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Abstract In this note we extend to any bidimension (p,p) the Demailly theorem of regularization of
closed positive (1,1)-currents on a compact Kahler manifold X of dimension n. When the manifold X is
projective, we get explicitly a closed regularization with bounded negative part, constructed by using the
space Cp(X) of effective algebraic cycles of X of dimension p. This space can be injected in the space of
divisors of C,,—,—1(X) and we arrive at an intrinsic construction of the Skoda potential associated with a
closed positive current of X. On another hand, in the case of a divisor D of X, we give an explicit bound
for the degree of an irreducible component of the singular locus Dy, involving the geometry of X. Lastly
when X is embedded in the projective space Py, we prove the existence of a closed current extending in
the generalized sense a given closed current of X, by using here a space of cycles. As an application, we
obtain a characterization of the cohomology classes contained in some algebraic hypersurface of X.

Keywords: Chern classes, Closed positive current, Cycle space, Intersection number, King formula,
Radon transform
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1. Regularization of closed positive currents on a compact Kéahler manifold

Let T be a closed positive (g, ¢)-current on a compact Kéhler manifold X of dimension n. We use the

writing
T=0+ddS

where O is a C* differential (g, q)-form closed in X and S is a differential (¢ — 1,¢q — 1)-form with L],
coefficients in X, such that 85 and 05 are with L . coefficients in X.

Let (U,) be a finite covering of X with open sets of coordinate maps and let (\,) be a C* partition of
the unit subordinate to (Uy,). Let S, . be a smooth differential (¢ — 1, ¢ — 1)-form with compact support
in Uy, weakly converging in U, to AoS|y, = AoS when € — 0. We set

T. =0 +dd()  Sac)

which is a differential (g, ¢)-form of class C* closed in X, weakly converging in X to 7 when & — 0T,
First we have

T. =0+ > (AT = XaO)c + > (dd°Sac — (Add®S).).

When the index « is fixed, dd®Sqy.e — (Aadd®S). converges weakly in U, to

R, = ddc()\aS\Uu) — )\a(ddCS|UO),
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coefficients in U, (see [4]). But when « varies, the relation
> R,=0 (1)

is satisfied i.e. there is a compensation of the singularities of the R,,.
There is a regularization R, of Ry = dd°(AaS|u,) — (AaTju, — AaO|v,, ) Which satisfies supp R, ¢ is
a compact in U, and Za R, ¢ is uniformly bounded in X. We write in U, a homotopy formula

which is only a differential (g, q)-form with L

loc

Ra,e = ddCSa,a + Va,s

and then we decompose Vi . = (AaT)e — (Aa©): where (AT')e > 0 is of class C* with compact support
in U, and weakly converging to A\,7 in U,,.
Since (AqT)e > 0, we arrive in such a way at

T.>0 - Z(AQG)E + smooth term

thus the negative part of 7. is uniformly bounded in X i.e. there is constant C' such that 7. > —Cw?,
where w is a Kahler metric on X.
When Z is an effective algebraic cycle of X of codimension ¢, since

lim [ (T. + Cw?) A [Z] Aw" ™2 = lim, (T} + C{wY ) A Z} A {w)n—2e

e—0t Jx e—0

is finite, there is a sequence ¢; 2 0 such that TE” 7 is weakly converging in Z. Then the sequence
fX T., N0 is convergent for each ¢ = i,v where i : Z — X is the natural injection and v is a smooth
differential form of bidimension (g, q) in Z.

So we have a version in any bidegree (g, ¢) of the Demailly regularization theorem (see [1]).

Proposition 1. There is a sequence of smooth differential (g, q)-forms T; weakly converging in X to T
and satistying T; > —Cw? for all j, where C' is a constant and w Is a Kahler metric on X.
Proof. We can assume that T = [Z] where Z is an effective algebraic cycle of X of dimension p =n —q.

We denote by A : X — X the blowing up of X along Z. When 6 is a (p,p)-current in X, the
intersection number
/[Z]/\G:/~ AN [Z) AN (2)
b's

is well defined. In fact, \*6 is a current in X by [11] and A\*[Z] = [H] A 7y, where H is the exceptional
divisor in X and + is a smooth closed differential (¢ — 1,q — 1)-form in X. Then [H] A \*6 is defined by
division of distributions.

We consider the vector space W = {(p, p)-currents 6 in X of order 0 with sing supp 8 C Z}, in other
words 6 € W when 0 = 0. + bsing Where 01, is with LlloC coefficients in X and smooth in X \ Z while
Osing is with measure coefficients and supp bsing C Z. In particular W O D), ,(X) with D), ,(X) the space
of smooth differential (p, p)-forms in X and W = D,, ,(X) if the topology of W is given by setting 6; — 6
in W when 0; converges to 6 for the weak topology of currents of order 0 in X and 6;x\z converges to
0)x\z for the C* topology in X \ Z.

On the one hand we set L(faps) f  Oans which is possibly infinite and always equal to limj f , 0; for
a sequence of differential (p,p)-forms 0; with L] _ coefficients in X converglng to 6 for the L topology

loc loc
and such that 6 is L, for each j. On another hand we set L(fsing) = [y[Z] A bsing as being the

loc



previous intersection number. We claim the existence of a family of smooth closed differential forms 7.
of type (¢,¢) in X such that L(6) = lim._,o+ [, T- A6 for all § € W.

In fact, if for each sequence of smooth closed differential forms T} of type (g, ¢) in X, there is an
element § € W such that lim; [, T; A 6 # L(0), there would be thanks to [12] an element 6 € W such
that L(#) = 1 and 6 is d-exact in X. Since L(#) is finite, L(0aps) is finite too and thus it can be calculated
by the formula (2). So L(f) can be calculated by the same formula, which implies L(f) = 0 since 0 is
d-exact in X. This is a contradiction.

We prove now that the negative part of 7% is bounded. With g > 0 any L{. . function in X smooth in
X \ Z and with a4, ..., a, any set of differential (1,0)-forms smooth in X, we take 6 = gias AG1 A ... A
iapy A 0. Then

lim gL Niog ANaip A ..o Ny, Ay, :/gial ANag A ..o Niog, ANay, > —00
e—0t b'e A

implies that the negative part of T, Aiay Aoy A ... Aoy, A Qp, which is weakly converging in X to 0, is
bounded. So there exists a constant C' > 0 such that 7T, > —Cw?. B

2. Regularization of closed positive currents on a projective manifold

Let X be a connected projective complex manifold with dim X = n and let C,(X) be the space of
algebraic cycles on X of dimension p = n —¢q. We consider the closed positive (g, ¢)-current T' = [Z] with
Z € Cp(X).

Let 7 : {continuous differential forms of type (p,p) on X} — {continuous functions on C,(X)} be the
integral transformation defined by

Z(0)(2) = /Z9 = ([2],0) = (32,2(0)) = (('T)(92),0) < [2] = ('T)(d2)

where §z denotes the Dirac measure at the point Z € C,(X) (see [5]). As pointed out by Jean-Pierre
Demailly, this formula gives a natural way to approximate closed positive currents on X (see [9]).

Let M be the connected component of Z in Cp,(X) and let x; be a sequence of non negative smooth
functions on C,(X), with support in M and weakly converging on C,(X) to the Dirac mass dz. We
decompose x; = o + 8; on M where (*Z)(8;) =T} is C° on X and where o; — 0 weakly. In fact, let S
be the set of distributions u orthogonal to the x such that (‘Z)(x) is C°. We take «; such that

/Xjuz/ajuforallues
M M

and «; uniformly bounded = | [}, xju| bounded for all uw € S. To describe the elements u € S, we
counsider a (p,p)-current 6 in X of order 0 and we calculate the intersection number

D000 =tim [ (D)0 70 = tim [ (6,

by means of a regularization 6. of . If (*Z)(x) is of class C°, it is equal to [,, xZ(#) and we obtain the
condition [, xu = 0 where u = Z(0) — lim. Z(6.). But Z(6) is obtained from 6 by means of a double
fibration



i.e. Z(0) = ¢.p*0. The direct image 1), is weakly continuous, while the inverse image ¢* is not necessarily
weakly continuous, since ¢ is not necessarily a submersion. We can only say that there is a proper algebraic
subset A C X such that T'\ ¢~ 1(4) % X \ A is a submersion. Note that ¢*# is defined by flatification
and by applying the existence due to Poly of the inverse image by blowing up. Then the distribution

u = th.p*(140)

is of order 0 and not necessarily equal to 0. But we can assume that x; > 0 satisfies the supplementary
condition | [}, x;u| bounded. In fact, this implies the condition |u(Z)| < C [, |ul.

As a conclusion Tj is a closed C° differential form that converges weakly to [Z] on X. Moreover we
have T; > —C(*Z)(1).

If the cohomology class {Z} of Z in X contains a smooth closed differential (g, g)-form © > 0, then
(*Z)(1) is continuous in X (see [10]).

In the general case © > wa‘qX for some constant C' > 0 and w the Fubini-Study differential (1,1)-
form in Py. We approximate [Z] + C’wqu by algebraic cycles Y with real coefficients such that {Y'} >0
(see [2]). If C is large enough, we can assume Y with positive coefficients. First we approximate [Y] by
smooth closed differential (g, ¢)-forms with bounded negative part, then we obtain a closed regularization
T; of [Z] of type (g, ¢) with bounded negative part.

2.1. Skoda potential of a closed positive current of X

For T a closed positive (g, g)-current on X with ¢ = n — p, we now express the Skoda potential U
associated to T' by means of the Chow transform C(7"), which is obtained by integrating 7" on the effective
algebraic cycles of X of dimension g — 1 i.e. C(T) is obtained from T by means of the double fibration

I

¥ P
v N\
C,_

X q I(X)

with ' C X x Cy_1(X) the incidence manifold.

We denote by j : X < P(V) an embedding of X into P(V) = Py and by p : G(p + 1,V*) --»
Cyq—1(X) the induced meromorphic map from the Grassmannian to the cycle space, which associates
c=XNPker \g)N...N P(ker \,) to a subspace vect(Ao,...,A\,) € G(p+1,V*) =G(q,V) = Gg—1,n.
Here P(ker );) is the projective subspace of Py defined by the linear equation \; = 0.

We consider the irreducible component M of the cycles ¢ = XNP(ker Ag)N...NP(ker \,) in Cy—1(X).
Denote by djs the dimension of M and by d = dp; —p — 1 the dimension of a generic fiber of ¢ restricted
to Y~ H(M). We set Q = 1), (wqu) with w the Fubini-Study form on Py (see [13]).

With A the positive smooth differential (d, d)-form equal to Q9 ~P=! on M, we define on X the
(1,1)-current

Ty = " (AN C(T) 1) = ut" (AN (™) 1)

which is an integral transform of 7T'.

Proposition 2. The closed positive (1,1)-current Ty on X satisfies Ty = § + dd°U with U the Skoda
potential associated to T and 8 a closed smooth differential (1,1)-form on X. Thus we have the equalities
(i) B = @up*(ANC(O)pr) if T is cohomologous to © smooth on X,
(ii) v(T1, ) = Cpv(T, x) for the Lelong numbers at each point x € X with a constant C; depending
on M only.



Proof. By writing T'= O + dd°S, we have
C(T)|M = C(@)|M + ddCC(S)|M

with C(S)(c) = [y SA[d and [¢] = [X NPy_p_1] = wlp;l + dd®y. the integration current associated to
a cycle c € M. In other words 7. is a Green form in X of the cycle ¢. Up to a smooth function of ¢, we
have C(S)(c) = [y T A .. To calculate the Lelong numbers of U, we can replace U(z) by

/XT/\(/CEM 704,

cdx

When y € X varies, to calculate dyd [ecu Ye(y)2? we are reduced to calculate [cca [c](y)Q9. But
cox

cox

_ _ d
([ @ = [ Xnsue. =k [ dwe
sDx sdx cSz
where @, is a volume form on {s € G(¢,V),s > z} and K is a constant, since the volume of {s €
G(q,V),s 2 x and X Ns = ¢} does not depend on (¢, z) such that ¢ 3 . So the conclusion relies on the

calculation of [.ca.v)[s](y)®, that is to say on the case of the Skoda potential for Py = P(V). B
sox

2.2 Irreducible components of the singular locus for a divisor of X

We give here a bound for the degree of an irreducible component of the singular locus of divisor,
similar to those of [1, 6].

Let D = s71(0) be an effective divisor in X where s € HY(X, L) with a holomorphic line bundle
L=0(D).

For k € N, we denote by J*s € H°(X, J*L) the holomorphic section of k-jets of s. We consider the
strictly decreasing sequence EgDFE1D ... DFE,, of algebraic subsets of D defined by

E={J"1s=0}=...={J" s =0}

for 1 <1 < mand by By = {J% = 0} = ... = {Jko71s = 0}, where 1 < ko < ... < k,, and
{Jkms =0} = () while {J¥n~1s =0} # 0.

In other words, on E; \ Ej41, the multiplicity of D is k; for 0 <! < m —1 and on E,, the multiplicity
of D is k. So the sequence 1 < kg < ... < ky, is the sequence of different multiplicities of D.

We set d; = dim Ej in such a way that dy > dy > ... > d,, with dg =n — 1 and n = dim X.

Let C be an irreducible component of E; of dimension d; which is not contained in Ej;;. Since
C = C\ (CNEj;1), the generic multiplicity of D along C is equal to k;. Note that if C' C Ej4q, then
dl = dl+1.

The integration current of bidimension (d;, d;) in X associated to the algebraic cycle of dimension d;
in X defined by J¥-1s € H°(X, J¥-1L) can be written

Z v(JM=15,C)[C] + Z v(Jki-1s,C)[C]

CZE;+1 CCEj41
with v(J*-1s,C) the generic multiplicity of J*¥-1s along C. Its cohomology class in X is equal to

enea,(J" L) = g, (F1)



where F; is the coherent sheaf in X of generic rank equal to rank(J*-1 L) — 1, whose dual 7 is the sheaf
of germs of holomorphic sections of (J¥-1L)* equal to 0 on J*-1s.

Proposition 3. If the Chern class ¢,—q,(F;) is > 0 in X, then we have the following inequality

Z v(JF=15,CY{C} < g, (J¥1L)
CZE; 11

for the cohomology classes of bidimension (d;,d;) in X.
We use a C* isomorphism J*¥L ~ @Ogjgk(SjT*X ® L), which gives the equality

c(J'L) = [] «s’T* X @ L)
0<j<k

for the total class Chern of J*L on X. Lastly recall that for E a holomorphic vector bundle of rank r on
X, we have the equality

(E@L)= > (1+a(l) "en(E)

o<m<r

since L is of rank 1. In such a way c,_gq, (J*~1L) becomes a polynomial in c;(L) of degree n — d; and
whose coefficients depend only on the Chern classes of the SIT*X.

3. Extension to Py of closed (¢, ¢)-currents in X

Let X be a closed complex submanifold in Py of dimension n and let ig : X — Py be the canonical
injection. Let T be a closed smooth differential form on X of bidimension (p,p) with p =n —q.

Proposition 4. There is a closed (q, q)-current S on Py having a restriction S|x equal to T', that is to
say such that, for all smooth differential (p,p)-forms u in X, the current S has an intersection number
with the direct image ig.u in Py equal to the intersection number of T with u in X.

Proof. Since every closed (g, q)-current on Py is a weak limit of algebraic cycles of codimension ¢, we
search

5= [A]u(A)
AeCn_4(PN)

for some distribution p on the cycle space Cy_,(Px). This can be written S = (*R)(u) where
R : DN—gN—q(PN)=CZ(Cn—¢(Pn))

is the Radon transform obtained by integration on the algebraic cycles of dimension N — gq.

We define the intersection number [, S Adgsu = lim; [ S A @;(u) for some sequence ¢;(u) of
smooth differential (N — ¢, N — ¢)-forms in Py weakly converging in Py to igsu. Then this number can
be expressed as being

lim HR(5(u)) (3)
T JON—q(PN)
and we can choose  in order to obtain [ + T Awu for each smooth differential (p,p)-form v in X. In fact,
we define a closed (g, ¢)-current T in X by lim; Jen_ ( pR(pj(u) = [y T Au and we can force T = T.
|

PN)

So the Proposition 4 can be stated in the following way.



Proposition 5. There is a transform ¢; : Dy, ,(X) = Dn_g,n—q(Pn) satisfying : ¢;(u) converges weakly
in Py todo.u and [, SA@j(u) = [T Au when j — oo.

Proof. For each smooth differential (p, p)-form u in X, we choose a sequence ¢;(u) weakly converging in
Py to ig.u, such that if u ¢ Im O+Im 9, there is no sequences v; and w; of smooth differential forms such
that o;(u) — Ov; — Ow; — 0 for the C°° topology. Then S is a continuous linear form on Dy_g v—q(Pn)
equal to 0 on Im & + Im 0 and equal to fX T Awon limj@;(u). B

3.1. Case X =Pyn_1 C Py

The existence of S can also be seen as a consequence of an integral representation formula of Bochner-
Martinelli type in Py \ X, for ¢ € Dn_g,n—q(Pn).

For example let us assume that X = Py_1, in such a way that Py \ X = CN and let us write the
integration current [Dew] on the diagonal Den of CV x CV as being

[Dew] = dd°K

with K(w,w’) = — (N—11)2N (dﬁ;‘liyi;ﬁ};(‘ﬁ)j;l for (w,w’) € CN x CV (see [3, 7]). The integral kernel K has

Ll . coefficients in CV x C¥ in other words w — K (w,.), which is with values in the space of differential
forms L], in CV, is L]  with respect to w € CV.

For w € CV, we define the potential
Utw) = [ Kww)rpw)
w’ECN

which is a differential (N — ¢ — 1, N — ¢ — 1)-form with L _ coefficients in CV. In effect, by writing
© = p1 — o with each p; smooth positive, we can assume that ¢ is smooth positive of bidimension (g, q)
in Py. Then by writing ¢ < Cw™ 9 for some constant C' > 0, this local integrability is a consequence of

the following result.

Proposition 6. For ¢ a closed positive current of bidimension (g,q) in Py, the potential U is L _ in
CcN.
Proof. With 7 = ¢cn A (500||w'||?)?/q! the trace measure of g|c~, we use the Fubini formula

Lo r(w')
Sy [T [ ke
/|w|<R0(2 ” ” ) / w’€CN ||w_w/H2(N_l) w’eCN ( 0 )T( )

with a function k(Ro,w’) = || (300]1wll®) "/ Nt

llwll<Ro W equal to CR8N||'IUI||72N+2 when ||w/|| > RO.

Then we express

+oo
[ W) = [
w’[|>Ro r=Rg
with .
T C
M= [ ) = Trttueen, 0+ [ e a(ddlog )7
flw’||<r q o<|jw||<r

Note that (dd®log|lw’[)? = o*(w?)cy with Py ~\ {[1,0,...,0]} 5 Py_; the orthogonal projection.
Since ¢ A 0*(w?) is known to be defined in Py whole, we have M(r) = O(r??) when r — +oco. So
k(Ro,w")T(w') is convergent and U(w) is a differential (N — ¢ — 1, N — ¢ — 1)-form with L{

f”w/”>RO loc

coefficients in ||w| < Ry. W



To see that U is not with L?

loc

(390|w|*)™ /N T(w’) B , .
Jocen T TP e T = [ E0700)

(509||w|*)™ /N!
€CN Jlw—w' [PV =D (1+]|w]|?

+oo
[l = [ e
lw’l|>Ro r=Ryo

with M(r) ~ Kr?? when r — +o0. )
But U extends as a (N —q—1,N — ¢ — 1)-current U in Py. In fact, assume that Py_; is given by
Xo = 0 in the homogeneous coordinates X; associated to the basis (e, ...,en) of CN+1. In such a way

wj:))g—zforeachlngN. ‘We have

coefficients in Py, we use again the Fubini formula

with a function k(w’) = fw
express

e < Cllw'[|727 for ||w'|| large enough. Then we

U = pry, (K A prs(pjev))
where K is an extension of K in Py x CV obtained by writing wj —w = ;g;ﬁi —wji = (X]/XZ;O/XEXO/XI)
for some 1 <1 < N such that X; # 0 and by applying the division theorem of Hérmander-Lojasiewicz.
When ¢ is again a smooth differential (N — ¢, N — q)-form in Py, we have in CV the equality

ddU = pry, (dd°K Apri(pjen)) — pry, (d°K A pri(dejen)) + pry, (K A pri(dpien))
+  pry, (K Aprs(ddpien))
which can be written as being
ey —dd°U = pry, (d°K A pry(dgjen)) — pro, (AE Aprs(dpjen)) — pro, (K A pr3(dd®pen)).
In the same way the residual (N — ¢, N — g)-current
R = —dd°U — {pry, (d°K A pr3(dpicn)) — pry. (dK A pri(dpien)) — pry, (K A prs(ddeen))}

is with support in Py_;.

Lemma 1. The currents X” R, X“ R and in the same way dX° AR, d%" A R are locally flat where X; # 0.

Proof. First the previous expressmn of R gives the formula

XO c XO > * XO o * c
X, R = X —¢ —dd°pry,( lK/\prz(SD\cN)) +pr1*(*Xl K A prs(dd®ppen))
X %/ 1cC c XO I *
+ d(*Xl ) Apry, (K Aprs(dpen)) —d (y) Apry, (K Apry(dgpen))

- dc( )A pry, (dK Apri(pen)) + d( )A pry, (A°K A prs(pen))
+ prl*(de Apry(dpien)) — prl*(deK A pry(dpien))-
Xl Xl
With w; = £+, we have the expression

K K00+wld( )/\K10+wld( )/\K01+|’U)l| d( )/\d( )/\Kll



where Koo K1,0,Ko,1,K1,1 are differential forms with coefficients which are LllOC in Py x CN.
In fact, K (w,w") is proportional to

lw — w2V ST (dwy — dwh) A A (dwy — dw)) A A (dwy — dwly)
1<j<N

A(dTy — dT) A ... A (di; — d)) A .. A (dTx — dTy)

and when we calculate U(w) we need the component of K (w, w’) which is of bidegree (N—1—¢, N—1—gq)
in w and of bidegree (g, ¢) in w’. Therefore we have to consider terms of the type

—2N _ _
||w — w/|| 2 +2dw{1w’N}\jK A dw’K A dw{l,...,N}\jL AN d’wlL

where jK and jL are subsets of {1,..., N} with ¢ + 1 elements. For j # [, we write

d(E)  x;d(3)

dwj = —= — =
Ny
)
and dw; = — (Xfl)Q. So dwyy,... N\ jk can be written
Xy

smooth form  (smooth form) A d(%’)
(F2)N-1-a (Zo)N—q
X, 5

smooth form)ad(Foe
if jK contains [, while it can be written only ( %)

if 7K does not contain [. As a

(3N
conclusion we obtain terms of the type
B Ad(Xo) sAd(Z2)
llw — w'|| 2N 2dwhe A da, A @ X2 ) A QA Xy
Xo\N-1— Xo\N— Xo\N—1— Xo\N—
GOV G ) T @ @

where «, 8,7, are smooth differential forms. For U(w), we arrive at terms proportional to

d(Xe) d(3e) d(52) Ad(32)
! X Xi !
VaANyor VBAYA X or VaAd A % or VBAGSA X
Xl Yl X{
where we set
Vw) 1 / dw'e A dw), A (') / dyr A dyp, A o( {%60 t y})
w) = ————— =
BPV T Jyeon o= w2 fpeex T [w— gV

with ))%’w = (%, e ))((—ILV) When %’ — 0, the function V(w) has a finite limit equal to

/ dyK/\dyL/\QD(anlaJJN)
yeCN

1G53~y

By similar formulae, we prove that %R and % A R as well as dy& A R are locally flat in the sense of
l 1
Federer, where X; # 0. B



Note that ))g—fl’cp, %’cp and dTXl“ Np = w as well as % A ¢ have no components along Py _1.

By the structure theorem of Federer, we can write %R = ig«v with ig the injection Py_; — Py
where v is some current of bidimension (g, q) in Px_1. So there is a current u of bidimension (g, ¢) in

Px—1 such that R = ¢g,u modulo a current annihilated by f(—(; and % By the second part of the Lemma
L
1, we obtain

. X =, Xi
R=igsu+0(=)ANa+0(=—)Ab
0wt AT N+ D)
where a, b are some currents in the coordinates %, ce ))((—IOV Since OR, = Ra, and 5R<p = ng neces-

sarily we have a = 0 = b and we can write R = R, = i.u, where u, = u is some current of bidimension
(¢,q) in Py_.
The extended (g, ¢)-current S of T to Py is obtained by setting

SAp= / T A ug (4)
Py Pn_1

for all smooth differential (N — ¢, N — ¢)-forms ¢ in Py. Since uq, = duy, we have that dS =0 in Py.
3.2. Cohomology classes contained in an algebraic hypersurface of X

The extended current S can be used to characterize the property that the cohomology class {T'} is
contained in an algebraic hypersurface of X.

Proposition 7. The cohomology class {T'} is contained in an algebraic hypersurface of X if and only if
the extended current S is of order 0 in Py.
Proof. If S is of order 0, then u is a measure and we can apply the Lebesgue-Nikodym decomposition
theorem f1 = fiaps + fsing- We define Sy = ("R)(ptans) and Sy = ("R)(psing), thus {So;x} = {So}|x. By
(3), we know that supp pging is independent of T', so it is an algebraic subset. In fact,

supp Using = {A € Cn—q(Pn), A non transverse to X'}
and we have an algebraic stratification ¥9 D ¥; D ... D ¥, with

X = {A S CN_Q(PN),dim(A ﬂX) >n—q+ Z}

for 0 <i<gand n=dim X. Since S can be restricted to X, we have Iy, =0 and we can decompose

H= Z ISRV
0<i<q—1

which gives S =Sy +S11+ ...+ 51,4—1. In other words A € ¥;\ ¥;41 < dim(ANX) =n — ¢+ ¢, thus

S1i= / [A]u(A)
AeX\Zit1

and we can calculate the restriction current in X by

Swx= [ M= [l
AEX\Xit1 AEX\Xit1
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where j : AN X — X is the natural injection and u is a closed (4,%)-current in A N X depending on A.
At the cohomological level we write

{S1ix} = (A)js{ul
AT \Zi41
and we use that the subspace of H?4(X) of the finite sums Y j.{u} is closed. In such a way, we obtain
that the cohomology class {1 ;/x } is contained in some AN X with A such that dim(ANX) =n —q+.
As a conclusion {5} is contained in an algebraic hypersurface of X.

Conversely, when the cohomology class {T'} is contained in an algebraic hypersurface of X, we write
T = i.r + dd°0 = (ddv) where ¢ : X N H < X is the canonical injection with H C Py an algebraic
hypersurface and where v is a differential (¢ — 1,¢ — 1)-form smooth in X \ X N H and L} _ in X such
that dd°v calculated generically is L, in X.

We extend v to Py by V a differential (¢ — 1,¢ — 1)-form L] in Py such that dd°V calculated
generically is L{ _ in Py. In fact, there is an open covering (U, ) of Py with a family (p,) of holomorphic
submersions p, : Uy, — X NU, such that p, xny, = idxnu,. When (Aa) is a smooth partition of the
unity subordinated to (Uy), we take V' =3 Xapj, (v xnv., )-

Then T' = S|x with S = (dd°V )= j.R+ dd°V where j : H < Py is the canonical injection and R is
a (¢ —1,q — 1)-current closed of order 0 in H. W

Without assuming S of order 0, for all B € G4 n, we can express, in a similar way to (4), the
intersection number of S and [B] as being

S A [B] :/ T/\w[B]
Py b'e
where wjp) is some current of bidimension (g,q) in X. When S is of order 0, this intersection number,
which can be calculated by Fourier transform (see [8]), is continuous with respect to B € G4 .

On another hand, there is a family of smooth differential (g, ¢)-forms S, weakly converging in Py to
S such that

/PN SA[B] = ngl/B S. = limJ(S.)(B)

with J : {continuous differential forms of type (¢q,q) on Py} — {continuous functions on G, n} the
Radon transformation defined for projective subspaces B in Py of dimension q. Then J(S:) converges
weakly in G4y to J(S), which is constant on G4 n, since S is closed. Thus for almost every B € G4 v,
we have
S A [B] = (deg S)(deg B) = deg S.
Py

When the cohomology class {T'} is contained in an algebraic hypersurface of X, we obtain the condition

Jx T ANwip) = (deg S)(deg B) = deg S for all B € Gy n.

Remark 1. We can give an explicit construction of S by using the King formula.

In fact, let Dp, be the diagonal in Py x Py, which can be written Dp, = f~1(0) where f is a holo-
morphic section of a Hermitian holomorphic vector bundle E over Py x Py. Then Dx = (f|XXx)*1(O)
and we have the expression

[Dx] = —(dd®log | F)fixxx)px +dd*y

for the integration current on Dy in X x X, where the differential (n —1,n — 1)-form ~ is L{. . in X x X
and smooth in (X x X)\ Dx. In Py x X, we define the closed (n,n)-current of order 0

K = —(dd®log || f[})jpy xx +dd°G

11



where G is an extension to Py x X of « obtained as in the proof of the Proposition 7.

We denote by m : Py x X — Py and by me : Py x X — X the natural projections and we set
Ey = m1.(K A w3T) which is a closed (g, g)-current of order 0 in Py. Now we calculate the intersection
number

/ EO/\iO*u:/ IC/\win*qu;T:/ KAX x X]Arja AT
Py Py xX Py xX

where u is a smooth extension of the smooth differential form u to Py.
In view to express the current [X x X] = 77 [X] in Py x X, we write X = {P; = 0} with (P;) a finite
|P; () |?
i ij [

family of homogeneous polynomials on CV*! and m; = deg P; for each j. We set p([z]) =
which satisfies X = p~1(0) in Py and
(ddep)N

c \N—n
_ o A—(N—n)_(dd°p)
(X =9 2N-n(N —n) )\lggh{/\p 2N-(N — n)}

with 4, the distribution which is the residue at the pole —(N —n) of the meromorphic map C 3 A — o
We define in Py X X the current product of closed currents

L (ddep)N

KA [X X X] = (6pO7T1)IC/\7T1(m)

which is closed too and annihilated by the P; o m; and their conjugates. With

L e,
D ) e

a= dc(
we have —(dd°log ||f||)|TPN><X = da and we set actually
—(0p 0 m)(dd"log [ fI)py xx = d((0, 0 m1)ax) — d(dp 0 m1) Acx
where the products with « are obtained by the division theorem. Otherwise we have

— (0 0 m)(ddlog | f)ffpyxx = = lim A(po )N (dd Log || £ v x

where —(dd®log || f||)jp, x x is the direct image by a blowing up of a closed smooth differential form and

the weak limit when A — 07 is calculated thanks to the Bernstein equation.
So there is a closed (n,n)-current £ in Py x X such that supp (£;xxx) = Dx and

KAX x X]=i([Dx] = Lixxx)

with i : X x X — Py x X the natural injection. The order of L is not equal to 0, because the codimension
of the polar set changes by blowing up. In such a way we can express the restriction

Eoix =T — (mxxx)+ (Lixxx A (T21xxx)*T).

Therefore we take S = 71, ((K + £) A m3T) which satisfies S|x = T in the sense of the Proposition 4.
Lastly the differential form wu,, is given by u, = mo, ((K + £) A 75 ¢).
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