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Abstract. Seasonal snow cover is the largest single com-
ponent of the cryosphere in areal extent, covering an aver-
age of 46 × 106 km2 of Earth’s surface (31 % of the land
area) each year, and is thus an important expression and
driver of the Earth’s climate. In recent years, Northern Hemi-
sphere spring snow cover has been declining at about the
same rate (∼−13 % per decade) as Arctic summer sea ice.
More than one-sixth of the world’s population relies on sea-
sonal snowpack and glaciers for a water supply that is likely
to decrease this century. Snow is also a critical component
of Earth’s cold regions’ ecosystems, in which wildlife, veg-
etation, and snow are strongly interconnected. Snow water

equivalent (SWE) describes the quantity of water stored as
snow on the land surface and is of fundamental importance to
water, energy, and geochemical cycles. Quality global SWE
estimates are lacking. Given the vast seasonal extent com-
bined with the spatially variable nature of snow distribution
at regional and local scales, surface observations are not able
to provide sufficient SWE information. Satellite observations
presently cannot provide SWE information at the spatial and
temporal resolutions required to address science and high-
socio-economic-value applications such as water resource
management and streamflow forecasting. In this paper, we
review the potential contribution of X- and Ku-band syn-
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thetic aperture radar (SAR) for global monitoring of SWE.
SAR can image the surface during both day and night re-
gardless of cloud cover, allowing high-frequency revisit at
high spatial resolution as demonstrated by missions such
as Sentinel-1. The physical basis for estimating SWE from
X- and Ku-band radar measurements at local scales is vol-
ume scattering by millimeter-scale snow grains. Inference
of global snow properties from SAR requires an interdisci-
plinary approach based on field observations of snow mi-
crostructure, physical snow modeling, electromagnetic the-
ory, and retrieval strategies over a range of scales. New field
measurement capabilities have enabled significant advances
in understanding snow microstructure such as grain size, den-
sity, and layering. We describe radar interactions with snow-
covered landscapes, the small but rapidly growing number
of field datasets used to evaluate retrieval algorithms, the
characterization of snowpack properties using radar mea-
surements, and the refinement of retrieval algorithms via syn-
ergy with other microwave remote sensing approaches. This
review serves to inform the broader snow research, monitor-
ing, and application communities on progress made in recent
decades and sets the stage for a new era in SWE remote sens-
ing from SAR measurements.

1 Introduction

Seasonal snow on land is responsible for a number of impor-
tant processes and feedbacks that affect the global climate
system, fresh water availability to billions of people, bio-
geochemical activity including exchanges of carbon dioxide
and trace gases, and ecosystem services. Despite this impor-
tance, snow mass (commonly expressed as the snow water
equivalent, or SWE) is a poorly observed component of the
global water cycle. Given the vast area of Northern Hemi-
sphere snow extent (exceeding 45× 106 km2 each winter),
surface observing networks are insufficient as a sole source
of information for snow monitoring. Satellite remote sens-
ing is the only means to monitor SWE consistently and con-
tinuously at continental scales. Optical satellite imagery ac-
quired under cloud-free conditions can provide information
on where and when snow is on the ground but does not sup-
port the retrieval of SWE. Long time series of snow mass
information are available from satellite passive microwave
measurements (Luojus et al., 2021), but at coarse spatial res-
olution (gridded at 25 km spatial resolution), mountain ar-
eas across which high values of SWE occur are excluded,
and bias correction is required under deep-snow conditions
(>150 mm SWE; Pulliainen et al., 2020). Land surface mod-
els driven by meteorology from atmospheric reanalysis can
produce hemispheric-scale SWE information at coarse spa-
tial resolutions (e.g., Kim et al., 2021), but there is a large
spread between products due to differences in the meteo-
rological forcing data (especially precipitation) and a pro-

nounced negative bias in mountain areas (Wrzesien et al.,
2019a; Cao and Barros, 2020; Lundquist et al., 2019). Dif-
ferential airborne and ground-based lidar altimetry (Deems
et al., 2013; Meyer et al., 2021) and spaceborne stereo pho-
togrammetry (Deschamps-Berger et al., 2020) can provide
snow depth information at high resolution by differencing
repeat digital elevation models but are limited to small spa-
tial domains and sparse temporal sampling. C-band radar has
recently been applied to retrieve snow depth in mountain-
ous regions (Lievens et al., 2019) using empirical relation-
ships derived from ground-based measurements; however,
this approach is not demonstrated for the comparatively shal-
low snowpack found across large regions of the Northern
Hemisphere. Airborne and tower-based measurements have
also identified the possibility of retrieving snow parameters
from L-band interferometric synthetic aperture radar (SAR;
Deeb et al., 2011); P-band signals of opportunity (Shah et
al., 2017; Yueh et al., 2021); wideband auto-correlation ra-
diometry (Mousavi et al., 2019); and frequency-modulated,
continuous-wave (FM–CW) radar (Yan et al., 2017).

Ku- and X-band radar measurements, in contrast, pro-
vide a viable pathway to produce SWE information at the
temporal and spatial scales necessary to advance opera-
tional environmental prediction, climate monitoring, and wa-
ter resource management across the Northern Hemisphere
(see Sect. 2 for an overview of the scientific requirements
for snow mass information). Significant progress was made
over the past decade in understanding the Ku-band and X-
band radar response to variations in SWE, snow microstruc-
ture, and snow wet/dry state. The ESA Cold Regions Hy-
drology High-Resolution Observatory (CoReH2O) mission
(dual-frequency X- and Ku-band, Phase A completed at ESA
in 2013; ESA, 2012; Rott et al., 2010) was a major im-
petus. The potential for Ku-band radar was previously ex-
plored at NASA as part of the Snow and Cold Land Pro-
cesses Mission and supporting Cold Land Processes Exper-
iment (Yueh et al., 2009). Experimental tower and airborne
measurements have been used to advance understanding of
the physics of backscatter response to snow microstructure
and SWE (Lemmetyinen et al., 2018; King et al., 2018), in-
cluding the complicating effects of forest cover (Montmoli
et al., 2016; Cohen et al., 2015). Innovative new field mea-
surements of snow microstructure parameters (Löwe et al.,
2013; Kinar and Pomeroy, 2015) now provide the quantita-
tive observational basis for radar modeling of layered snow-
packs (Tsang et al., 2018) and radar retrieval algorithms (Zhu
et al., 2018). Radar forward models and potential algorithm
approaches have matured over the past decade, which has al-
lowed new retrieval pathways to emerge which build on ap-
proaches first proposed for CoReH2O.

The purpose of this review is to summarize the status of
all the components necessary to fully develop the scientific
readiness for a potential future radar mission focused on sea-
sonal snow mass. This includes the theoretical sensitivity to
SWE via volume scattering processes including the influ-
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ence of surface and ground contributions (Sect. 3) and ap-
proaches to SWE retrieval as supported by physical snow and
radiative transfer modeling (Sect. 4). Results from previous
ground, tower, and airborne measurement campaigns are also
reviewed. The sensitivity of Ku-band SAR measurements to
SWE are limited to a threshold of approximately 150 mm
(about 1 m of snow depth depending on density) because of
saturation of radar volume scattering. Thus, synergy with C-
band Sentinel-1 data for snow depths beyond 1 m (Lievens
et al., 2019) is also explored. Other synergies with interfer-
ometric SAR, radar tomography, passive microwave, and L-
and C-band SAR measurements are also described to provide
ancillary information and to improve retrieval performance
(Sect. 5).

2 Scientific objectives of global remote sensing of SWE
and spatial and temporal requirements

High-priority science objectives require snow mass infor-
mation at moderate spatial resolution (250–500 m) and fre-
quent revisit (∼ 3–5 d; ESA, 2012; Derksen et al., 2021),
a measurement paradigm that is currently not available. As
outlined below, these science requirements support applica-
tions related to climate services and operational environmen-
tal prediction including quantifying snow mass contributions
to water, energy, and geochemical cycles; better prediction
of spring flooding; and adaptation of cold-region water re-
sources to climate change.

1. Inventory how much water is stored as seasonal snow
and how it varies in space and time.

The amount and distribution of and variability in ter-
restrial SWE across the Northern Hemisphere is poorly
quantified because surface networks are inadequate,
and existing gridded SWE datasets have divergent cli-
matologies (Wrzesien et al., 2019a) and anomalies
(Mudryk et al., 2015). Alpine regions are particularly
problematic because the course spatial resolution of ex-
isting products (typically 25 km grid spacing or more,
with some new analyses available at 9 km) is incom-
patible with the scale of SWE variability (<100 m;
e.g., Grünewald et al., 2010). SWE estimates derived
from models at the continental scale are subject to
uncertainties in both meteorologic forcing data and
model parameterizations (e.g., Kim et al., 2021). SWE
is highly sensitive to changing temperature and precip-
itation in a warming climate; confident projections of
resultant changes are uncertain because we lack base-
line SWE estimates. SWE can change rapidly from day
to day and across local areas due to the influence of in-
dividual weather events, but we currently do not have
any means to track these changes with sufficient spa-
tial or temporal resolution. The lack of a baseline snow
inventory negatively impacts many aspects of hydrolog-

ical resource management. With projections of contin-
ued climate warming and shifts to snow cover resources
(including precipitation phase changes and timing of
spring melt), addressing this capability is more pressing
than ever.

2. Properly initialize snow in environmental prediction
systems including numerical weather prediction (NWP)
and streamflow forecasting.

Land surface data assimilation is an important com-
ponent of state-of-the-art environmental prediction sys-
tems. The initialization of land surface conditions (such
as snow, soil moisture, and temperature) is a require-
ment for numerical weather prediction and other fore-
casting systems such as streamflow prediction. Satellite
data from the SMOS and SMAP missions are presently
assimilated to improve soil moisture initial conditions
(e.g., Carrera et al., 2019). Parallel activities have not
been sustained for seasonal snow because assimilation
of existing satellite measurements does not sufficiently
improve land surface model performance (de Lannoy
et al., 2010). Addressing this gap is important because
evidence shows that a more realistic initialization of
SWE can improve streamflow forecasts, especially dur-
ing extreme events (Vionnet et al., 2020) and at lead
times greater than 2 weeks (Abaza et al., 2020; Wood
et al., 2016). The current inability to plan and respond
to snow-related runoff events is costly: if effectively
managed, runoff from snowmelt has a global economic
value on the order of trillions of dollars (Sturm et al.,
2017) but also poses a risk through loss and damage
associated with flood events. For example, the devas-
tating floods in the Canadian Rockies and foothills and
downstream areas of southern Alberta and southeast-
ern British Columbia during June 2013 provide a com-
pelling case for of the need for improved snow infor-
mation to support hydrological modeling during ex-
treme events (Pomeroy et al., 2016). Additionally, high-
resolution satellite-derived SWE can support develop-
ment of improved downscaling techniques for exist-
ing coarsely gridded products (Manickam and Barros,
2020).

3. Validate and support improvement of the representa-
tions of snow processes and feedbacks in regional and
global climate models.

Gridded SWE datasets are required for the verification
of models used for seasonal prediction (e.g., Sospedra-
Alfonso and Merryfield, 2017) and the validation of
historical climate model simulations which underpin
climate projections (e.g., Mudryk et al., 2020). Earth-
observation-derived products make a small contribution
to the current suite of available gridded SWE prod-
ucts for climate model analysis: reanalysis and snow
models form the primary basis for the evaluation of
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seasonal prediction and coupled climate model simu-
lations. The first assessment of CMIP6 model simula-
tions by Mudryk et al. (2020) identified two key find-
ings: (1) excessive snow mass at the hemispheric scale
is a feature of CMIP6 models, and (2) nearly all models
increase snow extent too slowly during the accumula-
tion season and decrease snow extent too slowly during
the snowmelt period. These findings would be strength-
ened through the support of appropriate moderate-
resolution satellite SWE datasets. Furthermore, more
detailed analysis at the grid point scale is needed to ef-
fectively link the model parameterizations of the (usu-
ally diagnosed) snow cover fraction to the prognostic
snow mass.

4. Address the role of snow properties across high latitudes
in influencing terrestrial carbon cycling, trace-gas ex-
changes, and permafrost.

Snow is an important insulator of the underlying soil,
influencing the thermal regime and corresponding car-
bon fluxes in winter (Natali et al., 2019). Permafrost is
warming across the Northern Hemisphere (Biskaborn
et al., 2019) with implications for vegetation, surface
hydrology, landscapes, and the carbon cycle. Address-
ing the drivers of these changes requires a sound under-
standing of the role of seasonal snow, but current snow
mass datasets do not meet the requirements of state-of-
the-art permafrost models (Obu et al., 2019) which pro-
vide continental-scale estimates of permafrost extent,
thermal state, and active-layer thickness.

3 Radar interaction with snow-covered landscapes

3.1 Theoretical descriptions of radar–landscape
interactions

In this section, we describe volume scattering from a snow-
pack, rough surface scattering from the snow–soil interface,
and the attenuation of radar waves by forest canopies.

3.1.1 Interaction of radar waves with snowpack by the
radiative transfer model (RTM)

Microwave signals emitted from a SAR system are scattered
by the millimeter-scale ice grains that make up the snow and
at boundaries between snowpack layers with different dielec-
tric properties. The SAR system measures the portion of the
signal returned to the sensor (i.e., the backscatter). Because
volume scattering increases with snow mass, measurement
of backscatter allows estimation of snow mass. Structural
changes in snow that impact snow backscatter are densifica-
tion and metamorphism that introduce vertical heterogeneity
in snow grain sizes and snow density and thus impact snow
depth and SWE.

Historically, the first model developed for microwave scat-
tering of snow was by Chang et al. (1976), which assumed
Mie scattering from a collection of ice spheres in a single
layer to solve a radiative transfer equation for passive remote
sensing applications. The first active remote sensing model
(Zuniga et al., 1979) used the Born approximation with snow
represented by a random medium characterized by a corre-
lation function and associated correlation length. Since these
early models, a variety of radiative transfer microwave scat-
tering models have been developed with representations of
(i) snow microstructure, (ii) absorption coefficient, (iii) effec-
tive permittivity, (iv) scattering-phase matrices, and (v) layer-
ing effects. Analytical- and numerical-solution methods are
used to solve these equations (Tsang et al., 1985; Ulaby et
al., 1986; and Fung et al., 2010). A historical review of dif-
ferent models is given in Shi et al. (2016). Rapid progress
has been made recently due to the advancement of high-
performance parallel computations and efficient computation
methods for characterizing the complex microstructure of
snow and full-wave solutions of Maxwell’s equations (Ding
et al., 2010; Xu et al., 2012; Tan et al., 2017; Tsang et al.,
2018).

Consider an incident wave from the radar at an inci-
dent angle θi. In the theoretical modeling of volume scat-
tering and surface scattering, the computed solutions of our
work are based on all orders of multiple volume scatter-
ing, surface scattering, and volume–surface interaction. The
volume–surface interactions are between the snow volume
scattering and the snow–ground interface and the air–snow
interface (Chang et al., 2014; Tan et al., 2015, 2017). The full
Dense Medium Radiative Transfer (DMRT) equation with
boundary conditions is solved to generate the look-up tables
(LUTs) for physically based retrieval and for establishing
regression formulas of backscattering versus important geo-
physical variables such as snow water equivalent and scatter-
ing albedo. To simplify the explanation of scattering physics,
we give a simple physical formula below that expresses the
total backscatter σpqtot from the snowpack over the ground
arising from two contributions as shown in Fig. 1. The two
contributions are (i) the volume scattering component σpqvol
from the snowpack and (ii) the rough surface scattering σpqbg
from the underlying soil. The expression is

σ
pq
tot = σ

pq

vol + σ
pq
bg exp(−2τ secθt )+ σ

pq

air−snow, (1)

where p and q refer to the polarization state; e.g., σHV
tot repre-

sents backscatter emitted at vertical polarization and received
at horizontal polarization. Scattering from the underlying
rough soil surface is attenuated by the snow layer, repre-
sented by the two-way attenuation factor of exp(−2τ secθt ).
The quantity τ is the optical thickness of the snowpack,
and θt is the refraction angle in snow which is related to
θi, the incident angle in air, by Snell’s law. Because of the
low permittivity contrast between air and snow, the scatter-
ing (σpqair−snow) from the air–snow interface (Rott et al., 2010)
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Figure 1. Main contributions to radar scattering from snow-covered ground. Scattering at air–snow interface is neglected, and the snow layer
is assumed homogeneous. The snow depth is d; ε0 is the air permittivity, and εg is the soil permittivity. θi is the incident angle of radar. E(r)
is the internal electrical field, and I

(
r, ŝ
)

is the specific intensity within the snowpack.

can be neglected except for wet snow. Below we consider the
σ
pq

vol volume scattering term. The rough surface scattering of
the snow–soil interface, σpqbg , is considered in Sect. 3.1.2.

Multiple volume scattering effects within snow are calcu-
lated by the DMRT. The DMRT is a partially coherent model
having coherent interactions and incoherent interactions. The
incoherent interactions are based on the classical radiative
transfer equation (RTE):

dI
(
r, ŝ
)

ds
=−κeI

(
r, ŝ
)
+

∫
4π

d�′P
(
r, ŝ, ŝ′

)
I
(
r, ŝ′

)
, (2)

where I
(
r, ŝ
)

is the specific intensity at the position r in di-

rection ŝ; P
(
r, ŝ, ŝ′

)
is the phase matrix; and the extinction

coefficient κe is the sum of the scattering and absorption co-
efficients, κe = κs+ κa. The distinctive difference of DMRT
from classical RTM is the coherent interaction part in which
the extinction coefficients κe and the phase matrix P

(
r, ŝ, ŝ′

)
are obtained by solutions of Maxwell’s equations includ-
ing coherent-wave interactions among the ice grains that are
in the near-field and intermediate-field distance ranges from
each other (Liang et al., 2008; Ding et al., 2010). In solving
Maxwell’s equations, the dense-medium effects and snow
microstructure are accounted for.

The volume scattering σpqvol depends on snow microstruc-
ture; the response of microwave radiation to snow mi-
crostructure has been studied extensively. We describe the
five different electromagnetic models. (1) In Chang et
al. (1976), collections of spheres are used for the microstruc-
ture. The scattering by individual spheres is added inco-
herently. However, it is not valid for snow as particles are
densely packed, meaning electromagnetic (EM) waves scat-
tered from individual grains interact coherently within dis-
tance scales of several wavelengths. (2) DMRT has been ap-

plied to the cases of hard spheres (Tsang et al., 1985), sticky
hard spheres (Tsang et al., 2007), and distributions of sphere
sizes (Tsang et al., 1992). The coherent interactions are de-
scribed analytically by the quasi-crystalline approximation
(QCA) of Mie scattering for closely packed spheres. Fig-
ure 2a gives a visual representation of the sticky-hard-sphere
microstructure. (3) The approach of Hallikainen et al. (1987)
empirically relates grain size directly to scattering coeffi-
cient. In this case, the model was derived from experimental
observations of extinction behavior and the relations to tra-
ditional grain size measurements. The direct connection be-
tween scattering and grain size means the model is simpler
to apply, albeit with potentially large errors due to limited
observations and variations with snow types. (4) A differ-
ent representation of snow is a random medium of ice and
air (Fig. 2b). Mätzler (1998) treats scattering by characteriz-
ing the microstructure autocorrelation length, using the im-
proved Born approximation (IBA) and the random medium
assumption. (5) The generalized bicontinuous-medium ap-
proach uses two parameters to characterize snow microstruc-
ture: a mean grain size 〈ζ 〉 and an aggregation parameter b.
There are two features: (1) the microstructures are computer-
generated and (ii) the auto-correlation functions are derived
analytically (Chang et al., 2014). The aggregation parameter
b represents the adherence of ice grains together to form clus-
ters. Smaller b parameter values produce greater aggregation.
The b parameters chosen for X- to Ku-bands fall in the range
of 1.0 to 2.0 (Chang et al., 2014; Tan et al., 2015; Xiong and
Shi, 2019). With development of computational electromag-
netics, numerical solutions of Maxwell’s equations in 3-D are
also used (Ding et al., 2010; Xu et al., 2012; Tan et al., 2017).

EM models thus have evolved in part due to knowl-
edge advances from our improved ability to measure
snow microstructure. Stereological approaches led to ad-
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Figure 2. Microstructural descriptions of the snowpack: (a) sticky-hard-sphere theoretical model, (b) a bicontinuous medium with ice crystals
in dark and air in white based on parameters 〈ζ 〉 = 1 mm and b = 1.0, and (c) 3-D image from X-ray microtomography with ice crystals
shown in white and air voids in black.

Figure 3. (a) Frequency dependence of the extinction coefficient from X- to Ku-band and (b) phase matrices at 13.3 GHz for different values
of microstructure correlation length ρlex. Snow parameters are volume fraction fv = 0.20, aggregation parameter b = 1.2, and correlation
length 0.15 mm. P11 and P22 are co-polarized phase matrix elements, and P12 is a cross-polarized phase matrix element.

vances in treating snow as a random medium using cor-
relation functions (Wiesmann et al., 1998). X-ray micro-
computed tomography (µ-CT) has emerged to image the
three-dimensional structure of snow (Kerbrat et al., 2008), as
illustrated in Fig. 2c, which has fed advances such as the dual
active–passive Snow Microwave Radiative Transfer (SMRT)
model (Picard et al., 2018). SMRT was developed to under-
stand how to represent microstructure faithfully at scales rel-
evant for microwave scattering and has the potential to allow
direct use of correlation functions from µ-CT. Application of
µ-CT-derived microstructure parameters in SMRT removes
the need for empirical grain-scale factors with frequency-
dependent model performance governed by the quality of
microstructure model fit (Sandells et al., 2021). EM models
have been adapted to work with field-derived measurements
as well. Field methods to measure microstructure are more
fully discussed in Sect. 3.3.1. It is to be noted that the random
medium model and the bicontinuous model both use the au-

tocorrelation function. These advances reduce the uncertain-
ties in interpreting remote sensing observations and support
the design of remote sensing missions to observe seasonal
changes in snow storage.

Figure 3 illustrates the volume scattering of snow with bi-
continuous DMRT. Figure 3a shows the frequency depen-
dence of the extinction coefficients κe for different values of
microstructure correlation length and with aggregation pa-
rameter b = 1.2. The results show the increase in extinction
with increasing correlation length. The exponential of the
frequency dependence is 3.3 from X- to Ku-band, which is
less than the fourth-power law of Rayleigh scattering. This
difference is due to the dense-media effect, and the power
law exponent is found to depend on the aggregation parame-
ter b. The phase matrices at 13.3 GHz for snow are shown
in Fig. 3b. The phase matrix gives bistatic scattering as a
function of the angle 2 between the incident direction ŝ

and scattered direction ŝ′. In Fig. 3b, P11 and P22 are co-
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polarization phase matrix elements, and P12 is the cross-
pol phase matrix. The phase matrix exhibits a dipole scatter-
ing pattern. The cross-polarization P12 is much larger than
would be calculated by the sphere models because of the ir-
regular shapes of the aggregates in the bicontinuous medium.
The computed phase matrix and the extinction coefficients
are substituted into the RTE, which is then solved to calcu-
late backscattering. The results in Figs. 4–6 are an illustra-
tion of the bicontinuous model (Tan et al., 2015). The re-
sults as a function of SWE for a homogenous snow layer
are shown in Fig. 4 for six channels with VV polarization at
10.2, 13.3, and 16.7 GHz in Fig. 4a and VH polarization for
the same frequencies in Fig. 4b. In Chang et al. (2014), the
results were compared with the Finnish NoSREx backscat-
tering dataset, within which tower measurements were taken
over snowpacks with SWE up to 120 mm. The bicontinuous-
DMRT model results are in good agreement with backscatter
observations over the six channels of multiple frequencies
and polarizations, albeit with a frequency-dependent bias for
the cross-pol results. Both the model predictions and mea-
surements show high correlations with SWE with stronger
correlations at 13.3 and 16.7 GHz than at 10.2 GHz. Several
years of NoSREx data were analyzed, and the results of re-
trieval performance on the data were illustrated in the paper
by Zhu et al. (2018).

1. Because of snow accumulation events and weather pat-
terns, snow cover can have layering structures that cor-
respond to variations in snow densities and grain sizes.
Extensive work has been done in studying multilayered
models of snow using the HUT model (Lemmetyinen et
al., 2010), the DMRT-ML model (Picard et al., 2013),
and the MEMLS model (Proksch et al., 2015a). Recent
experimental work indicates that multilayered radiative
transfer modeling may shed light on snow radar inter-
action (Thompson and Kelly, 2021a, b). For the case
of DMRT, a multilayer DMRT model with different
dense-media phase matrices and extinction coefficients
for each layer is used (Liang et al., 2008; Chang et al.,
2014; Tan et al., 2015). Both the quasi-crystalline ap-
proximation (QCA) model and the bicontinuous model
have been used for a multilayer snow medium (Chang
et al., 2014)

2. Structural anisotropy is a characteristic feature of nat-
ural snowpacks (e.g., Leinss et al., 2020). This causes
changes in the phase matrix with the incidence angles
and scattered angles. There are two models in the bi-
continuous model: isotropic correlation functions and
anisotropic correlation functions (Tan et al., 2016). Both
have been developed and simulations performed. In the
retrieval, only the isotropic correlation function versions
have been used in the DMRT LUT.

3.1.2 Interaction of radar waves with the ground
surface beneath snowpack

Because the dielectric contrast between dry snow and soil
exceeds that between dry snow and air, the contribution of
rough surface scattering arises primarily from the snow–soil
rough interface and not from the air–snow interface (although
it is noted that the air–snow interface may have a stronger
scattering contribution when the snow is wet, but this is out-
side the domain of SWE retrieval using X- or Ku-band vol-
ume scattering). Rough surface scattering from the snow–
soil interface contributes to radar observations as indicated
by the term σ

pq
bg exp(−2τ secθt ) in Eq. (1). This term is af-

fected by the rough soil surface scattering σpqbg and by at-
tenuation through the snow exp(−2τ secθt ). The rough soil
surface scattering contribution is not related to SWE and
therefore should be removed when retrieving SWE. A “sub-
traction” of surface scattering has been used to improve the
accuracy of SWE retrieval (Zhu et al., 2018). The approach
for removing σpqbg exp(−2τ secθt ) involves a combination of
data and electromagnetic models and is a significant part of
the retrieval algorithm that is discussed later in this section.
Here we discuss methods for calculating scattering from the
snow–soil interface at L-, C-, X-, and Ku-bands.

Classical physical models for rough surface scattering in-
clude the small perturbation method (SPM) and the Kirch-
hoff approach (Ishimaru, 1978; Tsang and Kong, 2001).
Advanced analytical methods include the advanced inte-
gral equation model (AIEM; Chen et al., 2003) and small-
slope approximation and its extensions (Voronovich, 1994;
Elfouhaily and Johnson, 2007). Fully numerical solutions
based on the use of Monte Carlo simulations are also avail-
able to avoid approximation in the electromagnetic physics.
In all these models, surface roughness can be described in
part using the parameter kh, which is the product of the
EM wavenumber k of the medium above the rough surface
and the surface rms height h. Previous studies using ana-
lytical models and numerical simulations for snow or land
sensing applications have emphasized cases having kh < 3
due to a past focus on L-band sensors. For example, using
a time series of SMAP VV- and HH-polarized backscatter
measurements, both the surface soil moisture and surface rms
height were retrieved at 3 km resolution for the 13 April–
7 July 2015 period of SMAP radar operation (Kim et al.,
2017). Results from this product show a global median sur-
face rms height of 2 cm, with rms heights up to 5 cm in moun-
tain regions. A surface rms height of 5 cm at 17 GHz would
represent a kh value of 18 for the air–soil interface and 21.6
for the snow–soil interface (the larger value for the snow–soil
interface is due to the larger electromagnetic wavenumber in
snow). Past studies emphasizing kh < 3 therefore limit ap-
plications to L- or C-bands. Recently, we have performed
numerical surface scattering simulations having kh up to
15 (h= 4.16 cm for 17.2 GHz) to widen the applicability of
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Figure 4. Comparison of the DMRT/bicontinuous media model using NoSREx 2010–2011 data backscatter against SWE for vertical co-pol
(left) and cross-pol (right) at 10.2, 13.3, and 16.7 GHz. Figures are adapted from Tan et al. (2015).

full-wave simulations up to Ku-band (Zhu, 2021; Zhu et al.,
2021b)

Surface scattering models typically describe the soil sur-
face as a stationary Gaussian random process so that knowl-
edge of its covariance function is sufficient to describe its
properties. The covariance function is further parametrized
in terms of its rms height and correlation length. Ground
measurements have been made of these properties (Oh et
al., 1992; Oh and Kay, 1998; Ulaby and Long, 2015), and
measured correlation lengths are typically found to be lim-
ited to a maximum of 10 cm. We label these roughness mea-
surements as “limited correlation length up to 10 cm”. How-
ever, in the global retrieval of soil moisture using 6 months
of the NASA Soil Moisture Active Passive (SMAP) radar
data at L-band, the roughness was modeled as having a con-
stant correlation-length-to-rms-height ratio (Kim et al., 2012,
2014, 2017) that ranged from 5 to 20. These two methods
for describing the correlation length differ significantly for
rms heights beyond 2 cm; our studies have found that the
constant-ratio approach gives more acceptable results. Sur-
face scattering also depends on the soil permittivity, which in
turn depends on soil moisture (which describes the volume
of water present per unit volume of soil) and texture (which
describes soil composition). Given these parameters, empiri-
cal models (Mironov et al., 2004; Peplinski et al., 1995) are
available to calculate the soil permittivity. In addition to soil
properties, land cover including litter and vegetation, as well
as rock outcrops, impacts the spatial variability in surface
permittivity and backscattering.

Full-wave simulations based on numerical solutions of
Maxwell’s equations (NMM3D) were applied to L-band
radar backscatter analysis for the SMAP mission (Huang et
al., 2010; Huang and Tsang, 2012). The full-wave simula-
tions were used to generate a look-up table (LUT; Liao et al.,
2016). The LUT was initially used for the air–soil interface.
Also, the LUT was based on the incident angle of the up-
per medium and the relative dielectric constant between the

two media on the two sides of the rough surfaces. By adjust-
ing the relative dielectric constants and the incidence angle
using Snell’s law, the NMM3D LUT can also be applicable
for all combinations of relative dielectric constants including
snow–soil, air–snow, or snow–permafrost interfaces, among
others.

In Fig. 5a, we plot VV backscattering as a function of fre-
quency for h= 0.5 and 2 cm. In Fig. 5b, we further plot the
VV backscattering as a function of rms height at C-, X-, and
Ku-bands. Both figures show saturation effects, meaning that
the rough surface scattering saturates at large rms heights
(∼ 3–6 cm) and at higher frequencies. The new results of kh
up to 15 are useful for studying rough surface radar backscat-
tering at X- and Ku-bands for snow–soil interfaces.

To estimate rough surface scattering at X-band and Ku-
band, there are two approaches labeled (a) and (b) in what
follows. Approach (a) uses snow-free radar observations at
X- and Ku-bands at a specific location to estimate the sur-
face backscattering (Rott et al., 2010). Such an approach ne-
glects any changes in soil properties and background land
cover during the snow-on season. In approach (b), surface
backscattering is estimated using a combination of mea-
surement data and electromagnetic models. The measure-
ment data include backscattering data at L-, C-, X-, and/or
Ku-band under snow-free or snow-on conditions, and the
NMM3D LUT is used to model surface backscattering. As
a first step, co-polarized radar time series observations at L-
and C-band, which have greatly reduced sensitivity to snow
volume scattering, are used to estimate the soil permittivity
and surface roughness. The use of a C-band-measured time
series together with the past L-band time series data enhances
the existing L-band algorithm in retrieving rms height and
soil moisture, and the retrieval is performed in either the pres-
ence or absence of snow. When snow is present, Snell’s law
is used to adjust the incident angle at the snow–soil inter-
face to account for the snow refraction effects. The surface
rms heights and soil permittivities obtained are then used in
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Figure 5. (a) Backscattering at VV polarization as a function of frequency: red curve is results with frozen soil (permittivity 4+1i) and rms
height of 0.5 cm, and blue curve is results with soil of 10 % moisture and rms height of 2 cm. (b) Backscattering at VV polarization as a
function of rms height with soil of 10 % moisture at C-, X-, and Ku-band.

the NMM3D LUT to predict the surface backscattering con-
tribution (σpqbg ) at X- and Ku-bands; note this captures any
dynamically varying roughness or permittivity conditions in
performing the surface scattering correction. We assume the
availability of matchup L- and/or C-band SAR observations
with revisit periods of approximately 10 d, as are or will be
available from the Sentinel-1 and NISAR systems, as well as
future proposed continuation missions, so that such datasets
are likely to be available during the time frame of a future
snow observing mission.

Consider for example L-band UAVSAR radar full-
polarization observations under snow-on conditions (Liao et
al., 2016). The UAVSAR dataset examined was collected
from February to March 2017 in the SnowEx 2017 campaign
using five flights over the Grand Mesa region in Colorado,
United States. In situ soil moisture measurements were also
collected throughout 2017 from an installed meteorological
observation station. We apply the time series retrieval algo-
rithm developed for the SMAP mission (Kim et al., 2012,
2017) based on the NMM3D LUT at the station location
(i.e., at a point location). From the retrieved soil permittiv-
ity, the soil moisture is derived using Mironov’s empirical
model (Mironov et al., 2004). The comparison of retrieved
and measured soil moisture is shown in Fig. 6a. The retrieval
soil moisture is in good agreement with the measured in situ
soil moisture for a period of 8 weeks from 6 February to
31 March 2017. In addition to retrieving the soil moisture
time series, the rms height at this location was also retrieved
and estimated as 1.9 cm. Note the Kim et al. (2017) algorithm
retrieves a single rms height estimate for the time series be-
cause surface roughness is assumed to remain constant over
the time series duration (so that wet and frozen soils are as-
sumed to have the same rms height).

We next apply the retrieved rms height (1.9 cm) and the
soil properties from Fig. 6a to calculate the surface scattering
contributions with snow attenuation, σpqbg exp(−2τ secθt ), at
9.6, 13.4, and 17.2 GHz as shown in Fig. 6b. The results show
that the rough soil surface scattering contribution, including

snow attenuation, is around−12 dB at X-band and decreases
to −14 dB at 17.2 GHz; higher frequencies such as Ku-band
typically experience higher volume scattering and greater at-
tenuation of the surface scattering contributions. Continued
studies are required to improve and validate this approach,
including extending NMM3D surface modeling studies and
the associated LUT into cases with rms heights of four wave-
lengths or more so that the LUTs can be applied at 17.2 GHz
for rms heights up to 7 cm. Also, unlike snow volume scatter-
ing, rough-surface scattering has a stronger dependence on
incidence angle and polarization. Thus, the effects of topo-
graphical slopes that cause changes in incidence angles, par-
ticularly in mountainous regions, should be included in the
retrieval. Although it is noted that the sample size in Fig. 6a
and b is small, the increasing availability of L- and C-band
time series measurements and the extension of full-wave sim-
ulations from L-band to Ku-band up to kh= 20 are expected
to make the retrieval of surface rms heights and permittivities
feasible so that robust surface scattering corrections can be
achieved at X- and Ku-bands. Further extensions to consider
the snow–permafrost interface are also under development.

3.1.3 Interaction of radar waves with forests and
vegetation above snowpack

The interaction of radar waves with vegetation initially be-
gan with the water-cloud model (Attema and Ulaby, 1978)
(Fig. 7a). It was then extended by using RTE to include scat-
tering effects in addition to absorption. Computation codes
of RTE exist such as the MIMICS model (Ulaby et al., 1990)
and in the Torgata model (Ferrazzoli and Guerriero, 1995;
Ferrazzoli et al., 1999). In addition, the discrete-scatterers
model using distorted Born approximations (DBAs) has been
used (Lang and Sighu, 1983; Karam et al., 1992). The RTE
and DBA models use the same assumptions and give the
same results aside from a factor of 2 in the double bounce
of the volume–surface interaction term. Bindlish and Bar-
ros (2001) applied the water cloud model formulation to
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Figure 6. (a) Retrieval of soil moisture compared with in situ measurements. The retrieved rms height is 1.9 cm. The retrieval is based on
based on L-band UAVSAR data from the SnowEx 2017 campaign. The measured soil moisture is from SnowEx 2017 campaign meteorolog-
ical observations with a measured soil temperature of 0.6 ◦C. The location of the station is 39.03388◦ N, 108.21399◦W, with an elevation of
3033 m. (b) Simulated surface scattering with snow attenuation from X- to Ku-band at VV polarization. Snow parameters are with depth of
54 cm, density of 183 kg m−3, 〈ζ 〉 = 1.2 mm, and b = 1.2. Blue marks are based on the SnowEx 2017 campaign data shown in (a).

Figure 7. (a) RTE assumption: uniformly randomly positioned scatterers which are statistically homogeneous. (b) Illustration of trees for a
forest with snow cover beneath. The picture was taken on 14 March 2017 in a Jack Pine stand situated in the Boreal Ecosystem Research and
Monitoring Sites (BERMS), Saskatchewan, Canada.

the parameterization of vegetation backscatter from C- and
L-band radar measurements using three vegetation param-
eters (a measure of vegetation density, a measure of vege-
tation architecture, and a dimensionless vegetation correla-
tion length) to characterize different types of vegetation in
rangeland, winter wheat crops, and pasture. They found that
the estimation of land-cover- and land-use-class-specific pa-
rameters resulted in significant improvements in retrieval of
soil moisture, which suggests that a similar approach could
be used for snow retrieval using multifrequency data along
with detailed ancillary vegetation datasets to estimate the
place-based parameters for the water-cloud model. Zoughi et
al. (1986) conducted X-band radar measurements to identify
the contributions from leaves, petioles, twigs, and branches
of pine, oak, sycamore, and sugar maple trees to backscatter
and attenuation. In addition to quantitative differences related
to tree architecture and vegetation moisture content, they re-
ported that the backscatter is mainly produced by the top lay-
ers of the canopy; petioles (tree microstructure) can signifi-

cantly affect backscatter depending on their size relative to
wavelength; and leaves play an equally important role in at-
tenuation and backscatter, whereas twigs and branches dom-
inated in terms of backscatter with weak attenuation when
leaves were not present. They did not consider the effect of
tree trunks.

In CoReH2O Phase A the impact of forests on radar
signals of snow-covered ground was studied (ESA, 2012).
Model and data analyses were carried out by Kugler et
al. (2014) and Montomoli et al. (2016). The forest model se-
lected in CoREH2O is based on the radiative transfer equa-
tion (RTE). It accounts for scattering of trunks and branches
of different size and needles as well as for differences in
the structure of vertical layers. Effects of differences in
cover fraction, tree height, and biomass were analyzed. The
model gives a multifaceted description of forest properties
and for estimating the impact of the forest parameters on the
backscatter of snow-covered forests. The CoREH2O RTE-
based studies indicate that, during the winter period, the pres-
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ence of dormant herbaceous or short vegetation has small
contributions to backscattering and does not affect the sen-
sitivity to SWE. For the effects of coniferous forests (CFs),
the simulation results show that in the case of low fractional
cover of CFs (<25 %), contributions of snow volume scatter-
ing are the dominant contributions to the radar signal, with
the radar signals correlating with SWE. When the forest den-
sity or the fractional cover increases, the sensitivity to SWE
decreases. The sensitivities are much affected by CFs larger
than 75 %. In addition to forest density and structure, snow
interception in the canopy can vary widely in time and de-
pending on snow type and canopy architecture, and it can
modify the transmissivity and scattering characteristics.

Recently, since 2017, instead of using the RTE/DBA mod-
els, we have used full-wave simulations based on a hybrid
method of combining wave multiple-scattering theory (W-
MST) and commercial software in computational electro-
magnetics such as HFSS and FEKO. The “waves” MST is
based on Maxwell’s equations and different from that of mul-
tiple scattering in RTE, which only considers incoherent mul-
tiple scattering of leaves branches, for example. Full-wave
simulation results have been computed for L-, S-, and C-
bands. The results of full-wave simulations show two dis-
tinct differences from that of the results of the RTE/DBA
model: (i) the full-wave simulations show more penetration
than predicted by the RTE model with differences that can be
several times larger, and (ii) the full-wave simulations show
weaker frequency dependence than the RTE model. We can-
not at this moment extrapolate the conclusions to X-band
and Ku-band for trees. However, preliminary results running
full-wave simulations of needle leaves at X-band and Ku-
band show significant differences from the RTE model. Thus,
in the near future, there will be extensive full-wave simula-
tions and new measurements to study the effects of trees and
forests at X-band and Ku-band.

The reasons for the differences are that the basic
DBA/RTE have two basic assumptions.

The first assumption is that scatterers such as trunks,
leaves, primary branches, secondary branches, tertiary
branches, etc. are individual, isolated scatterers that are uni-
formly positioned in the layer, such as that shown in Fig. 7a.
The reason for this assumption is that the RTE model was
first used for microwave remote sensing of cloud and rainfall.
The assumption of uniform random positions is the same as
homogenization, meaning that there is an effective attenua-
tion rate κe. For a forest height of d , the Beer–Lambert law or
the Foldy approximation states that the transmission through
forest and vegetation is given by the expression e−τ secθi ,
where the optical thickness τ is equal to κed.

However, in forests, such as coniferous forests (Fig. 7b),
aspen forests, and deciduous forests, the scatterers are aggre-
gated in trees. Unlike clouds, which do not have gaps, there
are gaps between the trees. Thus, waves, such as those in
the Ku-band at 17.2 GHz with wavelengths of 1.74 cm, can
pass through gaps when gap sizes are larger than these wave-

lengths. The consequence of the assumption is that RTE un-
derestimates the transmission. The second assumption is that
the leaves and branches are assumed to be single scatterers,
and they scatter independently. The extinction coefficients
and phase matrices of Eq. (2) are calculated by adding the
scattering cross-section of the branches and leaves. This as-
sumption is valid for cloud and rainfall as the water droplets
can be assumed to be single scatterers. However, the geom-
etry (Fig. 7b) is that the branches and leaves are attached to
the tree. For a coniferous forest, there are primary branches
and secondary branches attached to a tree. The needle leaves
are aggregated and are attached to branches. Thus, the en-
tire tree itself should be treated as a single scatterer rather
than an individual branch or an individual leaf. Therefore,
the phase matrix of a tree should be used rather than incoher-
ently adding the scattering cross-sections of branches, leaves,
and the trunk for a tree. Using a tree as a single scatterer gives
results that have weaker frequency dependence than that pre-
dicted by RTE/DBA.

Full-wave simulations to solve Maxwell’s equations
among trees or plants were deemed to be computation-
ally formidable. Recently, a computationally efficient hy-
brid method (HB) has been developed to perform full-wave
simulations (Huang et al., 2017, 2019; Gu et al., 2021,
2022). The hybrid method is a combination of commer-
cial off-the-shelf software of computational electromagnet-
ics, the Foldy–Lax wave multiple-scattering equations, and
iterations based on the averaged multiple orders of scat-
tering. The hybrid method consists of three steps. In the
first step, a plant or a tree is treated as a single scatterer.
Commercial off-the-shelf software is used to calculate the
scattering T matrix in vector cylindrical waves of a single
plant or a single tree. We have used the commercial soft-
ware of HFSS and FEKO (Altair FEKO: https://www.altair.
com/feko/, last access: 21 July 2022). In the second step,
coherent-wave multiple-scattering theory (W-MST) among
the plants and trees is formulated by using the Foldy–Lax
multiple-scattering equations. The formulation uses T ma-
trices and the vector addition theorem of vector cylindrical
waves (Tsang and Kong, 2001). In the third step, the Foldy
Lax equations are iterated to obtain solutions in multiple or-
ders of scattering, and averages are taken over realizations
after several orders at a time to obtain the averaged solution.
The third step makes use of the property that the averaged
solution of orders of multiple scattering has faster conver-
gence than obtaining the exact solution of a single realiza-
tion through matrix iteration methods such as conjugate gra-
dient or bi-conjugate gradient. NMM3D full-wave methods
and simulation results can be found in Huang et al. (2017,
2019) and Gu et al. (2021, 2022). Below we illustrate two
examples.

Simulations were performed for the transmission through
a simulated forest (Huang et al., 2019) consisting of 196
cylinders representing tree trunks. Each cylinder is of 20 m
height and 12 cm diameter, and the cylinder area is arranged
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Figure 8. Tree trunks (left) are modeled as dielectric cylinders
(right). The figure is adapted from Huang et al. (2019).

Table 1. Transmission coefficient from RTE based on distorted
Born approximation (RTE/DBA) and the hybrid method from
Fig. 8. The table is adapted from Huang et al. (2019).

RTE/DBA Hybrid method

Transmission 0.35 0.66

as shown in Fig. 8. The results are tabulated in Table 1. The
results show that the transmission is almost twice that of
RTE.

To consider frequency dependence, we next show an ex-
ample of the transmission through a field consisting of 196
wheat plants (Fig. 9a) at L-, S-, and C-bands (Gu et al., 2021,
2022) as a function of volume water content (VWC). Re-
sults of Fig. 9b are compared with RTE. Firstly, the results
show that the transmission of full-wave simulations is much
larger than RTE. Secondly, the transmission at C-band is only
slightly less than that at S-band, showing that the frequency
dependence is weak between S-band and C-band. On the
other hand, RTE shows a big drop in transmission from S-
to C-band, indicating that RTE predicts a strong increase in
attenuation with frequency from S-band to C-band. On the
other hand, the full-wave simulation results have little differ-
ence between S-band and C-band, showing “saturation” with
frequency. The example of wheat is shown to illustrate that
RTE/DBA underestimates the transmission through vegeta-
tion and has a higher frequency dependence when compared
to the hybrid method as shown in Gu et al. (2021, 2022).
There are not many new published results using NMM3D
for different types of vegetation to be shown in this review
paper. However, there has been tremendous improvement re-
cently in computational EM efficiency, and we expect new
NMM3D results in the near future.

At Ku-band (17.2 GHz), the wavelength is 1.74 cm, which
is much smaller than the gaps in trees. The wave can travel
in straight lines as rays through the gaps. In such a scenario,
the Ku-band waves will travel like the case of lidar, which

has been shown to be able to penetrate forest canopies. In
wireless communication, ray tracing has been performed as
a path-loss model in forests (Ling et al., 1989; Kurt and
Tavli, 2017). However, ray tracing, in the opposite extreme
of RTE, has no frequency dependence, although frequency
dependence can be introduced in an ad hoc manner such as
by only keeping the dominant scatterers at the operating fre-
quency.

3.2 Experimental measurements of radar–landscape
interactions

Collection of experimental data is a prerequisite for the de-
velopment of Earth observation satellites. Ground-based and
airborne sensors provide means to collect observations of the
geophysical parameter of interest in a relatively controlled
environment. These measurements provide the basis for the
validation of forward-modeling approaches and development
of retrieval algorithms prior to launch of the spaceborne mis-
sion. The measurements also help to understand the spatial
resolution and temporal requirements for a spaceborne mis-
sion.

Ground-based sensors deployed on tower structures al-
low near-continuous observations over extended periods,
which are critical for understanding both slow and seasonal
processes as well as rapid phenomena induced by diurnal
changes at the sensor footprint. Such temporal features are
of particular importance for seasonal snow cover. Airborne
observations, or the deployment of ground-based sensors on
other mobile platforms, provide the ability to expand local-
ized observations to a larger scale, allowing the effect of het-
erogeneous land cover and vegetation on Earth observation
signatures to be observed. Seasonal snow presents a particu-
larly challenging target for observations due to the high vari-
ability in snow over both temporal and spatial scales. Hence,
several localized and ground-based campaigns as well as air-
borne sensor deployments have been conducted in recent
years in an attempt to understand radar signatures from sea-
sonal snow cover. These campaigns have covered diverse
snow and climatological conditions.

3.2.1 In situ radar experiments and signatures

The ground-based campaigns are summarized in Table 2.
Ground-based campaigns of Can-CSI and CASIX were con-
ducted between 2009 and 2010, and multiple field campaigns
were completed near Churchill, Manitoba, Canada, as part
of the Phase A science activities of CoReH2O. These cam-
paigns aimed to evaluate the potential for dual-frequency X-
and Ku-band snow property retrievals in subarctic environ-
ments. Central to Churchill campaigns was deployment of
the University of Waterloo Scatterometer (UW-Scat), a novel
ground-based radar system analogous to the proposed con-
figuration of CoReH2O (King et al., 2012). In Europe, ESA
initiated the deployment of SnowScat (Werner et al., 2010),
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Figure 9. (a) Scattering from wheat plants is the radius of the circumscribing cylinder (6.5 cm), distance between the centers of two circum-
scribing cylinders is rd = 14 cm, and the closest distance between two circumscribing cylinders is gd = 1 cm. The figure is adapted from Gu
et al. (2021). (b) Transmission of microwave through wheat of different orientation calculated using the hybrid method and the RTE varies
with volume water content (VWC).

a stepped-frequency, fully polarimetric ground-based radar
in a series of campaigns in the boreal forest zone in north-
ern Finland (Lemmetyinen et al., 2016). The campaign was
called NoSREx and operated SnowScat over four winter sea-
sons, complemented by passive microwave radiometry and
regular snow microstructural observations. These campaigns
have been instrumental in enhancing our understanding of
snow–microwave interactions and providing data to develop
and evaluate forward models simulating backscattering from
snow cover (King et al., 2015; Tan et al., 2015; Proksch et
al., 2015a), as well as developing retrieval approaches (Cui
et al., 2016; Lemmetyinen et al., 2018).

In Sect. 3.1.1, we make use of the NoSREx campaign’s
six channels of backscattering data of VV at 10.2, 13.3, and
18.7 GHz and HV at 10.2, 13.3, and 18.7 GHz in comparison
with the simulation results of bicontinuous-DMRT models.
The comparisons have validated both the ground campaign
measurements and the physical models (Tan et al., 2015).

Recent ground campaigns include APRESS, in which the
ESA WBScat instrument, a full-polarization radar operating
at 1–40 GHz, was deployed for a full winter season in 2019–
2020 measuring an Alpine snowpack in Davos, Switzerland.
For the winter of 2020–2021, the instrument was set up in So-
dankylä, Finland, to collect data over a sparsely forested site.
These sensors and deployments have generated and will con-
tinue to generate critical datasets for characterizing the radar
backscattering of snow, the effects of rough surface scatter-
ing, and forests. They will help to advance retrieval develop-
ment when coupled with advancements in field methodology
and forward-modeling capabilities.

3.2.2 Airborne experiments and signatures

Airborne campaigns (listed in Table 3) provided the first ex-
perimental demonstration of the sensitivity of Polarimetric
Ku-Band Scatterometer (PolSCAT) backscattering to SWE
(Yueh et al., 2009). CoReH2O provided further impetus

for the development of new airborne sensors. The ESA
SnowSAR, a dual-polarization, airborne, side-looking SAR
operating at X- and Ku-bands (Coccia et al., 2011; Meta et
al., 2012), was deployed at several sites in northern Finland,
the Austrian Alps, northern Canada, and Alaska between
2011 and 2013. The purpose of the flight campaigns was to
collect data over a range of climatological snow classes and
land cover regimes. All flight campaigns were supported by
extensive measurement of snow properties, including vertical
profiles of snow stratigraphy and microstructure. The cam-
paigns have enabled the further assessment of, for example,
vegetation effects on backscatter (Cohen et al., 2015; Mon-
tomoli et al., 2016) and the effect of spatially variable mi-
crostructure (King et al., 2018) as well as the further elabora-
tion of modeling and retrieval capabilities (Zhu et al., 2018).
Figure 10 demonstrates the effect of changing snow condi-
tions on the observed Ku-band co-polarized backscatter dur-
ing two of the SnowSAR flights in Finland. The differences
between open area and forested area have been addressed and
illustrated in Montomoli et al. (2016) using the models of
classical radiative transfer. Results of full-wave simulations
are currently being studied.

Recent airborne campaigns including SnowEx 2017,
SnowEx 2020, and TVCExp 2019 have deployed a new gen-
eration of airborne systems to address known uncertainties
including penetration in dense vegetation, background inter-
actions, and interferometric SAR (InSAR) applications (Ta-
ble 3). As part of ongoing research at Trail Valley Creek, a
new Ku-band InSAR (13.285 GHz) developed by the Uni-
versity of Massachusetts was deployed during the winter
of 2018–2019. This system was developed to allow rapid
deployment aboard common commercial platforms, lead-
ing to three successful acquisition periods throughout the
winter. Coupled with objective measurements of snow mi-
crostructure and a distributed network of soil permittivity
sensors, these data are now being used to develop InSAR
and backscatter retrieval methods for future missions. The
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Figure 10. Demonstration of observed Ku-band VV-pol backscat-
tering from two consecutive SnowSAR flight campaigns in So-
dankylä, Finland. The difference in backscatter is depicted on
the right, with red implying an increase. Increases in measured
backscattering are correlated with the increase in SWE. The mea-
sured SWE between the flights increased on average by 41 mm
in non-vegetated areas, which show the highest increase (figure
adapted from Lemmetyinen et al., 2014).

Snow Water Equivalent SAR and Radiometer (SWESARR)
is a tri-band synthetic aperture radar (SAR) and a tri-band ra-
diometer. Both the active and passive bands utilize a highly
novel current sheet array (CSA) antenna feed. SWESARR
has three active (9.65, 13.6, 17.25 GHz) and three passive
(10.65, 18.7, 36.5 GHz) bands. Radar data are collected in
dual polarization (VV, VH), while the radiometer makes
single-polarization (H ) observations. During SnowEx 2020,
NASA Goddard’s SWESARR demonstrated for the first time
that X-band, low-Ku-band, and high-Ku-band SAR acquisi-
tion can be made through a single antenna feed. Data col-
lected during this campaign coincided with detailed measure-
ments of vegetation structural properties and under-canopy
snow properties that will be critical to address the effects of
vegetation and forests in SWE retrieval.

Airborne campaigns are planned for 2022–2023 for both
Canada and US SnowEx. These future campaigns will ad-
dress the following questions. (a) What is the maximum for-
est density for retrievable SWE at Ku-band? Recent full-
wave simulations using Maxwell’s equations suggest that
penetration through forests is higher than predicted by past
models of radiative transfer. (b) What is the saturation max-
imum depth for retrievable SWE at X- and Ku-bands? Us-
ing cross-polarizations, can we have higher depth of pene-
tration such as 1 to 3 m? (c) What is the impact of stratigra-
phy and how snow physics models can help to retrieve SWE
in the presence of stratigraphy? (d) How would permafrost
and the changing freeze depth in some areas affect the sur-
face scattering contributions and the ability to subtract sur-
face scattering estimated under snow-free conditions. With
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six measurements in SWESARR, which are co-polarization
and cross-polarization at three frequencies, what are the opti-
mum combinations of polarization and frequencies for SWE
retrieval?

3.3 Linking field measurements of snow with
theoretical models of snow–radar interactions

Quantification of physical snow processes through objective
measurements has revolutionized our understanding of mi-
crowave interactions with complex snowpacks at multiple
scales (millimeter to kilometer). Objective methods of deter-
mining snow grain size in the field have only been available
over the last decade. Prior to this, grain size was typically
quantified visually with a hand lens or microscope (Fierz
et al., 2009) and could be subject to errors of up to 1 mm
in grain size estimation (Leppänen et al., 2015). Laboratory
processing methods include gas absorption (Legagneaux et
al., 2002) and thin-section imaging techniques (Bader et al.,
1939). As described in Sect. 3.1.1, µ-CT measurements of
snow samples obtained in the field have revolutionized our
ability to model EM interaction from snow. Today, field-
based instruments can quantify the snow specific surface area
(SSA) rapidly in the field through either near-infrared re-
flectance (e.g., Gallet et al., 2009) or penetrometry (Proksch
et al., 2015b). SSA is often related to an effective sphere di-
ameter, that is the diameter of a sphere with the measured
SSA (Mätzler, 2002). In practice, these metrics must often be
scaled to match output from radiative transfer models (Mont-
petit et al., 2012). In addition to advances in sensors, exper-
iment design has advanced significantly in support of radar
remote sensing measurements: Appendix A provides an ex-
ample experiment design that has been used in recent field
campaigns. In practice, the time requirements of faster tra-
ditional measurements with longer history must be weighed
against the newer measurements, which are sometimes more
time-consuming with fewer trained operators. Here, we de-
scribe how this new knowledge of microscale variability over
seasonal timescales can be leveraged to inform algorithms
applied at landscape scales.

3.3.1 Spatial variability in field measurements

At the landscape scale, understanding snow spatial variabil-
ity is of critical importance with respect to the development
of methodologies that can observe and model discrete and
bulk properties of snowpack with low uncertainty. Moun-
tains, hills, and valleys exert aerodynamic roughness controls
on snowfall trajectory, enhancing snow accumulation and
redistribution processes often dominated by blowing snow
and sublimation. Exposed topography (e.g., Alpine areas or
open upland plateaus) is typically scoured of snow, while
enhanced accumulation is found in gullies or on the lee-
side of plateaus (Pomeroy et al., 1993; Liston and Sturm,
1998). Once accumulated, the persistence of snow on the Ta
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landscape is influenced by terrain slope and aspect, which
control a snowpack’s energy budget; the incoming heat en-
ergy to north-facing slopes is radically different to that for
south-facing slopes that can lead to pronounced variations
in SWE at the landscape scale (López-Moreno et al., 2014).
Local slope angles also cause changes in the incidence an-
gle of radar backscattering, which may impact assumptions
underpinning microwave retrieval algorithms because rough
surface scattering has a strong angular dependence.

The distribution of tree canopy, woody biomass, and the
fragmentation characteristics of the vegetation stands play a
significant role in how snow accumulates in a forested land-
scape. Metrics describing plant functional types (e.g., de-
ciduous/coniferous or broadleaf/needleleaf, canopy densi-
ties and heights, etc.) are used to quantify spatial difference
in simulations of sub-canopy snow and microwave radia-
tive transfer. Correcting for forest microwave attenuation has
shown that forest transmissivity plays an important role in
the observability of the sub-canopy snow. However, trans-
missivity changes through the season as the woody biomass
undergoes progressive cooling at temperatures below 0 ◦C
(Li et al., 2020). Moreover, observed transmissivity of a tree
stand is also impacted by the forest gap fraction or forest
fragmentation. Landscape metrics can be used to charac-
terize these ecological factors using high-spatial-resolution
active and passive optical observations (Vander Jagt et al.,
2013). The impact of low-stand shrub vegetation is also im-
portant for snow accumulation in sub-Alpine, tundra, and
sub-tundra regions and in the understory of forested environ-
ments. Shrub-dominated landscapes retain snow more effec-
tively than graminoid plant cover but less than forest-covered
regions (Marsh et al., 2010).

The soil type and state affect microwave observations of
snow at the landscape scale because, at microwave wave-
lengths, the soil relative permittivity can play an important
role in how reflected or backscattered energy is attenuated at
the snow–ground interface. Generally, relative permittivity of
soil is controlled by the texture, moisture content, and ther-
mal heat content of the soil. Seasonal change in soil water
state (liquid or frozen) is also important since relative per-
mittivity changes significantly as the surface soil moisture
changes state. This is all complicated by the variability in
soil type at the landscape scale, and especially the mix of
organic and inorganic content; peat soil landscapes are very
complex in their microwave response, whilst inorganic soils
are somewhat simpler to characterize. In agricultural land-
scapes, especially post-harvest, the surface soil layer tends to
be more spatially uniform and freeze earlier, making the vari-
ations in relative permittivity of the soil relatively constant.

In SWE retrieval, the snow–soil rough surface scattering
and the forest effects on transmission and backscattering give
bias in radar measurements. It is important to evaluate the
magnitudes of these effects and how such bias in radar mea-
surements varies with time.

3.3.2 Seasonal variability

Temporal changes in snowpack properties have important
implications for radar backscatter, in particular (1) snow
mass change, (2) metamorphism of snow microstructure,
and (3) liquid water content and refreeze (ice lenses). High-
temporal-resolution (hourly) measurement of snow mass ac-
cumulation and ablation using snow pillows, e.g., SNOTEL
(Yan et al., 2018), or passive gamma radiation SWE sen-
sors (Smith et al., 2017) provides excellent evaluation data
to test SWE retrieval algorithms. However, such point mea-
surements of SWE are spatially limited, and seasonal vari-
ability in SWE is more commonly estimated through depth
measurements, at a point using an acoustic sounder or spa-
tially distributed from lidar, and periodically measured or
modeled snow density. Uncertainties in modeled snow den-
sities commonly dominate uncertainties in measured depth
(Raleigh and Small, 2017).

Seasonal change in snow microstructural properties can
strongly influence scattering of radar backscatter, especially
in snowpacks of which depth hoar is a significant component.
Constraining the proportions of snowpacks that have differ-
ent scattering properties (e.g., surface hoar, wind slab, con-
solidated layers, indurated hoar, or depth hoar) is required
to prevent the retrieval of SWE from backscatter becoming
an ill-posed problem. Frequent (weekly) objective profiles in
snow pits (Sect. 5.3) are optimal; however, in lieu of in situ
pit measurements, thermistors situated at different heights
above the ground that become sequentially buried in accu-
mulating snow allow calculation of temperature gradients
within the snowpack. Consistent temperature gradients can
be used as a proxy for likely snow crystal type (Domine et al.,
2008): rounded (<10 ◦C m−1), facets (10–20 ◦C m−1), depth
hoar (>20 ◦C m−1). Where internal snowpack temperatures
are not available, 2 m air temperatures and near-surface soil
temperatures can provide bulk estimates of snow temperature
gradients.

Profiles of liquid water content (LWC) are measured in situ
through insertion of dialectic devices (Denoth, 1994; Sihvola
and Tiuri, 1986) into a snow pit wall. LWC can also be re-
trieved through non-invasive techniques using only GPS sig-
nal attenuation (Koch et al., 2019) or electrical self-potential
(Thompson et al., 2016). Where mid-winter melt events are
observed, either directly from LWC measurements or via in-
ference from meteorological inputs, the chances increase in
ice lens formation within the snowpack, which is an impor-
tant consideration for SAR backscatter retrievals. Snow wet-
ness affects the radar backscattering (Stiles and Ulaby, 1980).
The dielectric constants of wet snow have been modeled as a
function of snow wetness (Ulaby and Long, 2015).
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4 Characterization of snowpack properties using radar
measurements

4.1 Describing the retrieval problem

In early studies, empirical models were proposed for SWE
retrieval (Ulaby and Stiles, 1980; Drinkwater et al., 2001).
These are unsuited for all snow types, e.g., ephemeral,
prairie, maritime, and mountain snow. (Sturm et al., 1995).
Later investigators applied multiple channel measurements
to determine snow parameters (Shi and Dozier, 2000; Rott
et al., 2010). Recent algorithms (Cui et al., 2016; Xiong and
Shi, 2017; Lemmetyinen et al., 2018; Zhu et al., 2018; King
et al., 2019) are based on physical models in which RTMs
are used. Physical-model-based retrieval algorithms consist
of three parts: (1) a physical model of snow volume scat-
tering, (2) estimation of a priori parameters, and (3) a cost
function inversion of the physical model to obtain SWE. An
important limitation historically has been that there are fairly
few in situ and airborne datasets on which to evaluate re-
trieval algorithms. This limitation is rapidly being overcome
by recent observations, as described in Sect. 3.2. In this sec-
tion, we describe the estimation of a priori parameters and
SWE retrieval procedures.

Volume scattering of snowpack is a function of parameters
including SWE, density, snow microstructure, and stratigra-
phy. Paramount for the success of the retrieval is the ability
to predefine or constrain some of these unknown parameters,
in particular the parameters that are used to characterize the
snow microstructure. Based on the RTM, volume scattering
is a function of snow depth, density, snow microstructure,
and layering structure (Rott et al., 2010; Zhu et al., 2018;
King et al., 2018). A challenge is the non-uniqueness in in-
version as different combinations of SWE and parameters of
snow microstructure can give similar backscattering (Tsang
et al., 2004; King et al., 2018). A priori estimates of param-
eters of snow microstructure can be used to improve the ac-
curacy of retrieval by constraining the cost function with es-
timated statistical uncertainties.

Assuming normal distributions for the errors in forward
simulations and observations of backscatter, the cost func-
tion of a maximum likelihood estimate for SWE and snow
microstructure can be formulated as follows:

F =

{∑N

i=1

wi

2s2
i

(
σ obs
i − σ

model
i (SWE, x)

)2

+
wX

2s2
X
(x− x)2

}
, (3)

where σ obs
i is radar observations from the ith channel, and

N is the total number of channels for measurements. In
CoReH2O, N = 4 for VV and VH polarizations of X- and
Ku-band. The backscattering predictions of snowpack are
given by σmodel

i . In the above, s2
i is the error standard devia-

tions of the radar measurements. The parameter x is related

to snow microstructure, such as single-scattering albedo, cor-
relation length, and grain size; s2

X is the variance of a priori
constraint. In Cui et al. (2016) and Zhu et al. (2018), si is
assumed to be 0.5, which is based on the error standard devi-
ations of radar measurements; wi and wX are the weighting
factors in the retrieval. Dual-frequency retrievals are using ei-
ther X- (9.6 GHz) and Ku-band of 17.2 GHz as in CoReH2O
or dual Ku-band of 13.6 and 17.2 GHz as currently being pro-
posed (see Sect. 6). However, cross-polarizations have not
been fully utilized, and algorithms have been using the two
co-polarizations of the dual-frequency measurements. The
two-frequency measurements exploit the frequency depen-
dence of volume scattering in snow. The two parameters that
strongly influence the backscattering measurements are SWE
and snow grain size. Then the problem becomes retrieval of
two parameters from two measurements.

The proposed algorithm in Eq. (3) has built off the
CoReH2O (Rott et al., 2010) approach. Such physically
based retrieval approaches are quite general with (i) match-
ing the data to the physical models and (ii) a priori constraints
on parameters. The actual implementation can have wide va-
rieties of options, and the importance is the validation against
datasets of tower and airborne measurements. Since the 2012
CoREH2O ESA report, there have been significant airborne
and ground campaigns, as shown in Tables 2 and 3, providing
much more data than were available prior to CoReH2O. In
Sect. 4.3, we describe three algorithms that have been used
successfully (Lemmetyinen et al., 2018; King et al., 2019;
Zhu et al., 2018, 2021a). In particular, we describe in more
detail the algorithm in Zhu et al. (2018, 2021a) and describe
the validations with a series of tower and airborne measure-
ments. In the CoREH2O cost function, there are several pa-
rameters that require a priori estimates. The algorithm in Zhu
et al. (2018, 2021a) is more closely related to the NASA
SMAP radar algorithm; by using regression to electromag-
netic model simulations over a wide range of parameters, the
number of parameters is significantly reduced. The strategy
of this approach is to reduce the burden of a priori estimates
of parameters for every scene. Nevertheless, it is important
to stress that algorithms are still maturing.

4.2 Constraining the retrieval problem with prior
information

Some of the challenges in retrieving snow properties from
radar measurements can be addressed by using so-called
“prior information”. Prior information introduced in a re-
trieval problem can be thought of in a Bayesian sense, as
discussed by Pulliainen (2006), or as “regularization”. The
cost function (Eq. 3) applies prior information as described in
Sect. 4.1, where x represented a snow-microstructure-related
metric for which prior information is applied based on the fi-
nal term on the right of Eq. (3). More generally, priors could
be applied to multiple terms in the retrieval problem includ-
ing SWE, as done in the proposed CoReH2O algorithm (ESA
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et al., 2012), or in a multilayer sense, as illustrated for passive
microwave remote sensing by Pan et al. (2017).

The degree to which prior information is applied to a prob-
lem can be thought of as a spectrum: the most minimal use
of prior information is to remove the prior from the objective
function but to specify a range of possible values for each
prior, as done by Thompson and Kelly (2021a). Specifica-
tion of a prior on either grain size or single-scattering albedo
can be considered moderate use of a priori information. The
CoReH2O mission proposal specified an algorithm with prior
on effective grain radius and SWE (ESA et al., 2012), build-
ing on the approach of the GlobSnow data product (Luojus et
al., 2021). Cui et al. (2016) similarly specified priors for both
optical thickness (an analog for SWE) and single-scattering
albedo (an analog for microstructure). Zhu et al. (2018) built
on the approach of Cui et al. (2016) by requiring only a sin-
gle prior on single-scattering albedo. The algorithm of Zhu
et al. (2018) requires only a “classification” of high or low
single-scattering albedo. Maximal use of a priori information
would be to use a dynamic simulation of snow microstruc-
ture processes to inform the retrieval. The model could be
run “offline” and provide information on microstructure, or
radar observations could be assimilated directly as done by
Bateni et al. (2013, 2015).

Several studies have attempted to characterize the required
precision of the priors on microstructure. ESA et al. (2012)
found that an effective grain radius would need to be known
with 15 % of the true value. Rutter et al. (2019) similarly
showed that microstructure would need to be known to
within 10 %–15 % in order to accurately retrieve SWE for
field data in a tundra snow environment. These requirements
are daunting. However, other approaches have indicated that
microstructure information may not be required to be so pre-
cise. Thompson and Kelly (2021a) showed a successful in-
version of SWE from in situ radar measurements in a prairie
snow environment using a cost function specified with only
minimal prior information (as defined in the previous para-
graph). The algorithm of Zhu et al. (2018) requires only the
specification of whether the single-scattering albedo is high
or low (i.e., because the specification of a priori information
is changed from a continuous to a categorical problem, the
burden of a high-precision prior is much alleviated). Bateni
et al. (2013, 2015) demonstrated that maximal use of prior in-
formation in the context of an assimilation scheme could pro-
vide prior information from weather data and snow physics
to successfully estimate SWE. Thus, even though the radia-
tive transfer equations are highly sensitive to microstructure,
and sensitivity analysis would indicate that priors must be
specified to high precision, successful SWE inversions have
been demonstrated without high-precision priors. In the fol-
lowing subsections we review two ways of specifying prior
information.

4.2.1 Leveraging snowpack information and snow
classes

The simplest approach to specifying microstructure prior in-
formation for global SWE retrievals is to recognize the differ-
ences in snow types globally. The classifications of Sturm et
al. (1995) and Sturm and Liston (2021) specify differences
in snow texture based upon temperature, precipitation, and
wind speed. Wind speed is mediated in many environments
primarily by forest canopy height, and thus these three in-
dicators can be specified by available land cover and me-
teorological information, globally. Clearly defined physical
processes such as vapor flux driven by temperature gradi-
ent link these three meteorological quantities to observable
snow properties, such as the number of layers, vapor trans-
port through the snowpack, and microstructure properties
such as grain size. Sturm and Liston (2021) specify six snow
classes: tundra, boreal forest, prairie, montane forest, mar-
itime, and ephemeral globally at approximately 300 m spa-
tial resolution. The relevance to microstructure properties is
clear: tundra snow (e.g.) has far larger snow crystal size in its
depth hoar layers than taiga snow. In order for retrieval algo-
rithms to leverage the predicted snow class to define a priori
estimates to guide SWE retrievals, objective microstructure
information would need to be specified for each snow class.
The updated snow class of Sturm and Liston (2021) and the
maturity of the methods to objectively measure microstruc-
ture described in Sect. 3.3 have now made this a possibil-
ity that will guide SWE retrieval efforts from radar measure-
ments in the future.

4.2.2 Snow microstructural models

Background

Across the electromagnetic spectrum, the interaction of ra-
diation with snow cover is mediated by snow microstructure
(West et al., 1993; Wiscombe and Warren, 1980; Nolin and
Dozier, 2000). However, due to differing penetration depths,
visible and near-infrared measurements are sensitive to grain
size at the surface, whereas microwave measurements are
sensitive to grain size at depth (Hall et al., 1986). The sen-
sitivity of radar measurements to microstructure properties
has been demonstrated by both models (Xu et al., 2012;
Proksch et al., 2015a) and experiments (King et al., 2015;
Rutter et al., 2019). Algorithms to retrieve SWE from radar
backscatter typically solve for both SWE and some measure
of snow microstructure (e.g., single-scattering albedo, cor-
relation length), and regularization terms or prior informa-
tion on microstructure is often included in the retrieval cost
function (as described in the previous section; see Rott et al.,
2010). In addition to important advances in measuring snow
microstructure in the field, as described in previous sections,
new work to simulate the evolution of snow grain size has
indicated great potential for improving radar retrieval algo-
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rithms of SWE. In the cost function of the retrieval algorithm,
the a priori estimate term is wX

2s2
X
(x− x)2, with grain size be-

ing the most important a priori parameter.
To prevent confusion, it is important to begin with clear

definitions for snow microstructure. Snow is a continuous,
granular, bonded medium, composed of irregularly shaped
ice crystals, water vapor, liquid water, and void areas.
The term “microstructure” commonly refers to snow grain
size, shape, bonding, and distribution. Snow microstructure
evolves both vertically within a snowpack and temporally
throughout the snow season (as well as exhibiting significant
horizontal spatial variability). The dendritic forms of new
snowflakes sublimate, leading to a wide range of rounded
or faceted shapes, depending on snowpack conditions. For
many years, snow microstructure was referenced by the term
“grain size”. However, because “grain size” is an imprecise
term, and because several metrics of snow microstructure
play a role in radar backscatter, we simply refer to “snow
microstructure” here to encompass all measures of the snow
medium; see Mätzler (2002) for a formal description of the
various microstructural quantities. The most important and
objective measure of snow microstructure is the snow spe-
cific surface area (SSA), which is often defined as the surface
area of the ice–air interface to the mass of a control volume
of snow. SSA provides an objective measure that explains
much of the microwave scattering processes. However, mi-
crowave interaction with microstructure cannot be entirely
summarized by SSA; instead, radiative transfer is controlled
by the spatial autocorrelation function (SAF) of the ice–air
interface (Löwe and Picard, 2015). In the random medium
model, the microstructure is described by a correlation func-
tion (Mätzler, 2002). In the bicontinuous-medium model and
the spherical-scatterer models with stickiness, spatial corre-
lation functions (SAF) have also been derived and have been
related to the grain size and the aggregation parameter or
the stickiness parameter (Chang et al., 2016). Thus, all mi-
crostructure characterizations in electromagnetic models can
be related through the SAF. The SSA is a measure of the SAF
at only the shortest spatial lags (e.g., ∼ 10 µm); radar waves
also respond to SAF at longer lags (hundreds of microsec-
onds). The SAF can be estimated using laboratory methods,
such as µ-CT. Grain shape can play an important role in scat-
tering, especially for the cross-polarization radar terms (Yueh
et al., 2009). In summary, SSA has emerged as a practical and
important microstructural property that both explains much
variability in microwave scattering and can be measured in
the field.

Microstructure evolution schemes: how they work

SSA evolves based on well-understood physical properties,
providing a source of information to better inform SWE re-
trieval from Ku-band radar. Accurately modeling snow mi-
crostructure is not trivial, but decades of pioneering work
by Colbeck (1982), Sturm (1989), Brun (1989), Brun et

al. (1992), and Jordan (1991), among others, led to the de-
velopment of snow metamorphism laws rooted in mass and
energy conservation. The gravitational settling and meta-
morphism laws govern the temporal evolution of snow mi-
crostructure and its mechanical (e.g., snow stratification and
shear stresses) and thermal (e.g., albedo and emissivity)
properties. The metamorphism laws describe three types of
grain growth mechanisms including kinetic growth, equi-
librium growth, and melt metamorphism (Lehning et al.,
2002; Huang et al., 2012); kinetic and equilibrium growth
are sometimes called constructive and destructive metamor-
phism, respectively.

Destructive metamorphism describes movement of water
vapor from small grains with high curvature to larger grains
with lower curvature. As a result, small grains and dendritic
branches of large snow crystals evaporate and form larger
and more spherical crystals. Constructive metamorphism is
primarily driven by temperature gradients within the snow-
pack, resulting in direct vapor transport from warmer to
colder surfaces. Sturm and Benson (1997) documented these
processes in the Arctic. The snowpack temperature gradi-
ent, in turn, is simply the difference in temperature between
the ground and the air, divided by the snowpack depth; typ-
ically snow covers insulate the ground, leading to soil being
warmer than the ground. When snow is wet, the growth rate
accelerates, compared with dry-snow conditions. These fun-
damental physical processes have been explored for decades,
and solutions to the governing equations exist in a range of
physical models.

Microstructure simulation accuracy

Snow microstructure model accuracy has improved signif-
icantly in recent decades, driven by improvements of field
measurements and model techniques. Morin et al. (2013)
used objective field-based measurements of snow specific
surface area using the DUFISS instrument to evaluate the
many-layer CROCUS snow model. Figure 11 clearly shows
that the model captured the seasonal evolution of SSA. The
r2 fit values between observations and simulations ranged
from 0.6 to 0.74.

Use of microstructure simulations to constrain SWE re-
trievals requires the additional step of coupling the mi-
crostructure simulation scheme and the RTM. Such studies
have been explored more extensively in the context of pas-
sive microwave remote sensing (Kontu et al., 2017; Langlois
et al., 2012; Larue et al., 2018). Exploring the accuracy of a
coupled radar backscatter and snow physics model is an area
for future work.

Implications for microwave remote sensing retrieval

Given the advances in microstructure modeling skill, re-
trieval of SWE from radar backscatter stands to benefit from
incorporation of prior information on snow microstructure
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Figure 11. Observed and interpolated SSA observations (a) and SSA simulations (b). From Morin et al. (2013). The small white marks are
the observations.

provided by snow physics models. Prior information could
be provided in at least two ways. First, the radar backscat-
ter could be assimilated directly into a coupled snow physics
and radiative transfer model. This approach has been shown
to be effective in assimilating passive microwave radiance.
Assimilating backscatter has been demonstrated by Bateni
et al. (2013, 2015) in the context of assimilating in situ
backscatter observations. The second way that models could
provide information to constrain SWE retrievals would be
simply as a regularization term. In other words, the simula-
tion model can produce a single estimate of a microstructure
parameter such as SSA, and the cost function could incor-
porate this as a priori information in Bayesian retrieval (as
shown in Eq. 3 above).

Challenges and future work

In actual implementation of retrieval algorithms for global
monitoring, there are needs of auxiliary information and a
priori parameters. There are also needs on how to combine
all these a priori information effectively in a retrieval algo-
rithm. Computational efficiency needs to be achieved so that
the retrieval algorithm can be operated in real time. Nonethe-
less with advances in computational resources and examples
of complex ground-processing segments from recent satel-
lite missions, it can be envisioned that the latest advances in
snow physics modeling and knowledge of microstructure can
be applied to a future global satellite mission.

There are challenges associated with coupling snow phys-
ical models and RTMs. First, SWE simulations from snow
physical models are often inaccurate due to biases in the
precipitation forcing. This happens mostly when informa-
tion from weather stations is not available, and snow mod-
els must rely on atmospheric reanalysis data that are subject

to biases, especially in the precipitation amounts (Lindsay et
al., 2014; Wrzesien et al., 2019b). Recent modeling work in
Grand Mesa, CO, shows however that biases in the simula-
tions and analysis of higher-resolution (∼ 1 km) numerical
weather prediction models are significantly reduced, leading
to modeled SWE within±10 % of the observations (Cao and
Barros, 2020). Changes in SWE have an immediate effect on
several other snow properties, particularly snow microstruc-
ture, a critical parameter in radiative transfer models. Sec-
ond, in snow physical models, SWE is inversely related to
the grain size. When SWE decreases, temperature gradients
increase, and grain growth is accelerated. In radiative transfer
models, radar backscattering increases with SWE and with
grain size. Backscattering is directly proportional to SWE
and grain size. In SWE retrieval, SWE and grain size are in-
dependent parameters. When SWE increases and if the grain
size stays constant, radar backscattering increases. However,
in snow physical models, when SWE decreases, grain size
increases, and radar backscattering can increase or decrease
due to the combined effects of SWE and grain size. This am-
biguity emerges due to the nature of SWE, microstructure,
and backscatter relations. An ongoing study has found that
even for small changes in simulated SWE (±10 %), snow mi-
crostructure is affected enough to mislead the retrieval algo-
rithm and deteriorate the SWE retrievals even further (Merk-
ouriadi et al., 2021). These challenges can be addressed by
introducing appropriate physical constraints to the retrieval
algorithms.

There are multiple areas where simulations must continue
to improve, including demonstrating skill in the context of
varying degrees of forest cover. Additionally, most simula-
tions focus on estimation of SSA. While SSA has been shown
to be an adequate summary of radiative transfer properties
most of the time for visible and near-infrared remote sensing
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of clean snow, this is not the case in the microwave spec-
trum. To couple SSA to input to the RTMs, SSA must be
related to SAF correlation length. Another subject of study
is to use µ-CT to extract more information. There are poten-
tially useful synergies to be explored with retrieval of surface
microstructure from visible and near-infrared measurements,
in the context of radar retrievals of SWE. The retrieval algo-
rithm shown earlier requires a classification rather than a pre-
cise value of grain size. Thus, the study of the error tolerance
for estimations of SSA should also be pursued. Retrievals
using a two-layer physics model are the next step (King et
al., 2018). Significant effort will be needed to address the
question of how many layers are necessary to capture small
changes in snowpack backscatter behavior and SWE and how
to solve the inverse problem in multilayered snowpacks, the
number and vertical structure of which change in time.

4.3 Solving the retrieval problem: algorithms

Since the 2012 CoREH2O ESA report, there have been sig-
nificant airborne and ground campaigns, as shown in Ta-
bles 2 and 3, providing much more data than were available
prior to CoReH2O. There are presently four physical-model-
based retrieval algorithms that have been applied success-
fully (Lemmetyinen et al., 2018; Zhu et al., 2018; King et al.,
2019). All four algorithms utilize the frequency dependence
of snow volume scattering for X-band and the two Ku-bands.
The importance is the validation of the algorithms against the
tower measurements listed in Table 2 and the airborne mea-
surements listed in Table 3.

Lemmetyinen et al. (2018) used a SWE retrieval scheme
using both radar and radiometry measurements. The retrieval
is based on the model of the expanded Microwave Emis-
sion Model for Layered Snowpack (MEMLS3&a) for sim-
ulation of both radar and radiometry observations (Proksch
et al., 2015a). In the algorithm, the snow microstructure is
represented by the effective correlation length, which is first
retrieved with radiometry and in situ snow depth measure-
ments. Then, retrieved correlation lengths are applied to con-
strain the SWE retrieval with radar observations. The algo-
rithm has been validated with the Finnish NoSREx tower
dataset listed in Table 2.

King et al. (2019) used a SWE retrieval algorithm which is
a coupling of a snow physics model, snow hydrology model,
and the physical model of predictions by SMRT (Picard et
al., 2018) based on two-layer snow modeling for dual Ku-
band radar observations. The two-layer model accounts for
the small grain size of new fallen snow versus the larger grain
size beneath the new fallen snow. The correlation length is
based on a priori information from the snow physics model.
The ancillary configuration parameters and a priori parame-
ters of snowpack for the retrieval are provided by the snow
hydrology model and the snow physics model. Ensembles
are created, and the minimization of the cost function is ex-
ercised using Eq. (3) with the uncertainties defined for the

a priori parameters. The algorithm was applied to SWE re-
trieval from data taken in the tundra environment from 2012–
2013 of SnowSAR over TVC listed in Table 3. It is presently
being applied to the UMass Ku-InSAR data taken over TVC
in 2018–2019 as listed in Table 3.

Recently, Thompson and Kelly (2021a) applied a new
algorithm using no prior information in the cost function,
in which an iterative search algorithm was run using the
MEMLS3&a model (Proksch et al., 2015a). They applied the
algorithm in both a one- and two-layer model on Canadian
prairie snowpacks near agricultural fields. They were suc-
cessfully able to retrieve SWE from in situ radar measure-
ments.

4.4 Steps of retrieval algorithm and results

We next describe the fourth algorithm in Zhu et al. (2018)
and (2021a) in more detail. The algorithm is applied and val-
idated with seven datasets in Tables 2 and 3. The results are
summarized at the end of this section. It is presently being
applied to two more airborne datasets (Table 3): SnowSAR
2017 over Grand Mesa and UMass Ku-InSAR of TVCExp
in 2018–2019. The algorithm has similarities to the SMAP
radar retrieval algorithm, which has been applied to 6 months
of SMAP radar globally from January 2015 to July 2015. An
essence of the SMAP radar algorithm (Kim et al., 2017) is to
use regressions and classifications to reduce the backscatter-
ing σ0 to be dependent on only three parameters: soil mois-
ture, rms height of roughness, and volumetric water content
(VWC)

The SWE retrieval algorithm has three distinct features:
(1) surface scattering is subtracted from radar observations;
(2) the bicontinuous-DMRT model is used to derive regres-
sions to simplify the dependence on parameters with the re-
sult that the co-polarizations at X-band and Ku-band depend
on only two parameters, SWE and scattering albedo; and (3)
snowpack is classified into two classes (low albedo and high
albedo) to mitigate the non-unique inversion problem. The
detailed flow diagrams are in Zhu et al. (2018). In Fig. 12,
we give a simplified flow diagram

4.4.1 Steps of retrieval algorithms

– Step 1: subtraction of rough surface scattering. The
rough surface contributions are subtracted from the
radar measurements. The subtraction procedure is as de-
scribed in Sect. 3.1.2 with several options. We show the
case the SnowSAR data collected from the 2013 Cana-
dian TVCExp campaign (King et al., 2018; Zhu et al.,
2018) in Fig. 13. SnowSAR flights were performed on
8 and 9 April 2013, crossing each of the TVC sites. The
SnowSAR-collected data are shown with purple dots.
The bicontinuous-DMRT simulation LUTs are shown
with blue dots. The SAR data show a bias when com-
pared with X- and Ku-band DMRT simulations. The
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Figure 12. Simplified flow diagram of the algorithm. Two measurements to retrieve two parameters with a prior binary choice of albedo. No
prior estimate of SWE.

bias is attributed to the contributions from surface scat-
tering. Since there are no measurements on the underly-
ing soil in the 2013 Canadian TVCExp campaign, rough
surface scattering is determined by differences between
radar observations and snow volume scattering calcu-
lated based on snow pit measurements. The rough sur-
face bias in the Ku-band data is 1 to 2 dB, while, in
the X-band data, the bias is about 4 to 6 dB, which in-
dicates that the surface scattering has more influence
at X-band. After subtraction of surface scattering from
the SnowSAR data, the resulting SnowSAR data, shown
with red dots, are assumed to contain only the volume
scattering component. The red dots’ volume scattering
components of the SnowSAR data fall into the range
covered by the bicontinuous-DMRT simulations. The
dynamic range of SAR data is also larger with this sub-
traction.

– Step 2: regression training to reduce number of param-
eters. Regression training is applied to reduce the num-
ber of unknowns (Cui et al., 2016; Zhu et al., 2018,
2021a). Look-up tables (LUTs) are generated based on
bicontinuous-DMRT simulations of multiple scattering
of snow volume scattering for various snow properties
of snow depth, density, and snow microstructure as rep-
resented by the kc and b parameters in the bicontinu-
ous model. The output-dependent variables for the LUT
are backscatter at X and Ku (σX and σKu), the effective
single-scattering albedo at X and Ku (ωX and ωKu), and
optical thickness at X and Ku (τX and τKu). Regression
training is performed for (i)ωX versus ωKu and (ii) τX

versus τKu to utilize the frequency dependence of scat-
tering between the X- and Ku-bands.

In Zhu et al. (2018), there are two trained rela-
tions that are derived from regressions. The first
regression-trained relation is to train the multiple-
scattering solutions into effective first-order solutions,
σ = A+B log(σ 1st), where σ is multiple volume
scattering of snow, and σ 1st is the first-order scattering.
The coefficients A and B are given in Zhu et al. (2018)
for X- and Ku-bands. In the second regression-trained
relation, the relations between albedo at X- and
Ku-band and between optical thickness at X- and
Ku-band are trained to give ωKu(ωX) and τKu(τX).
After these two sets of training, we then use σ 1st

=

0.75cosθtω(1− exp(−2τ/cosθt )) (Cui et al., 2016;
Zhu et al., 2018) and the regression relations, σX =

AX+BX log(0.75cosθtωX(1− exp(−2τX/cosθt )))
and σKu = AKu+BKu log(0.75cosθtωKu(ωX)(1−
exp(−2τKu(τX)/cosθt ))). The results and advantages
of this regression training are that the multiple volume
scattering at X- and Ku-bands, σX and σKu, now only
depends on two parameters, ωX and τX. The approach is
labeled a “parameterized bicontinuous-DMRT model”
(Cui et al., 2016; Zhu et al., 2018, 2021a).

– Step 3: classification of data. Following the strategy
of SMAP radar retrieval, classification is performed.
We use the dataset from the Canadian SnowSAR 2013
campaign as an example. The a priori information is
obtained from co-located ground measurements. The
backscattering σ is classified into two groups: snowpack
with high albedo and snowpack with low albedo. The
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threshold ωX = 0.49 is the average of all a priori albe-
dos. Figure 14 shows that the sensitivities of backscat-
ter to SWE are enhanced by classification of snowpack
based on a priori scattering albedo. The classification
scheme accounts for the heterogeneity of snow cover of
varying grain sizes and SSAs from location to location.

– Step 4: a priori estimates, binary choices, and cost func-
tion minimization. A priori estimates of parameters are
applied to determine the mean, the weight, and the un-
certainty wp

2s2
p
(ωX−ωX)

2 of the cost function. A pri-

ori information can be obtained from co-located field
stations or historical ground measurement data (Rott
et al., 2010; Cui et al., 2016; Zhu et al., 2018). In
parametrizing microstructure, the snow grain size, cor-
relation length (Proksch et al., 2015a), or scattering
albedo (Cui et al., 2016; Zhu et al., 2018) is used.

In the implementation of Zhu et al. (2018) and (2021a)
algorithm, the co-polarization of X-band (9.6 GHz) and
Ku-band (17.2 GHz) are utilized in the cost function be-
low.

F =MIN

{
wX

2s2
X

(
σ obs

X,VV− σ
obs,bg
X,VV − σ

model
X,VV (τX,ωX)

)2

+
wKu

2s2
Ku

(
σ obs

Ku,VV− σ
obs,bg
Ku,VV− σ

model
Ku,VV (τX,ωX)

)2

+
wp

2s2
p
(ωX−ωX)

2

}
, (4)

where the two unknown parameters to be retrieved are
the scattering albedo at X-band (ωX) and the optical
thickness at X-band (τX). The input parameters σ obs

X,VV
and σ obs

Ku,VV are radar observations at X- and Ku-band,

σ
obs,bg
X,VV and σ obs,bg

Ku,VV are background scattering, and ωX
is a priori scattering albedo. In the Zhu et al. (2018) and
(2021a) algorithm, ωX is based on a binary choice. In
this minimization problem of the current implementa-
tion, there is no a priori estimate of SWE. The only a
priori estimate is of the ωX, and the choice is binary,
either 0.65 or 0.35. If better estimation of ωX can be ob-
tained by ground measurements, snow physical model
(Xiong and Shi, 2017), or passive observations (Zhu et
al., 2021a), the retrieval performance can be improved.
In Eq. (4) wX, wKu, wp, and sp are user-defined param-
eters, while sXsKu = 0.5 dB is an instrument parameter.

The cost function of Eq. (4) with least squares is ap-
plied to the SAR data at X- and Ku-bands in 6. In this
example, sX is set to 0.1, and the weight factors are
set to be unity We apply the two channel observations
to retrieve the two parameters, ωX and τX. Then using
retrieved ωX and τX the SWE is obtained by the rela-
tion SWE= a (1−ωX)τX, where a = 9745 (Cui et al.,
2016; Zhu et al., 2018, 2021a).

Figure 13. Canadian SnowSAR measurements compared with the
bicontinuous-DMRT LUT. Figure from Zhu et al. (2018).

4.4.2 Results of retrieval

Figure 15a shows the performance of the retrieval algorithm.
The retrieval results have RMSE of ∼ 27 mm of SWE, a cor-
relation of 0.7, and a bias of 6.3 mm. The results show that
the retrieval algorithm is particularly successful for SWE val-
ues below 150 mm. The performance satisfies requirements
from the CoREH2O that the RMSE is less than 30 mm for
SWE below 300 mm, and the RMSE is less than 10 % of
SWE for SWE above 300 mm. In Fig. 15b, the retrieved scat-
tering albedo ωX is also shown.

In the equation of cost function, the weight wX is the mea-
sure attached to the a priori parameter. In the example of
Fig. 15, wX is set to be 1. In Zhu et al. (2018), we have
studied the retrieval performance variation by reducing wX.
The performance is still acceptable down to wX = 0.14 with
RMSE equal to 40 mm. Next, we study the performance with
variations in surface scattering subtractions by adding noise
to the best guess of surface scattering in Zhu et al. (2018). At
the best guess with 0 % noise, the RMSE of SWE is 27 mm.
The RMSE of SWE retrieval increases with noise increase.
However, even with 50 % additional noise (absolute error of
3 dB in surface scattering), the performance has RMSE of
45 mm.

In Fig. 16, we show three-dimensional plots of the σ0
at Ku-band against the two variables of retrieved scattering
albedo and retrieved SWE, along with a three-dimensional
fitted plane for two domains: single-scattering albedo>0.49
and<0.49, respectively. The orientation of the two planes in-
dicates that there is a larger dependence on single-scattering
albedo for the data with single-scattering albedo>0.49.
Thus, the data support the notion that σ0 is a function of
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Figure 14. Volume scattering of the Canada SnowSAR data as a function of SWE based on the retrieved scattering albedo ωX at (a) X-band
and (b) Ku-band. Radar observations are from a single flight. A priori estimates are used to classify ωX into two classes. They are plotted by
different-colored markers. The dashed black curve is the regression line of all Canada SnowSAR data. The solid blue and red curves are the
regression lines for backscatter with ωX larger and smaller than 0.49, respectively. Figure from Zhu et al. (2018).

Figure 15. (a) SWE retrieval performance and (b) scattering albedo retrieval using Canadian SnowSAR 2013 X- and Ku-band radar data.
The figures are from Zhu et al. (2018) and Zhu (2021).

both SWE and single-scattering albedo. On the other hand,
Fig. 17 shows the two-dimensional plot of σ0 against the sin-
gle variable of retrieved SWE and the two-dimensional fitted
line for all of the data. This further illustrates the point shown
in Fig. 14: a scatterplot of SWE vs. σ0 alone is not expected
to capture the full relationship between the two variables.

The results show the importance of plotting σ0 versus two
independent variables of SWE and scattering albedo.

The Zhu et al. (2018) and (2021a) have been applied to a
total of seven datasets of airborne and tower measurements,
as listed in Tables 2 and 3. The performance of the retrieval
algorithms for the seven datasets are summarized in Table 4.
The RMSE is generally good.

4.4.3 Future work

In the Zhu et al. (2018) algorithm illustrated above, a single
layer is used. A multilayer snow model should also be con-
sidered. Studies have already been conducted using a two-
layer model (King et al., 2018, 2019; Rutter et al., 2019) to
account for small grain size in the upper layer and a larger
grain size for the bottom layer (depth hoar). Accuracy re-
quirements of a priori estimates to achieve desired retrieval

skill have not yet been quantified. Future work should in-
clude systematic usage of cross-polarizations in the retrieval
algorithms. The inclusion of cross-polarizations is important
for deep-snow layers as the co-polarization K-band backscat-
ter saturates for SWE larger than 300 mm. The Ku-band
cross-polarization saturation can be shown using bicontin-
uous DMRT. The data for deep-snow cross-polarization at
Ku-band is quite limited.

5 Improving SWE retrieval estimations via synergy
with other datasets

In satellite remote sensing, with the vast amount of satel-
lite data, there can be data fusion of synergistic use of other
datasets to refine the retrieval algorithms and improve the
SWE estimations. Combined active and passive microwave
remote sensing using data of the same frequencies has been
an active area of research. Recent work shows the use of
C-band Sentinel-1 data to retrieve SWE for deep-snow lay-
ers. Interferometry and tomography are also studied for fu-
ture launches of complementary missions. P-band GNSS-
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Figure 16. Three-dimensional plot of the σ0 when plotted against two variables at Ku-band (black circles) along with a linear least-squares
fits of σ0 to two variables, SWE and single-scattering albedo (surfaces). The surface color indicates σ0 value in decibels.

Table 4. Summary of validations of the dual-frequency algorithm at 9.6 and 17.2 GHz (Zhu et al., 2018, 2021a) against seven datasets of
airborne and tower measurements. Details of the seven datasets are listed in Tables 2 and 3.

Dataset Data type RMSE Bias SWE range Mean SWE Location Data points
(mm) (mm) (mm) (mm)

Canada SnowSAR 2013
Airborne

26.98 −6.28 50–250 127.14 Trail Valley Creek, Canada 103
Finland SnowSAR 2011 17.47 −6.12 90–150 123.6 Sodankylä, Finland 5
Finland SnowSAR 2012 24.23 −7.09 50–160 112.64 Sodankylä, Finland 28

NoSREx 2009–2010

Tower

26.30 14.50 60–200 121.69 Sodankylä, Finland 666
NoSREx 2010–2011 17.05 −0.70 40–140 72.34 Sodankylä, Finland 721
NoSREx 2012–2013 31.71 1.54 50–200 129 Sodankylä, Finland 686
SnowEx UWScat 2017 52.30 −38.01 440–700 568.77 Grand Mesa, USA 4

R (global navigation satellite system reflectometry) has also
been proposed for satellite retrieval of SWE.

5.1 Passive microwave

The GCOM (Global Change Observation Mission) was
launched in 2012 and carries the AMSR2 (Advanced Mi-
crowave Scanning Radiometer 2) instrument, measuring mi-
crowave brightness temperatures at six frequencies. The
channels at 18.7 and 36.5 GHz with both V and H polariza-
tions have been used to retrieve global SWE. The spatial res-
olutions are coarse and are respectively at 22 km by 14 km for
18.7 GHz and 12 km by 7 km for 36.5 GHz. With overlapping
footprints, interpolation algorithms have been applied (Long
and Brodzik, 2016) to downscale resolution to 3 km. Uncer-
tainty increases when downscaling resolution increases. Be-
cause the passive emissivity is related to the radar bistatic

scattering (Tsang et al., 1982), the brightness temperatures
are related to the radar backscattering cross-sections. Since
SAR observations (<500 m) have much finer spatial resolu-
tions than passive radiometry, a synergy is to use SAR at the
X- and Ku-bands to downscale coarse-resolution passive data
or SWE products (Takala et al., 2011) to finer spatial resolu-
tions using data assimilation or other algorithms.

Several other methods have been explored to combine
the active and passive microwave observations to retrieve
SWE. In Hallikainen et al. (2003), satellite microwave ob-
servations were used to demonstrate its feasibility to re-
trieve SWE by using passive-only, active–passive, and active-
only algorithms in subarctic snow in Finland. Tedesco and
Miller (2007) evaluated SWE retrieval performances by us-
ing active (Ku-band) and passive (X-band) microwave obser-
vations. Recently, Bateni et al. (2015) conducted SWE re-

https://doi.org/10.5194/tc-16-3531-2022 The Cryosphere, 16, 3531–3573, 2022



3556 L. Tsang et al.: Global monitoring of snow water equivalent

Figure 17. Two-dimensional plot of σ0 against the single variable
of SWE at Ku-band. The line represents a least-squares linear fit
between the two variables.

trieval studies using passive (Ku- and Ka-bands) and active
(L- and Ku-bands) ground-based microwave observations.
The SWE retrieval was obtained within a data assimilation
framework by comparing simulated microwave observations
against the corresponding observations at multiple frequen-
cies.

In the study of Lemmetyinen et al. (2018), the correlation
length of snowpack is derived by matching both active and
passive microwave observations against the simulations of
the MEMLS3&a model (Proksch et al., 2015a) with ancil-
lary data from snow pit measurements and weather stations.
Next, the correlation length is used for the active radar algo-
rithm to retrieve SWE. The derived correlation length from
both active and passive data demonstrates an improvement of
the SWE retrieval performance over the SWE retrieval with
the active-only algorithm. Cao and Barros (2020) used a mul-
tilayer snow hydrology model coupled to MEMLS3&a to in-
vestigate the signature of the variability in snow physics on
the microwave behavior at seasonal scales. They found that
a combined approach using active microwave sensing in the
accumulation season and passive sensing in the melting sea-
son would yield the best sensitivity to capture the temporal
evolution of seasonal SWE by taking optimal advantage of
microwave hysteresis (Ulaby et al., 1981; Kelly and Chang,
2003). The generalization of this approach to available active
and passive microwave measurements with a large resolution
gap poses a significant challenge.

Recently, passive observations have been used to enhance
the performance of the active algorithm (Zhu et al., 2021).
The active-only algorithm was described earlier by using a
cost function between simulated and observed radar observa-
tions as a function of the two parameters of scattering albedo
and optical thickness. In this enhancement, passive observa-
tions at Ku- and Ka-bands at the collocated and coincident

snow scene are used to determine the range of the scattering
albedo. The bicontinuous-DMRT model is applied for both
passive and active model simulations. X- and Ku-band radar
data are then used with the determined scattering albedo to
obtain SWE. This active and passive combined method is ap-
plied to the NoSREx dataset. Comparison statistics show that
the combined active–passive method has improved perfor-
mance over the active-only method. The retrieval does not
require a priori information and ancillary data from ground
measurements.

5.2 C-band SAR

C-band radar can be used to detect wet snow by the strong de-
crease in backscatter (Stiles and Ulaby, 1980). Studies have
shown contrasting results regarding the potential for SWE
and snow depth retrieval, but reviewing the literature on this
topic is outside the scope of this paper. We highlight here
that some recent studies have demonstrated the possibility of
snow depth estimation for deep snow using C-band radar at
cross-pol, thus making C-band possibly synergistic with the
higher-frequency approaches most applicable to shallower
snow depths that are the focus of this paper.

Lievens et al. (2019, 2022) developed an empirical change
detection algorithm that was used to estimate snow depth at
1 km spatial resolution from S1 observations over all North-
ern Hemisphere mountain ranges (Lievens et al., 2019) and,
with algorithm improvements, at sub-kilometer resolution
over the European Alps (Lievens et al., 2022). The algorithm
relies on the ratio of cross- to co-pol backscatter. Here, 300 m
retrievals based on the S1 change detection approach are
shown for Idaho, Montana, and Wyoming, US. Figure 18a
shows a density plot, comparing weekly S1 retrievals for
the periods between August and March from 2017 to 2020
with in situ measurements from 203 available SNOTEL sites.
Figure 18b shows the MAE relative to the snow depth (in
percent), illustrating that for shallow snowpacks (<1 m) the
MAE is on average ∼ 50 % with large variance. From 1 m
depth onwards, the relative average MAE remains constant
at ∼ 30 %. Figure 18c compares time series of snow depth
retrievals and measurements for six selected SNOTEL sites.
The ESA Sentinel-1 mission is the first C-band radar constel-
lation that measures consistently (not regularly tasked) with
the exact same orbit revisited every 6 d. Such a consistent
observation scenario benefits the change detection approach
and could explain why limited success has been found with
other C-band systems that must be tasked. The recent snow
depth retrieval results from C-band SAR over mountainous
regions with deep snow indicate a strong complementarity
with applications at higher frequencies; for example, Ku-
band is much more sensitive to shallow snow, while C-band
performs better in relative terms for deep snow.

Despite the observational evidence of C-band cross-
polarization sensitivity to deep snow, the underlying physical
scattering mechanisms and the associated impacts of snow
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Figure 18. Snow depth retrieval from Sentinel-1, 2017–2020, in Idaho, Montana, and Wyoming. (a) Density plot of weekly 300 m resolution
S1 snow depth retrievals and coincident SNOTEL observations from 203 sites. (b) The corresponding mean and standard deviation of the
absolute error between S1 retrievals and in situ measurements, stratified by the measured snow depth. (c) Time series comparison between
snow depth from S1 and SNOTEL in situ measurements at six locations for three winter seasons. Note that the analysis includes snow-free
conditions but excludes wet-snow conditions as detected with the S1 algorithm (Lievens et al., 2022).

properties are still not fully understood. Snow crystals can
form larger-scale clusters that are more similar in size com-
pared to the C-band wavelength. Snow crystals are highly
anisotropic (irregular in shape) and, in principle, result in a
stronger scattering in cross-polarization. Thus, we would ex-
pect that snow microstructure plays a role in governing C-
band response to SWE. Other contributions to snow scatter-
ing at C-band that can be investigated are larger-scale con-
trasts in snow density (including between snow layers) and
the formation of ice layers with rough boundaries in deep
snowpack. Recent progress in snow radiative transfer model-
ing is addressing the anisotropic shape of snow crystals and
the clustering of crystals (Zhu et al., 2021) using a bicon-
tinuous model that introduces a two-parameter correlation
function (Ding et al., 2010) and shows that large clustering
of grains can cause cross-polarization signals from volume
scattering that are in the range observed by S1 and that the
volume scattering signal at cross-polarization can dominate
over surface scattering for large snow depths. This hypoth-
esized mechanism may explain why cross-polarized C-band
radar is sensitive to SWE (Lievens et al., 2019), while co-
pol is relatively insensitive to SWE (Naderpour et al., 2022).
Further field-based studies of the investigations of the effects
of microstructure on C-band radar signals are ongoing. More

work is needed to improve our understanding of the physical
mechanisms that cause C-band sensitivity to snow mass.

5.3 Phase-based approaches

Approaches to estimating snow characteristics using mi-
crowave remote sensing almost invariably make use of some
combination of the radar cross-section σ0, sensitivity to po-
larization, and frequency dependence; the techniques pre-
viously mentioned are all based on microwave scattering,
which focuses on the amplitude response. Approaches that
use the signal phase, related to the electrical path length and
time-of-flight information, while more challenging, can pro-
vide additional information about the snowpack, which is
synergistic with the Ku-band backscatter approach that is
the focus of this paper. These approaches provide indepen-
dent information about snow properties through travel time
through layers and information about where within the snow-
pack the major sources of amplitude (e.g., layer boundaries)
are originating. The additional information could be used to
improve the accuracy of the backscattering retrievals. Three
techniques are described: (1) ultra-wideband radar, (2) to-
mography, and (3) interferometry.
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5.3.1 Ultra-wideband radar

The range resolution of a radar system is inversely pro-
portional to the bandwidth. Ultra-wideband radar can be
used to resolve reflections from different depths within the
snowpack. This not only provides insight into which lo-
cations within the snowpack are contributing most to the
backscatter but also estimates the depth-dependent refrac-
tive index of snow, which can be used to independently
estimate snow depth, SWE, and stratigraphy. However, the
ultra-wideband radar technology does not have a straight-
forward path to space due to bandwidth and frequency al-
location limitations. Ultra-wideband approaches have been
demonstrated for decades from the ground, using broadband
radar at nadir incidence angles to estimate depth and SWE
(for a review, see Marshall and Koh, 2008), using L-band
ground-penetrating radar (GPR) systems (Lundberg et al.,
2000; McGrath et al., 2019), and at higher microwave fre-
quencies (Gubler and Hiller, 1984); multi-channel L-band
radar has recently been used to map density profiles in po-
lar firn (Meehan et al., 2021). Nadir ultra-wideband FM–CW
radar (2–18 GHz) has been flown from an aircraft platform
with success in the polar regions as part of NASA Opera-
tion IceBridge, mapping snow depth on sea ice and stratig-
raphy in firn on the ice sheets (Panzer et al., 2013; Arnold
et al., 2019). More recently, airborne FM–CW experiments
have been done over seasonal snow in the mountains (Yan
et al., 2017), with additional efforts being carried out at the
University of Alabama in developing airborne tomography
mountain applications (Taylor et al., 2020).

5.3.2 Tomography

Recently, synthetic aperture radar (SAR) tomography (To-
moSAR) has been used in monitoring the snowpack from
X-band to Ku-band (Wiesmann et al., 2019; Rekioua et al.,
2017; and Xu et al., 2018, 2020). This technique provides
unique access to the structure of the imaged scene, and in the
case of snowpack, it enables the separation of multiple snow
layers as well as the detection of and compensation for soil
and vegetation layers. Polarimetric capabilities can be used to
decompose the backscattered signal into volumetric and sur-
face scattering components and to distinguish between snow,
soil, and vegetation. Some ground-based field experiments
have been carried out that demonstrate the focused image re-
covery of the layering structure of the snowpack with differ-
ent densities, for example in a recent experiment (Xu et al.,
2018) at Fraser Experimental Forest, Colorado, at X- and Ku-
bands (9.6, 13.5, 17.2 GHz). In Fig. 19, we show the results
of tomography carried at three frequencies for HH polariza-
tion. The tomograms demonstrate the layer structure and fre-
quency dependence. The ability to identify snow layers and
density changes are expected to significantly improve SWE
retrieval.

5.3.3 Interferometry

Interferometry can be used to measure differential path
length and changes in the electromagnetic path length in sig-
nals interacting with the seasonal snowpack. This technique
has been proposed in several studies, at both high frequency
with single-pass InSAR for mapping the snow surface, to
measure snow depth (Moller et al., 2017), and at low fre-
quency with repeat-pass InSAR to measure changes in snow
depth or SWE (Guneriussen et al., 2001; Deeb et al., 2011;
Lei et al., 2016). Interferometry can be performed either be-
tween two observations separated in space (Fig. 20a) or by
repeat observations after changes in snow occur (Fig. 20b).
Although phase measurements are not absolute measure-
ments (modulo 2π ), there are a number of methods, includ-
ing phase unwrapping, the use of a surface digital elevation
model (DEM), and modeled and measured SWE change, that
can be used to resolve the ambiguity.

For the first approach (standard cross-track interferome-
try), using a high microwave frequency or in wet snow where
the penetration depth would be limited, we can assume the
majority of the signal comes from the snow surface, and the
snow surface topography can be mapped. When this is dif-
ferenced from a snow surface at a different time, a snow
depth change can be estimated spatially. This implementation
of interferometry is achieved through the introduction in the
system of a second antenna separated from the transmitting
antenna by the baseline B. Such an antenna can be passive,
receiving the signal of a common transmitter antenna, and
the phase difference between the two antennas is measured.
The scattering-phase center and the interferometric correla-
tion magnitude can be measured, which are both sensitive to
the frequency and polarization combinations as well as the
snowpack physical characteristics (e.g., Rott et al., 2021).

In the second approach, a low microwave frequency in
dry snow can be used, where we can assume the majority of
the signal comes from the snow–ground interface (Fig. 20b).
In this case, changes in the time of flight, or electromag-
netic path length, to the snow–ground interface are caused
by changes in snow depth and SWE. A time series of InSAR
observations at L-band can thus potentially be used to esti-
mate changes in snow depth and SWE. This technique was
tested during the NASA SnowEx 2020 and 2021 experiments
(Marshall et al., 2021). In addition, a similar approach with
P-band has been demonstrated from tower-based platforms,
using existing transmitted signals (Shah et al., 2017). This
bistatic approach shows great promise for a much lower-cost
satellite system as only a receiver is required.

InSAR has been used for characterizing the volume scat-
tering components of forests (e.g., Kugler et al., 2015), where
a vertical profile of the volume density can be estimated
(Reigber and Moreira, 2000; Tebaldini and Rocca, 2011).
While most of this development has been done at low fre-
quencies for vegetation, a scaling of the volume characteris-
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Figure 19. TomoSAR coherence images for HH polarization at 9.6, 13.5, and 17.2 GHz at Fraser, CO, sites.

Figure 20. (a) Illustration of single-pass InSAR for mapping the snow surface. Using measured phase, 1φ, simple trigonometric calculations
are used to estimate the relative height, h, of the scattering-phase center compared to the reference height, H . (b) When the phase center
is below the snow surface, refraction in snow must also be taken into account. At low microwave frequencies (e.g., L-band) in dry snow,
the phase center is often the snow–ground interface, and due to the slower electromagnetic velocity in snow, phase changes are related to
changes in snow depth and density.

tics of snow with frequency has been equally promising (Lei
et al., 2016), especially at Ku- and Ka-band.

In Sect. 6, the planned TSMM mission is described. With
the interferometry setup as described in Sect. 5.3.3, we can
explore possible configurations, such as the baseline B, of
launching a companion satellite with receive-only, receiv-
ing the complex scattered electric field signal from the snow
medium. Such a companion would be able to complement the
planned baseline TSMM observations with additional mea-
sures of reflectivity, interferometric phase, and correlation
magnitude that could all be used to better characterize the
snow volume.

6 Planning a satellite mission

The earliest synthetic aperture radar (SAR) satellite mis-
sions were focused on C-band (ERS-1, Radarsat-1). Mis-
sions developed during recent decades extended the fre-
quency range to L- (e.g., PALSAR) and X-band (e.g.,
TERRASAR-X), with planned missions at the P- (ESA-
Biomass), L- and, S-bands (NASA-ISRO SAR mission).
Spaceborne scatterometer missions such as QuikScat have
illustrated the wide-ranging contributions of measurements
at Ku-band to applications spanning the cryosphere (Kwok,
2007; Swan and Long, 2012), biosphere (Frolking et al.,
2006), and ocean (Bourassa and McBeth, 2010). Ku-band
cloud radar measurements have made significant contribu-
tions to precipitation-related fields through missions like

CloudSat (Stephens et al., 2002) and GPM (Skofronick-
Jackson et al., 2017).

The potential for Ku-band radar to retrieve snow water
equivalent (SWE) was explored as part of the NASA Snow
and Cold Land Processes Mission and supporting Cold Land
Processes Experiment (Yueh et al., 2009; Cline et al., 2009).
The ESA COld REgions Hydrology High-resolution Obser-
vatory (CoReH2O; X- and Ku-bands; Rott et al., 2010; ESA
et al., 2012) completed Phase A in 2013 but was not selected
for implementation. CLPX and CoReH2O science and mis-
sion development activities played a major role in motivating
the significant progress achieved over the past decade in mea-
suring, understanding, and modeling the Ku-band radar re-
sponse to SWE, snow microstructure, and snow wet/dry state
(as assessed in previous sections of this review). Given this
collective progress, satellite mission concept reviews follow-
ing the completion of CoReH2O Phase A further emphasized
the potential for Ku-band SAR measurements to address a
broad set of user requirements related to seasonal snow mass.

Supported by these studies and continued analysis of
experimental ground-based and airborne campaigns (see
Sect. 4; King et al., 2018; Lemmetyinen et al., 2018; Zhu
et al., 2018), a Ku-band SAR mission was selected as the
most feasible approach to meet the operational requirements
(wide swath, rapid revisit, short latency) of Environment and
Climate Change Canada (ECCC) for spaceborne measure-
ments sensitive to SWE. Since 2018, ECCC and the Cana-
dian Space Agency (CSA) have partnered to advance the
scientific and technical readiness of the “Terrestrial Snow
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Mass Mission” (TSMM), a Ku-band radar satellite with the
primary science objectives focused on the provision of cli-
mate services related to seasonal snow and improved oper-
ational environmental prediction including streamflow. The
TSMM development effort is underpinned by engagement
with Canadian industry, academia, and international partners.

Because TSMM is the first spaceborne Ku-band SAR mis-
sion of its type, an “Explorer” mission concept was devel-
oped by industrial partners in Canada to advance techno-
logical innovation and prove the scientific viability using a
“design-to-cost” approach. The resulting “TSMM-Explorer”
concept meets ECCC science requirements through dual-
frequency (13.5 and 17.25 GHz) Ku-band radar measure-
ments at 500 m spatial resolution, with a 50 m spatial resolu-
tion mode across a 30 km swath available for specific regions
(e.g., mountains areas) and targeted events (e.g., periods of
high flood risk). An imaging swath of 250 km combined with
a duty cycle of approximately 25 % meets the requirement to
image all of Canada and other global snow-covered areas ev-
ery 7 d.

In the CoReH2O proposal, the dual frequencies were in
the X-band at 9.6 GHz and the Ku-band at 17.2 GHz. The
theoretical predictions of rough surface scattering at X-band,
depending on penetration through the snow layer, are from
−20 to−12 dB. In TSMM, the X-band (9.6 GHz) is not cho-
sen and is replaced by a low Ku-band at 13.5 GHz.

Table 8 shows a comparison between CoREH2O and the
current TSMM concept. The TSMM frequencies were se-
lected to fully exploit the frequency dependence of snow vol-
ume scattering through the differential sensitivities at 13.5
and 17.25 GHz to both SWE and snow microstructure. The
dual frequencies will help address the ill-posed nature of re-
trieving SWE from a single Ku-band radar measurement (see
Sect. 4.2.2). The change in the lower frequency of CoReH2O
(9.6 GHz) to TSMM (13.5 GHz) will result in less sensitivity
to the underlying rough surface scattering effect, but sensi-
tivity to deep snow will be reduced without the X-band mea-
surement. Further study is needed in fine-grained mountain
snowpacks to better understand the limits of sensitivity to
deep snow at Ku-band.

The approach to optimally integrate spaceborne radar
measurements with state-of-the-art modeling systems is cur-
rently under development at ECCC. For applications which
require a SWE retrieval, the radar backscatter measurements
will be combined with snow property initial conditions (in-
cluding snow microstructure; see Sect. 4) produced by an ad-
vanced version of the ECCC operational land surface model
forced with short-range meteorological forecasts and precip-
itation analyses. Importantly, in areas without radar coverage
(e.g., due to swath gaps) or where the radar-derived SWE
retrieval is highly uncertain (e.g., due to wet snow or dense
forest cover), the SWE analyses will be determined by nu-
merical outputs from the land surface model. In this way,
the remote sensing information is combined with modeling
to create seamless coverage in both space and time, with

minimized uncertainty. Another goal is to assimilate the Ku-
band radar measurements directly in ECCC prediction sys-
tems without a SWE retrieval. For land surface data assim-
ilation needs, the Ku-band backscatter will be directly as-
similated, again with the land surface model providing the
required ancillary information. This approach is analogous
to how L-band radiometer measurements from the SMOS
and SMAP missions have improved soil moisture analysis
at ECCC through radiance-based assimilation (Carrera et al.,
2019). Work remains to fully implement a forward radar
model coupled with the physical snow model, building on
recent developments in this field (Bateni et al., 2015; Merk-
ouriadi et al., 2021).

While the dual-frequency Ku-band TSMM-Explorer con-
cept meets the requirements at ECCC for enhanced snow
remote sensing, this approach alone cannot solve all snow-
related observational needs. For instance, volume scatter-
ing will be negligible under wet-snow conditions, hence the
need to implement the approach outlined above to combine
satellite- and model-derived information during snowmelt.
There are, however, opportunities to further exploit the base-
line TSMM-Explorer concept through the development of
companion satellites. This could take the form of a similar
mission concept to improve coverage and revisit (e.g., a small
SAR constellation). Development of a companion receive-
only satellite is more challenging but would deliver a greater
reward through the potential for InSAR-based snow depth
retrievals under wet-snow conditions (as previously explored
with airborne Ka-band measurements by Moller et al., 2017).
This InSAR approach, as described in Sect. 5.3, necessitates
pushing the performance envelope of the TSMM-Explorer
SAR (bandwidth, increased high-resolution-mode imaging)
and spacecraft (maintenance of a very tight baseline, hence
very precise orbit control), which introduces cost and com-
plexity to the current scope of the mission. Still, the potential
benefits of an InSAR capability are notable, so further study
of these options is encouraged.

With the industrial Phase 0 now complete, the TSMM-
Explorer mission has advanced into a mission planning
phase at CSA. Technical readiness is being advanced through
industrial investment focused on the radar antenna tech-
nologies. Scientific readiness for the mission continues to
be enhanced by community-wide progress in field tech-
niques (e.g., quantitative snow microstructure measure-
ments; Sect. 3.3), physical snow modeling (Sect. 4.2), data
assimilation, and multi-frequency radar analysis (Sect. 4.4).
The analysis of tower and airborne Ku-band radar datasets
in collaboration with international partners is ongoing. Fu-
ture airborne data acquisition plans are under development,
including through the NASA SnowEx program. Collectively,
these efforts serve to advance the TSMM-Explorer mission
specifically and snow–radar science in general.

The Cryosphere, 16, 3531–3573, 2022 https://doi.org/10.5194/tc-16-3531-2022



L. Tsang et al.: Global monitoring of snow water equivalent 3561

Table 5. Summary of CoReH2O and TSMM missions.

CoReH2O TSMM

Frequencies X-band 9.6 GHz
Ku-band 17.2GHz

Ku-band 13.5GHz
Ku-band 17.25GHz

Polarizations VV, VH VV, VH

Level 1 SAR image resolution 50 m Low resolution: 250 m;
high resolution: 50 m

Spatial resolution of product 100–500 m 500 m

Temporal resolution 3 d repeat for Phase 1 5 d, Canada and other snow-covered areas

Accuracy requirements in SWE 3 cm RMSE, SWE<30 cm,
10 % for SWE>30 cm

3 cm RMSE (non-Alpine),
25 % RMSE (Alpine)

NES0 X-band:
VV<− 23 dB and VH<− 28 dB;
Ku-band:
VV<− 29 dB and VH<− 25 dB

13.5 GHz:
VV and VH<− 26 dB;
17.2 GHz:
VV and VH<− 25 dB

Accuracy in σ0 Stability<0.5 dB,
Absolute accuracy<1 dB

Stability<0.5 dB,
Absolute accuracy<1 dB (13.5 GHz) and
<0.5 dB (17.2 GHz)

Incident angle 30–45◦ 23–50◦

7 Summary and perspectives

Fresh water delivered by seasonal snowmelt is a commodity
of utmost importance for human health and well-being, sup-
ports many sectors of the economy, sustains ecosystems, and
poses risks by contributing to floods and sustaining drought
events (Barnett et al., 2005; Li et al., 2017; Qin et al., 2020).
At present, information on water stored as seasonal snow
is highly uncertain. Because of surface monitoring limita-
tions, satellite measurements are critical, but current mis-
sions are inappropriate for determining snow mass with the
spatial, temporal, and accuracy characteristics required to de-
liver climate services, effective water resource management,
and skillful environmental prediction such as streamflow.

Over the last decade, X- and Ku-band radar remote sens-
ing technologies have shown clear potential for monitoring
SWE. Scattering models now provide understanding of the
contributions of volume and surface scattering and the com-
plicating effects of forests. Snow physical models have sig-
nificantly advanced and are capable of providing the required
snow microstructure information required for forward and
inverse modeling. Tower and airborne radar measurements,
supported by dramatic improvements in field-based quantita-
tive characterization of snow microstructure, have provided a
small but rapidly growing range of datasets to support mod-
eling and retrieval studies. In the coming years, there is a
clear need for more experimental measurement campaigns
to fill information gaps (such as the influence of vegetation
and sensitivity to deep snow) and evaluate new SWE retrieval

frameworks. There will be more studies on coupling snow
physical models to radiative transfer models so that they can
be more effectively combined in retrieval algorithms with
computational efficiency for real-time retrievals.

We anticipate the continued development of satellite mis-
sions with Ku-band radars, which could be followed by syn-
ergistic instruments supporting techniques such as Ku-band
interferometry and tomography.

Appendix A: Example protocol for measuring spatial
variability in snow properties to support radar remote
sensing

Geolocated measurements are vital to quantify variability
in snowpack properties within sensor footprints (airborne
or tower). Figure A1a suggests an optimal configuration
of snow depth and snow micropenetrometer (SMP) mea-
surements to create representative distributions of snowpack
properties within airborne swaths. The main 222 m transect
of snow depth and SMP profiles, located along an airborne
swath centerline, has variable spacing (10−1, 100, and 101 m)
on either side of a central pit to capture different horizon-
tal length scales of variability. A shorter 22 m orthogonal
transect with 10−1 and 100 m spacing bisects the main tran-
sect at the central pit, and a spiral of snow depths extends
from the central pit out to an 11 m radius (Fig. A1a). Mea-
surements additional to the main transect allow omnidirec-
tional analysis of snow depth variability and bi-directional
analysis of snow microstructural properties, both of which
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may be influenced by dominant prevailing wind direction
or irregular patterns of subnivean vegetation. Ideally, snow
depths and positions are measured using automatic depth
probes with integrated GPS providing position accuracy to
±2.5 m, e.g., Magnaprobes (Sturm and Holmgren, 2018).
Where forest canopies obscure GPS satellite connection, or
snowpacks are deeper than 180 cm (current maximum Mag-
naprobe length), hand probes are used in measured grids
arranged relative to a known absolute position. Accuracy
of snow depths range from nearly 0 cm on hard ground to
∼ 5 cm in soft subnivean vegetation. Where snow pit loca-
tions are not predetermined, measured snow depth distribu-
tions can be subsequently used to determine the location of
snow pit(s) to match mean depth or multiple pits spanning
interquartile ranges.

One-dimensional (vertical) measurement of snowpack
properties for SAR retrievals requires objective measure-
ments of snow microstructure. SMP allows rapid (<1 min)
force profile detection at millimeter resolution (Proksch et
al., 2015b), which is used to derive density, correlation
length, and specific surface area (SSA), quantities directly
or indirectly used by radiative transfer models (Chang et
al., 2016; Picard et al., 2018). The speed of data acquisi-
tion allows for SMP measurements to be used in a distributed
manner along transects, but SMP also supports other coinci-
dent snow pit measurements using different techniques. Fig-
ure A1b shows a schematic of optimal snow pit measure-
ments. Double-sampled volumetric density measurements,
100 cm3 box cutter with 3 cm vertical resolution for shal-
low snowpacks or 1000 cm3 wedge cutter with 10 cm ver-
tical resolution for deep snowpacks (Proksch et al., 2016),
are averaged at each vertical position. Following principles
presented in Gallet et al. (2009), 3 cm vertical resolution
double-sampled SSA measurements are made using an in-
frared integrating sphere (IRIS) (Montpetit et al., 2012) or an
A2 Photonic Sensors IceCube (Zuanon, 2013). µ-CT analy-
sis of snow casts (Schneebeli and Sokratov, 2004; Lundy et
al., 2002), consisting of entire profiles or samples of criti-
cal layers, are used as a benchmark for corroboration of all
other measurements. However, in practice, in situ snow cast-
ing and subsequent cold-laboratory µ-CT analysis require a
much higher level of expertise and processing time than SMP
or IRIS/IceCube measurements, meaning field application of
µ-CT is often limited.

Profiles of snow temperature using well-calibrated stem
thermometers at 10 cm vertical resolution are important pa-
rameters for radiative transfer models, in conjunction with
stratigraphic identification of snow layer boundaries and ice
lenses using hand hardness. Visual identification of grain
type (Fierz et al., 2009) using a hand lens or macroscope
is an important complementary measurement for layer clas-
sification and understanding the seasonal history of snow-
pack processes. However, similar visual methods to quantify
snow “grain size” are too subjective to create a microstruc-
tural metric for further use in radiative transfer models. The
SSA measurements provide much better accuracy for use in
radiative transfer models.

Near-infrared (NIR) photography allows two-dimensional
analysis of layer boundary position (Tape et al., 2010)
and layer thickness variability (Rutter et al., 2019) in
snow trenches, quantifying spatial variability in stratigraphy
around a single snow pit profile. It also enables measure-
ments of layer boundary roughness, particularly of the snow–
air and snow–ground interfaces. Other methods to character-
ize snow–air surface roughness use photographic image con-
trast analysis of dark boards placed behind snow (Fassnacht
et al., 2009; Anttila et al., 2014) and subnivean roughness
of areas cleared of snow using pin profilers, lidar scanning
(Chabot et al., 2018; Roy et al., 2018), or structure from mo-
tion photogrammetry (Meloche et al., 2020). The subnivean
roughness between snow and soil gives significant contribu-
tions of rough surface scattering because of the contrast of
dielectric constants between snow and soil.

The Cryosphere, 16, 3531–3573, 2022 https://doi.org/10.5194/tc-16-3531-2022



L. Tsang et al.: Global monitoring of snow water equivalent 3563

Figure A1. Optimal measurement configurations for evaluation of snow properties in sensor footprints.
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Appendix B: Abbreviations

AIEM Advanced Integral Equation Model
Can-CSI Canadian CoReH2O Snow and Ice

Experiment
CASIX Canadian Snow and Ice Experiment
CF Coniferous forest
CMIP6 Coupled Model Intercomparison Project
CoReH2O Cold Regions Hydrology Observatory
DMRT Dense Medium Radiative Transfer
DMRT-ML Dense Medium Radiative Transfer –

Multiple Layers
EM Electromagnetic
ESA European Space Agency
FMCW Frequency-modulated, continuous-wave
GNSS-R Global navigation satellite system

reflectometry
HUT Helsinki University of Technology
InSAR Interferometric SAR
Lidar Light detection and ranging
LUT Look-up table
LWC Liquid water content
MEMLS Microwave Emission Model of Layered

Snowpacks
MIMICS Michigan Microwave Canopy Scattering
NMM3D Numerical solutions of Maxwell’s equa-

tions in 3-D
NoSREx Nordic Snow Radar Experiment
NWP Numerical weather prediction
PolSCAT Polarimetric Ku-Band Scatterometer
QCA Quasi-crystalline approximation
SAR Synthetic aperture radar
SMAP Soil Moisture Active and Passive
SMOS Soil Moisture and Ocean Salinity
SMP Snow micropenetrometer
SMRT Snow Microwave Radiative Transfer
SSA Specific surface area
SWE Snow water equivalent
SWESARR Snow Water Equivalent SAR and

Radiometer
RTE Radiative transfer equation
RTM Radiative transfer model
UAVSAR Uninhabited Aerial Vehicle Synthetic

Aperture Radar
µ-CT Micro-computed tomography
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