
HAL Id: hal-03768664
https://hal.science/hal-03768664

Submitted on 4 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A differentiable approximation for the Linear Sum
Assignment Problem with Edition

Luc Brun, Benoît Gaüzère, Guillaume Renton, Sébastien Bougleux, Florian
Yger

To cite this version:
Luc Brun, Benoît Gaüzère, Guillaume Renton, Sébastien Bougleux, Florian Yger. A differentiable
approximation for the Linear Sum Assignment Problem with Edition. 26th International Conference
on Pattern Recognition, Aug 2022, Montréal, France. �hal-03768664�

https://hal.science/hal-03768664
https://hal.archives-ouvertes.fr

A differentiable approximation for the Linear Sum
Assignment Problem with Edition

Luc Brun∗, Benoit Gaüzère†, Guillaume Renton†, Sébastien Bougleux∗, Florian Yger‡
∗Normandie Univ, ENSICAEN, CNRS, UNICAEN, GREYC, 14000 Caen, France

†Normandie Univ, INSA Rouen Normandie, LITIS, Rouen, France
‡PSL-Université Paris-Dauphine, CNRS, LAMSADE, Paris, France

Abstract—Linear Sum Assignment Problem (LSAP) consists in
mapping two sets of points of equal sizes according to a matrix
encoding the cost of mapping each pair of points. The Linear
Sum Assignment Problem with Edition (LSAPE) extends this
problem by allowing the mapping of sets of different sizes and
adding the possibility to reject some matchings. This problem
is set up by a rectangular cost matrix whose last column and
last line encode the costs of rejecting the match of an element
of respectively the first and the second sets. LSAPE has been
the workhorse of many fundamental graph problems such as
graph edit distance, median graph computation or sub graph
matching. LSAP may be solved using the Hungarian algorithm
while an equivalent efficient discrete algorithm has been designed
for LSAPE. However, while the Sinkhorn algorithm constitutes
a continuous solver for LSAP, no such algorithm yet exists for
LSAPE. This lack of solvers forbids the integration of LSAPE in
Neural networks requiring continuous operations from the input
to the final loss. This paper aims at providing such a solver,
hence paving the way to an integration of LSAPE solvers in
Neural Networks.

I. INTRODUCTION

Comparing structured data owing to the similarity of their
substructures is a challenging task with many applications.
Graph matching is the epitome of this problem and has a wide
range of applications accross domains from chemoinformatics
to computer vision. However, most approaches to do so either
have a combinatorial flavour and do not play well with modern
deep learning or do not allow slight errors in the matchings.

We propose in this paper a continuous estimation of an ϵ-
assignment (Definition 1). Roughly speaking, an ϵ-assignment
between two sets V1 and V2 may be understood as a bijective
mapping between a sub set of V1 and a sub set of V2. The
remaining elements of V1 (not included in this mapping) are
mapped onto an ϵ pseudo element of V2. We say that such
elements are deleted. Conversely, the remaining elements of
V2 correspond to the image of the ϵ pseudo element of V1

(Figure 1). We say that these elements are inserted.
Let us note that if V1 and V2 have the same size, the bijective

mapping induced by an ϵ-assignment may involve all elements
of V1, each element being mapped onto a single element of V2.
In this sense, an ϵ -assignment is more general than a bijective
mapping. Moreover, the main advantage of an ϵ-assignment is
that it provides us the freedom to not map all elements. This
last property allows us to reject some mappings if for example,
these mappings are associated to a large cost.

An ϵ-assignment function may be associated to an ϵ-
assignment matrix (Figure 1(b)) just like any bijective mapping
is associated to a permutation matrix. Given two sets, V1 and
V2 of respective sizes n and m, an ϵ-assignment matrix is
encoded by a (n + 1) × (m + 1) matrix, where n + 1 and
m+ 1 play respectively the roles of the ϵ element of V1 and
the one of V2. The last column of index m + 1 of such a
matrix encodes the deletions while the last line encodes the
insertions. By construction, there is a single 1 in each of the
first n rows and m columns, the remaining elements being set
to 0.

Given V1 and V2, one can define a (n+ 1)× (m+ 1) cost
matrix encoding the cost of the mapping of any element of
V1 onto an element of V2 as well as the cost of deleting each
element of V1 and inserting each element of V2. Finding an
ϵ-assignment minimizing the sum of mappings, deletions and
insertions costs is a direct extension of the Linear Sum As-
signment Problem (LSAP) called the Linear Sum Assignment
Problem with Edition [1] (LSAPE). Given an ϵ-assignment
matrix X and a cost matrix C, this cost may be formulated
as:

min
X

n+1∑
i=1

m+1∑
j=1

ci,jxi,j

where X is taken over all ϵ-assignment matrices.
We defined in previous works [2], [1], an adaptation of

the Hungarian algorithm [3] which allows to find an optimal
solution to the above problem in O(min(n,m)2 max(n,m)).
However, while providing an optimal solution, this algorithm
does not readily allow the computation of the gradient of the
associated operation. This last drawback, does not allow to
easily insert such an algorithm into a deep learning pipeline.
On the other hand, the Sinkhorn algorithm [4], is based

Fig. 1. Left: An example of ϵ-assignment function. 1 is mapped onto b, 2
onto a, 3 is deleted. Right: its associated ϵ assignment matrix

on a continuous relaxation of the problem where permuta-
tion matrices are replaced by bi-stochastic matrices with an
entropic regularization. This algorithm is the workhorse of
computational optimal transport [5] and is based on iterative
matrix multiplications hereby allowing the backpropagation of
the gradient [6]. The aim of this contribution is to transpose
the results of the Sinkhorn algorithm to ϵ assignment matrices.
Just like the Sinkhorn algorithm which does not provide
a permutation matrix but rather a bi-stochastic matrix, our
algorithm will provide an ϵ bi-stochastic matrix (Definition 2).
This last point may be of advantage within the Neural Network
framework where the hard decisions corresponding to ϵ-
assignment matrices may not allow a proper propagation of
the gradient.

More formally, given a similarity matrix S (which may be
easily deduced from a cost matrix), we aim at finding two
diagonal matrices D1 and D2 such that D1SD2 is an ϵ bi-
stochastic matrix. Section II introduces the main concepts and
provides two series of diagonal matrices converging respec-
tively to two diagonal matrices D1 and D2 such that D1SD2 is
ϵ bi-stochastic. Our algorithm provided in the same section is
based on these series. Section III allows to convert, within the ϵ
assignment framework, the problem of a maximization of sum
into a problem of minimization. This last results allows us to
compare in Section IV our results with optimal ones provided
by discrete algorithms [2], [1] which perform a minimization.

II. A CONSTRUCTIVE ALGORITHM

Definition 1 (ϵ-assignment).
Let n and m be two strictly positive integers. An ϵ-assignment
is a mapping φ : {1, . . . , n + 1} → P({1, . . . ,m + 1})
satisfying the following constraints: ∀i ∈ {1, . . . , n}, |φ(i)| = 1

∀j ∈ {1, . . . ,m}, |φ−1(j)| = 1
m+ 1 ∈ φ(n+ 1)

where P({1, . . . ,m+1}) is the power set of {1, . . . ,m+1}.
Each element of i ∈ {1, . . . , n} is thus mapped onto a set

composed of a single element of {1, . . . ,m + 1} (|φ(i)| =
1) and in the same way the set of antecedents of each j ∈
{1, . . . ,m} is reduced to one element (|φ−1(j)| = 1). Hence
the only element of {1, . . . , n+1} which can be mapped onto
a set composed of several elements is n+1. In the same way,
m+1 is the only element which may have several antecedents.
The constraint m+1 ∈ φ(n+1) ensures that n+1 is mapped to
at least one element and that m+1 has at least an antecedent.

In the example of Figure 1 we have n = 3 and m = 2.
Elements 1, 2, 3 are respectively mapped onto {b}, {a}, {ϵ}.
Where the last mapping corresponds to a deletion of 3 (which
is mapped onto m + 1). Consequently m + 1 has two an-
tecedents: 3 and 4 = n+ 1.

Definition 2 (ϵ-bi-stochastic matrix).
A non negative (n + 1) × (m + 1) matrix X is called an
ϵ-bi-stochastic matrix iff:

m+1∑
j=1

Xi,j = 1 ∀i ∈ {1, . . . , n} (1)

n+1∑
i=1

Xi,j = 1 ∀j ∈ {1, . . . ,m} (2)

xn+1,m+1 = 1

A matrix satisfying only equation (1) is called an ϵ-
row stochastic matrix while a matrix satisfying only equa-
tion (2) is called an ϵ-column stochastic matrix. If X ∈
{0, 1}(n+1)×(m+1), X is called an ϵ-assignment matrix and
there is a one-to-one mapping between ϵ-assignments and ϵ-
assignment matrices [2], [1].

Let us note that any ϵ-bi-stochastic matrix is a bi-stochastic
matrix on which the bi-stochastic constraints are relaxed on the
last line and last column. So any squared bi-stochastic matrix
is also an ϵ-bi-stochastic matrix (the reverse being obviously
false).

A. Construction scheme

Let A = (ai,j) denote a (n+1)× (m+1) matrix. For any
i ∈ {1, . . . , n+1} and any j ∈ {1, . . . ,m+1} let us consider
the series (xi,p)p∈N and (yj,p)p∈N defined as follows:

∀i ∈ {1, . . . , n} xi,p+1 = χ−1
i,pxi,p

xn+1,p = 1

∀j ∈ {1, . . . ,m} yj,p+1 = γ−1
j,p yj,p

ym+1,p = 1

with: 
∀i ∈ {1, . . . , n} xi,0 =

(∑m+1
j=1 aij

)−1

∀j ∈ {1, . . . ,m} yj,0 = 1

The two factors χi,p, i ∈ {1, . . . , n + 1} and γj,p, j ∈
{1, . . . ,m+ 1} are defined as follows:
∀i ∈ {1, . . . , n} χi,p =

∑m+1
j=1 xi,pai,jyj,p

χn+1,p = 1

∀j ∈ {1, . . . ,m} γj,p =
∑n+1

i=1 χ−1
i,pxi,pai,jyj,p

γm+1,p = 1

Theorem II.1. A constructive method Let A be a nonnegative
(n + 1) × (m + 1) matrix with total support [7] such that
A[{1, . . . , n}, {1, . . . ,m}] does not contain any line or column
filled with 0. Using the previously defined series, if all values
of the last line and column of A are positive the series
(xi,p)p∈N, (yj,p)p∈N, i ∈ {1, . . . , n + 1}, j ∈ {1, . . . ,m + 1}
converge and define two series of diagonal matrices D1,p =

diag(x1,p, . . . , xn+1,p) and D2,p = diag(y1,p, . . . , ym+1,p)
which converge to a limit such that:

S = lim
p→+∞

D1,pAD2,p

is ϵ bi-stochastic.

Proof. The proof is detailed in [7]. Let us note that this proof
uses different arguments than the one provided in [4] whose
arguments do not hold for ϵ-assignments.

The above theorem states both the existence of a rewriting
of the matrix A into an ϵ bi-sotchastic matrix and a practical
method to compute it. Let us note that under additional
conditions, this decomposition is unique [7].

B. An iterative algorithm

Algorithm 1 Iterative algorithm

1: function SINKHORN D1D2(A ∈ R(n+1)×(m+1), nb iter,
eps)

2: ones n ← 1(n+1), ones m ← 1(m+1)

3: y ← ones m
4: conv ← False, i← 0
5: while i ≤ nb iter and not conv do
6: xp ← 1/(A ∗ y)
7: xp[n] ← 1
8: if i ≥ 1 then
9: norm x ← ∥ xp / x−ones n∥

10: end if
11: x ← xp
12: yp ← 1 /(A⊤ ∗ x)
13: yp[m] ← 1
14: norm y ← ∥ yp / y−ones m∥
15: y ← yp
16: if i ≥ 1 then
17: conv ←norm x < eps and norm y < eps
18: end if
19: i← i+ 1
20: end while
21: return diag(x) ∗A ∗ diag(y)
22: end function

The code (in python) corresponding to the construction of
matrices D1,p and D2,p is provided in Alg. 1. You may note
the fact that we set xn+1 and ym+1 to 1 respectively on line
7 and 13. This point together with the use of rectangular
matrices is the main difference between this algorithm and
the ”classical” Sinkhorn algorithm. The convergence criterion
which allows to avoid to loop up to the maximum number of
iterations is based on the fact that both χp and γp converge
toward a vector of 1. An equivalent code based on the
computation of the matrix Sp = D1,pAD2,p is provided in [7].

III. FROM SIMILARITY TO COST MATRICES AND VICE
VERSA

The Sinkhorn algorithm is well known for providing an
approximation of the Linear Sum Assignment Problem (Sec-
tion IV) which can be formulated as:

max
X

n∑
i=1

n∑
j=1

si,jxi,j

where S = (si,j) is our similarity matrix and X = (xi,j)
is taken over all bi stochastic matrices. The optimal solution
being a permutation matrix, hence a binary matrix.

This maximization problem may be translated into a mini-
mization problem by considering the matrix c1n×n−S, where
1n×n is a n×n matrix filled of 1 and c is a positive constant
greater than all values of S. We have indeed:

n∑
i=1

n∑
j=1

(c− si,j)xi,j = cn−
n∑

i=1

n∑
j=1

si,jxi,j

Hence c and n being constant, minimize
∑n

i=1

∑n
j=1(c −

si,j)xi,j is equivalent to maximize
∑n

i=1

∑n
j=1 si,jxi,j . The

matrix c1n×n−S is usually interpreted as a cost matrix. This
last point is important if one wants to compare the Sinkhorn
algorithm to an optimal Hungarian algorithm [3] which per-
forms a minimization of costs instead of a maximization of
similarities.

As stated in Section I, our algorithm being an extension of
the Sinkhorn algorithm we expect it to converge to :

max
X

n+1∑
i=1

m+1∑
j=1

si,jxi,j

where X = (xi,j) is taken over all ϵ bi-stochastic matrices.
However, the transformation of this maximization of similari-
ties into a minimization of costs, is slightly more complex in
the case of ϵ assignment matrices. To do so, let us consider a
positive constant c and a (n+1)× (m+1) matrix C = (ci,j)
with ci,j = 2c for i ≤ n and j ≤ n while ci,m+1 = c and
cn+1,j = c for i ≤ n and j ≤ m respectively. We further have
cn+1,m+1 = 0. Considering the cost matrix C − S we have:

n+1∑
i=1

m+1∑
j=1

(ci,j − si,j)xi,j =

n+1∑
i=1

m+1∑
j=1

ci,jxi,j −
n+1∑
i=1

m+1∑
j=1

si,jxi,j

with: ∑n+1
i=1

∑m+1
j=1 ci,jxi,j = 2c

∑n
i=1

∑m
j=1 xi,j

+c
∑n

i=1 xi,m+1

+c
∑m

j=1 xn+1,j

= c
∑n

i=1

∑m+1
j=1 xi,j

+c
∑m

j=1

∑n+1
i=1 xi,j

= cn+ cm

We have thus:
n+1∑
i=1

m+1∑
j=1

(ci,j − si,j)xi,j = c(n+m)−
n+1∑
i=1

m+1∑
j=1

si,jxi,j (3)

The minimization of the left part of equation 3 (minimization
of costs) is thus equivalent to a maximization of the similari-
ties.

Let us note that the trivial solution consisting to take
C = c1(n+1)×(m+1) does not provide an equivalence between
both problems since additional terms related either to the last
column or the last row forbid to state that one problem is equal
to a constant minus the other problem.

IV. EXPERIMENTS

We proposed in Section II an algorithm converging toward
an ϵ bi-stochastic matrix if the conditions defined by Theo-
rem II.1 are satisfied. The aim of this section is to measure
experimentally the convergence of our algorithm toward a
solution maximizing :

n+1∑
i=1

m+1∑
j=1

si,jxi,j

over all ϵ bi-stochastic matrices X . Where S = (si,j) is
the input matrix. Such a problem is called a Linear Sum
Assignment Problem with Edition (LSAPE).

A. Deviation of the Sinkhorn algorithm from the optimal
solution

Sinkhorn algorithm provides an approximate solution to the
well known Linear Sum Assignment Problem (LSAP):

max
X

n∑
i=1

m∑
j=1

si,jxi,j

where X is taken over the set of bi-stochastic matrices.
From a certain point of view, LSAP may be considered as
a restriction of the LSAPE with squared matrices and no
deletions/insertions. Let us first evaluate the error induced
by the use of the Sinkhorn algorithm. To do this, we define
matrices filled by random number in the interval [1, 2]. For
each matrix size, we generate 100 matrices and compute
for each matrix both the solution produced by the Sinkhorn
algorithm and the optimal one produced by an Hungarian
algorithm. Relative errors of Sinkhorn algorithm given the
ground truth computed by LSAP is approximately constant
for all sizes of matrices and lies between 20% and 23%.

B. Deviation of our algorithms from the optimal solution

In order to test our algorithm we use the same kind of
random matrices but with a specific procedure for the last row
and column which encodes respectively the affinity of each
element toward insertions and deletions:

Si,j :=

{
rand()+1 if i≤n∧ j≤m
0 if i=n+1∧ j=m+1
h rand() else

(4)

For h ≤ 0.5 we can insure that for any (i, j) ∈ {1, . . . , n}×
{1, . . . ,m}, si,j ≥ sn+1,j +sj,m+1. In other terms we always
get a greater sum by substituting i onto j than by deleting i
and then inserting j. Conversely, if si,j < sn+1,j + sj,m+1

50 100 150 200

0.19

0.20

0.21

0.22

0.23

n× n

50 100 150 200

0.180

0.185

0.190

0.195

0.200

0.205

0.210

0.215

n× 2n

h =

0.1

0.2

0.5

Fig. 2. Relative errors of our algorithm according to the optimal solution for
h ≤ 0.5.

the substitution of i onto j will never be part of an optimal ϵ-
assignment since this operation can be replaced, with a greater
value of the sum, by the removal of i and the insertion of j.

Let us first focus on values of h lower than .5. Figure 2
shows the relative error of our algorithm according to an
optimal LSAPE algorithm [2] for increasing sizes of the
matrix. Let us note that [2] minimizes a sum of costs. We
compare both algorithms using the results of Section III. For
each matrix size, 100 random matrices are generated and the
results are averaged for both algorithms (our algorithm and
the optimal one). Our algorithm provides an approximation of
the LSAPE which is slightly above 20%, hence comparable
with the one provided by the Sinkhorn algorithm for the LSAP
problem.

For h greater than .5 we observe in Figure 3 that we keep an
error of about 20% for h = 1.0 and h = 2.0. In these cases the
values of the last line and the last column remain comparable
with the inner values of the random matrix. However, for larger
values of h, namely h ∈ {4.0, 6.0, 8.0} we observe a large
increase of the relative error when the matrices are squared.
We can conclude from these experiments that our algorithms
do not converge to the expected value for squared matrices
and when the values of the last column/line are very large
compared to the inner values. More precisely, when we have:

si,j ≪ sn+1,j + si,m+1 for (i, j) ∈ {1, . . . , n} × {1, . . . ,m}

25 50 75 100 125 150 175 200

0.2

0.3

0.4

0.5

0.6

n× n

25 50 75 100 125 150 175 200

0.20

0.25

0.30

0.35

0.40

0.45

n× 2n

h =

1.0

2.0

4.0

6.0

8.0

Fig. 3. Relative errors of our algorithm according to the optimal solution for
h > 0.5.

A simple solution to fix this problem, consists in simplifying
the similarity matrix by removing (setting to a low value) any
entry (i, j), i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} such that (i, j)
cannot belong to any optimal solution. Given the similarity
matrix S, such entries are characterized by si,j < sn+1,j +
si,m+1. In such cases, the substitution of i onto j may be
advantageously replaced by the removal of i and the insertion
of j. This last point forbids the assignment of i onto j in any
optimal ϵ-assignment.

Figure 4 represents the relative errors according to the
optimal solution performed by our algorithm using this simpli-
fication of the similarity matrix. In this experiment the ”low
value” replacing any entry of the matrix S which can not
be included in any optimal solution has been fixed to 10−4.
One can first observe that we get the same behavior for the
squared (n × n) case and the rectangular one (n × 2n). We
can further observe that all errors remain below 20% for all
sizes. Moreover, the relative error appear to be decreasing as
a function of h in both cases. This may be explained by the
fact that as h get higher, the simplified matrix becomes more
and more trivial. Indeed for largest values of h, simplified
similarity matrices correspond to trivial matrices with a con-
stant value (equal to 10−4 in this experiment) for all entries
(i, j) in {1, . . . , n} × {1, . . . ,m} and a last row and column
which remains unchanged and greater than 10−4 by several
orders of magnitude. In such cases our algorithm converges

25 50 75 100 125 150 175 200

0.00

0.05

0.10

0.15

0.20

0.25
n× n

25 50 75 100 125 150 175 200

0.00

0.05

0.10

0.15

0.20

n× 2n

h =

0.1

0.2

0.5

1.0

2.0

4.0

6.0

8.0

Fig. 4. Relative errors according to the optimal solution after a simplification
of the similarity matrix.

to the optimal solution which corresponds to the removal of
all elements in {1, . . . , n} and the insertion of all elements in
{1, . . . ,m}.

C. Execution times of our algorithms

The execution times of our algorithm computed either on
a graphic card (GeForce RTX 2080) or on a CPU (Intel(R)
Xeon(R) Gold 5218 @2.30GHz) are displayed in Figures 5.
Our algorithm has been run 100 times and the execution times
have been averaged. In this experiment the range of values of
n has been set to [10, 2000].

Considering the squared case (first line of Figure 5) we
observe an acceleration by a factor 2.2 thanks to the GPU. We
can further observe on both figures a clear separation between
curves corresponding to h ≤ 1 and the ones corresponding to
h > 1. As previously, this last point is due to the fact that as
h get higher the simplified similarity matrices become more
and more trivial and our iterative algorithms need less and less
iterations to converge.

Concerning the rectangular case (second line, Figure 5),
we observe a ratio equal to 9.4 between CPU and GPU
execution times. The separation between both families of
curves encountered in the square case is here less pronounced
especially for GPU computations. Let us finally note, that the
mean number of iterations required by our algorithm in the
rectangular case is equal to 11.7 (mean computed over all

0 250 500 750 1000 1250 1500 1750 2000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

GPU - n× n

0 250 500 750 1000 1250 1500 1750 2000

0.00

0.02

0.04

0.06

0.08

CPU - n× n

0 250 500 750 1000 1250 1500 1750 2000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

GPU - n× 2n

0 250 500 750 1000 1250 1500 1750 2000

0.000

0.025

0.050

0.075

0.100

0.125

0.150

CPU - n× 2n

h =

0.1

0.2

0.5

1.0

2.0

4.0

6.0

8.0

Fig. 5. Execution times using both graphic card and cpu computation using n× n matrices (first line) and n× 2n matrices (second line).

matrices’ sizes and all values of h) while the one of the square
case is equal to 45.8. This last point explains why, despite a
data size that is doubled (n × n vs. n × 2n), the execution
times required by our algorithm in the rectangular cases are
approximately 2 times less than those required in the square
cases.

V. CONCLUSION

We have presented in this paper an algorithm providing an
approximate solution to the Linear Sum Assignment Problem
with Edition (LSAPE). The relative error of this algorithm
compared to the optimal solutions is similar, and even much
lower in some cases, to the relative error between the clas-
sical Sinkhorn and the optimal solutions to the Linear Sum
Assignment Problem (LSAP). The main difference between
this algorithm and the Hungarian based algorithms providing
the optimal solution to the LSAPE is that our algorithm is
iterative and differentiable and may thus be easily inserted
within a backpropagation based learning framework such as
artificial neural networks.

REFERENCES

[1] S. Bougleux and L. Brun, “Linear Sum Assignment with Edition,”
Normandie Université ; GREYC CNRS UMR 6072, Research Report,
Mar. 2016. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
01288288

[2] S. Bougleux, B. Gaüzère, and L. Brun, “A Hungarian Algorithm
for Error-Correcting Graph Matching,” in 11th IAPR-TC-15
International Workshop on Graph-Based Representation in Pattern
Recognition (GbRPR 2017), ser. Lecture notes in Computer
Sciences (LNCS), P. Foggia, C.-L. Liu, and M. Vento, Eds., vol.
10310, Pasquale Foggia. AnaCapri, Italy: Springer, May 2017,
pp. 118–127. [Online]. Available: PDF(HAL):=https://hal.archives-
ouvertes.fr/hal-01540920/file/hungarian-algorithm-error.pdf, www page
:=https://hal.archives-ouvertes.fr/hal-01540920

[3] J. Munkres, “Algorithms for the assignment and transportation
problems,” Journal of the Society for Industrial and Applied
Mathematics, vol. 5, no. 1, pp. 32–38, 1957. [Online]. Available:
http://www.jstor.org/stable/2098689

[4] R. D. Sinkhorn and P. J. Knopp, “concerning nonnegative matrices and
doubly stochastic matrices,” Pacific Journal of Mathematics, vol. 21,
no. 2, p. 343–348, 1967.

[5] G. Peyré, M. Cuturi et al., “Computational optimal transport: With
applications to data science,” Foundations and Trends® in Machine
Learning, vol. 11, no. 5-6, pp. 355–607, 2019.

[6] A. Genevay, G. Peyre, and M. Cuturi, “Learning generative models with
sinkhorn divergences,” in Proceedings of the Twenty-First International

Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Storkey and F. Perez-Cruz, Eds.,
vol. 84. PMLR, 09–11 Apr 2018, pp. 1608–1617. [Online]. Available:
https://proceedings.mlr.press/v84/genevay18a.html

[7] L. Brun, B. Gaüzère, S. Bougleux, and F. Yger, “A new sinkhorn algo-
rithm with deletion and insertion operations,” CoRR, vol. abs/2111.14565,
2021. [Online]. Available: https://arxiv.org/abs/2111.14565

