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The application of a new beam-rigid body MEMS gyroscope in the frequency-modulation mode

For a new type of a MEMS gyroscope made of a cantilever beam and an end-rigid-body, the reduced-order (discretized) model is obtained by using the method of assumed modes. The discretized model's static behavior is verified by comparing with the stationary partial differential governing equations. The free dynamics of the system are studied under a constant input voltage. The gyroscopic natural and pseudonatural frequencies of the system are obtained. To operate the gyroscope in the frequency-modulation mode, the input angular rate is computed in analytical and numerical form.

I. INTRODUCTION

Vibratory gyroscopes are built based on the use of the Coriolis effect to transfer the motion from the driven direction to the transverse sense direction [START_REF] Yazdi | Micromachined inertial sensors[END_REF]. By exploiting the Coriolis effect, the sense mode response is induced by the coupling of the drive mode motion and the angular rotation rate. Different designs have been proposed to reduce production cost and increase the sensor's sensitivity for various applications such as in active suspension systems and robotic systems [START_REF] Söderkvist | Micromachined gyroscopes[END_REF]. Recently, Zotov et al. [START_REF] Zotov | Frequency modulation based angular rate sensor[END_REF], [START_REF] Zotov | High-range angular rate sensor based on mechanical frequency modulation[END_REF] have proposed to measure the bifurcation of the natural frequencies due to the imposed angular rotation rate to estimate the input angular velocity. For either conventional MEMS gyroscopes which work based on analog amplitude modulation [START_REF] Yazdi | Micromachined inertial sensors[END_REF] or mechanical frequency modulation [START_REF] Zotov | Frequency modulation based angular rate sensor[END_REF], [START_REF] Zotov | High-range angular rate sensor based on mechanical frequency modulation[END_REF] studying the natural frequencies of the microgyroscope is of primary importance.

A beam and an end concentrated mass, i.e. point mass, microgyroscope has been modeled by Esmaeili et al. [START_REF] Esmaeili | Dynamic modeling and performance evaluation of a vibrating beam microgyroscope under general support motion[END_REF]. They have estimated the natural frequency for a simplified beam and point mass structure. Maenaka et al. [START_REF] Maenaka | Analysis of a highly sensitive silicon gyroscope with cantilever beam as vibrating mass[END_REF] showed that a high dynamic sensitivity can be achieved for a beam microgyroscope carrying an end point mass. The effects of the quality factor (damping ratio) on the performance of a beam gyroscope were studied by Seok and Scarton [START_REF] Seok | Dynamic characteristics of a beam angularrate sensor[END_REF]. Extensive studies on the effect of an end-rigid-body on the dynamics of the structure by Lajimi and Heppler [START_REF] Lajimi | Comments on "Natural frequencies of a uniform cantilever with a tip mass slender in the axial direction[END_REF], [START_REF]Free vibration and buckling of cantilever beams under linearly varying axial load carrying an eccentric end rigid body[END_REF], Lajimi et al. [START_REF] Lajimi | On natural frequencies and mode shapes of microbeams[END_REF], [START_REF] Lajimi | A new cantilever beam rigid-body MEMS gyroscope: mathematical model and linear dynamics[END_REF], and Lajimi [START_REF] Lajimi | Analysis of nonlinear dynamics of a cantilever beamrigid-body MEMS gyroscope using a continuation method[END_REF], [START_REF]Design, modeling, and nonlinear dynamics of a cantilever beamrigid body microgyroscope[END_REF]; they have developed an accurate comprehensive model of a beam microgyroscope carrying an end-rigid-body (end mass) and established some initial results for the dynamics and sensitivity of the system.

Here we study a microbeam-rigid-body gyroscope actuated by a nonlinear electrostatic force in the drive direction and sensed in the transverse direction. Including all system parameters, the beam and the end-rigid-body, the free dynamics of the system are studied. To study the free dynamics of the system, the Lagrangian of the system is initially discretized and the generalized or modal coordinate of the system is assumed to take a harmonic form. By performing an initial static analysis we show that for the considered system a singlemode approximation is sufficient for the analysis of system response. The natural frequencies and mode shapes of the gyroscopic nonlinear system are found and a closed-form of the frequency equation is presented. To operate the gyroscope in the frequency-modulation mode, the input angular rotation rate is computed in terms of the modal frequencies.

II. PROBLEM FORMULATION

The schematic of the microsensor is shown in Fig. 1 where the beam of length L is assumed to have axially constant: cross-sectional area A, second moment of area I, mass per unit length m, and modulus of elasticity E. The mass, rotary inertia matrix (about its center of mass), and center of mass off-set values of the end-rigid-body are indicated using M , J, and e. By using Hamilton's principle, the governing equations of the system are obtained. The total kinetic energy of the beam and the end-rigid-body are obtained as

K B = 1 2 m Ω 2 v 2 + w 2 + m Ω (v ẇ -w v) + 1 2 m ẇ2 + v2 - 1 2 J Ω 2 w 2 + v 2 + JΩ v w + ẇ v + 1 2 J ẇ 2 + v 2 + JΩ 2 (1) 
and 

K M = 1 2 M ẇ2 + v2 + Ω 2 v 2 + w 2 -2 Ω (w v -v ẇ ) + 2 e ẇ ẇ + v v + e 2 Ω 2 w 2 + v 2 +2 e Ω 2 w w + v v + 2 e Ω v ẇ -w v +2 Ωe 2 v ẇ -w v -2 e Ω v w -ẇ v + e 2 ẇ 2 + v 2 + 1 2 J M ηη ẇ 2 + Ω 2 v 2 + 2 Ω ẇ v + 1 2 J M ζζ v 2 + Ω 2 w 2 -2 Ω v w 978-

Author

Copy

- 1 2 J M ξξ Ω 2 w 2 + Ω 2 v 2 -Ω 2 -2 Ω v w (2)
where the the principal components of the rotary inertia matrix for the end-rigid-body, J M ξξ , J M ηη and J M ζζ , relative to each axis can be found in various texts, e.g. [START_REF] Jazar | Advanced Dynamics: Rigid Body, Multibody, and Aerospace Applications[END_REF] p. 1035, and v and w are the transverse components of the beam's displacement at an arbitrary section positioned at ξ relative to the base. The total potential energy is given by

P = - 1 2 L 0 E I v 2 + w 2 dξ + 1 2 e v h v V 2 v g v -v(L, t) -e w v (L, t) + 1 2 e w h w V 2 w g w -w(L, t) -e w w (L, t) (3) 
To study the system dynamics, the method of assumed modes is used to compute discretized equations of motion. To this end, the mode shapes, ψ(ξ) and φ(ξ), of the uncoupled governing equations, i.e. for Ω = 0, are obtained and later used as the basis functions in the discretization process [START_REF] Lajimi | Eigenvalues of an axially loaded cantilever beam with an eccentric end rigid body[END_REF], [START_REF] Lajimi | Eigenvalue analysis of a cantilever beam-rigid-body MEMS gyroscope[END_REF]. The response of the system in each direction is described with

w(ξ, t) = q s + q d (t) ψ(ξ), v(ξ, t) = p s + p d (t) φ(ξ) (4)
where q s , q d (t), p s , p d (t) indicate the generalized static and dynamic coordinates of the structures' response in the drive and sense directions, respectively. Substituting Eq. ( 4) into the Lagrangian of the system, K -P, using Eqs. ( 1), ( 2), (3) as well as introducing a Rayleigh dissipation function in terms of the dynamic modal coordinates, and employing Lagrange's differential equations of motion [START_REF] Meirovitch | Principles and Techniques of Vibrations[END_REF], two secondorder ordinary differential equations, one for each generalized coordinate, are obtained.

III. SYSTEM STATIONARY RESPONSE

The equations governing the static generalized coordinates, q s and p s , are obtained by dropping the dynamic terms from the discretized equations of motion. Therefore, the static reduced-order (discretized) model is given by

Γ -Ω2 Γ -Γ α + M ψ(1) 2 + 2ê ψ(1)ψ (1) -ê 2 ψ (1) 2 + ψ (1) 2 Ĵξξ -Ĵζζ q s = ν ê V 2 DC ψ(1) + ê ψ (1) 1 -q s ψ(1) -ê q s ψ (1) 2 (5) Λ -Ω2 Λ -Λ α + M ψ(1) 2 + 2ê ψ(1)ψ (1) -ê 2 ψ (1) 2 + ψ (1) 2 Ĵξξ -Ĵηη p s = ν ê V 2 DC φ(1) + ê φ (1) 1 -p s φ(1) -êp s φ (1) 2 (6) 
where

Γ = 1 0 ψ( ξ) 2 d ξ, Γ = 1 0 ψ ( ξ) 2 d ξ, Γ = 1 0 ψ ( ξ) 2 d ξ, Λ = 1 0 φ( ξ) 2 d ξ, Λ = 1 0 φ ( ξ) 2 d ξ, Λ = 1 0 φ ( ξ) 2 d ξ, Π = 1 0 ψ( ξ)φ( ξ)d ξ (7) 
The nondimensional parameters are defined by

ξ = ξ L , κ 2 = 12ρL 4 Eb 2 , t = t κ , ν = 6 hL 4 Eb 4 g 3 , M = M m L ê = e L , Ĵξξ = J ξξ mL 3 , Ĵηη = J ηη mL 3 , Ĵζζ = J ζζ mL 3 , α = b 2 12L 2 , Ω = κ Ω (8)
To determine the number of mode shapes required for the static and dynamic analysis of the system response, the exact static equations are first obtained from the equations of motion by setting the time-varying terms to zero and are solved. Then, the result of solving Eqs. ( 5)-( 6) is compared with the exact result for the input data set given in Table I in Fig. 2 where it may be observed that the static solution obtained from singlemode approximation perfectly matches the solution of the static partial differential equations. 

A. Analytical Results

To obtain the equations governing the dynamic response of the the system, Eq. ( 4) is substituted into the system Lagrangian and the resulting discretized Lagrangian is substituted into Lagrange's equations of motion. After subtracting the static reduced-order model, Eqs. ( 5)-( 6), from the total equations the linearized dynamic equations are obtained as follows: 

Γ + αΓ + M ψ(1) + ê ψ (1) 2 + Ĵηη ψ (1) 2 q d (t) + c Γ q d (t) + Ω 2Π + 2ê M ψ(1)φ (1) + φ(1)ψ (1) +2 M φ(1)ψ(1) + ê2 φ (1)ψ (1) -φ (1)ψ (1) Ĵξξ -Ĵηη -Ĵζζ p d (t) + Γ -Ω2 Γ -αΓ + M ψ(1) -êψ (1) 2 -Ĵξξ -Ĵζζ ψ (1) 2 q d (t) = 2 ν ê ψ(1) + êψ (1) 2 V 2 DC -V 2 AC + 2V DC V AC 1 -q s ψ(1) -ê q s ψ (1) 3 q d (t) + ν ê ψ(1) + êψ (1) (V 2 AC + 2 V AC V DC ) 1 -q s ψ(1) -ê q s ψ (1) 2 (9) 
and

Λ + α Λ + M φ(1) + êφ (1) 2 + Ĵζζ φ (1) 2 p d (t) + c Λ p d (t) -Ω 2 Π + 2 M φ(1)ψ(1) + 2ê M φ(1)ψ (1) + ψ(1)φ (1) -φ (1)ψ (1) Ĵξξ + Ĵηη + Ĵζζ +2ê 2 M φ (1)ψ (1) q d (t) + Λ -Ω2 Λ -α Λ +M φ(1) -êφ (1) 2 + φ (1) 2 Ĵηη -Ĵξξ p d (t) = 2 ν ê φ(1) + êφ (1) 2 V 2 DC 1 -p s φ(1) -ê p s φ (1) 3 p d (t) (10) 
To obtain the dynamic equations governing the harmonic motion of the microbeam, we assume q d (t) = Z e r t and p d (t) = Y e r t [START_REF] Lajimi | A new cantilever beam rigid-body MEMS gyroscope: mathematical model and linear dynamics[END_REF] Substituting Eq. ( 11) into Eqns. ( 9) and ( 10) and collecting amplitudes, Z and Y , we obtain a system of homogeneous equations in the amplitudes. Setting the determinant of the coefficient matrix to zero, the characteristic equation for an undamped system is computed as follows:

H 4 r 4 + H 2 r 2 + C 4 Ω4 + C 2 Ω2 + C 0 = 0 (12) 
where 13)

H 4 = Λ + M φ(1) + êφ (1) 2 + αΛ + Ĵζζ φ (1) 2 Γ + M ψ(1) + êψ (1) 2 + αΓ + Ĵηη ψ (1) 2 (
H 2 = ΛΓ + αΛ Γ + ΓΛ + αΓ Λ + Ĵζζ Γ φ (1) 2 + Ĵηη Λ ψ (1) 2 + M Γ φ(1) + êφ (1) 2 +Λ ψ(1) + êψ (1) 2 + Ω2 4Π 2 -2ΓΛ +2α 2 Γ Λ + Ĵ2 ξξ φ (1) 2 ψ (1) 2 -Ĵζζ Γ -αΓ φ (1) 2 -ψ (1) 4Πφ (1) -Λ + αΛ ψ (1) -Ĵηη Γ + αΓ φ (1) 2 -ψ (1) 4Πφ (1) -Λ -αΛ -2 Ĵζζ φ (1) 2 ψ (1) + Ĵξξ Γ + αΓ φ (1) 2 -ψ (1) 4Πφ (1) -Λ + αΛ -Ĵηη + Ĵζζ φ (1) 2 ψ (1) ⎞ ⎠ + 2 M 2 4êφ(1)φ (1) ψ(1) 2 + 3êψ(1)ψ (1) +ê 2 ψ (1) 2 + φ(1) 2 ψ(1) 2 + 4êψ(1)ψ (1) + ê2 ψ (1) 2 +ê 2 φ (1) 2 ψ(1) 2 + 4êψ(1)ψ (1) + ê2 ψ (1) 2 + M -2Γφ(1) 2 + 8 Π φ(1)ψ(1) -2Λψ(1) 2 + Ĵξξ ψ(1) 2 φ (1) 2 -4φ(1)ψ(1)φ (1)ψ (1) +φ(1) 2 ψ (1) 2 -Ĵηη ψ(1) 2 φ (1) 2 -4φ(1)ψ(1)φ (1)ψ (1) + φ(1) 2 ψ (1) 2 -Ĵζζ ψ(1) 2 φ (1) 2 -4φ(1)ψ(1)φ (1)ψ (1) +φ(1) 2 ψ (1) 2 -2ê 2 Γφ (1) 2 + ψ (1) -4Πφ (1) + Λ + Ĵξξ -Ĵηη -Ĵζζ φ (1) 2 ψ (1) ⎞ ⎠ + 2ê 2αφ(1)Γ φ (1) + 4Π ψ(1)φ (1) + φ(1)ψ (1) + ψ (1) 2αψ(1)Λ + φ (1) Ĵηη ψ(1)φ (1) + 3 Ĵζζ ψ(1)φ (1) + 3 Ĵηη φ(1)ψ (1) + Ĵζζ φ(1)ψ (1) -Ĵξξ ψ(1)φ (1) + φ(1)ψ (1) ⎞ ⎠ ⎞ ⎟ ⎠ ⎞ ⎟ ⎟ ⎠ ( 14 
)
C 4 = Λ -αΛ + M φ(1) -êφ (1) 2 + Ĵηη -Ĵξξ φ (1) 2 + Γ -αΓ + M ψ(1) -êψ (1) 2 + Ĵζζ -Ĵξξ ψ (1) 2 (15) 
C 2 = -ΓΛ + ΛΓ + M Γ φ(1) + êφ (1) 2 + M Λ ψ(1) -êψ (1) 2 -αΓ Λ -αΛ Γ + Ĵηη -Ĵξξ Γ φ (1) 2 + Ĵζζ -Ĵξξ Λ ψ (1) 2 (16) C 0 = Γ Λ ( 17 
)
where H 4 , H 2 , C 4 , C 2 and C 0 are functions of the dimensions, system parameters and mode shapes, φ and ψ, of the uncoupled governing equations of motion ( Ω = 0). Solving Eq. ( 12) for r computes the undamped eigenvalues or natural frequencies of the system. Dropping terms associated with the dynamic forcing, i.e. setting V AC = 0, but keeping terms associated with static loading, i.e. V DC = 0, and following a very similar procedure to the previous approach, we can obtain a closed form characteristic equation including V DC in the coefficients, Eqns. ( 13)- [START_REF] Meirovitch | Principles and Techniques of Vibrations[END_REF]. By solving the characteristic equation, Eq. ( 12), we compute the natural frequencies in the frame of reference fixed to the substrate which rotates about the longitudinal axis of the beam. From an inertial point of view, the resonance frequencies are not the same as natural frequencies in the rotating reference frame [START_REF] Friswell | Dynamics of Rotating Machines[END_REF]. Following Friswell et al.'s methodology, it can be shown that in the inertial reference frame the resonance frequencies are equal to Ω±ω where ω is the natural frequency in the rotating reference frame. Equations ( 12)-( 17) are used to estimate the gyroscopic frequencies for a beam point-mass system by setting ê, Ĵξξ , Ĵηη and Ĵζζ , to zero.

B. Numerical Results

For the parameters of the system, Table I, and with V DC = 0 and no damping c = 0, the natural frequencies are plotted in Fig. 3a. Each frequency in the rotating frame appears as two frequencies (pseudo-natural frequencies) in the inertial or stationary frame, Fig. 3b. As the rotation rate, Ω increases, the natural frequencies diverge from each other, a characteristic of gyroscopic systems.

In Fig. 4a we present the variation of the lowest frequency as V DC is increased up to the pull-in voltage. In practice, V DC is set to a value well below the pull-in voltage which is at approximately 27.93 V and the microsensor operates under this constant V DC value. Therefore, we plot the natural frequencies in Figs. 4b-4c when V DC is set at 6, 12, and 18 V, respectively. Looking at Fig. 4a-4d, we observe that while V DC significantly affects the natural frequencies, the gyroscopic effect negligibly influences the natural frequencies. In fact, the large time constant κ, Eq. ( 8), significantly degrades the effect of the angular rotation rate on the natural frequencies while a strong softening due to nonlinear electrostatic forcing persists to affect the system dynamics. The difference between natural frequencies is used to measure the input angular rate in the frequency modulation mode [START_REF] Zotov | Frequency modulation based angular rate sensor[END_REF], [START_REF] Zotov | High-range angular rate sensor based on mechanical frequency modulation[END_REF]. To measure the rotation rate, a closed-form relation relating the input angular rate to the system parameters and modal frequencies is obtained. In Figs. 5 and6, we plot the evolution of the differential modal frequency measurement with the input angular rotation rate for mode-mismatched and mode-matched cases, respectively. The higher slope in Fig. 6 suggests that using the sensor in a mode-matched configuration (matched natural frequencies in the sense and drive directions) results in higher sensitivity of the microgyrosocpe when operating in the frequency modulation mode. The slope indicates the mechanical scale factor. In practice, modal frequencies are measured and the input angular rate is computed based on the difference between the modal frequencies.

V. CONCLUSIONS

We have studied the statics and free dynamics of a new cantilever beam-end-rigid-body microgyroscope. The microsensor carries a moderately large end mass at the tip affecting its static and dynamic behaviour. The full Lagrangian of the system has been presented and discretized using the method of assumed modes. Modes are obtained using the flexural dynamics of the uncoupled system in each direction. Using the discretized static equation, we have shown that a singlemode approximation results in an accurate prediction of the system behavior. Reduced-order dynamic equations of motion have been obtained and analyzed under a constant electrostatic force.

It has been shown that the natural frequencies show a gyroscopic behaviour by diverging from each other as the angular rotation rate increases. A very large angular rotation rate results in the instability of the device which is unlikely to occur in practice. The effect of a constant electrostatic force is more important than the rotation rate determining the eigenvalues of the system. For future work, the nonlinear dynamics of the microgyroscopic sensor under nonlinear electrostatic time-varying signal is under investigation. It has been demonstrated that the frequency modulation method can be used to measure the angular rotation rate based on the differential modal frequency measurement.
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 1 Fig. 1: Schematic of the beam rigid-body microgyroscope
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 2 Fig. 2: Static displacement at the tip of the end body vs. DC voltage: -•and -•for Ω = 10 rad/sec, -and --for Ω = 100 rad/sec, and -and -for Ω = 10000 rad/sec. The dashed line denotes the unstable branch while the solid line indicates the stable branch of the static equilibrium position. Unfilled and filled symbols indicate static solutions of the singlemode model and the exact system, respectively.
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 3 Fig. 3: Natural frequencies in the rotating (a) and inertial frames (b)
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 4 Fig. 4: Natural frequencies for various V DC
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 56 Fig. 5: The frequency split for V DC = 10 (V) in the drive and and V DC = 5 (V) in the sense directions

TABLE I :

 I System specifications

	L	300 μm
	a	5 μm
	b	5 μm
	L M 50 μm
	a M 20 μm
	b M	5 μm
	h	5 μm
	g	2 μm
	e	25 μm
	E	160 GPa
	ρ	2300 kg/m 3
		8.854 × 10 -12 F/m