
HAL Id: hal-03768546
https://hal.science/hal-03768546v1

Submitted on 4 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PMNS for Efficient Arithmetic and Small Memory Cost
Fangan Yssouf Dosso, Jean-Marc Robert, Pascal Veron

To cite this version:
Fangan Yssouf Dosso, Jean-Marc Robert, Pascal Veron. PMNS for Efficient Arithmetic and Small
Memory Cost. IEEE Transactions on Emerging Topics in Computing, 2022, 10 (3), pp.1263 - 1277.
�10.1109/tetc.2022.3187786�. �hal-03768546�

https://hal.science/hal-03768546v1
https://hal.archives-ouvertes.fr

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 1

PMNS for efficient arithmetic and small memory
cost

Fangan Yssouf Dosso, Jean-Marc Robert, and Pascal Véron

Abstract—The Polynomial Modular Number System (PMNS) is an integer number system which aims to speed up arithmetic
operations modulo a prime p. Such a system is defined by a tuple (p, n, γ, ρ, E), where p, n, γ and ρ are positive integers, E ∈ Z[X],
with E(γ) ≡ 0 (mod p). In [15] conditions required to build efficient AMNS (PMNS with E(X) = Xn − λ, where λ ∈ Z \ {0}) are
provided. In this paper, we generalise their approach for any monic polynomial E ∈ Z[X] of degree n. We present new bounds and
highlight a set of polynomials E for very efficient operations in the PMNS and low memory requirement. We also provide AMNS and
PMNS modular multiplication implementations, for a prime of size 256 bits, in classic C. We also provide, for the same prime, the first
implementation taking advantage of the SIMD AVX512 instruction set. The AVX512 PMNS is 72 % faster than its AMNS counterpart
(classical C version). This version presents a more than 60 % speed-up in comparison with the state-of-the-art Montgomery-CIOS
modular multiplication of the GMP library.

Index Terms—Modular arithmetic Polynomial modular number system External reduction

F

1 INTRODUCTION

Modular arithmetic is an essential building block of many
topics in computer algebra, like cryptography [31], the
polynomial factorization [21] and Gröbner basis algorithms
[5]. Every progress in the area of modular arithmetic has a
direct impact on the efficiency of the algorithms used in any
of these topics. Many approaches have been proposed to
perform arithmetic operations efficiently. When the use case
allows it, it is possible to use special modulo belonging to
the family of Mersenne numbers [12], which allows very
efficient modular reduction. For the general case, when
choosing such modulo is not possible, several methods exist.
Montgomery and Barrett modular reduction methods [26],
[10] are among the best ones. As alternatives approaches to
improve modular arithmetic in general case, new represen-
tation systems have been proposed, among them one may
mention the RNS (Residue Number System) [18] and the
PMNS (Polynomial Modular Number System) [8].

PMNS is a representation system for elements in Z/pZ,
introduced by J.C. Bajard, L. Imbert and T. Plantard. In
order to compute a ? b mod p, where ? = + or ×, a and
b are mapped to two polynomials A(X) and B(X) whose
degrees are strictly lower than some integer n, and whose
coefficients are all bounded by some fixed value ρ. The
result is obtained by computing A(X) ? B(X) modulo a
polynomial Xn + αX + β, where α, β ∈ Z. In [14], the
definition of a PMNS has been enlarged to take into account
any monic polynomial E of degree n.

• J.-M. Robert and P. Véron are with Université de Toulon, Laboratoire
IMath, Toulon, France.
E-mail: jean-marc.robert,pascal.veron@univ-tln.fr

• F. Y. Dosso is with École des Mines de Saint-Étienne, Département SAS,
Gardanne, France .
E-mail: fanganyssouf.dosso@emse.fr

Definition 1. Let p > 3, n > 2, γ ∈ [1, p−1] and ρ ∈ [1, p−1].
Let E ∈ Z[X] a monic polynomial of degree n, such that
E(γ) ≡ 0 (mod p). A PMNS is a set B ⊂ Z[X] such that :

1) ∀A ∈ B, deg(A) < n,

2) ∀A(X) =
n−1∑
i=0

aiX
i ∈ B, −ρ < ai < ρ for all i,

3) ∀a ∈ Z/pZ, ∃A ∈ B such that A(γ) ≡ a (mod p).
So A is a representation of a in B and we denote A ≡
aB.

The tuple (p, n, γ, ρ, E) characterizes the PMNS B.
When E(X) = Xn − λ, with λ ∈ Z \ {0}, B is also called
AMNS (Adapted Modular Number System)[7].

Modular arithmetic is at the core of numerous public key
cryptosystems. In this context, the efficiency of the AMNS
has been proved in recent works :
• in [15], when the modulus is a prime p whose size fits

the standard sizes used in elliptic curve cryptography,
it has been shown that a software implementation of
the AMNS performs well compared to the standard
libraries like GnuMP [4] or OpenSSL [29],

• in [13], the efficiency has been confirmed in
the MPHELL library for other platforms (Armv8,
STMF32F4),

• in [11], the authors generalized the representation sys-
tem to the field Fpk and improved this way the per-
formances of the SIKE protocol [3], one of the alternate
KEM candidate of the NIST post-quantum standardiza-
tion process [2].

The main operations in the PMNS are addition and
multiplication, and these operations must be consistent, i.e.
they must return elements in the system, such that their
degree and infinity norm are strictly lower than respectively
n and ρ. Let A,B ∈ B, R = A × B and S = A + B. While
S has a suitable degree (deg(S) < n), the degree of R is
not bounded by n (deg(R) < 2n − 1). To get an element

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 2

of appropriate degree, we compute C = R mod E. Since
deg(E) = n and E(γ) ≡ 0 (mod p), we have C(γ) ≡ R(γ)
(mod p), thus C represents the same element as R in Z/pZ.
The operation R mod E is called the external reduction;
more details are given in Section 3.2.

It is now necessary to ensure that the results have their
infinity norm lower than ρ, which is generally not the case
for S and C . This is done by an operation called the internal
reduction. Many methods have been proposed to perform
this operation; some give total freedom on the choice of
p [8], [28] and some does not [7]. In this paper, we focus
on the Montgomery-like method proposed in [28], which
is currently the best choice among the ones giving total
freedom of the modulus p. We describe this method in
Section 3.3.

2 CONTRIBUTIONS

Since the seminal work on PMNS [7], there have been
several papers on this topic. The optimisation of the internal
reduction is discussed in [28]. Practical use of the PMNS
in the area of cryptography is described in [17], [16], [11],
[13]. The redundancy of this representation system is used to
protect modular operations in cryptographic protocols [14],
[27]. A precise study on this system concerning its existence,
how to generate the set of parameters, and its efficiency
compare to well-known multi precision libraries is given in
[15].

All research on this topic has been focused on the use of
polynomials E(X) = Xn − λ (with λ “small”), in order to
guarantee the efficiency of the external reduction operation
as well as to minimize the value of ρ. The purpose is to min-
imize the theoretical number of bits required to represent an
integer mod p, which is t = n(blog2(2ρ−1)c+1). In practice,
in case of software implementation on a k−bit architecture,
such integers will be stored in d tk e machine words. One
may notice however that for hardware implementations,
the space used could be exactly equal to t bits. Among the
polynomialsXn−λ, the most interesting is E(X) = Xn±2,
which leads to efficient external reduction using only shifts
and additions. Moreover, it provides the smallest value of ρ,
see section 7.4.

In this paper, we highlight some other polynomials
suited to design PMNS presenting similar performances as
the ones of AMNS defined with E(X) = Xn ± 2. In order
to use these polynomials, we first generalise the theoretical
results and practical tools described in [15] to any monic
polynomial E ∈ Z[X] of degree n. Next, we identify a set
of polynomials E which provide both efficiency and small
value for ρ. Finally, using AVX512 instruction set, we present
efficient implementations of a PMNS.

This paper is organised as follows. In Section 3, we
remind the background on PMNS. In Section 4, new param-
eters are introduced in order to make PMNS efficient, given
any polynomial E ∈ Zn[X]. Then, in Section 5, the existence
of PMNS is studied and improvements on existing bounds
for consistency are given. In Section 6, essential algorithms
to use the PMNS are presented. In Section 7, we explain how
to generate efficient PMNS with small memory cost. Next, in
Section 8, we discuss implementations and results. Finally,
we conclude in Section 9.

3 BACKGROUND ON THE PMNS
This section presents all the background on the PMNS.
For consistency, we assume in this paper that p > 3 and
n, γ, ρ > 1.
In the sequel, Zn[X] denotes the set of polynomials in Z[X]
whose degree is lower than or equal to n.
If A ∈ Zn[X], we assume A(X) = a0 + a1X + · · · + anX

n

and A(X) can equivalently be represented as the vector
a = (a0, . . . , an).
Unless specified, the B symbol will always designate a
PMNS (p, n, γ, ρ, E), where E ∈ Zn[X] is a monic poly-
nomial.
Let C ∈ Z[X], then C mod (E, φ) denotes the polynomial
reduction C mod E, where the coefficients of the result are
computed modulo φ.

3.1 Conversion and arithmetic operations in the PMNS

Except the external reduction process, all the algorithms for
conversion and arithmetic operation in a PMNS remain the
same regardless the polynomial E. These algorithms are
given in Section 6.

3.2 External reduction

The external reduction is a polynomial modular reduction,
whose purpose is to keep degree of the PMNS elements
bounded by n. Let E ∈ Zn[X] be a monic polynomial, such
that E(γ) ≡ 0 (mod p). Let C ∈ Z[X] be a polynomial. This
operation consists in computing a polynomial R such that:

R ∈ Zn−1[X] and R(γ) ≡ C(γ) (mod p)

The Euclidean division of C byE computesH andR so that
C = H × E + R, with R ∈ Zn−1[X] and H ∈ Z[X]. Since
E(γ) ≡ 0 (mod p), C(γ) = H(γ) × E(γ) + R(γ) ≡ R(γ)
(mod p). We call external reduction the computation of R =
C mod E. The polynomial E is called the external reduction
polynomial.

In this work, we present efficient approaches to com-
pute this external reduction, for any monic polynomial
E ∈ Zn[X].

3.3 Internal reduction

The internal reduction aims to ensure that the coefficients of
the polynomials are bounded by ρ. Let V ∈ Zn−1[X] be a
polynomial, with ‖V ‖∞ > ρ. The main idea to reduce the
coefficients of V is to find a polynomial D ∈ Zn−1[X], such
that D(γ) ≡ 0 (mod p) and |vi− di| < ρ, in order to get the
polynomial R = V −D such that:

R ∈ B and R(γ) ≡ V (γ) (mod p) .

One of the most efficient methods to perform this op-
eration is a Montgomery-like approach presented in [28]
(see Algorithm 1). This algorithm relies upon a polynomial
M ∈ Zn−1[X] such that M(γ) ≡ 0 mod p. The algorithm
computes a polynomial T ∈ Zn−1[X] such that all the
coefficients of (V + T) are multiples of a fixed parameter
φ. The polynomial T must be a multiple of M so that
(V + T)(γ) ≡ V (γ) mod p. Hence, one needs to compute a
polynomial Q such that V +QM = 0 in (Z/φZ)[X]/E(X).

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 3

So, Q = −M−1V mod (E, φ), which explains line 1 of
Algorithm 1.

A sufficient condition to guarantee that the result S will
be in the PMNS is that ‖T‖∞ and ‖V ‖∞ are strictly less
than ρφ

2 . In Section 5.2, we present tight bounds on ρ, φ and
the input V to guarantee that these conditions are fulfilled
for any monic polynomial E.

Algorithm 1 Coefficients reduction [28]

Require: B = (p, n, γ, ρ, E) a PMNS, V ∈ Zn−1[X], M ∈
Zn−1[X] such that M(γ) ≡ 0 (mod p), φ ∈ N \ {0} and
M ′ = −M−1 mod(E, φ).

Ensure: S(γ) = V (γ)φ−1 (mod p), with S ∈ Zn−1[X]
1: Q← V ×M ′ mod (E, φ)
2: T ← Q×M mod E
3: S ← (V + T)/φ
4: return S

4 NEW PARAMETERS

Let B be a PMNS such that E(X) = Xn+en−1X
n−1+ · · ·+

e1X + e0.

4.1 External reduction matrix
Let us consider the following (n− 1)× n matrix :

E =

−e0 −e1 . . . −en−1
.

...
...

...
.

← Xn mod E
← Xn+1 mod E

← X2n−2 mod E

, (1)

where each row contains the coefficients of the polynomial
Xn+i (mod E), for i = 0, . . . , n − 2. From now on, E will
be called the external reduction matrix.

Proposition 1. Let A,B ∈ Zn−1[X] be two polynomials. Let
C,R be two polynomials, such that:

C = AB = c0 + c1X + · · ·+ c2n−2X
2n−2,

R = C mod E.

Then, R = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E .
Proof. We have:

R = c0 + c1X + · · ·+ cn−1X
n−1+

Xn(cn + cn+1X + · · ·+ c2n−2X
n−2) mod E

We also have cn+iXn+i mod E = cn+i × Ei (the i-th row of
E), for i = 0, . . . , n− 2. As a consequence,

(cnX
n + cn+1X

n+1 + · · ·+ c2n−2X
2n−2) mod E

=
(cn, . . . , c2n−2)E

Thus, R = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E .

4.2 A matricial view of the modular multiplication
Like the external reduction, the efficiency of the internal
reduction could be affected by the polynomial E. Indeed,

one can see that operations at lines 1 and 2 of Algorithm 1
depend on E.

Since parameters M , M ′ and E remain constant once the
PMNS generation is done, the polynomial multiplications at
lines 1 and 2 of Algorithm 1 can be optimised for efficient
and constant time internal reduction operation. LetM and
M′ be the two following matrices :

M =

m0 m1 . . . mn−1
.

...
...

...
.

←M
← X.M mod E

← Xn−1.M mod E

(2)

M′ =

m′0 m′1 . . . m′n−1
.

...
...

...
.

←M ′

← X.M ′ mod (E, φ)

← Xn−1.M ′ mod (E, φ)

(3)

In the sequel,M andM′ are called the internal reduction
matrices.
Using these two matrices, lines 1 and 2 of Algorithm 1
become:

Q = (v0, . . . , vn−1)M′ (mod φ) (4)
T = (q0, . . . , qn−1)M (5)

From Proposition 1, the internal reduction and modular
multiplication can be efficiently performed, for any monic
polynomial E ∈ Zn[X], using Algorithms 2 and 3. From
now on, we will refer to Algorithm 2 as RedCoeff.

Algorithm 2 Coefficients reduction for PMNS (RedCoeff)

Require: B = (p, n, γ, ρ, E), V ∈ Zn−1[X], the matrices
M,M′ and φ ∈ N \ {0}.

Ensure: S(γ) = V (γ)φ−1 (mod p), with S ∈ Zn−1[X]
1: Q = (v0, . . . , vn−1)M′ (mod φ)
2: T = (q0, . . . , qn−1)M
3: S ← (V + T)/φ
4: return S

Algorithm 3 Modular multiplication for PMNS

Require: B = (p, n, γ, ρ, E), A,B ∈ Zn−1[X], the matrices
M,M′, E and φ ∈ N \ {0}.

Ensure: S(γ) = A ·B(γ)φ−1 (mod p), with S ∈ Zn−1[X]
1: C = A×B
2: V = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E
3: S ← RedCoeff(V)
4: return S

Remark 1. Similarly to the classical Montgomery method,
Algorithm 3 induces a φ−1 factor on the output. In order
to ensure the consistency of modular multiplication, unlike
what is specified in the third item of Definition 1, an
element a ∈ Z/pZ is now represented by a polynomial
A ∈ B such that: A(γ) ≡ aφ (mod p) (see Section 6.1).

Remark 2. There is no reason for the polynomials M and
M ′ to be sparse. Thus, the corresponding matrices M and

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 4

M′ have no particular shape, regardless the shape of the
polynomial E (see Equations 2, 3). Thus, the efficiency of
the internal reduction does not depend on E. However,
the shape of E has an impact on the external reduction
efficiency, (see line 2, Algorithm 3). The effect of E is
quantified by a new parameter w we introduce in the next
section.

4.3 A new parameter w

In this section, we introduce a parameterw which represents
the memory overhead introduced by the polynomial E
when an external reduction is done. By overhead, we
mean that the coefficients of AB mod E are bounded by
w‖A‖∞‖B‖∞, for some w depending on E. In the next
proposition, we give for any polynomial E a tight bound
on w, in order to define optimal bounds on parameters ρ
and φ of the PMNS.

Let us define the (n−1)×n matrix E ′ such that E ′ij = |Eij |.
Proposition 2. Let A,B ∈ Zn−1[X] be two polynomials. Let
R be a polynomial, such that R = AB mod E, then

‖R‖∞ 6 w‖A‖∞‖B‖∞ ,

with w = ‖(1, 2, . . . , n) + (n− 1, n− 2, . . . , 1)E ′‖∞ .

Proof. Let k = ‖A‖∞‖B‖∞ and C be a polynomial such
that C = AB. From Proposition 1, we know that R =
(c0, . . . , cn−1) + (cn, . . . , c2n−2)E . Thus, for i = 0, . . . , n− 1

ri = ci +
n−2∑
j=0

Ejicn+j .

Consequently,

|ri| = |ci +
n−2∑
j=0

Ejicn+j |

6 |ci|+
n−2∑
j=0

|Ejicn+j | 6 |ci|+
n−2∑
j=0

|Eji||cn+j | .

Since

• |ci| 6 (i+ 1)k, for i = 0, . . . , n− 1,

• |cn+j | 6 (n− (j + 1))k, for j = 0, . . . , n− 2,

one finally has:

|ri| 6 k[(i+ 1) +
n−2∑
j=0

(|Eji|(n− j − 1)]

= k[(i+ 1) +
n−2∑
j=0

(E ′ji(n− j − 1)]

= k[(i+ 1) + (n− 1, n− 2, . . . , 1)

E ′0i
E ′1i

...
E ′(n−2)i

]

Thus the result.

Remark 3. If E(X) = Xn − λ,

E =

λ 0 0

0 λ
...

...
. . .

...
0 λ 0

 .

It leads to w = 1 + (n− 1)|λ| which is a slight improvement
of the bound proposed in [7] which was equal to n|λ|.

5 EXISTENCE OF PMNS AND BOUNDS FOR CON-
SISTENCY

In this section, we first give a sufficient condition for a tuple
(p, n, γ, ρ, E) to be a PMNS. This condition will then allow
us to define optimal bounds on some PMNS parameters for
the consistency of operations.

5.1 Existence of PMNS

Given parameters p, n, E and γ, we need to set the value of
ρ to ensure convenient PMNS buildings. In [8] (Theorem
2), Bajard et al. give an answer when E is an irreducible
polynomial such that E(X) = Xn+βX+λ, with β, λ ∈ Z. In
this section, we consider the general case where E ∈ Zn[X]
is any monic polynomial.

For any vector S ∈ Rn, the classical Babaï round-off
approach [6] can be used to find a vector T in a lattice L such
that ‖S − T‖∞ 6 1

2‖B‖1, where B is a basis of L. A proof
of this result is given in [9, Theorem 4.2] by considering the
lattice L of the polynomials of degree at most n − 1, for
which γ is a root modulo p. This proof remains correct for
any lattice L and any base B of the latter. From this remark
and [9, Propostion 4.1], the following result comes:

Proposition 3. Let p > 3 and n > 1 be two integers. Let E ∈
Zn[X] be a monic polynomial and γ ∈ (Z/pZ)\{0}, such
that E(γ) ≡ 0 (mod p). If there exists a polynomial M ∈
Zn−1[X] such that gcd(E,M) = 1 in Q[X] and M(γ) ≡ 0
(mod p), then (p, n, γ, ρ, E) defines a PMNS as soon as:

ρ >
1

2
‖M‖1,

whereM is the internal reduction matrix (Equation 2).

Proof. Let us first recall that :

‖M‖1 = max
j=1...n

n∑
i=1

|Mij | .

From [9, Propostion 4.1], the matrix M is a base
of L = {ZM mod E, with Z ∈ Zn−1[X]}. Let
a ∈ Z/pZ and v = (a, 0, . . . , 0). Using Babaï round-
off approach, one can find a vector t in L such that
‖v − t‖∞ 6 1

2‖M‖1. Let Y = V − T , where V, T, Y
are the polynomials corresponding to vectors v, t, y. We
have Y (γ) = V (γ) − T (γ). As t ∈ L, T (γ) ≡ 0 (mod p),
because E(γ) ≡ M(γ) ≡ 0 (mod p). So, Y (γ) ≡ V (γ)
(mod p) = a. To sum up, for any a ∈ Z/pZ, there exists a
polynomial Y ∈ Zn−1[X] such that a = Y (γ) (mod p) and
‖Y ‖∞ 6 1

2‖M‖1. Hence, as soon as ρ > 1
2‖M‖1, the tuple

(p, n, γ, ρ, E) defines a PMNS.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 5

5.2 Bounds on parameters

As already mentioned, an internal reduction might be re-
quired after a polynomial addition to ensure that the result
is still in the PMNS. However, this is highly inefficient, since
the internal reduction is a lot more expensive than the sim-
ple polynomial addition. Therefore, our goal is, as much as
possible, to avoid internal reduction after additions. Let δ be
the maximum number of consecutive additions of elements
in B to compute before a modular multiplication. Taking
into account δ, bounds on ρ and φ are given in [15], to ensure
operation consistency in the PMNS, when E(X) = Xn − λ.
In this section, based on Proposition 2, we improve these
bounds, for any monic polynomial E ∈ Zn[X].

Proposition 4. Let V ∈ Zn−1[X] be a polynomial. If ρ, φ
and V are such that:

‖V ‖∞ < w(δ + 1)2ρ2,
ρ > 2‖M‖1,

φ > 2wρ(δ + 1)2,

then, the output S of Algorithm 2 (with V as input) is such
that ‖S‖∞ < ρ (i.e., S ∈ B).

Proof. Algorithm 2 outputs S is such that: ‖S‖∞ 6
1
φ (‖V ‖∞+‖T‖∞). Since ‖V ‖∞ < w(δ+1)2ρ2 and ‖Q‖∞ <
φ,

‖S‖∞ <
1

φ
(w(δ + 1)2ρ2 + φ‖M‖1)

=
1

φ
w(δ + 1)2ρ2 + ‖M‖1

6 ρ/2 + ‖M‖1, since φ > 2wρ(δ + 1)2

6 ρ, since ρ > 2‖M‖1 .

Corollary 1. Let δ be the maximum number of consecutive
additions of elements in B to compute before a modular
multiplication. Let U and W be the results of such consecu-
tive additions. If ρ and φ are such that:

ρ > 2‖M‖1 and φ > 2wρ(δ + 1)2 ,

then, with U and W as inputs, Algorithm 3 outputs a
polynomial S such that ‖S‖∞ < ρ (i.e., S ∈ B).

Proof. With U and W as inputs, the polynomial V (line 2,
Algorithm 3) is such that:

‖V ‖∞ 6 w(δ + 1)2(ρ− 1)2 (see Proposition 2)

< w(δ + 1)2ρ2 .

So, Proposition 4 concludes.

Remark 4. When E(X) = Xn − λ, the bounds on ρ and φ
given in [15] are:

ρ > 2n|λ|‖M‖∞ and φ > 2n|λ|ρ(δ + 1)2 .

Since w = 1 + (n − 1)|λ| < n|λ| and ‖M‖1 < n|λ|‖M‖∞,
Corollary 1 improves these bounds, except for λ = ±1
where w = n. In Section 7.4.2, we explain why λ = ±1
is not a good choice to design a PMNS.
In [14], these bounds have been generalised to any monic
polynomial E ∈ Zn[X] (when δ = 0), and are :

ρ > 2n‖S‖1‖M‖∞ and φ > 2n‖S‖1ρ ,

where S is the (2n− 1)× n matrix whose rows contain the
coefficients of Xi mod E, for 0 ≤ i ≤ 2n− 2.
From the definition of E (Equation 1), it is obvious that
‖S‖1 = 1 + ‖E‖1 = 1 + ‖E ′‖1. As a consequence :

w = ‖(1, 2, . . . , n) + (n− 1, n− 2, . . . , 1)E ′‖∞
6 n+ ‖(n− 1, n− 2, . . . , 1)E ′‖∞ < n+ n‖E ′‖1 .

Hence,w < n‖S‖1. Also, ‖M‖1 6 w‖M‖∞ (see Proposition
8), as a consequence ‖M‖1 < n‖S‖1‖M‖∞.
Thus, Proposition 4 and Corollary 1 improve the bounds
proposed in [14].
Finally, Coladon et al. [13] improve the bound on ρ, when
E(X) = Xn−λ and δ = 0. They propose to take ρ > 2α−1,
where α = |m0|+ |λ|(|m1|+ |m2|+ · · ·+ |mn−1|). One can
see that α = ‖M‖1.

6 ALGORITHMS FOR OTHER OPERATIONS IN THE
PMNS
First, let us remind that addition and subtraction in the
PMNS are classical polynomial addition and subtraction
respectively.

6.1 Conversion algorithms
As explained in Remark 1, an element a ∈ Z/pZ must be
represented by a polynomial A ∈ B such that A(γ) ≡ aφ
(mod p). For efficiency reason, we aim to design a con-
version algorithm which only needs one internal reduction.
Hence, we need to convert aφ in a polynomial U such that
‖U‖∞ < w(δ+1)ρ2 (from Proposition 4). Let us consider the
polynomials Pi ∈ B such that Pi(γ) ≡ (ρiφ2) (mod p) and
let t = (tn−1, ..., t0)ρ be the radix-ρ decomposition of a. The
polynomial U(X) =

∑n−1
i=0 tiPi(X) satisfies ‖U‖∞ < nρ2.

Since n 6 w, ‖U‖∞ 6 w(δ+1)2ρ2. Algorithm 4 performs the
conversion into PMNS. The polynomials Pi are computed
using Algorithm 5.

Algorithm 4 Conversion from classical representation to
PMNS
Require: a ∈ Z/pZ and B = (p, n, γ, ρ, E)
Ensure: A ∈ B, such that A ≡ (aφ)B

1: t = (tn−1, ..., t0)ρ # radix-ρ decomposition of a

2: U ←
n−1∑
i=0

tiPi(X)

3: A← RedCoeff(U)
4: return A

Algorithm 5 Exact conversion from binary to PMNS

Require: a ∈ Z/pZ, B = (p, n, γ, ρ, E) and τ = φn mod p
Ensure: A ∈ B, such that A ≡ aB

1: α = a× τ (mod p)
2: A = (α, 0, . . . , 0) # a polynomial of degree 0
3: for i = 0 . . . n− 1 do
4: A← RedCoeff(A)
5: end for
6: return A

The radix-ρ decomposition (in Algorithm 4) is always
possible and efficient. Indeed, Proposition 3 shows that

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 6

as soon as ρ > 1
2‖M‖1, one can build a PMNS. This

implies that (2‖M‖1 − 1)n > p, given that the coefficients
of the polynomials can be negative. From Proposition 4,
the parameter ρ is taken such that ρ > 2‖M‖1. Thus,
ρn > p. Hence, this radix-ρ decomposition with n sym-
bols is always possible. In Section 7.1, we propose to take
ρ = 2dlog2(2‖M‖1)e, i.e. a power of two, which ensures an
efficient decomposition.

The conversion of A from PMNS to binary represen-
tation is the operation: a = A(γ)φ−1 (mod p). This can
efficiently be done using Algorithm 6. The elements gi are
precomputed.

Algorithm 6 Conversion from PMNS to classical represen-
tation

Require: A ∈ Zn[X], B = (p, n, γ, ρ, E) and gi = φ−1γi

(mod p), for i = 1, . . . , n− 1

Ensure: a = A(γ)φ−1 (mod p)

1: a← 0

2: for i = 0 . . . n− 1 do
3: a← a+ aigi

4: end for
5: a← a (mod p)

6: return a

6.2 Exact coefficient reduction

Let us consider a k-bit architecture. For software implemen-
tation, the internal reduction is optimised when φ = 2k.
From Corollary 1, we have φ > 4w(δ+ 1)2‖M‖1. This leads
to an upper bound ∆ for δ. In the context where we have
to execute more than ∆ additions, an internal reduction
must be computed after this sequence of additions. Since
RedCoeff induces a factor φ−1 on the output, we cannot use
it as such. We need an “exact” reduction which computes a
polynomial S ∈ Zn−1[X] from a polynomial V ∈ Zn−1[X]
such that S(γ) ≡ V (γ) (mod p). Algorithm 7 performs this
exact coefficient reduction. It requires the polynomial P0

already computed for conversion (see Algorithm 4). Notice,
that this reduction is more than twice as slow as RedCoeff.

Algorithm 7 ExactRedCoeff

Require: V ∈ Zn−1[X], P0 ≡ (φ2)B, B = (p, n, γ, ρ, E),
and the matrix E .

Ensure: S ∈ Zn−1[X] such that S(γ) ≡ V (γ) (mod p)
1: T ← RedCoeff(V)
2: C ← T × P0

3: U = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E
4: S ← RedCoeff(U)
5: return S

7 PARAMETERS GENERATION

The parameters that define a PMNS for internal reduction
using the Montgomery-like method are:
• p: a prime integer, p > 3.

• n: the number of coefficients of the elements in PMNS,
n > 2.

• E: the external reduction polynomial.
• γ: a root (modulo p) of E.
• M : the internal reduction polynomial.
• ρ: the upper-bound on the infinity norm of the elements

of B.
• δ: the desired maximum number of consecutive addi-

tions before a modular multiplication.
• φ: the integer used in RedCoeff, Algorithm 2.
• M ′: a polynomial such that M ′ = −M−1 mod (E, φ).
• E : the external reduction matrix.
• M andM′: the internal reduction matrices.

Some of these parameters have to be chosen while the others
are computed. In the following section, we provide the
parameter generation process.

7.1 Parameter generation process

The parameter δ and the prime p are chosen with regard
to the target application. The next step is to choose the
parameter n with regard to the target architecture. Let us
consider that we have a k-bit processor architecture. Then n
must be chosen such that nk > dlog2(p)e in order to ensure
that each coefficient of the PMNS element can fit in one
machine word.
After p and n are chosen, one chooses a monic polynomial
E ∈ Zn[X], with ‖E‖∞ small, having a root γ ∈ Z/pZ
(modulo p). The parameters φ and ρ depend on w which
in turn depends on E (and this explains the constraint
“‖E‖∞ small”). Therefore, the latter must be chosen wisely.
In Section 7.4, we discuss about interesting choices of E.
With E, one can compute the external reduction matrix E .
For efficiency sake, φ must be a power of two. The choice
must be done while ensuring the existence of the polynomial
M ′ = −M−1 mod (E, φ). In Section 7.2, we give a neces-
sary and sufficient condition for such M ′ to exist. In Section
7.3, we explain how to generate the polynomial M which
fulfills this requirement; see Algorithm 8 for the generation
of parameters M andM.
Using Corollary 1, ρ and φ are computed as follows:

ρ = 2dlog2(2‖M‖1)e and φ = 2dlog2(2wρ(δ+1)2)e.

The polynomial M ′ is computed as M ′ = −M−1 mod
(E, φ) . Then, one computes the internal reduction matrix
M′. For forward and backward conversions to PMNS, we
precompute the representatives Pi(X) of (ρiφ2) in B and
the elements gi = φ−1γi (mod p), as explained in Section
6.1. We remind that P0 is also required for ExactRedCoeff
(Algorithm 7).
The generation strategy for efficient software implementa-
tion remains the same as described in [15, Section 5.1].

7.2 Existence of the polynomial M ′

In [15, Proposition 7], the authors have established a suffi-
cient condition of existence for M ′, given any polynomials
E,M ∈ Z[X] and an integer φ > 2. In [13], Coladon
et al. show that this condition is also necessary, when
E(X) = Xn − λ and φ a power of two. In this section,
we extend the result of [13] to any monic polynomial E and

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 7

integer φ > 2. Moreover, we give a necessary and sufficient
condition of existence for M ′, when φ = 2k with k > 1,
given any monic polynomial E ∈ Zn[X].

First, let us remind some elements about the resultant
Res(A,B) of two polynomials A and B.

Definition 2 (Resultant). [25, Def. 7.2.2, p. 227] Let A be
a commutative ring with identity. Let A and B be two
polynomials in A[X]. The resultant Res(A,B) of A and B is
the determinant of their Sylvester matrix.

If A(X) = a0 + a1X + · · · + anX
n and B(X) = b0 +

b1X + · · · + bmX
m, then their Sylvester matrix is the (n +

m)× (n+m) matrix defined as follows:

SA,B =

am · · · a0
. . .

. . .
am · · · a0

bn · · · b0
. . .

. . .
bn · · · b0︸ ︷︷ ︸
m+n

n

m

In [20, Theorem 1.18] or [30], Theorem 1 below is given. Our
results will be based on this theorem.

Theorem 1. Using notations above for polynomials A and
B, we have:

Res(A,B) = amn det(D),

where D ∈ Zn×n is such that:

D =

.
.

...
...

...
.

← B mod A
← X.B mod A

← Xn−1.B mod A

Corollary 2. Let E ∈ Zn[X] be a monic polynomial and
M ∈ Zn−1[X], then:

Res(E,M) = det(M),

whereM is the internal reduction matrix computed with E
and M (see Equation 2).

Proof. Applying Theorem 1, the polynomials E, M and
matrix M correspond to A, B and D respectively. Since E
is a monic polynomial, one can conclude.

Before stating the existence criterion of polynomial M ′,
we establish the useful next property.

Property 1. Let M ∈ Zn−1[X] be a polynomial and φ >
2 be an integer. Let us assume that the polynomial J =
M−1 mod (E, φ) exists. Then, the matrix J defined below
is such that:

M×J (mod φ) = In ,

where In is the (n × n) identity matrix andM the internal
reduction matrix. That is, J is the inverse ofM in the set of
n× n matrices defined over Z/φZ.

J =

j0 j1 . . . jn−1
.

...
...

...
.

← J
← X.J mod (E, φ)

← Xn−1.J mod (E, φ)

(6)

Proof. For any vector V , the product V J gives a vector
whose coordinates are the coefficients of V (X)J(X) mod
(E, φ). Hence, the result ofM×J is a set of n rows, where
the ith row corresponds to the coefficients of Xi−1M.J =
Xi−1 mod (E, φ). Hence, for 1 6 i 6 n, the ith row is equal
to (0, . . . , 0, 1, 0, . . . , 0) where the value 1 is at position i.

Now, we give a general existence criterion for the poly-
nomial M ′, given any integer φ > 2.
Proposition 5. Let E ∈ Zn[X] be a monic polynomial
and M ∈ Zn−1[X]. Let φ > 2 be an integer. The poly-
nomial M ′ = −M−1 mod (E, φ) exists if and only if
gcd(Res(E,M), φ) = 1.
Proof. From Proposition 7 in [15], if gcd(Res(E,M), φ) = 1
then the polynomial J = M−1 mod (E, φ) (and so M ′)
exists. Hence, it remains to show that if J exists then
gcd(Res(E,M), φ) = 1.
Let us assume that J = M−1 mod (E, φ) exists. Since the
matrix J (Equation 6) is defined by J , the inverse (in the
set of (n × n) matrices defined over Z/φZ) ofM exists, i.e.
det(M)∈ (Z/φZ)∗, according to Property 1. With Corollary
2, we deduce that gcd(Res(E,M), φ) = 1.

As a consequence of the previous proposition, we now
state our main existence criterion for the polynomial M ′,
when φ is a power of two.
Corollary 3 (Existence criterion). LetE ∈ Zn[X] be a monic
polynomial and M ∈ Zn−1[X]. Let φ = 2k, for k > 1 an
integer. The polynomial M ′ = −M−1 mod (E, φ) exists if
and only if det(M̃) = 1, where M̃ is the (n × n) binary
matrix such that M̃ij =Mij (mod 2).
Proof. Since φ is a power of two, gcd(Res(E,M), φ) = 1 iff
Res(E,M) is odd, which means that det(M) is odd. This is
equivalent to have det(M̃) = 1.

Remark 5. Since M̃ is a binary matrix, its determinant can
be computed very efficiently using only logical operators.

7.3 Generation of the polynomial M
Let B = (p, n, γ, ρ, E) be a PMNS. Let us consider the set of
polynomials LB defined as follows:

LB = {A ∈ Zn−1[X] | A(γ) ≡ 0 (mod p)} . (7)

In [8] (Lemma 1), the authors have shown that LB is a full-
rank euclidean lattice of dimension n. A basis of LB is:

B =

p 0 0 . . . 0 0
t1 1 0 . . . 0 0
t2 0 1 . . . 0 0
...

. . .
...

tn−2 0 0 . . . 1 0
tn−1 0 0 . . . 0 1

(8)

where ti = (−γ)i mod p.
As a consequence, any basis C of LB is such that C = U×B
where U is a n× n unimodular matrix.

Corollary 3 gives a sufficient (and necessary) condition
on the existence of the the polynomial M ′ when φ is a
power of two. In this section, we present a generation
process which ensures to always find at least one suitable
polynomial M , given any basis of the lattice LB.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 8

Definition 3. Let A ∈ Zn−1[X] be a polynomial, such that:
A(X) = a0 + a1X + · · · + an−1X

n−1. We denote by A the
polynomial such that: A(X) = a′0 +a′1X+ · · ·+a′n−1X

n−1,
where a′i = ai (mod 2).

The next proposition highlights a polynomial M for
which the polynomial M ′ always exists, given any monic
polynomial E ∈ Zn[X] and φ a power of two.
Proposition 6. Let E ∈ Zn[X] be a monic polynomial and
M ∈ Zn−1[X]. If the polynomial M is such that:

m0 ≡ 1 (mod 2) and mi ≡ 0 (mod 2) for 1 6 i < n,

i.e.M = 1, then the corresponding internal reduction matrix
M is such that: M̃ = In. Therefore, M ′ exists.
Proof. Let us assume E(X) = Xn − S(X), where S ∈
Zn−1[X]. Let V ∈ Zn−1[X], such that vn−1 ≡ 0 (mod 2).
Then,

(X.V (X)) mod E(X) = v′0X + v′1X
2 + · · ·+ v′n−2X

n−1 .

Indeed, X.V (X) mod E(X) = v0X + v1X
2 + · · · +

vn−2X
n−1 + vn−1S(X). Since vn−1 ≡ 0 (mod 2),

vn−1S(X) = 0.
Now, let us consider the polynomial M . To build the matrix
M, one computesXiM(X) mod E(X), for 0 6 i < n. Since
M = 1, then

XiM(X) mod E(X) = Xi ,

which corresponds in M̃ to the row (0, . . . , 0, 1, 0, . . . , 0),
the non-zero element being on the diagonal. Hence, M̃ =
In. Since det(In) = 1, one can conclude with Corollary 3
that M ′ = −M−1 mod (E, φ) exists.

According to Property 6, if M = 1, then M ′ exists. We
now evaluate the complexity of finding such a polynomial
M . The next proposition answers this question.
Proposition 7. Let G = {G0, . . . ,Gn−1} be a basis of LB.
Then, there exists a vector β = (β0, . . . , βn−1) ∈ Fn2 , such
that the vector M =

∑n−1
i=0 βiGi satisfies: m0 ≡ 1 (mod 2)

and mi ≡ 0 (mod 2) for 1 6 i < n; i.e. M = 1.
Proof. Let us consider V = (p, 0, . . . , 0), the first row of
the basis B (Equation 8). Since p > 3 and prime, we have:
V = (1, 0, . . . , 0).
Also V ∈ LB, so there exists a vector α = (α0, . . . , αn−1) ∈
Zn such that: V =

∑n−1
i=0 αiGi.

Now, let us consider the polynomial M =
∑n−1
i=0 βiGi,

where βi = αi (mod 2), then V = M .
Given any basis G of LB, according to Proposition 7, at

least one binary linear combination of G rows computes
a polynomial M such that M = 1. Thus, one needs to
check at most 2n linear combinations of G rows to find a
suitable polynomial M . In practice (i.e. for cryptographic
sizes), n is small enough to make possible the test of all
these combinations. For example, with p of size 256 bits,
one has n = 5.

Let θ = max
06i<n

‖Gi‖∞. For each binary linear combina-

tion, the computed polynomial M verifies ‖M‖∞ 6 nθ.
Thus, if ‖Gi‖∞ are small, then ‖M‖∞ will also be small,
since n is small and negligible compared to θ.
Remark 6. The purpose of Proposition 7 is to provide the
guarantee of existence of at least one suitable M among

the binary linear combinations of G rows. In practice, the
input G should be a reduced based of LB, such that ‖G‖1 ≈
p

1
n , in order to obtain a polynomial M such that ‖M‖∞ ≈
p

1
n . Such a basis G can be computed by applying a lattice

reduction algorithm (like LLL [24], BKZ[32] or HKZ[23]) on
the basis B (Equation 8).

Proposition 7 guarantees that Algorithm 8 will always
output a suitable result. On the other hand, since n is small
enough in practice, in order to find the best candidate(s), it
remains possible to check all the 2n binary combinations.
The best candidates are defined here as the ones that min-
imise the 1-norm of the corresponding internal reduction
matrixM, since this will lead to the smallest value for ρ.

Algorithm 8 Generation of parameters M andM
Require: n, E ∈ Zn[X] a monic polynomial having γ as a

root modulo p and G a reduced basis computed from B
(Equation 8).

Ensure: M ∈ Zn−1[X] such that: M(γ) ≡ 0 (mod p) and
M ′ = −M−1 mod (E, 2k) exists, for any integer k > 1.

1: for i = 1 . . . 2n − 1 do
2: t← (t0, . . . , tn−1) # binary decomposition of i
3: M ← (t0, . . . , tn−1)G
4: ComputeM # see Equation 2, page 3
5: if det(M̃) = 1 then
6: return (M ,M)
7: end if
8: end for

Remark 7. If gcd(Res(E,M), φ) = 1, then Res(E, M) 6= 0. So,
gcd(E,M) = 1 in Q[X]. Since the parameter ρ is such that:
ρ = 2dlog2(2‖M‖1)e > 1

2‖M‖1 (see Section 7.1), Proposition
3 guarantees that the tuple (p, n, γ, ρ, E) defines a PMNS.

7.4 Choice of the polynomial E

As mentioned in Remark 2, the parameter w computed from
E has an effect on ρ. In this section, we present a new set of
polynomials E for small memory cost. Let us first show the
following result.

Proposition 8. Let E ∈ Zn[X] be a monic polynomial and
M ∈ Zn−1[X]. Then,

‖M‖1 6 w‖M‖∞ ,

where w is the parameter given in Proposition 2.

Proof. We have

XiM mod E =(0, . . . , 0,m0, . . . ,mn−1−i)

+(mn−i, . . . ,mn−1, 0, . . . , 0)E .

Since each mi is bounded by k = ‖M‖∞, then

‖M‖1 6 k‖

1 1 . . . 1
0 1 . . . 1

0 0
. . .

...
0 0 . . . 1

+

0 0 . . . 0
1 0 . . . 0
...

. . .
...

1 . . . 1 0

 E ′‖1
Hence the result, since

w = ‖(1, 2, . . . , n) + (n− 1, n− 2, . . . , 1)E ′‖∞ .

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 9

Under the hypothesis that ‖M‖∞ ' p1/n (from
Minkowski’s theorem), Proposition 8 shows that a way to
lower ‖M‖1 (and thus ρ) is to minimize the value of w. For
an AMNS, w = 1 + (n − 1)|λ| (see remark 3), thus taking
|λ| = 2 will give the smallest upper bound on ‖M‖1 (next
section explains why |λ| > 1). Moreover it leads to a very
fast external reduction process which uses only additions
and shift operations. Hence, among the AMNS polynomials,
Xn ± 2 are the best choices and correspond to a value
w = 2n− 1.

In the previous sections, we have seen how to generate
PMNS parameters given any monic polynomial E ∈ Zn[X],
which has a root γ modulo p and also how to perform a
constant time internal reduction regardless the polynomial
E (see Section 4.2, Algorithm 2). The impact of the poly-
nomial E on the efficiency of the external reduction can be
deduced from Algorithm 3 line 2. Indeed, one can see that
the corresponding computation uses the external reduction
matrix E which depends on E. The more the matrix E is
sparse, the faster the external reduction is. Moreover, to
be competitive with the AMNS context, the matrix should
contain only coefficients equal to ±1 or ±2i so that the
external reduction can be done only with additions and shift
operations.

Taking into account the optimal AMNS context, the fol-
lowing question arises: are there other polynomialsE which
lead to such sparse matrices E and a value w 6 2n− 1 ?

In Section 7.4.1, we present, through examples, a set of
polynomialsE ∈ Zn[X] which provide such a valuew and a
sparse matrix E . Enlarge the set of polynomials has already
been considered in [9], but the authors did not consider the
parameter w.

7.4.1 Examples of polynomialsE for fast external reduction
and small memory cost
All the matrices E presented in this section are such that:
Eij ∈ {−1, 0, 1}, each column has at most two non-zero
elements and at least two columns have only one non-zero
element. Thus, the operation V × E , where V ∈ Zn−1, costs
at most n− 2 additions of V elements.
Let us start by the most interesting ones, which are obtained
when n is even. We provide a proof for one case only. The
other cases can be proven in the same way.
Example 1. Let us assume that n ≡ 0 (mod 2). If E(X) =
Xn + jXn/2 + 1, with j ∈ {−1, 1}, then:

E =

(
−In

2
−jIn

2

jIn
2−1 0n

2−1,
n
2 +1

)
So, w = (3n)/2 (see Proposition 11 for proof, when j = 1).

Now, here are some other polynomials which gives a
value w that is lower than the value w computed for Xn−λ.
Example 2. If E(X) = Xn + Xn−1 + · · · + X + 1 (E(X) is
the all-one polynomial), then:

E =

(
−1 −1 . . . −1

In−2 0n−2,2

)
So, w = 2n − 1. Indeed, each column contains exactly two
ones except the last two. Hence, (n− 1, n− 2, . . . , 2, 1)E ′ =
(2n−3, 2n−4, . . . , n−1, n−1), so (1, 2, . . . , n)+(n−1, n−
2, . . . , 2, 1)E ′ = (2n− 2, 2n− 2, 2n− 2, . . . , 2n− 2, 2n− 1).

Example 3. If E(X) = Xn + iX + j, with i, j ∈ {−1, 1},
then:

E =

−j −i 0 . . . 0

0 −j −i
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −j −i

So, w = 2n − 1. Indeed, (1, 2, . . . , n) + (n − 1, n −
2, . . . , 2, 1)E ′ = (n, 2n− 1, 2n− 2, 2n− 3, . . . , n+ 1).

Example 4. Let us assume that n ≡ 0 (mod 2). If E(X) =
Xn +Xn−2 +Xn−4 + · · ·+X2 + 1, then:

E =

−1 0 −1 0 . . . −1 0
0 −1 0 −1 . . . 0 −1
In−3 0n−3,3

So, w = 2n − 2. Indeed, let U = (1, 2, . . . , n) + (n − 1, n −
2, . . . , 2, 1)E ′. For 0 6 i 6 n − 4, we have: ui = 2n − 3 −
(i mod 2); and for n−3 6 i < n, we have: ui = n+i−(i mod
2). Thus, the maximum, which is 2n − 2, is obtained for
i = n− 2 and i = n− 1, since n is even.
The first two rows of E come from

Xn ≡ −(Xn−2 +Xn−4 + · · ·+X2 + 1) mod E .

For the third row, we have Xn+2 ≡ −(Xn + Xn−2 + · · · +
X4 + X2) mod E ≡ 1 mod E. Hence, the rows 3 to n − 2
of E contains only one element equal to 1 which is shifted
from one row to the next row.

For example 2, we use the fact that a part of w is
computed from a vector-matrix product, with the matrix E ′.
Thus, a way to minimize w is to consider a matrix where
there are few “small” non-zero elements in each column.
As an example, when E(X) = Xn − λ, the matrix E has
only one non-zero element per column (see Remark 3). In
order to minimize w, we propose a heuristic allowing to
obtain some matrices E ′ which contain at most 2 ones in
each column. Let E(X) = Xn − S(X), each row of E is
a right shift of the preceding row plus the element coming
out of this right shift multiplied by the coefficients of S.
A first way to reach our goal is to try to find a polynomial
S(X) = sn−1X

n−1+· · ·+s1X+s0, with s0 = ±1, such that
XS(X) = Xn−S(X)+s0. Indeed, in this case,XS(X) ≡ s0
(mod E(X)); hence, from lines 2 to n−1, the rows of E will
contain only one non-zero element.
We have:

XS(X) = Xn − S(X) + s0 ⇐⇒ S(X) =
Xn + s0
X + 1

.

Let us consider s0 = 1 and n odd, then X + 1 is a divisor
of Xn + 1. Hence, we can choose S(X) = Xn−1 −Xn−2 +
Xn−3 − · · · −X + 1 . Thus E(X) = Xn −Xn−1 +Xn−2 −
Xn−3 + · · ·+X − 1 , with n odd and w = 2n− 1.
Let us now consider s0 = −1 and n even, then X + 1 is a
divisor of Xn − 1. Hence, we can choose:

S(X) =
Xn − 1

X + 1
= Xn−1−Xn−2+Xn−3−· · ·−X2+X−1 .

Finally,

E(X) = Xn −Xn−1 +Xn−2 −Xn−3 + · · ·+X2 −X + 1 ,

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 10

with n even and w = 2n− 1.

Another strategy is to find a polynomial S such
that: XS(X) = −Xn + S(X) − s0, in order to have:
XS(X) ≡ −s0 (mod E(X)). This gives:

S(X) = −X
n + s0
X − 1

.

Let us consider s0 = −1. Since X − 1 divides Xn − 1, for
any n, we can choose:

S(X) = −X
n − 1

X − 1
= −Xn−1 −Xn−2 − · · · −X − 1 .

It corresponds to Example 2.
Let s0 = 1, then X − 1 does not divide Xn + 1, since 1 is
not a root of Xn + 1.

Example 3 is obtained by considering that the reduction
modulo E adds some new elements in the matrix, except
if each shift does not bring in the last column a non zero
element. Hence, a natural way to prevent this is to start
with the first line having only two non zero elements in the
first two positions.
This naturally leads us to consider the more general set of
trinomials Xn ±Xj ± 1 (see Example 1).
Proposition 9. Let j < n

2 and E(X) = Xn + Xj + 1, then
w > 2n− 1.
Proof. Each row of E ′ contains the absolute value of the
coefficients ofXi.(−Xj−1) (mod E(X)) for i = 0 . . . n−2,
from constant term to leading term. The first line contains
the absolute value of the coefficients of −1 − Xj . Hence,
there is a one in column j + 1. Next the (j + 1)th row
contains the absolute value of Xj .(−Xj−1) = −Xj−X2j ,
no reduction is done , since j < n

2 . Thus, the (j + 1)th

column contain at least two ones (one at row 1, and another
one at row j + 1). From the definition of w, we deduce that
w > j + 1 + n− 1 + n− (j + 1) = 2n− 1.
Proposition 10. Let j > n

2 and E(X) = Xn +Xj + 1, then
w > 3n

2 .
Proof. The first line of E ′ contains the absolute value of the
coefficients of −1 − Xj . Suppose that j < n − 1, since
j > n

2 , then n − j < n − 1 and 2n − 2j < n − 1. Hence,
the rows n − j + 1 and 2n − 2j + 1 are well defined and
respectively contains the absolute values of the coefficients
of Xn−j(−1 − Xj) (mod E(X)) and X2n−2j(−1 − Xj)
(mod E(X)). These two lines are computed from the poly-
nomials 1 − Xn−j + Xj and −1 + Xn−j − X2n−2j − Xj .
Thus, the first column of E ′ contains at least three ones (row
1, row n− j+1 and row 2n−2j+1). From the definition of
w, one has w > 1+n−1+n−1− (n− j)+n−1−2(n− j),
thus, w > 3j − 2. Since j = n

2 + k, with k > 1, we conclude
that w > 3n

2 .
We do not detail the particular case j = n − 1. In this
case, each multiplication byX provides the monomial±Xn,
which in turn is reduced (mod E) in the constant term ±1.
Hence, the first column of E ′ is the all-1 column which
implies that w > 1 + n(n−1)

2 .
Proposition 11. Let’s assume that n ≡ 0 (mod 2). Let j = n

2
and E(X) = Xn +Xj + 1, then w = 3n

2 .
Proof. We have:

• for i ∈ [0, n2 − 1], Xn+i = −X n
2 +i −Xi mod E(X),

• for i = n
2 , Xn+n

2 = −Xn −X n
2 = 1 mod E(X),

• for i ∈ [n2 + 1, n− 2], Xn+i = Xi−n
2 .

Hence, the matrix E ′ is as follows:(
In

2
In

2

In
2−1 0n

2−1,
n
2 +1

)
,

where It is the t × t identity matrix, and 0n
2−1,

n
2 +1 is the

(n2 − 1)× (n2 + 1) zero matrix.
Let w̃ be the vector (1, 2, . . . , n) + (n− 1, n− 2, . . . , 2, 1)E ′.
Then w̃i = i+

∑n−1
j=1 (n− j)E ′ij for i ∈ [1, n− 1]. Now:

• w̃i = i+ (n− i) + (n− (i+ n
2)) = 3n

2 − i for i ∈ [1, n2],
hence wi < 3n

2 ,
• w̃n

2
= n

2 + (n− n
2) = n,

• w̃i = i+ n− (i− n
2) = 3n

2 for i ∈ [n2 , n− 1].

From the preceding propositions, it appears that one of
the trinomials computing the best value ofw isXn+X

n
2 +1,

with n even.
Table 1 summarizes the polynomials presented in this

section, with the requirement on the parity of n and the
corresponding value of w. The symbol − in this table means
that the parity of n doesn’t matter.

E(X) n w

Xn ±X
n
2 + 1 even 3n/2

Xn +Xn−2 +Xn−4 + · · ·+X2 + 1 even 2n− 2

Xn −Xn−1 +Xn−2 −Xn−3 + · · · −X + 1 even 2n− 1

Xn −Xn−1 +Xn−2 −Xn−3 + · · ·+X − 1 odd 2n− 1

Xn ±X ± 1 − 2n− 1

Xn +Xn−1 + · · ·+X + 1 − 2n− 1

TABLE 1: Example of polynomials E, for efficient external
reduction and small memory cost.

7.4.2 The case E(X) non-irreducible

Let us remind that the memory required to represent PMNS
elements depends on n and ρ. Given n, our goal is to
minimize ρ. The generation process presented above does
not require the polynomial E to be irreducible. In practice,
however, with non-irreducible polynomials E, it leads to
PMNS having a too large parameter ρ. We now provide an
explanation of this.

As seen with parameters w and E , ‖E‖∞ has to be very
small, for instance less than or equal to 8. Consequently
‖E‖2 is also very small, bounded by 8

√
n, if ‖E‖∞ 6 8.

This leads to an efficient external reduction with small
memory overhead. If E is non-irreducible in Zn[X], then
there exist two monic polynomials G,H ∈ Z[X] such
that E(X) = G(X)H(X), with deg(G),deg(H) < n and
‖G‖2, ‖H‖2 both very small. In the generation process, the
lattice reduction can be done with algorithms such as LLL,
BKZ or HKZ, in order to get the reduced basis. When E
is non-irreducible, the first row b0 of this reduced basis
(b0, b1, . . . , bn−1), computed from B (Equation 8), is either
G or H . The volume of this lattice is p, since det(B) = p.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 11

Hence, det(b0, b1, . . . , bn−1) = p. From Hadamard inequal-
ity, we know that:

n−1∏
i=0

‖bi‖∞ >
p

nn/2
.

Since deg(G),deg(H) < n and ‖b0‖∞ ≈ ‖E‖2 which is
very small, the vectors bi for 1 6 i < n are such that:
‖bi‖∞ ≈ p

1
k where k < n, because the parameter n is

negligible compared to p. Thus, since the polynomial M is
a binary linear combination of the vectors bi, ‖M‖∞ has the
same order of magnitude as p

1
k .

In practice, in order to represent PMNS elements with
optimal memory cost, we set ρ ≈ p

1
n . Thus, from Equation

2, M is such that ‖M‖∞ ≈ p
1
n , since ‖E‖∞ is very small.

With p meant to be a large integer and n a small one, one
has p

1
k >> p

1
n . Consequently, on the one hand, searching

M among binary linear combinations of a reduced basis
will not allow to generate a suitable PMNS, ‖M‖∞ (and
therefore ρ) being too large. On the other hand, enlarging the
set of possible linear combinations will drastically increase
the complexity of the generation process.
Remark 8. The polynomial E(X) = Xn− 1 falls in this case,
since Xn − 1 = (X − 1)(Xn−1 + · · ·+ 1).
When n is even (n = 2k), then −1 must be a (2k)th residue
modulo p, for E(X) = Xn + 1 to have a root modulo p. It
implies that p ≡ 1 (mod 4) [19]. Hence, if p 6≡ 1 (mod 4),
no PMNS can be built with E(X) = Xn + 1 and n even.
If n is not a power of 2 (which includes n odd), i.e. n = 2sj
with j > 1 odd, then Xn + 1 = (X2s + 1)S(X), where:

S(X) = (X2s)j−1 − (X2s)j−2 + (X2s)j−3 − · · · −X + 1 .

Thus, the polynomial E(X) = Xn+1 can be used to build a
suitable PMNS only when p ≡ 1 (mod 4) and n is a power
of 2, which is unlikely to happen most of the time in practice.

8 IMPLEMENTATIONS AND ANALYSES

In [15, Section 6], a deep study of AMNS memory require-
ment and efficiency (both theoretical and practical) is done,
along with some other aspects. Since, only the form of
the external polynomial E differs from AMNS to PMNS,
this study remains applicable to PMNS. In this section, we
discuss the differences induced by the choice we suggest for
E. We focus on polynomials E presented in Section 7.4.

8.1 Theoretical performances

The performances and the required memory storage of a
PMNS depend mainly on the target architecture and the
value of n. Let us consider a k-bit processor architecture,
then the basic arithmetic computations are performed on
k-bit words.

We assume algorithms inputs belong to a PMNS B =
(p, n, γ, ρ, E), such that: ρ = 2t and φ = 2h, where t, h ∈ N
and 1 6 t < h 6 k.
Since elements in B are polynomials, n k-bit data words are
required to represent each of them. As a consequence, an
element in B requires nk bits to be represented.

Let M and A respectively denote the multiplication and
the addition of two k-bit integers. We also respectively

denote Sil and Sir a left shift and a right shift of i bits. Let
x = x1x2 and y = y1y2, where xi and yi are k-bit data
words; the computation of x+ y costs 2A.
With the internal reduction matrices M and M′, RedCoeff
cost becomes independent of E and is:

2n2M + (3n2 − n)A + nSkr .

Let A,B ∈ B. The operation C = A × B, which is also
independent of E, costs:

n2M + (2n2 − 4n+ 2)A .

Now, let us focus on the external reduction; i.e. the
operation R = C mod E. As shown in Proposition 1,
R = (c0, . . . , cn−1) + (cn, . . . , c2n−2)E , where E is the
external reduction matrix corresponding to E. It involves
n additions and the cost of (cn, . . . , c2n−2)E .
All the polynomials presented in Section 7.4 compute ma-
trices E such that: Eij ∈ {−1, 0, 1}, each column has at most
two non-zero elements and at least two columns have only
one non-zero element.
As a consequence, since each ci is a 2k-bit integer, the
operation (cn, . . . , c2n−2)E costs at most 2(n− 2)A.

If E(X) = Xn − λ, with |λ| 6= 1, this operation is less
expensive only when λ = ±2i. Indeed, in this case, it costs
(n−1)Sil , where shift operations are done on 2k-bit integers.
For such polynomials we have w = 1 + |λ|(n − 1). Hence,
from a storage point of view, it is advised to take |λ| = 2
(i.e. w = 2n− 1) to minimize the impact of w on ρ.

To sum up, with the polynomials E presented in Section
7.4, we have w 6 2n − 1, and the modular multiplication
costs at most:

3n2M + (5n2 − n− 2)A + nSkr .

On the other hand, with the polynomials E(X) = Xn ± 2,
we have w = 2n− 1 and the modular multiplication costs:

3n2M + (5n2 − 3n)A + (n− 1)S2l + nSkr .

In the next section, we compare our results (for modular
multiplication) to GMP and OpenSSL libraries, which im-
plement Montgomery-CIOS method [22], an improvement
of the initial Montgomery modular multiplication method.
Let us assume that the modulus p is of l-bit size. These li-
braries store an element a of Z/pZ into an array of j = dl/ke
elements of size k, with additional data for some flags
which have non significant impact on operations efficiency.
Each element of this array is a coefficient of the radix 2k

decomposition of a.
The Montgomery-CIOS method combines the multiplication
and reduction steps to improve both the efficiency and
the memory requirement during the operation and its cost
is [22, Section 5]:

(2j2 + j)M + (4j2 + 4j + 2)A .

This complexity is lower than the one of the PMNS. How-
ever, in the Montgomery-CIOS method one has to deal
with the carry propagation between the blocks representing
an integer. This is not the case for the PMNS since each
block is a coefficient of a polynomial. In practice (see next
section) the performances of the PMNS is almost the same
than OpenSSL or GMP when using low level functions and

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 12

Montgomery-CIOS method.

8.2 Implementations and results
We implemented a PMNS generator based on the process
presented in Section 7.1. This generator focuses on polyno-
mials E proposed in Section 7.4 and the ones of AMNS. We
also implemented a C code generator. Given a PMNS (ob-
tained from the preceding generator), it generates C codes
for all the necessary operations (including forward and
backward conversion to PMNS, addition, multiplication) to
easily integrate this PMNS into any higher level application
that uses the corresponding modulo p for modular arith-
metic. These generators were implemented using SageMath
library [33] and are available on GitHub 1.

As an example, we present below the performances of
software implementations of some AMNS and PMNS sys-
tems. These tests aim to provide an overview of the AMNS
and PMNS approaches presented in this paper and to give
a first comparison with the state of the art GMP library [4]
(6.2.0 version) and the OpenSSL library [29] (1.1.1 version).

8.2.1 Tested implementation configurations
For the same prime of size 256 bits, we generated the
AMNS/PMNS systems with the new generation process. In
order to compare with previous works, we provide in Table
2 the sizes of ρ for the targeted prime p. These results show
that we are able to reduce the value of ρ and consequently
the number of bits required to store a field element. For a
modulus p of size 256 bits, we spare 10 to 15 bits out of
roughly 300 bits.

The software implementations are based upon four sys-
tems:
• an AMNS with n = 5, E(X) = Xn − 2, φ = 264 and
ρ = 255;

• a PMNS with n = 5, E(X) = Xn−X − 1, φ = 264 and
ρ = 255;

• an AMNS with n = 6, E(X) = Xn − 2, φ = 252 and
ρ = 247.

• a PMNS with n = 6, E(X) = Xn−X − 1, φ = 252 and
ρ = 247.

While both first systems are implemented using classic
C language, the next systems take advantage of the AVX512
SIMD2 instruction set. In order to use this instruction set,
the value of φ has to be chosen according to the integer
multiplication instructions available, among which there
are:
• VPMULLD, computing 16 products of 32 bit operands

and returning the 32 low bits;
• VPMULLQ, computing 8 products of 64 bit operands and

returning the 64 low bits;
• VPMADD52LUQ and VPMADD52HUQ, computing 8 prod-

ucts of 52 bit integers stored in contiguous 64 bit words,
providing respectively the 52 low bits or the 52 high bits
of the results.

The first two instructions are well suited for systems
with φ = 232. However, there is no instruction com-
puting full multiplications of 64 bit operands, making

1. https://github.com/arithPMNS/low_memory_efficient_PMNS
2. Single Instruction Multiple Data

φ = 264 a worse choice. The VPMADD52 is a vectorized
fused multiplier-adder instruction. In our implementation,
we take advantage of this instruction setting φ = 252,
allowing to avoid the additions in the computations. While
this value leads to n = 6 higher than the one for the other
systems, the use of SIMD instructions decreases drastically
the instruction number, roughly divided by more than 6 in
comparison with the classic C implementations.

One may notice that with n = 6, the polynomial
multiplications require 36 elementary multiplications. In
our implementation, for each polynomial multiplication
mod E(X), we use 6 VPMADD52 instructions per 52 bit
words of the required results, leading to compute 6×8 = 48
elementary multiplications, using only 36 of them. Thus, we
can expect that one can choose values of n slightly greater
without significant penalty. This also means that for prime
modules of greater sizes (with n 6 8 and φ 6 252), the
cost of the PMNS modular multiplication will not increase
as significantly as expected when implemented with this
instruction set.

8.2.2 Experimentation procedure
We hereby present the performance test procedure. Mea-
surements were performed on a Dell Inspiron laptop with
an Intel Tiger Lake processor.

vendor_id : GenuineIntel
model name : 11th Gen Intel(R) Core(TM)

i7-1165G7 @ 2.80GHz

The compiler is gcc version 10.2.0, the compiler options are
as follows:
-O3 -g -lgmp -mavx512f -mavx512dq -mavx512vl
-mavx512ifma.
The test procedure is as follows:
• the Turbo-Boost® is deactivated during the tests;
• 1000 runs are executed in order to "heat" the cache

memory, i.e. we ensure that the cache memory (data
and instruction) is in an enough stabilized state in order
to avoid untimely cache faults;

• one generates 50 random data sets, and for each data
set the minimum of the execution clock cycle numbers
over a batch of 1000 runs is recorded;

• the performance is the average of all these minimums;
• this procedure is run on console mode, to avoid sys-

tem perturbations, and obtain the most accurate cycle
counts.

The clock cycle number is obtained using the rdtsc in-
struction which loads the current value of the processor’s
time-stamp counter into a 64-bit register. The processor
monotonically increments the time-stamp counter every
clock cycle. Hence calling this instruction before and just
after a sequence of instructions allows to obtain the number
of elapsed cycles. To count the number of instructions, we
make use of the rdpmc instruction which allows to read the
performance-monitoring counters. These counters can be
configured to count events such as the number of interrupts
received or the number of instructions decoded (see [1]).

8.2.3 Performance results and comparison
The performance results are shown in Table 3. Some com-
ments about the results :

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 13

p = 103349220827586647386838057192180105918374329459686284788246894917634728462183
AMNS n = 5 AMNS n = 6 PMNS n = 5 PMNS n = 6

size of ρ in bits
old parameters [15] 56 48 56 48

new parameters (This work) 53 46 54 46
theoretical number of bits required to store a field element in the system

old parameters [15] 285 294 285 294
new parameters (This work) 270 282 275 282

TABLE 2: Comparison of the theoretical sizes of ρ and the required size in order to store a field element, prime p size of
256 bits

p = 103349220827586647386838057192180105918374329459686284788246894917634728462183
This work

Modular Openssl GMP low level AMNS n = 5 AMNS n = 6 PMNS n = 5 PMNS n = 6
Multiplication Montg.-CIOS Montg.-CIOS Seq. C Seq. C AVX512 Seq. C Seq. C AVX512

clock cycles 133 121 134 188 43 135 208 38
instructions 522 502 378 563 83 381 571 92

TABLE 3: Performance comparison for 256 bits modular multiplication, OpenSSL and GMP, both Montgomery-CIOS
multiplications, AMNS n = 5 and n = 6, PMNS n = 5 and n = 6, AVX512 n = 6

• The vectorized AVX512 implementation of the PMNS
n = 6 version is the fastest, and has the lowest in-
struction count. It is three times as fast as the SOA
GMP Montgomery-CIOS multiplication, and 3.5 times
as fast as the corresponding AMNS for n = 5. Notice
that because we must choose φ = 252 for the AVX512
implementation, one cannot build a PMNS for a 256-bit
prime p with n = 5.

• Though the comparison is not so fair, the vectorized
AVX512 implementation of the PMNS n = 6 version
is more than 5 times faster than its counterpart in
sequential C. This is due to the dramatic reduction of
the retired instruction number thanks to the VPMADD
instruction which lowers both multiplication and addi-
tion numbers. This holds also for the AMNS equivalent
versions.

• The vectorized version of PMNS n = 6 is slightly faster
than the vectorized AMNS n = 6, while the instruction
count is higher. This may be due to the better pipelining
of the PMNS version, which does not make use of
vectorized shifts. For equivalent sequential versions,
the AMNS version is slightly better for both items, i.e.
timings and retired instruction counts.

• The SOA GMP Montgomery-CIOS multiplication is
slightly faster than the classic C implementations of
PMNS and AMNS sytems. However, the performance
levels of both versions (AMNS and PMNS) are very
close, in spite of the different reductions mod E(X),
and equivalent to the ones of the Openssl Montgomery
multiplication, which has a larger number of retired
instruction count.

• One may notice that the GMP and OpenSSL
Montgomery-CIOS multiplications are not constant
time implementations, unlike our AMNS/PMNS im-
plementations.

All the implementations of this work are available on
github3.

3. https://github.com/arithcrypto/AMNS-PMNS-PolyMult

9 CONCLUSION

In this paper, we generalised the results in [15] to any monic
polynomial E ∈ Zn[X]. We introduced new parameters that
improve both the efficiency and the memory requirement of
the PMNS. We highlighted some very interesting polyno-
mials E for the external reduction and PMNS parameters,
that provide suitable and efficient alternatives to the AMNS.
Finally, we presented some results for classic C implemen-
tations and provide the first implementation using AVX512
instruction set. On one hand, these results showed that the
polynomials E we highlighted are as efficient as the best
polynomials for AMNS, which are E(X) = Xn ± 2. On the
other hand, it appeared that PMNS, with the Montgomery-
like approach [28] we focused on for internal reduction, is
very well suited for vectorisation, since it leads to a speedup
of more than 60% compared to GMP or OpenSSL, and more
than 71% compared to a classical C implementation of the
best AMNS.

Funding This work has been partially funded by TPM
Metropol (AAP2021-IMPECQ project).

REFERENCES

[1] IA-32 Intel(R) architecture software developer’s manual, volume
3

[2] Nist post-quantum cryptography standardization, https://csrc.
nist.gov/Projects/post-quantum-cryptography

[3] Sike – Supersingular Isogeny Key Encapsulation, https://sike.
org/

[4] The GNU Multiple Precision Arithmetic Library (GMP), https://
gmplib.org/

[5] Ajwa, I.A., Liu, Z., Wang, P.S.: Gröbner bases algorithm. Technical
Reports of the Institute for Computational Mathematics, ICM-
199502-00 (versió del 2003) Kent State University (1995)

[6] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica 6(1), 1–13 (1986)

[7] Bajard, J.C., Imbert, L., Plantard, T.: Modular number systems:
Beyond the mersenne family. In: Selected Areas in Cryptography,
11th International Workshop, SAC 2004, Waterloo, Canada. pp.
159–169 (2004)

[8] Bajard, J.C., Imbert, L., Plantard, T.: Arithmetic operations in the
polynomial modular number system. In: 17th IEEE Symposium
on Computer Arithmetic (ARITH-17) 2005, Cape Cod, MA, USA.
pp. 206–213 (2005)

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. X, NO. X, MONTH YEAR 14

[9] Bajard, J.C., Marrez, J., Plantard, T., Véron, P.: On Polynomial
Modular Number Systems over Z/pZ (Feb 2022), https://arxiv.
org/abs/2001.03741, to appear in Advances in Mathematics of
Communications

[10] Barrett, P.: Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor.
In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO’ 86.
pp. 311–323. Springer, Berlin, Heidelberg (1987)

[11] Bouvier, C., Imbert, L.: An alternative approach for sidh arith-
metic. In: Garay, J.A. (ed.) Public-Key Cryptography – PKC 2021.
pp. 27–44. Springer International Publishing, Cham (2021)

[12] Chung, J., Hasan, A.: More generalized mersenne numbers. In:
International Workshop on Selected Areas in Cryptography. pp.
335–347. Springer (2003)

[13] Coladon, T., Elbaz-Vincent, P., Hugounenq, C.: MPHELL: A fast
and robust library with unified and versatile arithmetics for
elliptic curves cryptography. In: ARITH 2021. Transactions on
Emerging Topics in Computing, Torino, Italy (Jun 2021)

[14] Didier, L.S., Dosso, F.Y., El Mrabet, N., Marrez, J., Véron, P.:
Randomization of Arithmetic over Polynomial Modular Number
System. In: 26th IEEE International Symposium on Computer
Arithmetic. vol. 1, pp. 199–206. Kyoto, Japan (Jun 2019)

[15] Didier, L.S., Dosso, F.Y., Véron, P.: Efficient modular operations
using the Adapted Modular Number System. Journal of Crypto-
graphic Engineering pp. 1–23 (2020)

[16] El Mrabet, N., Gama, N.: Efficient multiplication over extension
fields. In: WAIFI. Lecture Notes in Computer Science, vol. 7369,
pp. 136–151. Springer (2012)

[17] El Mrabet, N., Nègre, C.: Finite field multiplication combining
AMNS and DFT approach for pairing cryptography. In: ACISP.
Lecture Notes in Computer Science, vol. 5594, pp. 422–436.
Springer (2009)

[18] Garner, H.L.: The residue number system. IRE Transactions on
Electronic Computers EL 8(6), 140–147 (1959)

[19] Gauss, C.F., Clarke, A.A.: Disquisitiones Arithmeticae. Yale Uni-
versity Press (1965), http://www.jstor.org/stable/j.ctt1cc2mnd

[20] Janson, S.: Resultant and discriminant of polynomials, http://
www2.math.uu.se/~svante/papers/sjN5.pdf

[21] Kedlaya, K.S., Umans, C.: Fast polynomial factorization and mod-
ular composition. SIAM Journal on Computing 40(6), 1767–1802
(2011)

[22] Koc, C.K., Acar, T., Kaliski, B.S.: Analyzing and comparing mont-
gomery multiplication algorithms. IEEE micro 16(3), 26–33 (1996)

[23] Korkine, A., Zolotareff, G.: Sur les formes quadratiques positives.
Mathematische Annalen 11(2), 242–292 (1877)

[24] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials
with rational coefficients. Mathematische annalen 261, 515–534
(1982)

[25] Mishra, B.: Algorithmic Algebra. Springer-Verlag, Berlin, Heidel-
berg (1993)

[26] Montgomery, P.L.: Modular multiplication without trial division.
Mathematics of Computation 44(170), 519–521 (1985)

[27] Negre, C.: Side channel counter-measures based on randomized
AMNS modular multiplication. In: Proceedings of the 18th Inter-
national Conference on Security and Cryptography. SCITEPRESS
- Science and Technology Publications (2021)

[28] Negre, C., Plantard, T.: Efficient modular arithmetic in adapted
modular number system using lagrange representation. In: Infor-
mation Security and Privacy, 13th Australasian Conference, ACISP
2008, Wollongong, Australia. pp. 463–477 (2008)

[29] Project, T.O.: Openssl, https://www.openssl.org/
[30] Proskuryakov, I.: Resultant. Encyclopedia of mathematics, https:

//encyclopediaofmath.org/wiki/Resultant
[31] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining

digital signatures and public-key cryptosystems. Communications
of the ACM 21(2), 120–126 (1978)

[32] Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems. In: Interna-
tional Symposium on Fundamentals of Computation Theory. pp.
68–85. Springer (1991)

[33] Stein, W., al.: Sagemath, http://www.sagemath.org/index.html

10 BIOGRAPHY

Fangan Yssouf Dosso obtained his PhD from University
de Toulon, Toulon, France in 2020. He is now holding a

post-doctoral position at École des Mines de Saint-Étienne.
His research interests are computer arithmetic and efficient
implementation of cryptographic protocols.
Jean-Marc Robert is an associate professor at University de
Toulon, Toulon, France. His research interests are computer
arithmetic and efficient implementation of cryptographic
protocols.
Pascal Véron is an associate professor at University de
Toulon, Toulon, France. His research interests are code based
cryptography, computer arithmetic and efficient implemen-
tation of cryptographic protocols.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3187786

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

