ) is defined and (−2)-concave on Seg(I1, I2), for all
, 8,: ∈ [F8,:l , F

8,:
u ]. Therefore,

68,: (_I1 + (1 − _)I2,,
8,: )

≥
(
_(68,: (I1),, 8,: )−2 + (1 − _) (68,: (I2),, 8,: )−2

)− 1
2
, for any , 8,: ∈ [F8,:l , F

8,:
u ] . (9)

Since, I1 ∈ (̃8U8 and U8 > U
(3)
8

, using Lemma 3, for any C ∈ [F8,:l , F
8,:
u ] we have:

E, 8,:

Φ
©«
√
C

√
, 8,:

68,: (I1, C) +
| |W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

ª®®¬
 > U

(3)
8
. (10)

By definition of U (3)
8

, we have:
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U
(3)
8
≥ Φ

©«
√

3F8,:u√
F
8,:

l

+
||W8,: | |2 (F8,:u − F8,:; )√

_8,:,min

√
F
8,:

l

ª®®¬ . (11)

Using (10) and (11), we deduce that:

E, 8,:

Φ
©«
√
C

√
, 8,:

68,: (I1, C) +
| |W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

ª®®¬


> Φ
©«
√

3F8,:u√
F
8,:

l

+
||W8,: | |2 (F8,:u − F8,:; )√

_8,:,min

√
F
8,:

l

ª®®¬ . (12)

From (12), it is clear that 68,: (G8 , I) > 0. Then, we have:

√
C

√
, 8,:

68,: (I1, C) ≤

√
F
8,:
u√

F
8,:

l

68,: (I1, C), for any , 8,: ∈ [F8,:
;
, F8,:D ] . (13)

We deduce from (12) and (13) that:

Φ
©«
√
F
8,:
u√

F
8,:

l

68,: (I1, C) +
| |W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

ª®®¬
> Φ

©«
√

3F8,:u√
F
8,:

l

+
||W8,: | | (F8,:u − F8,:; )√

_8,:,min

√
F
8,:

l

ª®®¬ , for any C ∈ [F8,:l , F
8,:
u ] .

This implies that

0 < 68,: (I1,,
8,: )−2 <

1
3
, for any , 8,: ∈ [F8,:l , F

8,:
u ] .

Similarly,

0 < 68,: (I2,,
8,: )−2 <

1
3
, for any , 8,: ∈ [F8,:l , F

8,:
u ] .

By applying the non-decreasing function Φ(·) on both side of (9), we can write

Φ

(
68,:

(
_I1 + (1 − _)I2,,

8,:
))
≥

Φ

((
_(68,: (I1,,

8,: ))−2 + (1 − _) (68,: (I2,,
8,: ))−2

)− 1
2
)
, for any , 8,: ∈ [F8,:l , F

8,:
u ] .

(14)
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Since, Φ(·) has (3)-decreasing density, from Lemma 3.1 of [11], the function C ↦→ Φ

(
C−

1
2

)
is concave on (0, 1

3 ). Therefore, we can write

Φ

((
_(68,: (I1,,

8,: ))−2 + (1 − _) (68,: (I2,,
8,: ))−2

)− 1
2
)

≥ _
(
Φ

(
68,: (I1,,

8,: )
))
+ (1 − _)

(
Φ

(
68,: (I2,,

8,: )
))
, for any , 8,: ∈ [F8,:l , F

8,:
u ] .
(15)

From (14) and (15), we have

Φ

(
68,: (_I1 + (1 − _)I2,,

8,: )
)
≥

_

(
Φ

(
68,: (I1,,

8,: )
))
+ (1 − _)

(
Φ

(
68,: (I2,,

8,: )
))
, for any , 8,: ∈ [F8,:l , F

8,:
u ] . (16)

By taking E, 8,: on both sides of (16), we deduce that:

E, 8,:

[
Φ

(
68,: (_I1 + (1 − _)I2,,

8,: )
)]
≥

_

(
E, 8,:

[
Φ

(
68,:

(
(I1,,

8,:
))] )
+ (1 − _)

(
E, 8,:

[
Φ

(
68,:

(
(I1,,

8,:
))] )

. (17)

This implies that the composition function E, 8,:

[
Φ

(
68,: (·)

) ]
is a concave function over

Seg(I1, I2), then also a log-concave function, i.e the logarithm function is concave (see [11]).
It follows from the constraint (8) that _I1 + (1 − _)I2 ∈ (8U8 .

Next, we prove that (8U8 is a closed set. In fact, the closeness of (8U8 follows directly
from the upper semi continuity of the probability function G8 ↦→ P(+ 8G8 ≤ �8) which is a
corollary of Proposition 3.1, [26]. Therefore, the feasible strategy set (8U8 is a compact set
because, it is a closed subset of the compact set (8 . Finally, we show that there exists a Nash
equilibrium of the CCG.

Theorem 1 Consider an =-player CCG defined in Section 1, where

1. Assumptions 1 and 2 hold.
2. For each 8 ∈ �, we assume that + 8,: ∼ #"+" (`8,: , W8,: ,Σ8,: ,, 8,: ) and the vectors
+ 8,: are mutually independent, : ∈ �8 .

Then, there exists a Nash equilibrium of the CCG for any U ∈ (U∗1, 1] × ... × (U
∗
=, 1], where

U∗
8
, 8 ∈ �, is defined in Assumption 2.

Proof Let U ∈ (U∗1, 1] × ...× (U
∗
=, 1]. Under Assumption 1, the payoff function ?8 (G8 , G−8) is

a concave function of G8 , for every G−8 ∈ (−8 , and a continuous function of G. It follows from
Lemma 1 that the feasible strategy set (8U8 , 8 ∈ �, is a convex set for all U8 > U∗8 . For each
8 ∈ �, (8U8 is a compact set. Then, the existence of a Nash equilibrium of the CCG follows
from Theorem 4 of [8].
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4 Algorithm for Finding Nash Equilibrium

For simplification of notations, we consider a 2− player CCG (= = 2) (the same algorithm for
a general =−player game). For a fixed G2 ∈ (2

U2 , the player 1 solve the following optimization
problem:

[%1] max ?1 (G1, G2)
subject to G1 ∈ (1

U1 . (18)

The set of optimal solutions of [P1] which is also called the best response set of player
1, is given by:

�'1 (G2) =
{
Ḡ1 | ?1 (Ḡ1, G2) ≥ ?1 (G1, G2), ∀G1 ∈ (1

U1

}
(19)

Similarly, for a fixed G1 ∈ (1
U1 , the player 2 solve the following optimization problem:

[%2] max ?2 (G1, G2)
subject to G2 ∈ (2

U2 . (20)

The best response set of player 2, is given by:

�'2 (G1) =
{
Ḡ2 | ?2 (G1, Ḡ2) ≥ ?2 (G1, G2), ∀G2 ∈ (2

U2

}
(21)

It is clear that if G1∗ ∈ �'1 (G2∗) and G2∗ ∈ �'2 (G1∗), then (G1∗, G2∗) is a Nash equilibrium
of the CCG. We propose the best response algorithm as follows:

Algorithm 1 Best response algorithm
Step1 : Select initial feasible point G2(0) ∈ (2

U2 for player 2, set : := 0 and choose a tolerance parameter
n > 0.
Step2 : Solve optimization problem [P1] with G2 = G2(:) and find a point G1(:) ∈ �'1 (G2(:) ) .
Step3 : Solve optimization problem [P2] with G1 = G1(:) and find a point G2(:+1) ∈ �'2 (G1(:) ) . If
|?2 (G1(:) , G2(:) ) − ?2 (G1(:) , G2(:+1) ) | < n , stop and set (G1∗, G2∗) = (G1(:) , G2(:) ) . Otherwise, set
: := : + 1 and go to Step2.

If Algorithm 1 stops, (G1∗, G2∗) is a Nash equilibrium of the CCG. By the way, the
question when Algorithm 1 cycles is still open.

Using Algorithm 1, at each iteration, the two players have to solve their optimization
problems [P1] and [P2]. For each G2 ∈ (2

U2 , we reformulate [P1] as follows:

[%1] max [max
G1≠0

?1 (G1, G2), ?(0, G2)],

subject to
∑
:∈� 1

log
(
E, 1,:

[
Φ

(
61,: (G1,,1,: )

)] )
≥ log(U1). (22)

By introducing the auxiliary variables I1,: , (23) can be reformulated as follows:
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[%1] max [max
G1≠0

?1 (G1, G2), ?(0, G2)],

subject to 8) E, 1,:

[
Φ

(
61,: (G1,,1,: )

)]
≥ 4I1,:

,

88)
∑
:∈� 1

I1,: ≥ log(U1),

888) I1,: ≤ 0,∀: ∈ �1. (23)

In order to solve (23), we use the partial sampling technique to approximate the expec-
tation E, 1,: . Here, we draw #1,: i.i.d samples, F1,:

1 , ..., F
1,:
# 1,: of the univariate distribution

of ,1,: . Thanks to these samples, we get an approximation of the expected value by using
Monte-Carlo method:

[%̄1] max [max
G1≠0

?1 (G1, G2), ?(0, G2)],

subject to 8) 1
"1,:

# 1,:∑
C=1

[
Φ

(
61,: (G1, F1,:

C )
)]
≥ 4I1,:

,

88)
∑
:∈� 1

I1,: ≥ log(U1),

888) I1,: ≤ 0,∀: ∈ �1. (24)

Let �:
(
G1,,1,: ) := Φ

(
61,: (G1, F1,:

C )
)
. It is clear that �: is a continuous function.

Moreover, �: is dominated by the identity function 1(F1,:
l ,F

1,:
u ) which is an integrable

function. Using Theorem 7.48, [27], E, 1,:
[
�:

(
·,,1,: ) ] is continuous and the average

sample converges to E, 1,:
[
�:

(
·,,1,: ) ] w.p.1 uniformly on (1. Using Theorem 5.3, [27],

we deduce that the optimal value of (24) converges to the optimal value of (23) when the
number of samples goes to infinity. By introducing new auxiliary variables H1,:

C , (24) can be
reformulated as follows:

[%̄1] max [max
G1≠0

?1 (G1, G2), ?(0, G2)],

subject to 8) Φ

(
61,: (G1, F1,:

C )
)
≥ H1,:

C ,

88)
# 1,:∑
C=1

H
1,:
C ≥ #1,: .4I

1,:
,

888)
∑
:∈� 1

I1,: ≥ log(U1),

8E) I1,: ≤ 0,∀: ∈ �1,

E) H
1,:
C ≥ 0,∀: ∈ �1, 1 ≤ C ≤ #1,: . (25)

Using the definition of 61,: and the increasing monotonicity of Φ, we rewrite (25) as
follows:
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[%̄1] max [max
G1≠0

?1 (G1, G2), ?(0, G2)],

subject to 8) − (G1)TW1,:
√
F

1,:
C + �1,: − (G1)T`1,: ≥ Φ(−1) (H1,:

C ).‖(G1)T (Σ1,: ) 1
2 ‖2,

88)
" 1,:∑
C=1

H
1,:
C ≥ #1,: .4I

1,:
,

888)
∑
:∈� 1

I1,: ≥ log(U1),

8E) I1,: ≤ 0,∀: ∈ �1,

E) H
1,:
C ≥ 0,∀: ∈ �1, 1 ≤ C ≤ #1,: . (26)

(26) is a convex problem if Φ(−1) (·) is a log-convex function. In the following, we study
necessary conditions for that.

Lemma 6 Φ(−1) (·) is monotonically increasing, nonnegative and convex on [0.5, 1). More-
over, log(Φ(−1) (·)) is monotonically increasing on [0.5, 1) and convex on [Φ(1), 1).
Proof The increasing monotonicity and the nonnegative property are trivial. First, we prove
thatΦ(−1) (·) is convex on [0.5, 1). Thanks to the formula of derivatives of inverse functions,
the first order and the second order derivatives of Φ(−1) (·) are:

3 (Φ(−1) (G))
3G

=
1

Φ′(Φ(−1) (G))
.

32 (Φ(−1) (G))
3G2 =

−1
[Φ′(Φ(−1) (G))]2

.Φ′′(Φ(−1) (G)). 1
Φ′(Φ(−1) (G))

.

=
−Φ′′(Φ(−1) (G))
[Φ′(Φ(−1) (G))]3

,∀G ∈ [0.5, 1). (27)

For all C ∈ R, we have:

Φ′(C) = 1
√

2c
4
−C2

2 .

Φ′′(C) = −C√
2c
4
−C2

2 . (28)

Since Φ(−1) (C) is nonnegative on [0.5, 1), we deduce that Φ′(Φ(−1) (G)) > 0 and
Φ′′(Φ(−1) (G)) ≤ 0,∀G ∈ [0.5, 1). Then, the second derivative of Φ(−1) (·) is nonnegative on
[0.5, 1). Therefore, Φ(−1) (·) is convex on [0.5, 1).

Next, we prove that log(Φ(−1) (·)) is convex on [Φ(1), 1).
Let i(·) := Φ(−1) (·). The first order and the second order derivatives of log(Φ(−1) (·))

are:

3 (log(Φ(−1) (G)))
3G

=
i′(G)
i(G) .

32 (log(Φ(−1) (G)))
3G2 =

i′′(G).i(G) − (i′(G))2
i2 (G)

,∀G ∈ [0.5, 1).
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Using (27) and (28), we deduce that:

i′(·) =
√

2c.4
i2 (·)

2

i′′(·) = i(·).2c.4i2 ( ·)

Therefore, we have:

i′′(·).i(·) − (i′(·))2 = (i2 (·) − 1).2c.4i2 ( ·) .

It is easy to see that i ≥ 1 on [Φ(1), 1). Hence, log(Φ(−1) (·)) is convex on [Φ(1), 1).

Lemma 7 Let G1 be a feasible solution of (24). If Assumption 2 holds, then 61,: (G1, F1,:
C ) >

4.

(
| |W1,: | |√
_1,:,<8=

√
F

1,:
D + | |`1,: | |√

_1,:,<8=

1√
F

1,:
;

)
.

Proof The proof follows the same arguments as the proof of Lemma 4 except that we change
the expectation E, 1,: by the mean of its partial samples on F1,:

C .

Lemma 8 ‖(G1)T (Σ1,: ) 1
2 ‖2 is log-convex according to G1.

Proof It suffice to show that <(G1) := (G1)T (Σ1,: )G1 is a log-convex function which is
equivalent to prove that <′′(G1)<(G1) � <′(G1).[<′(G1)]T, where � � � is equivalent
to � − � is positive semidefinite. We have <′(G1) = 2Σ1,:G1 and <′′(G1) = 2Σ1,: . Then,
<′′(G1)<(G1) −<′(G1).[<′(G1)]T = 4((G1)T (Σ1,: )G1).Σ1,: −4Σ1,: .G1.(G1)T.Σ1,: . The pos-
itive semidefiniteness of <′′(G1)<(G1) −<′(G1).[<′(G1)]T is equivalent to the positivity of
its quadratic form at I, for all I ∈ R31 , i.e th5e positivity of the following term:

(ITΣ1,: I) [(G1)T (Σ1,: )G1] − (ITΣ1,:G1)2.

However, from linear algebra, the above term is always positive. Then, we deduce the
proof.

Using Lemmas 6 and (8), we prove the following theorem of the convexity of (26).

Theorem 2 If the following condition holds:

4
©«
| |W1,: | |√
_1,:,<8=

√
F

1,:
D +

||`1,: | |√
_1,:,<8=

1√
F

1,:
;

ª®®¬ ≥ 1,

then (26) is a convex problem.

Proof Let (G1, H1,:
C , I1,: ) be a feasible solution of (26). Note that we can choose H1,:

C =

Φ

(
61,: (G1, F1,:

C )
)
without changing the optimal value of (26). Using Lemma 7, we have

61,: (G1, F1,:
C ) > 4.

(
| |W1,: | |√
_1,:,<8=

√
F

1,:
D + | |`1,: | |√

_1,:,<8=

1√
F

1,:
;

)
≥ 1. We deduce that H1,:

C > Φ(1)
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by using the monotonicity of Φ. Therefore, we can add the constraint H1,:
C > Φ(1) without

changing the optimal value of (26). Using Lemma 6, log(Φ(−1) (H1,:
C )) is convex according to

H
1,:
C . On the other hand, using Lemma 8, ‖(G1)T (Σ1,: ) 1

2 ‖2 is a log-convex function according
to G1. Since the product of two log-convex functions is also a log-convex function, we deduce
that Φ(−1) (H1,:

C ).‖(G1)T (Σ1,: ) 1
2 ‖2 is a log-convex function, then also a convex function.

Therefore, we deduce that (26) is a convex problem.

Evenwhen the problem (26) is a convex problem, it might has a computational difficulties
due to the term log

(
Φ(−1) (H1,:

C )
)
. The piecewise linear approximations can be used to

simplify the calculations and provides lower bound and upper bound of (26). By choosing )
different increasing points b1, ..., b) in (Φ(1), 1), we use the piecewise linear function

�
1,:
!
(G) := max

B=1,...,)

{
1

Φ(−1) (bB)Φ′ (Φ(−1) (bB))
(G − bB) + log

(
Φ(−1) (bB)

)}
composed by the tangent lines at those points to approximate log

(
Φ(−1) (G)

)
and get a

lower bound. Moreover, if G ∈ [bB , bB+1], we use the function

�
1,:
*
(G) :=

log
(
Φ(−1) (bB+1)

)
− log

(
Φ(−1) (bB)

)
bB+1 − bB

(G − bB) + log
(
Φ(−1) (bB)

)
composed by the segments containing those points to get an upper bound.

5 Numerical Tests

All the numerical results are performed using Python 3.8.8 on an Intel Core i5-1135G7,
Processor 2.4 GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. We illustrate our
theoretical results using randomly generated examples.

5.1 Piecewise Linear Approximation Results

In this subsection, we study the convergence of piecewise linear approximation method
applied in (26) for 31 = 2, 1 = 20 and #1,: = 5,∀: = 1, 2, ...,  1, where 31 is the dimension
of G1,  1 is the number of constraints and #1,: is the number of samples in the Monte-

Carlo method. The deterministic vector �1 =
(
�1,1, ..., �1, 1

)T
is randomly generated in

R 
1 . For each : = 1, 2, ...,  1, `1,: and W1,: are vectors uniformly generated in [1, 1.1]31

using command "random.uniform(1,1.1)". Σ1,: is a 31-dimensional diagonal matrix with all
elements on the main diagonal equal to _1,: and _1,: is uniformly generated in [63× 1, 64×
 1]. F1,:

D is uniformly generated in [1, 1.1] and F1,:
;

is uniformly generated in [0.9, 1]. The
objective function ?1 (G1, G2) is chosen to be linear with respect to G1, i.e., ?1 (G1, G2) = 2TG1,
where 2 is a 31− dimensional real vector. In this setting, we choose 2 = (1, 1). Choose U1
such that the assumption 2 is satisfied. Such a choice of parameters verifies the condition in

Theorem 2, i.e., 4.

(
| |W1,: | |√
_1,:,<8=

√
F

1,:
D + | |`1,: | |√

_1,:,<8=

1√
F

1,:
;

)
≥ 1,∀: = 1, 2, ...,  1 which makes



Title Suppressed Due to Excessive Length 15

Table 2 Bounds and CPU time (s) of piecewise linear approximation method

T Upper bound CPU time (s) Lower bound CPU time (s) Gap (%)
5 41.346 4.345 38.122 4.126 7.8%
10 40.947 20.4 39.011 16.475 4.73%
20 40.679 30.126 40.274 35.6 0.99%
50 40.589 90.849 40.571 120.4 0.04%
100 40.589 301.327 40.589 478.127 0%
500 40.589 1578.361 40.589 2016.6 0%

the problem (26) to be convex. We choose ) = 5, 10, 20, 50, 100, 500. For each choice of ) ,
we obtain a lower bound and an upper bound of the optimal value of (26).

The first column of Table 2 gives the value of (. The second and third columns give
upper bound of the optimal value of (26) and the CPU time in seconds. The fourth and fifth
columns give lower bound of the optimal value of (26) and the CPU time in seconds. The
final column shows a relative difference between the upper bound and the lower bound, i.e.:

Gap =
Upper bound − Lower bound

max( |Upper bound|, |Lower bound|) × 100%.

Our method is also robust in term of  1, i.e., when we increase the number of constraints.
Table 3 and Figure 1 shows the CPU time in second with different number of constraints
 1 = 5, 10, 20, 100, 500 while ) = 100 and the other parameters are fixed.

Table 3 CPU time (s) with increasing number of constraints

 1 CPU time (s)
5 40.126
10 100.475
20 416.4
100 1478.127
500 3016.6

Figure 1 : CPU time (s) with different number of constraints
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5.2 Nash Equilibrium of a 2-player CCG

In this subsection, we verify the performance of the best-response algorithm. We consider
the following setting. For = = 2, let 31 = 32 = 2 and ?1 (G1, G2) = ?2 (G1, G2) = (G1)T.G2

(we assume that the payoff functions of both players are linear with respect to strategies of
each player). Let  1 =  2 = 20 and #1,: = #2,: = 5,∀: = 1, 2, ...,  1. The deterministic

vector �1 =
(
�1,1, ..., �1, 1

)T
is randomly generated in [0, 50] 1 . For each : = 1, 2, ...,  1,

`1,: and W1,: are vectors uniformly generated in [1, 1.1]2. Σ1,: is a 2-dimensional diagonal
matrix with all elements on the main diagonal equal to _1,: and _1,: is uniformly generated in
[63× 1, 64× 1]. F1,:

D is uniformly generated in [1, 1.1] and F1,:
;

is uniformly generated in
[0.9, 1]. We consider similar parameters for player 2. Set the tolerance parameter n = 0.001
for the stopping criterion and the number of iterations is 5000. Using the Best-Response
algorithm in Section 4, we start with initial point G2

0 = (1, 1)T, solve alternatively the
optimization problem of each player and obtain a sequence of strategy vectors for each
player. We present the strategy vector of each player in R2. Figure 2 shows the sequence of
best responses of each player which converges to a Nash equilibrium point G1∗ := (0, 0)T and
G2∗ := (0, 0)T.

Figure 2 : Nash equilibrium of a 2-player CCG

6 Conclusion

In this paper, we studied the =-player non-cooperative chance-constrained game. We as-
sume that the strategy profiles set of each player is given by an independent joint chance
constraint and the row vectors of the stochastic matrix are normal mean-variance mixture
distributed. Under mild conditions, we prove the existence of Nash equilibrium for this
chance-constrained game.
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Appendices

Appendix A: Proof of Lemma 2

Let G8 ∈ (̃8U8 . Using (8), we have:∏
:∈� 8
E, 8,:

[
Φ

(
68,: (G8 ,, 8,: )

)]
≥ U8 .

Since, E, 8,:

[
Φ

(
68,: (G8 ,, 8,: )

) ]
∈ [0, 1] and U8 > U (1)8 , ∀8 ∈ �, : ∈ �8 , we deduce that:

E, 8,:

[
Φ

(
68,: (G8 ,, 8,: )

)]
> U

(1)
8
. (29)

We have the following inequalities:

| (G8)TW8,: | ≤ | |G8 | |2 | |W8,: | |2, the Cauchy-Schwarz inequality,√
(G8)TΣ8,:G8 ≥

√
_8,:,min | |G8 | |2,√

, 8,: ≤
√
F
8,:
u . (30)

From (30), we deduce that:����� −(G8)TW8,:√
(G8)TΣ8,:G8

√
, 8,:

����� ≤ ||G8 | |2 | |W8,: | |2√
_8,:,min | |G8 | |2

√
F
8,:
u =

| |W8,: | |2√
_8,:,min

√
F
8,:
u . (31)

Hence, using the increasing monotonicity of Φ and the definition of 68,: in (2), we
deduce from (29) and (31) that:

E, 8,:

[
Φ

(
| |W8,: | |2√
_8,:,min

√
F
8,:
u +

�8,: − (G8)T`8,:
√
, 8,: ‖(G8)T (Σ8,: ) 1

2 ‖2

)]
> U

(1)
8
. (32)

By definition of U (1)
8

, we have:

U
(1)
8
≥ Φ

(
| |W8,: | |2√
_8,:,min

√
F
8,:
u

)
(33)

Hence, we deduce from (32) and (33) that:

E, 8,:

[
Φ

(
| |W8,: | |2√
_8,:,min

√
F
8,:
u +

�8,: − (G8)T`8,:
√
, 8,: ‖(G8)T (Σ8,: ) 1

2 ‖2

)]
> Φ

(
| |W8,: | |2√
_8,:,min

√
F
8,:
u

)
.

Once again, using the increasingmonotonicity ofΦ, we deduce that �8,:−(G8)T`8,: > 0.
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Appendix B: Proof of Lemma 3

Let G8 ∈ ˜(8U8 . Using Lemma 2, �8,: > (`8,: )TG8 for all : ∈ �8 .
Let ' := (G8 )TW8,:√

(G8 )TΣ8,: G8
and I ∈ [F8,:l , F

8,:
u ]. Using the definition of 68,: (G8 ,, 8,: ) in (2),

we can verify the following equation:

68,: (G8 ,, 8,: ) =
√
I

√
, 8,:

68,: (G8 , I) + 'I − ',
8,:

√
, 8,:

, for any , 8,: ∈ [F8,:l , F
8,:
u ] . (34)

We have the following inequalities:

| (G8)TW8,: | ≤ | |G8 | |2 | |W8,: | |2, the Cauchy-Schwarz inequality,√
(G8)TΣ8,:G8 ≥

√
_8,:,min | |G8 | |2,√

, 8,: ≤
√
F
8,:
u ,

|I −, 8,: | ≤ F8,:u − F8,:l . (35)

We deduce from (35) that:

'I − ', 8,:

√
, 8,:

=
(G8)TW8,:√
(G8)TΣ8,:G8

(
I −, 8,:

√
, 8,:

)
≤
||W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

(36)

Using the upper bound of
'I − ', 8,:

√
, 8,:

in (36), we have:

68,: (G8 ,, 8,: ) ≤
√
I

√
, 8,:

68,: (G8 , I) +
| |W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

, for any , 8,: ∈ [F8,:l , F
8,:
u ] .

(37)

Taking E, 8,: (Φ(·)) on both sides of (37), we deduce that:

E, 8,:

[
Φ

(
68,: (G8 ,, 8,: )

)]
≤ E, 8,:

Φ
©«
√
I

√
, 8,:

68,: (G8 , I) +
| |W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

ª®®¬
 .

On the other hand, since G8 ∈ ˜(8U8 , from (8), we have:∏
:∈� 8
E, 8,:

[
Φ

(
68,: (G8 ,, 8,: )

)]
≥ U8 .

Since, E, 8,:

[
Φ

(
68,: (G8 ,, 8,: )

) ]
∈ [0, 1], we deduce the proof.
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Appendix C: Proof of Lemma 4

Let G8 ∈ ˜(8U8 . Using Lemma 3, since U8 > U
(2)
8

, ∀8 ∈ �, then for any I ∈ [F8,:l , F
8,:
u ], we

have:

E, 8,:

Φ
©«
√
I

√
, 8,:

68,: (G8 , I) +
| |W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

ª®®¬
 > U

(2)
8
. (38)

By definition of U (2)
8

, we have:

U
(2)
8
≥ Φ


4
√
F
8,:
u√

F
8,:

l

©«
| |W8,: | |√
_8,:,min

√
F
8,:
u +

||`8,: | |√
_8,:,min

√
F
8,:

l

ª®®¬ +
||W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

 . (39)

Using (38) and (39), we deduce that:

E, 8,:

Φ
©«
√
I

√
, 8,:

68,: (G8 , I) +
| |W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

ª®®¬


> Φ


4
√
F
8,:
u√

F
8,:

l

©«
| |W8,: | |√
_8,:,min

√
F
8,:
u +

||`8,: | |√
_8,:,min

√
F
8,:

l

ª®®¬ +
||W8,: | | (F8,:u − F8,:l )√

_8,:,min

√
F
8,:

l

 . (40)

From (40), it is clear that 68,: (G8 , I) > 0. Then, we have:

√
I

√
, 8,:

68,: (G8 , I) ≤

√
F
8,:
u√

F
8,:

l

68,: (G8 , I), for any , 8,: ∈ [F8,:
;
, F8,:D ] . (41)

We deduce from (40) and (41) that:
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 . (42)

Using the increasing monotonicity of Φ, (42) is equivalent to:

68,: (G8 , I) > 4
©«
| |W8,: | |√
_8,:,min

√
F
8,:
u +

||`8,: | |√
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8,:
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ª®®¬ .
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Since I is an arbitrary point in [F8,:l , F
8,:
u ], by definition of Ω8,: , we obtain:

˜(8U8 ⊂
⋂
:∈� 8

Ω8,: .

Note that Ω8,: is convex. Then, we deduce the proof.

Appendix C: Proof of Lemma 5

For G8 ∈ &8,: , let:

5 8,: (G8 ,, 8,: ) :=
1(

68,: (G8 ,, 8,: )
)2 .

=
(G8)TΣ8,:G8

, 8,: [(G8)TW8,: ]2 + 1
, 8,: [�8,: − (G8)T`8,: ]2 + 2[(G8)TW8,: ] [(G8)T`8,: − �8,: ]

.

= ((G8)TΣ8,:G8)."−1
8,: .

where "8,: := , 8,: [(G8)TW8,: ]2 + 1
, 8,: [�8,: − (G8)T`8,: ]2 + 2[(G8)TW8,: ] [(G8)T`8,: −

�8,: ].
It is clear that the (−2)− concavity of 68,: (G8 ,, 8,: ) is equivalent to the convexity

of 5 8,: (G8 ,, 8,: ) on the domain &8,: . In order to prove the convexity of 5 8,: (G8 ,, 8,: ),
it suffices to prove that the Hessian matrix of 5 8,: (G8 ,, 8,: ) w.r.t G8 is positive semi-
definite on &8,: , ∀, 8,: ∈ [F8,:l , F

8,:
u ]. Let 5G8 5 8,: (G8 ,, 8,: ) be the gradient vector of

5 8,: (G8 ,, 8,: ) w.r.t G8 and �G8 5 8,: (G8 ,, 8,: ) be the Hessian matrix of 5 8,: (G8 ,, 8,: ) w.r.t G8 .
Using differential calculations in linear algebra, we can verify the following formulation of
5G8 5 8,: (G8 ,, 8,: ):

5G8 5 8,: (G8 ,, 8,: ) = 2"−1
8,:Σ

8,:G8

− 2"−2
8,: [(G

8)TΣ8,:G8] × [, 8,: (G8)TW8,: + (G8)T`8,: − �8,: ] .
(
W8,: + `8,:

, 8,:

)
.

∀(G8 ,, 8,: ) ∈ &8,: × [F8,:l , F
8,:
u ] . (43)

Note that the gradient vector of (G8)TΣ8,:G8 is 2Σ8,:G8 and the gradient vector of "8,:
w.r.t G8 is 2[, 8,: (G8)TW8,: + (G8)T`8,: − �8,: ] .

(
W8,: + `8,:

, 8,:

)
. To obtain (43), it suffices to

apply the product rule of differentiation.
Similarly, by differentiating both side of (43), we have:

("8,: )2
2

.�G8 5
8,: (G8 ,, 8,: ) = "8,:Σ8,: + 3[(G8)TΣ8,:G8] (, 8,:W8,: + `8,: )

(
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, 8,:

)T
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[Σ8,:G8 (`8,: )T + `8,: (G8)TΣ8,: ] . (44)
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In order to prove that �G8 5 8,: (G8 ,, 8,: ) is positive semi-definite, it suffices to prove that
the quadratic form of�G8 5 8,: (G8 ,, 8,: ) at I ∈ &8,: is positive, i.e., IT�G 5 8,: (G8 ,, 8,: )I ≥ 0,
∀I ∈ R38 , ∀(G8 ,, 8,: ) ∈ &8,: × [F8,:l , F

8,:
u ].

Using (44), we have:

IT
("8,: )2

2
.�G8 5

8,: (G8 ,, 8,: )I

= "8,: I
TΣ8,: I + 3[(G8)TΣ8,:G8]

(√
, 8,: (ITW8,: ) + 1

√
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×
(
(ITΣ8,:G8) [(W8,: )TI] + 1

, 8,:
(ITΣ8,:G8) [(`8,: )TI]

)
(45)

From linear algebra, we have the following inequality:

|ITΣ8,:G8 | ≤
√
ITΣ8,: I

√
(G8)TΣ8,:G8 . (46)

Using (46) in (45), we deduce that:

IT
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2
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�� × √
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√
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×
(��(W8,: )TI | + 1

, 8,:
| (`8,: )TI

��) . (47)

Note that |, 8,: (G8)TW8,: + (G8)T`8,: − �8,: | =
√
, 8,:"8,: and

3[(G8)TΣ8,:G8]
(√
, 8,: (ITW8,: ) + 1

, 8,: (IT`8,: )
)2
≥ 0.

Then, from (47), we deduce that:
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√
, 8,:

| (`8,: )TI |
)
. (48)

The case I = 0 is trivial. Otherwise, we have

IT
("8,: )2

2 .�G8 5
8,: (G8 ,, 8,: )I

(ITΣ8,: I) ((G8)TΣ8,:G8)

≥
"8,:

(G8)TΣ8,:G8
− 4

√
"8,:

(G8)TΣ8,:G8

(√
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Note that "8,:

(G8 )TΣ8,: G8 = [6
8,: (G8 ,, 8,: )]2. Since G8 ∈ &8,: , then G8 ∈ Conv((̃8U8 ) Using

Lemma 4, G8 ∈ Ω8,: , i.e., 68,: (G8 ,, 8,: ) > 0, ∀, 8,: ∈ [F8,:l , F
8,:
u ]. Then,√

"8,:

(G8)TΣ8,:G8
= 68,: (G8 ,, 8,: ).

Therefore, (49) is equivalent to:
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We have the following inequalities:

���� (W8,: )TIITΣ8,: I

���� ≤ ||W8,: | | | |I | |√
_8,:,min | |I | |

=
| |W8,: | |√
_8,:,min

,���� (`8,: )TIITΣ8,: I

���� ≤ ||`8,: | | | |I | |√
_8,:,min | |I | |

=
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,√
, 8,: ≤
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8,:
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1
√
, 8,:

≤ 1√
F
8,:

l

. (51)

Hence, by using (51), we deduce from (49) that:

IT
("8,: )2

2 .�G8 5
8,: (G8 ,, 8,: )I

(ITΣ8,: I) ((G8)TΣ8,:G8)
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1√
F
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l
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Since G8 ∈ Ω8,: , we deduce that the right-hand side of (52) is positive which finishes the
proof.
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