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Abstract In this note we extend to any bidimension (p, p) the Demailly theorem of regularization of
closed positive (1, 1)-currents on a compact Kähler manifold X of dimension n. When the manifold X is
projective, we get explicitly a closed regularization with bounded negative part, constructed by using the
space Cp(X) of effective algebraic cycles of X of dimension p. This space can be injected in the space of
divisors of Cn−p−1(X) and we arrive at an intrinsic construction of the Skoda potential associated with a
closed positive current of X. On another hand, in the case of a divisor D of X, we give an explicit bound
for the degree of an irreducible component of the singular locus Dsing, involving the geometry of X. Lastly
when X is embedded in the projective space PN , we prove the existence of a closed current extending in
the generalized sense a given closed current of X, by using here a space of cycles. As an application, we
obtain a characterization of the cohomology classes contained in some algebraic hypersurface of X.

Keywords: Chern classes, Closed positive current, Cycle space, Intersection number, King formula,
Radon transform
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1. Regularization of closed positive currents on a compact Kähler manifold

Let T be a closed positive (q, q)-current on a compact Kähler manifold X of dimension n. We use the
writing

T = Θ + ddcS

where Θ is a C∞ differential (q, q)-form closed in X and S is a differential (q − 1, q − 1)-form with L1
loc

coefficients in X, such that ∂S and ∂S are with L1
loc coefficients in X.

Let (Uα) be a finite covering of X with open sets of coordinate maps and let (λα) be a C∞ partition of
the unit subordinate to (Uα). Let Sα,ε be a smooth differential (q− 1, q− 1)-form with compact support
in Uα, weakly converging in Uα to λαS|Uα = λαS when ε→ 0+. We set

T̃ε = Θ + ddc(
∑
α

Sα,ε)

which is a differential (q, q)-form of class C∞ closed in X, weakly converging in X to T when ε → 0+.
First we have

T̃ε = Θ +
∑
α

(λαT − λαΘ)ε +
∑
α

(
ddcSα,ε − (λαddcS)ε

)
.

When the index α is fixed, ddcSα,ε − (λαddcS)ε converges weakly in Uα to

Rα = ddc(λαS|Uα)− λα(ddcS|Uα),
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which is only a differential (q, q)-form with L1
loc coefficients in Uα (see [4]). But when α varies, the relation∑

α

Rα = 0 (1)

is satisfied i.e. there is a compensation of the singularities of the Rα.
There is a regularization Rα,ε of Rα = ddc(λαS|Uα)− (λαT|Uα − λαΘ|Uα) which satisfies supp Rα,ε is

a compact in Uα and
∑
αRα,ε is uniformly bounded in X. We write in Uα a homotopy formula

Rα,ε = ddcSα,ε + Vα,ε

and then we decompose Vα,ε = (λαT )ε − (λαΘ)ε where (λαT )ε ≥ 0 is of class C∞ with compact support
in Uα and weakly converging to λαT in Uα.

Since (λαT )ε ≥ 0, we arrive in such a way at

T̃ε ≥ Θ−
∑
α

(λαΘ)ε + smooth term

thus the negative part of T̃ε is uniformly bounded in X i.e. there is constant C such that T̃ε ≥ −Cωq,
where ω is a Kähler metric on X.

When Z is an effective algebraic cycle of X of codimension q, since

lim
ε→0+

∫
X

(T̃ε + Cωq) ∧ [Z] ∧ ωn−2q = lim
ε→0+

∫
X

({T̃ε}+ C{ω}q) ∧ {Z} ∧ {ω}n−2q

is finite, there is a sequence εj
>→ 0 such that T̃εj |Z is weakly converging in Z. Then the sequence∫

X
Tεj ∧ θ is convergent for each θ = i∗v where i : Z → X is the natural injection and v is a smooth

differential form of bidimension (q, q) in Z.
So we have a version in any bidegree (q, q) of the Demailly regularization theorem (see [1]).

Proposition 1. There is a sequence of smooth differential (q, q)-forms Tj weakly converging in X to T
and satisfying Tj ≥ −Cωq for all j, where C is a constant and ω is a Kähler metric on X.
Proof. We can assume that T = [Z] where Z is an effective algebraic cycle of X of dimension p = n− q.

We denote by λ : X̃ → X the blowing up of X along Z. When θ is a (p, p)-current in X, the
intersection number ∫

X

[Z] ∧ θ =

∫
X̃

λ∗[Z] ∧ λ∗θ (2)

is well defined. In fact, λ∗θ is a current in X̃ by [11] and λ∗[Z] = [H] ∧ γ, where H is the exceptional
divisor in X̃ and γ is a smooth closed differential (q − 1, q − 1)-form in X̃. Then [H] ∧ λ∗θ is defined by
division of distributions.

We consider the vector space W = {(p, p)-currents θ in X of order 0 with sing supp θ ⊂ Z}, in other
words θ ∈ W when θ = θabs + θsing where θabs is with L1

loc coefficients in X and smooth in X \ Z while
θsing is with measure coefficients and supp θsing ⊂ Z. In particular W ⊃ Dp,p(X) with Dp,p(X) the space

of smooth differential (p, p)-forms in X andW = Dp,p(X) if the topology ofW is given by setting θj → θ
in W when θj converges to θ for the weak topology of currents of order 0 in X and θj|X\Z converges to
θ|X\Z for the C∞ topology in X \ Z.

On the one hand we set L(θabs) =
∫
Z
θabs which is possibly infinite and always equal to limj

∫
Z
θj for

a sequence of differential (p, p)-forms θj with L1
loc coefficients in X converging to θ for the L1

loc topology
and such that θj|Z is L1

loc for each j. On another hand we set L(θsing) =
∫
X

[Z] ∧ θsing as being the
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previous intersection number. We claim the existence of a family of smooth closed differential forms Tε
of type (q, q) in X such that L(θ) = limε→0+

∫
X
Tε ∧ θ for all θ ∈ W.

In fact, if for each sequence of smooth closed differential forms Tj of type (q, q) in X, there is an
element θ ∈ W such that limj

∫
X
Tj ∧ θ 6= L(θ), there would be thanks to [12] an element θ ∈ W such

that L(θ) = 1 and θ is d-exact in X. Since L(θ) is finite, L(θabs) is finite too and thus it can be calculated
by the formula (2). So L(θ) can be calculated by the same formula, which implies L(θ) = 0 since θ is
d-exact in X. This is a contradiction.

We prove now that the negative part of Tε is bounded. With g ≥ 0 any L1
loc function in X smooth in

X \Z and with α1, . . . , αp any set of differential (1, 0)-forms smooth in X, we take θ = giα1 ∧ α1 ∧ . . . ∧
iαp ∧ αp. Then

lim
ε→0+

∫
X

gTε ∧ iα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp =

∫
Z

giα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp > −∞

implies that the negative part of Tε ∧ iα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp, which is weakly converging in X to 0, is
bounded. So there exists a constant C ≥ 0 such that Tε ≥ −Cωq. �

2. Regularization of closed positive currents on a projective manifold

Let X be a connected projective complex manifold with dim X = n and let Cp(X) be the space of
algebraic cycles on X of dimension p = n− q. We consider the closed positive (q, q)-current T = [Z] with
Z ∈ Cp(X).

Let I : {continuous differential forms of type (p, p) on X} → {continuous functions on Cp(X)} be the
integral transformation defined by

I(θ)(Z) =

∫
Z

θ = 〈[Z], θ〉 = 〈δZ , I(θ)〉 = 〈(tI)(δZ), θ〉 ⇔ [Z] = (tI)(δZ)

where δZ denotes the Dirac measure at the point Z ∈ Cp(X) (see [5]). As pointed out by Jean-Pierre
Demailly, this formula gives a natural way to approximate closed positive currents on X (see [9]).

Let M be the connected component of Z in Cp(X) and let χj be a sequence of non negative smooth
functions on Cp(X), with support in M and weakly converging on Cp(X) to the Dirac mass δZ . We
decompose χj = αj + δj on M where (tI)(δj) = Tj is C0 on X and where αj → 0 weakly. In fact, let S
be the set of distributions u orthogonal to the χ such that (tI)(χ) is C0. We take αj such that∫

M

χju =

∫
M

αju for all u ∈ S

and αj uniformly bounded ⇒ |
∫
M
χju| bounded for all u ∈ S. To describe the elements u ∈ S, we

consider a (p, p)-current θ in X of order 0 and we calculate the intersection number∫
X

(tI)(χ) ∧ θ = lim
ε

∫
X

(tI)(χ) ∧ θε = lim
ε

∫
M

χI(θε)

by means of a regularization θε of θ. If (tI)(χ) is of class C0, it is equal to
∫
M
χI(θ) and we obtain the

condition
∫
M
χu = 0 where u = I(θ) − limε I(θε). But I(θ) is obtained from θ by means of a double

fibration
Γ

ϕ

↙
ψ

↘
X M
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i.e. I(θ) = ψ∗ϕ
∗θ. The direct image ψ∗ is weakly continuous, while the inverse image ϕ∗ is not necessarily

weakly continuous, since ϕ is not necessarily a submersion. We can only say that there is a proper algebraic

subset A ⊂ X such that Γ \ ϕ−1(A)
ϕ→ X \ A is a submersion. Note that ϕ∗θ is defined by flatification

and by applying the existence due to Poly of the inverse image by blowing up. Then the distribution

u = ψ∗ϕ
∗(1Aθ)

is of order 0 and not necessarily equal to 0. But we can assume that χj ≥ 0 satisfies the supplementary
condition |

∫
M
χju| bounded. In fact, this implies the condition |u(Z)| ≤ C

∫
M
|u|.

As a conclusion Tj is a closed C0 differential form that converges weakly to [Z] on X. Moreover we
have Tj ≥ −C(tI)(1).

If the cohomology class {Z} of Z in X contains a smooth closed differential (q, q)-form Θ > 0, then
(tI)(1) is continuous in X (see [10]).

In the general case Θ ≥ −Cωq|X for some constant C ≥ 0 and ω the Fubini-Study differential (1, 1)-

form in PN . We approximate [Z] + Cωq|X by algebraic cycles Y with real coefficients such that {Y } ≥ 0

(see [2]). If C is large enough, we can assume Y with positive coefficients. First we approximate [Y ] by
smooth closed differential (q, q)-forms with bounded negative part, then we obtain a closed regularization
Tj of [Z] of type (q, q) with bounded negative part.

2.1. Skoda potential of a closed positive current of X

For T a closed positive (q, q)-current on X with q = n − p, we now express the Skoda potential U
associated to T by means of the Chow transform C(T ), which is obtained by integrating T on the effective
algebraic cycles of X of dimension q − 1 i.e. C(T ) is obtained from T by means of the double fibration

Γ
ϕ

↙
ψ

↘
X Cq−1(X)

with Γ ⊂ X × Cq−1(X) the incidence manifold.
We denote by j : X ↪→ P (V ) an embedding of X into P (V ) = PN and by ρ : G(p + 1, V ∗) 99K

Cq−1(X) the induced meromorphic map from the Grassmannian to the cycle space, which associates
c = X ∩ P (ker λ0) ∩ . . . ∩ P (ker λp) to a subspace vect(λ0, . . . , λp) ∈ G(p+ 1, V ∗) = G(q, V ) = Gq−1,N .
Here P (ker λi) is the projective subspace of PN defined by the linear equation λi = 0.

We consider the irreducible component M of the cycles c = X∩P (ker λ0)∩. . .∩P (ker λp) in Cq−1(X).
Denote by dM the dimension of M and by d = dM − p− 1 the dimension of a generic fiber of ϕ restricted
to ψ−1(M). We set Ω = ψ∗ϕ

∗(ωq|X) with ω the Fubini-Study form on PN (see [13]).

With A the positive smooth differential (d, d)-form equal to ΩdM−p−1 on M , we define on X the
(1, 1)-current

T1 = ϕ∗ψ
∗(A ∧ C(T )|M

)
= ϕ∗ψ

∗(A ∧ (ψ∗ϕ
∗T )|M

)
which is an integral transform of T .

Proposition 2. The closed positive (1, 1)-current T1 on X satisfies T1 = β + ddcU with U the Skoda
potential associated to T and β a closed smooth differential (1, 1)-form on X. Thus we have the equalities

(i) β = ϕ∗ψ
∗(A ∧ C(Θ)|M ) if T is cohomologous to Θ smooth on X,

(ii) ν(T1, x) = CMν(T, x) for the Lelong numbers at each point x ∈ X with a constant CM depending
on M only.
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Proof. By writing T = Θ + ddcS, we have

C(T )|M = C(Θ)|M + ddcC(S)|M

with C(S)(c) =
∫
X
S ∧ [c] and [c] = [X ∩ PN−p−1] = ωp+1

|X + ddcγc the integration current associated to

a cycle c ∈ M . In other words γc is a Green form in X of the cycle c. Up to a smooth function of c, we
have C(S)(c) =

∫
X
T ∧ γc. To calculate the Lelong numbers of U , we can replace U(x) by∫

X

T ∧
(∫

c∈M
c3x

γcΩ
d
)
.

When y ∈ X varies, to calculate dydcy
∫
c∈M
c3x

γc(y)Ωd we are reduced to calculate
∫
c∈M
c3x

[c](y)Ωd. But

(

∫
s∈G(q,V )
s3x

[s](y)Φx)|X =

∫
s∈G(q,V )
s3x

[X ∩ s](y)Φx = K

∫
c∈M
c3x

[c](y)Ωd

where Φx is a volume form on {s ∈ G(q, V ), s 3 x} and K is a constant, since the volume of {s ∈
G(q, V ), s 3 x and X ∩ s = c} does not depend on (c, x) such that c 3 x. So the conclusion relies on the
calculation of

∫
s∈G(q,V )
s3x

[s](y)Φx that is to say on the case of the Skoda potential for PN = P (V ). �

2.2 Irreducible components of the singular locus for a divisor of X

We give here a bound for the degree of an irreducible component of the singular locus of divisor,
similar to those of [1, 6].

Let D = s−1(0) be an effective divisor in X where s ∈ H0(X,L) with a holomorphic line bundle
L = O(D).

For k ∈ N, we denote by Jks ∈ H0(X, JkL) the holomorphic section of k-jets of s. We consider the
strictly decreasing sequence E0⊃E1⊃ . . .⊃Em of algebraic subsets of D defined by

El = {Jkl−1s = 0} = . . . = {Jkl−1s = 0}

for 1 ≤ l ≤ m and by E0 = {J0s = 0} = . . . = {Jk0−1s = 0}, where 1 ≤ k0 < . . . < km and
{Jkms = 0} = ∅ while {Jkm−1s = 0} 6= ∅.

In other words, on El \El+1, the multiplicity of D is kl for 0 ≤ l ≤ m− 1 and on Em the multiplicity
of D is km. So the sequence 1 ≤ k0 < . . . < km is the sequence of different multiplicities of D.

We set dl = dim El in such a way that d0 ≥ d1 ≥ . . . ≥ dm with d0 = n− 1 and n = dim X.
Let C be an irreducible component of El of dimension dl which is not contained in El+1. Since

C = C \ (C ∩ El+1), the generic multiplicity of D along C is equal to kl. Note that if C ⊂ El+1, then
dl = dl+1.

The integration current of bidimension (dl, dl) in X associated to the algebraic cycle of dimension dl
in X defined by Jkl−1s ∈ H0(X, Jkl−1L) can be written∑

C 6⊂El+1

ν(Jkl−1s, C)[C] +
∑

C⊂El+1

ν(Jkl−1s, C)[C]

with ν(Jkl−1s, C) the generic multiplicity of Jkl−1s along C. Its cohomology class in X is equal to

cn−dl(J
kl−1L)− cn−dl(Fl)

5



where Fl is the coherent sheaf in X of generic rank equal to rank(Jkl−1L)− 1, whose dual Fľ is the sheaf
of germs of holomorphic sections of (Jkl−1L)∗ equal to 0 on Jkl−1s.

Proposition 3. If the Chern class cn−dl(Fl) is ≥ 0 in X, then we have the following inequality∑
C 6⊂El+1

ν(Jkl−1s, C){C} ≤ cn−dl(Jkl−1L)

for the cohomology classes of bidimension (dl, dl) in X.
We use a C∞ isomorphism JkL '

⊕
0≤j≤k(SjT ∗X ⊗ L), which gives the equality

c(JkL) =
∏

0≤j≤k

c(SjT ∗X ⊗ L)

for the total class Chern of JkL on X. Lastly recall that for E a holomorphic vector bundle of rank r on
X, we have the equality

c(E ⊗ L) =
∑

0≤m≤r

(
1 + c1(L)

)r−m
cm(E)

since L is of rank 1. In such a way cn−dl(J
kl−1L) becomes a polynomial in c1(L) of degree n − dl and

whose coefficients depend only on the Chern classes of the SjT ∗X.

3. Extension to PN of closed (q, q)-currents in X

Let X be a closed complex submanifold in PN of dimension n and let i0 : X ↪→ PN be the canonical
injection. Let T be a closed smooth differential form on X of bidimension (p, p) with p = n− q.

Proposition 4. There is a closed (q, q)-current S on PN having a restriction S|X equal to T , that is to
say such that, for all smooth differential (p, p)-forms u in X, the current S has an intersection number
with the direct image i0∗u in PN equal to the intersection number of T with u in X.

Proof. Since every closed (q, q)-current on PN is a weak limit of algebraic cycles of codimension q, we
search

S =

∫
A∈CN−q(PN )

[A]µ(A)

for some distribution µ on the cycle space CN−q(PN ). This can be written S = (tR)(µ) where

R : DN−q,N−q(PN )→C∞
(
CN−q(PN )

)
is the Radon transform obtained by integration on the algebraic cycles of dimension N − q.

We define the intersection number
∫
PN S ∧ i0∗u = limj

∫
PN S ∧ ϕj(u) for some sequence ϕj(u) of

smooth differential (N − q,N − q)-forms in PN weakly converging in PN to i0∗u. Then this number can
be expressed as being

lim
j

∫
CN−q(PN )

µR
(
ϕj(u)

)
(3)

and we can choose µ in order to obtain
∫
X
T ∧ u for each smooth differential (p, p)-form u in X. In fact,

we define a closed (q, q)-current T̃ in X by limj

∫
CN−q(PN )

µR(ϕj(u)) =
∫
X
T̃ ∧u and we can force T̃ = T .

�
So the Proposition 4 can be stated in the following way.
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Proposition 5. There is a transform ϕj : Dp,p(X)→ DN−q,N−q(PN ) satisfying : ϕj(u) converges weakly
in PN to i0∗u and

∫
PN S ∧ ϕj(u)→

∫
X
T ∧ u when j →∞.

Proof. For each smooth differential (p, p)-form u in X, we choose a sequence ϕj(u) weakly converging in
PN to i0∗u, such that if u 6∈ Im ∂+Im ∂, there is no sequences vj and wj of smooth differential forms such
that ϕj(u)− ∂vj − ∂wj → 0 for the C∞ topology. Then S is a continuous linear form on DN−q,N−q(PN )
equal to 0 on Im ∂ + Im ∂ and equal to

∫
X
T ∧ u on limj ϕj(u). �

3.1. Case X = PN−1 ⊂ PN
The existence of S can also be seen as a consequence of an integral representation formula of Bochner-

Martinelli type in PN \X, for ϕ ∈ DN−q,N−q(PN ).
For example let us assume that X = PN−1, in such a way that PN \ X = CN and let us write the

integration current [DCN ] on the diagonal DCN of CN × CN as being

[DCN ] = ddcK

with K(w,w′) = − 1
(N−1)2N

(ddc‖w−w′‖2)N−1

‖w−w′‖2(N−1) for (w,w′) ∈ CN ×CN (see [3, 7]). The integral kernel K has

L1
loc coefficients in CN ×CN in other words w → K(w, .), which is with values in the space of differential

forms L1
loc in CN , is L1

loc with respect to w ∈ CN .
For w ∈ CN , we define the potential

U(w) =

∫
w′∈CN

K(w,w′) ∧ ϕ(w′)

which is a differential (N − q − 1, N − q − 1)-form with L1
loc coefficients in CN . In effect, by writing

ϕ = ϕ1−ϕ2 with each ϕi smooth positive, we can assume that ϕ is smooth positive of bidimension (q, q)
in PN . Then by writing ϕ ≤ CωN−q for some constant C ≥ 0, this local integrability is a consequence of
the following result.

Proposition 6. For ϕ a closed positive current of bidimension (q, q) in PN , the potential U is L1
loc in

CN .

Proof. With τ = ϕ|CN ∧ ( i2∂∂‖w
′‖2)q/q! the trace measure of ϕ|CN , we use the Fubini formula∫

‖w‖<R0

(
i

2
∂∂‖w‖2)N/N !

∫
w′∈CN

τ(w′)

‖w − w′‖2(N−1)
=

∫
w′∈CN

k(R0, w
′)τ(w′)

with a function k(R0, w
′) =

∫
‖w‖<R0

( i2∂∂‖w‖
2)N/N !

‖w−w′‖2(N−1) equal to CR2N
0 ‖w′‖−2N+2 when ‖w′‖ > R0.

Then we express ∫
‖w′‖>R0

‖w′‖−2N+2τ(w′) =

∫ +∞

r=R0

r−2N+2dM(r)

with

M(r) =

∫
‖w′‖<r

τ(w′) =
πq

q!
r2q{ν(ϕ|CN , 0) +

∫
0<‖w′‖<r

ϕ|CN ∧ (ddc log ‖w′‖)q}.

Note that (ddc log ‖w′‖)q = σ∗(ωq)|CN with PN r {[1, 0, . . . , 0]} σ→ PN−1 the orthogonal projection.
Since ϕ ∧ σ∗(ωq) is known to be defined in PN whole, we have M(r) = O(r2q) when r → +∞. So∫
‖w′‖>R0

k(R0, w
′)τ(w′) is convergent and U(w) is a differential (N − q − 1, N − q − 1)-form with L1

loc

coefficients in ‖w‖ < R0. �
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To see that U is not with L1
loc coefficients in PN , we use again the Fubini formula∫

w∈CN

( i2∂∂‖w‖
2)N/N !

(1 + ‖w‖2)q+1

∫
w′∈CN

τ(w′)

‖w − w′‖2(N−1)
=

∫
w′∈CN

k(w′)τ(w′)

with a function k(w′) =
∫
w∈CN

( i2∂∂‖w‖
2)N/N !

‖w−w′‖2(N−1)(1+‖w‖2)q+1 ≤ C‖w′‖−2q for ‖w′‖ large enough. Then we
express ∫

‖w′‖>R0

‖w′‖−2qτ(w′) =

∫ +∞

r=R0

r−2qdM(r)

with M(r) ' Kr2q when r → +∞.
But U extends as a (N − q − 1, N − q − 1)-current Ũ in PN . In fact, assume that PN−1 is given by

X0 = 0 in the homogeneous coordinates Xj associated to the basis (e0, . . . , eN ) of CN+1. In such a way

wj =
Xj
X0

for each 1 ≤ j ≤ N . We have

Ũ = pr1∗
(
K̃ ∧ pr∗2(ϕ|CN )

)
where K̃ is an extension of K in PN×CN obtained by writing wj−w′j =

Xj/Xl
X0/Xl

−w′j =
(Xj/Xl)−w′j(X0/Xl)

X0/Xl
for some 1 ≤ l ≤ N such that Xl 6= 0 and by applying the division theorem of Hörmander-Lojasiewicz.

When ϕ is again a smooth differential (N − q,N − q)-form in PN , we have in CN the equality

ddcU = pr1∗
(
ddcK ∧ pr∗2(ϕ|CN )

)
− pr1∗

(
dcK ∧ pr∗2(dϕ|CN )

)
+ pr1∗

(
dK ∧ pr∗2(dcϕ|CN )

)
+ pr1∗

(
K ∧ pr∗2(ddcϕ|CN )

)
which can be written as being

ϕ|CN − ddcU = pr1∗
(
dcK ∧ pr∗2(dϕ|CN )

)
− pr1∗

(
dK ∧ pr∗2(dcϕ|CN )

)
− pr1∗

(
K ∧ pr∗2(ddcϕ|CN )

)
.

In the same way the residual (N − q,N − q)-current

R = ϕ− ddcŨ − {pr1∗
(
dcK̃ ∧ pr∗2(dϕ|CN )

)
− pr1∗

(
dK̃ ∧ pr∗2(dcϕ|CN )

)
− pr1∗

(
K̃ ∧ pr∗2(ddcϕ|CN )

)
}

is with support in PN−1.

Lemma 1. The currents X0

Xl
R, X0

Xl
R and in the same way dX0

Xl
∧R, dX0

Xl
∧R are locally flat where Xl 6= 0.

Proof. First the previous expression of R gives the formula

X0

Xl
R =

X0

Xl
ϕ− ddcpr1∗

(X0

Xl
K̃ ∧ pr∗2(ϕ|CN )

)
+ pr1∗

(X0

Xl
K̃ ∧ pr∗2(ddcϕ|CN )

)
+ d(

X0

Xl
) ∧ pr1∗

(
K̃ ∧ pr∗2(dcϕ|CN )

)
− dc(

X0

Xl
) ∧ pr1∗

(
K̃ ∧ pr∗2(dϕ|CN )

)
− dc(

X0

Xl
) ∧ pr1∗

(
dK̃ ∧ pr∗2(ϕ|CN )

)
+ d(

X0

Xl
) ∧ pr1∗

(
dcK̃ ∧ pr∗2(ϕ|CN )

)
+ pr1∗

(X0

Xl
dK̃ ∧ pr∗2(dcϕ|CN )

)
− pr1∗

(X0

Xl
dcK̃ ∧ pr∗2(dϕ|CN )

)
.

With wl = Xl
X0

, we have the expression

K̃ = K0,0 + wld(
1

wl
) ∧K1,0 + wld(

1

wl
) ∧K0,1 + |wl|2d(

1

wl
) ∧ d(

1

wl
) ∧K1,1
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where K0,0,K1,0,K0,1,K1,1 are differential forms with coefficients which are L1
loc in PN × CN .

In fact, K(w,w′) is proportional to

‖w − w′‖−2N+2
∑

1≤j≤N

(dw1 − dw′1) ∧ . . . ∧ ̂(dwj − dw′j) ∧ . . . ∧ (dwN − dw′N )

∧(dw1 − dw′1) ∧ . . . ∧ ̂(dwj − dw′j) ∧ . . . ∧ (dwN − dw′N )

and when we calculate U(w) we need the component of K(w,w′) which is of bidegree (N−1−q,N−1−q)
in w and of bidegree (q, q) in w′. Therefore we have to consider terms of the type

‖w − w′‖−2N+2dw{1,...,N}\jK ∧ dw′K ∧ dw{1,...,N}\jL ∧ dw′L

where jK and jL are subsets of {1, . . . , N} with q + 1 elements. For j 6= l, we write

dwj =
d(

Xj
Xl

)
X0

Xl

− Xj

Xl

d(X0

Xl
)

(X0

Xl
)2

and dwl = −
d(
X0
Xl

)

(
X0
Xl

)2
. So dw{1,...,N}\jK can be written

smooth form

(X0

Xl
)N−1−q

+
(smooth form) ∧ d(X0

Xl
)

(X0

Xl
)N−q

if jK contains l, while it can be written only
(smooth form)∧d(

X0
Xl

)

(
X0
Xl

)N−q
if jK does not contain l. As a

conclusion we obtain terms of the type

‖w − w′‖−2N+2dw′K ∧ dw′L ∧

(
α

(X0

Xl
)N−1−q

+
β ∧ d(X0

Xl
)

(X0

Xl
)N−q

)
∧

 γ

(X0

Xl
)N−1−q

+
δ ∧ d(X0

Xl
)

(X0

Xl
)N−q


where α, β, γ, δ are smooth differential forms. For U(w), we arrive at terms proportional to

V α ∧ γ or V β ∧ γ ∧
d(X0

Xl
)

X0

Xl

or V α ∧ δ ∧
d(X0

Xl
)

X0

Xl

or V β ∧ δ ∧
d(X0

Xl
) ∧ d(X0

Xl
)

|X0

Xl
|2

where we set

V (w) =
1

|X0

Xl
|2(N−1−q)

∫
w′∈CN

dw′K ∧ dw′L ∧ ϕ(w′)

‖w − w′‖2N−2
=

∫
y∈CN

dyK ∧ dyL ∧ ϕ(
[
X0

Xl
e0 + y

]
)

‖X0

Xl
w − y‖2N−2

with X0

Xl
w = (X1

Xl
, . . . , XNXl ). When X0

Xl
→ 0, the function V (w) has a finite limit equal to∫

y∈CN

dyK ∧ dyL ∧ ϕ(0, y1, . . . , yN )

‖(X1

Xl
, . . . , XNXl )− y‖2N−2

.

By similar formulae, we prove that X0

Xl
R and dX0

Xl
∧ R as well as dX0

Xl
∧ R are locally flat in the sense of

Federer, where Xl 6= 0. �
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Note that X0

Xl
ϕ, X0

Xl
ϕ and dX0

Xl
∧ϕ = d(X0ϕ)−X0dϕ

Xl
as well as dX0

Xl
∧ϕ have no components along PN−1.

By the structure theorem of Federer, we can write X0

Xl
R = i0∗v with i0 the injection PN−1 ↪→ PN

where v is some current of bidimension (q, q) in PN−1. So there is a current u of bidimension (q, q) in

PN−1 such that R = i0∗u modulo a current annihilated by X0

Xl
and X0

Xl
. By the second part of the Lemma

1, we obtain

R = i0∗u+ ∂(
X l

X0

) ∧ a+ ∂(
Xl

X0
) ∧ b

where a, b are some currents in the coordinates X1

X0
, . . . , XNX0

. Since ∂Rϕ = R∂ϕ and ∂Rϕ = R∂ϕ, neces-
sarily we have a = 0 = b and we can write R = Rϕ = i0∗uϕ where uϕ = u is some current of bidimension
(q, q) in PN−1.

The extended (q, q)-current S of T to PN is obtained by setting∫
PN
S ∧ ϕ =

∫
PN−1

T ∧ uϕ (4)

for all smooth differential (N − q,N − q)-forms ϕ in PN . Since udϕ = duϕ, we have that dS = 0 in PN .

3.2. Cohomology classes contained in an algebraic hypersurface of X

The extended current S can be used to characterize the property that the cohomology class {T} is
contained in an algebraic hypersurface of X.

Proposition 7. The cohomology class {T} is contained in an algebraic hypersurface of X if and only if
the extended current S is of order 0 in PN .
Proof. If S is of order 0, then µ is a measure and we can apply the Lebesgue-Nikodym decomposition
theorem µ = µabs + µsing. We define S0 = (tR)(µabs) and S1 = (tR)(µsing), thus {S0|X} = {S0}|X . By
(3), we know that supp µsing is independent of T , so it is an algebraic subset. In fact,

supp µsing = {A ∈ CN−q(PN ), A non transverse to X}

and we have an algebraic stratification Σ0 ⊃ Σ1 ⊃ . . . ⊃ Σq with

Σi = {A ∈ CN−q(PN ),dim(A ∩X) ≥ n− q + i}

for 0 ≤ i ≤ q and n = dim X. Since S can be restricted to X, we have 1Σqµ = 0 and we can decompose

µ =
∑

0≤i≤q−1

1Σi\Σi+1
µ

which gives S = S0 + S1,1 + . . .+ S1,q−1. In other words A ∈ Σi \ Σi+1 ⇔ dim(A ∩X) = n− q + i, thus

S1,i =

∫
A∈Σi\Σi+1

[A]µ(A)

and we can calculate the restriction current in X by

S1,i|X =

∫
A∈Σi\Σi+1

[A]|Xµ(A) =

∫
A∈Σi\Σi+1

µ(A)j∗u
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where j : A ∩X ↪→ X is the natural injection and u is a closed (i, i)-current in A ∩X depending on A.
At the cohomological level we write

{S1,i|X} =

∫
A∈Σi\Σi+1

µ(A)j∗{u}

and we use that the subspace of Hq,q(X) of the finite sums
∑
j∗{u} is closed. In such a way, we obtain

that the cohomology class {S1,i|X} is contained in some A∩X with A such that dim(A∩X) = n− q+ i.
As a conclusion {S1|X} is contained in an algebraic hypersurface of X.

Conversely, when the cohomology class {T} is contained in an algebraic hypersurface of X, we write
T = i∗r + ddcṽ = (ddcv)̃ where i : X ∩ H ↪→ X is the canonical injection with H ⊂ PN an algebraic
hypersurface and where v is a differential (q − 1, q − 1)-form smooth in X \X ∩H and L1

loc in X such
that ddcv calculated generically is L1

loc in X.
We extend v to PN by V a differential (q − 1, q − 1)-form L1

loc in PN such that ddcV calculated
generically is L1

loc in PN . In fact, there is an open covering (Uα) of PN with a family (ρα) of holomorphic
submersions ρα : Uα → X ∩ Uα such that ρα|X∩Uα = idX∩Uα . When (λα) is a smooth partition of the
unity subordinated to (Uα), we take V =

∑
α λαρ

∗
α(v|X∩Uα).

Then T = S|X with S = (ddcV )̃ = j∗R+ ddcṼ where j : H ↪→ PN is the canonical injection and R is
a (q − 1, q − 1)-current closed of order 0 in H. �

Without assuming S of order 0, for all B ∈ Gq,N , we can express, in a similar way to (4), the
intersection number of S and [B] as being∫

PN
S ∧ [B] =

∫
X

T ∧ w[B]

where w[B] is some current of bidimension (q, q) in X. When S is of order 0, this intersection number,
which can be calculated by Fourier transform (see [8]), is continuous with respect to B ∈ Gq,N .

On another hand, there is a family of smooth differential (q, q)-forms Sε weakly converging in PN to
S such that ∫

PN
S ∧ [B] = lim

ε

∫
B

Sε = lim
ε
J (Sε)(B)

with J : {continuous differential forms of type (q, q) on PN} → {continuous functions on Gq,N} the
Radon transformation defined for projective subspaces B in PN of dimension q. Then J (Sε) converges
weakly in Gq,N to J (S), which is constant on Gq,N , since S is closed. Thus for almost every B ∈ Gq,N ,
we have ∫

PN
S ∧ [B] = (deg S)(deg B) = deg S.

When the cohomology class {T} is contained in an algebraic hypersurface ofX, we obtain the condition∫
X
T ∧ w[B] = (deg S)(deg B) = deg S for all B ∈ Gq,N .

Remark 1. We can give an explicit construction of S by using the King formula.
In fact, let DPN be the diagonal in PN × PN , which can be written DPN = f−1(0) where f is a holo-

morphic section of a Hermitian holomorphic vector bundle E over PN × PN . Then DX = (f|X×X)−1(0)
and we have the expression

[DX ] = −(ddc log ‖f‖)n|(X×X)\DX + ddcγ

for the integration current on DX in X ×X, where the differential (n− 1, n− 1)-form γ is L1
loc in X ×X

and smooth in (X ×X) \DX . In PN ×X, we define the closed (n, n)-current of order 0

K = −(ddc log ‖f‖)n|PN×X + ddcG
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where G is an extension to PN ×X of γ obtained as in the proof of the Proposition 7.
We denote by π1 : PN × X → PN and by π2 : PN × X → X the natural projections and we set

E0 = π1∗(K ∧ π∗2T ) which is a closed (q, q)-current of order 0 in PN . Now we calculate the intersection
number ∫

PN
E0 ∧ i0∗u =

∫
PN×X

K ∧ π∗1i0∗u ∧ π∗2T =

∫
PN×X

K ∧ [X ×X] ∧ π∗1 ũ ∧ π∗2T

where ũ is a smooth extension of the smooth differential form u to PN .
In view to express the current [X ×X] = π∗1 [X] in PN ×X, we write X = {Pj = 0} with (Pj) a finite

family of homogeneous polynomials on CN+1 and mj = deg Pj for each j. We set ρ([x]) =
∑
j
|Pj(x)|2

‖x‖2mj

which satisfies X = ρ−1(0) in PN and

[X] = δρ
(ddcρ)N−n

2N−n(N − n)
= lim
λ→0+

{λρλ−(N−n) (ddcρ)N−n

2N−n(N − n)
}

with δρ the distribution which is the residue at the pole −(N − n) of the meromorphic map C 3 λ→ ρλ.
We define in PN ×X the current product of closed currents

K ∧ [X ×X] = (δρ ◦ π1)K ∧ π∗1
( (ddcρ)N−n

2N−n(N − n)

)
which is closed too and annihilated by the Pj ◦ π1 and their conjugates. With

α = dc
( 1

2n(n− 1)
(
ddc‖f‖2

‖f‖2
)n−1

)
|PN×X

we have −(ddc log ‖f‖)n|PN×X = dα and we set actually

−(δρ ◦ π1)(ddc log ‖f‖)n|PN×X = d
(
(δρ ◦ π1)α

)
− d(δρ ◦ π1) ∧ α

where the products with α are obtained by the division theorem. Otherwise we have

−(δρ ◦ π1)(ddc log ‖f‖)n|PN×X = − lim
λ→0+

λ(ρ ◦ π1)λ−(N−n)(ddc log ‖f‖)n|PN×X

where −(ddc log ‖f‖)n|PN×X is the direct image by a blowing up of a closed smooth differential form and

the weak limit when λ→ 0+ is calculated thanks to the Bernstein equation.
So there is a closed (n, n)-current L in PN ×X such that supp (L|X×X) = DX and

K ∧ [X ×X] = i∗([DX ]− L|X×X)

with i : X×X → PN×X the natural injection. The order of L is not equal to 0, because the codimension
of the polar set changes by blowing up. In such a way we can express the restriction

E0|X = T − (π1|X×X)∗
(
L|X×X ∧ (π2|X×X)∗T

)
.

Therefore we take S = π1∗((K + L) ∧ π∗2T ) which satisfies S|X = T in the sense of the Proposition 4.
Lastly the differential form uϕ is given by uϕ = π2∗((K + L) ∧ π∗1ϕ).
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[9] Méo M., Chow forms and Hodge cohomology classes, C. R. Acad. Sci. Paris, Ser. I 352 (2014) 339–
343.
http://dx.doi.org/10.1016/j.crma.2014.01.012

[10] Peternell T., Submanifolds with ample normal bundles and a conjecture of Hartshorne, Contemp.
Math. 496, 2009, 317–330.
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