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Résumé :
Le suivi de la durabilité énergétique dans l’industrie manufacturière se heurte à un problème d’échelle.
La surveillance d’indicateurs de performance est essentielle, en utilisant cependant le moins de cap-
teurs possible et en limitant leur intrusivité vis-à-vis des systèmes existants. Les capteurs non-intrusifs
sont particulièrement adaptés à de telles applications, en cela qu’ils captent de nombreuses sources
depuis un lieu distant de celles-ci. La reconstitution des indicateurs-cibles nécessite toutefois davantage
de traitement du signal. Les méthodes présentées dans cet article visent avant tout à reconstruire, de
manière non-supervisée, le processus de production d’une machine à partir de données issues de cap-
teurs. Une série de mesures est ainsi séquencée temporellement en opérations distinctes. Leur contenu
en termes d’actionneurs actifs est ensuite estimé par décomposition. Ces méthodes sont toutes particu-
lièrement adaptées aux signaux apparaissant comme stationnaires par morceaux dans la représentation
temps-fréquence.

Abstract :

Energy sustainability in the manufacturing industry faces a scalability issue. Monitoring appropriate
performance indicators is essential, yet as few sensors as possible should be used, and with limited in-
trusiveness (software- or hardware-wise). Non-intrusive sensors are well suited to such applications,
as multiple sources can be sensed at once. Recovering the desired indicators requires additional signal
processing though. This paper focuses on recovering a machine’s process from sensor data in an unsu-
pervised fashion, and unveiling which actuators are active within each operation. The proposed method
is particularly well suited to mixed signals which appear as stationary in the time-frequency domain
within each operation.

Keywords : Blind source separation, time series clustering, energy sustaina-
bility, bond graph

1 Introduction
The manufacturing industry is energy-intensive by construction. It is therefore essential to improve its
energy sustainability, starting with the monitoring of energy key performance indicators (EnPI). These
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are tedious to estimate and forecast due to the lack of high-fidelity models for the industrial machines
making up manufacturing plants. Moreover, their identification requires much intrusive data which are
either lacking or unavailable (e.g., from sensors located inside the machines). For this reason, non-
intrusive sensors are more convenient. For instance, accelerometers, temperature and current sensors
sense much information, at the expense of a greater difficulty to link these observations to the measurand
of interest through physical models.

Instead, models can be entirely built up from data through model synthesis, without a priori knowledge.
There are two critical aspects to these models. First, the underlying physics semantics must be sufficiently
rich to allow for EnPI to be inferred. Second, the constitutive elements of the production process should
be inferred as well. A process is defined here as a sequence of operations performed by the same physical
components. Associating different models to specific operations and actuators enables their respective
energy sustainability analysis, thus allowing for process enhancement or component replacement.

This paper focuses on the second aspect, namely breaking down a process into distinct operations and
finding the actuators used in each of these operations. Non-intrusive sensors are considered here, these
have the particularity of yielding mixed signals originated from different actuators. The process identi-
fication algorithm shall operate in a completely unsupervised fashion. The control inputs in particular
are assumed to be unknown.

This is a special case of under-determined Blind Source Separation (BSS), where restrictions apply on
the mixing matrices. Additionally, actuator activation statuses are sought rather than the source signals
themselves. The signals are assumed to have short transient responses (with respect to an operation’s
duration), stationarity being a common assumption in such problems [1].

Despite similarities with a soft clustering problem [2], where the measurement at a certain time step can
belong to multiple clusters, the related techniques tend to soften the transitions from a cluster to another.
Fuzzy Clustering is used in [3] for time-varying mixing matrices in speech signal reconstruction, and
in [4] for switching regression models. In BSS problems, source signals are reconstructed from mixed
measurement signals. The number of sources is often assumed to be known a priori [5]. This assumption
can be lifted through subspace methods [6, 7], typically by thresholding the eigenvalue spectrum for the
high Signal-to-Noise-Ratio (SNR) scenario, or using alternative problem-specific criteria [8].

Along with problem formulation, a dynamical systems representation is described in Section 2.1. The
proposed method consists in a two-step process : clustering into operations and decomposing into actua-
tor activation times, detailed in Section 2.2 and Section 2.3 respectively. Simulation and experimental
results for this algorithm are detailed in Section 3.

2 Method

2.1 Problem formulation
As the machine evolves in time and in its process, from an operation to another, sudden changes in
sensor signals are encountered (assuming the transient responses are short-enough). Several operations
can use the same actuators though. Splitting the signal in terms of operations is helpful for prioritizing
process enhancements, whereas decomposing the operations into a minimal set of atoms, representing
machine actuators if encountered alone at least once, is essential to isolate an actuator’s performance
and deterioration.
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Bond graph theory [9] is well-suited to energy sustainability modeling. Indeed, such a graph represents
the power distribution, towards elements classified either as energy dissipation (R) or storage (I or C).
Energy efficiency and consumption can thus be inferred from a minimal set of variables. 0- and 1-
junctions, as well as multi-port components (TF and GY ) represent power transfers without loss (this
is essentially a generalization of Kirchhoff’s laws). The discrete-event aspect is modeled as switched
power junctions [10], represented as 1δi in Figure 1, where the power is forced to zero when the actuator
is inactive.

Figure 1 – Overview of the proposed method, illustrated upon a machine composed of a pump, a motor
and a heating coil (synthetic signal).

As illustrated in Figure 1, we propose the following method : a sensor signal, mixing actuator-originated
signals, is clustered into distinct operations to begin with ; each operation is then decomposed into atoms
(actuators) when possible. These actuators essentially relate to distinct sets of causal paths, which is
helpful information for the subsequent bond graph model synthesis.

Formally, a univariate time series X ∈ R1×T ′ is considered, representing T ′ sensor measurements
evenly sampled over time. The Short-Time Fourier Transform (STFT) operator STFT {X} is applied
to the data, the extracted features make up the matrix Z ∈ Cf×T where f denotes the number of features
(frequency bins in this case), and T is the new number of samples (time window indices). The underlying
system performs nops distinct operations using nact different actuators, with nops ≥ nact.

The matrix L ∈ {0, 1}nops×T represents the operation the system is in at each time step t ∈ J1, T K, with
∥Lt∥0 = 1. Whereas the activation statuses of a system’s actuators over time are gathered in a matrix
L̃ ∈ {0, 1}nact×T , with ∥L̃t∥0 ≥ 1. Thus the time series Lc and L̃a indicate whether the system is in
operation c (cluster) and uses actuator a at each time step. Matrix superscripts and subscripts represent
vectors lying in the row and column spaces respectively.

2.2 Clustering into operations
Data is clustered to begin with. Clustering is a division of data into groups of similar objects [11]. Time
series (hard) clustering is an unsupervised technique grouping timestamps according to a similarity
measure between vectors describing data at each time step : a data point belongs to one cluster only. This
topic has been extensively tackled in the literature, the k-means algorithm is considered here, applied
to the magnitude of the data’s STFT, |Z|. Any relevant descriptor applied to sliding windows could be
used though, the first four statistical moments for example. The number of clusters (operations) nops is
chosen manually using a dendrogram. In most cases, this number cannot be known a priori and other
clustering techniques such as DBSCAN or its variant OPTICS [12] are better suited.
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The one-hot encoded labels L are thus obtained, indicating in which operation the system is at each
timestamp.

2.3 Decomposition into actuators
In this section, decomposition refers to expressing an operation as the composition of other operations.
Assuming the system’s actuators have all been encountered alone at least once, i.e. activated while all
others were deactivated, the decomposition yields the actuators’ activation sequence. If this assumption
is not met, then a minimal set of independent operations is found.

Should the data be aperiodic (still under the stationarity assumption), and should the application conver-
ting the data into features be linear, a composition would thus correspond to a linear combination in the
least-squares sense.

Alternatively, if the data is periodic, these signal superimpositions are slightly more difficult to unveil.
Indeed, each time an actuator is activated, its signal’s phase changes and so does the mixed signal’s.

In order to tackle the latter case, a shifted STFT is applied to the raw data. The STFT is in essence a sliding
discrete Fourier transform (DFT) and is hence linear by definition. Due to window sliding, a progressive
phase shift occurs. Although the time delay can easily be retrieved, the phase shift is signal-dependent.
Exact phase retrieval [13] is computationally expensive and unnecessary in this context. Instead, at each
time step, the phase of Zt is measured at the maximum of magnitude and shifted accordingly. This takes
out both the phase shift of the windowing process as well as the inherent phase of the signal. To this end,
the phase-shift operator is used, defined as :

S∆ = diag
((

e−j 2πk
N

∆
)
1≤k≤N

)
(1)

where N is the number of frequency bins and ∆ is the time delay. This shifted STFT makes the phase
consistent within a cluster and reduces the intra-cluster variance. The centroid matrix C ∈ Cf×nops can
thus be computed, each vector in the column space corresponding to the average of all samples belonging
to each cluster.

Because the phase-shift operator is nonlinear with respect to the time delay, the phase of a composite
centroid will be different than the sum of its constituents. The sought combination between a centroid
Cc and all others, {Ci}i ̸=c, can be expressed as :

argmin
{∆i}1≤i≤nops

{αi}1≤i≤nops

∥Cc −
∑
i ̸=c

αiS∆iCi∥22 (2)

where the coefficientsα = {αi}1≤i≤nops and∆ = {∆i}1≤i≤nops are (ordered) sets of scalars, represen-
ting combination coefficients and time-delays respectively. The functional is linear in α and nonlinear
with respect to ∆, albeit periodic.

In some cases, this projection can lead to misinterpretations. On one hand, if an actuator operates at
different regimes, the centroids of the two operations will be collinear, with a combination coefficient
corresponding to the ratio between both regimes. On the other hand, in real case scenarios, multiple
actuators can also produce very close signatures. For instance, several electrical devices can induce
current consumptions at 50Hz. The decomposition would not apply in such a case. This is also why
subspace methods in general would not be well suited.
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In order to tackle this aspect, we compute a residual matrix R ∈ Rnops×2nops , with ∀rcg ∈ R :

rcg = min
{∆i}i∈g(2)

∥Cc −
∑

i∈g(2) S∆iCi∥22
∥Cc∥22

(3)

where ∀g ∈ J1, nopsK, g(2) corresponds to a possible group (i.e., a combination) of centroids, with ·(2)
denoting a number expressed in base 2.

By doing so, we constrain the values of αi to {0, 1} and evaluate all possible combinations. In the case
of a composite operation, this residual (or an alternative distance) would fall below a problem-dependent
threshold τ . The Broyden–Fletcher–Goldfarb–Shanno (BFGS) [14] algorithm is used to compute these
residuals. This approach does not scale due to an obvious combinatorial explosion. For actual systems
running only a few distinct operations, this is not limiting.

For clarity, the method is wrapped up as a pseudo-code in Algorithm 1.

Algorithm 1: proposed algorithm

Input: Discretized time series data X ∈ R1×T ′ ; expected number of operations nops;
Result: Clustering labels L ∈ {0, 1}nops×T and decomposition labels L̃ ∈ {0, 1}nact×T ;
Step 1 : extract features and apply clustering
Extract features accurately describing the operations
Apply K-means algorithm;
Yield the (one-hot encoded) clustering labels L;
Step 2 : extract features for decomposition
Z ∈ Cf×T , Z = STFT{X}
for 1 ≤ t ≤ T do

measure the phase at the maximum of magnitude ∆m = ∠ argmax
z∈Zt

|z|;

shift the phase accordingly Zt ← S∆mZt;
end
Compute C ∈ Cf×nops : ∀c, given Nc samples in cluster c, Cc ← 1

Nc

∑
t∈{cluster c}Zt

Step 3 : decomposition
L̃← L;
for 1 ≤ c ≤ nops do

for 1 ≤ g ≤ 2nops do

rcg ← min
{∆i}i∈g(2)

∥Cc −
∑

i∈g(2) S∆iCi∥22
∥Cc∥22

end
if min

1≤g≤2nops
rcg ≤ τ then

Cluster c is composed of the clusters present in g(2), ∀t ∈ {cluster c}, L̃t ← g(2);
else

Cluster c cannot be decomposed, ∀t ∈ {cluster c}, L̃t ← Lt;
end

end
Remove empty rows in L̃ (composite operations), yield L̃
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3 Results and discussion
The proposed methods have been applied to synthetic and real use cases.

The synthetic use cases follow a pattern : three different waves (no transient) successively activated
for 10 seconds each, then all three active simultaneously for 10 seconds. For brevity, only one of such
experiment has been shown :

x(t) = δ2(t) sin (2π50t) + δ3(t) 2 sin (2π50t+
2π

3
) + δ1(t) 2 sgn

(
sin (2π70t)

)
+ w(t) (4)

where δ1(t), δ2(t), δ3(t) denote the switches statuses at time t. The output signal has been supplemented
with a zero-mean Gaussian noise w(t) with standard deviation σ = .8.

The physical use case consists in an automated coffee machine. It is composed of a pump, a heating coil
as well as two motors. The process shown in Figure 2b starts with a series of short heating and pumping
sequences, followed by a longer pumping operation, and four heating operations superimposed with the
pumping ; finally one of the motors displaces the infuser.

(a) Decomposition of mixed synthetic source signals
(Equation 4)

(b) Decomposition of a coffee machine’s current
consumption per component

Figure 2 – Decomposition results

The results for the synthetic signal and the coffee machine’s current consumption are presented in Fi-
gure 2a and Figure 2b respectively. The spectrogram highlights the spectral density of the signal. The
colored plot represents raw data clustered into distinct groups. The clustering labels (matrix L) and
decomposition labels (matrix L̃) are displayed.

The experiments run on the synthetic use cases highlight the method’s resilience to noise as well as its
ability to perform as expected when the signal frequencies are equal or differ, given equal or different
signal amplitudes.

As for the coffee making process, all devices produce current signals with a fundamental frequency at
50Hz and different amplitudes. The superimposition of the pumping (switch δ1) and the heating (switch
δ5) operations is accurately detected.

4 Conclusions
In this paper, a decomposition method was proposed in order to detect superimposed operations from
non-intrusive sensor data. This approach has been validated upon several synthetic scenarios as well as
a laboratory experiment.
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Future work will focus on better handling controlled systems capable of operating at different regimes
over a production cycle. The approach will be further developed so as to include the transient responses
which contain much information regarding the subsystems and could help their differentiation with one
another. At last, a bond graph model synthesis algorithm will be designed.
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