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Collusion during M.C.Q. examinations is one of the vices faced by every educational system consistently over the years, especially during the COVID-19 pandemic, with the growing prevalence of non-proctored online examinations. With the advancement of technology and the usage of mobile phones, students located at far distances can also communicate during examinations. The proposed method provides an advancement to the already existing means to identify the groups of potential cheaters at any fixed level of confidence without the necessity of seating arrangement based information. This paper also gives a novel and robust quantitative measure to determine the extent of interaction within the suspected groups within which cheating has occurred. The procedure in this paper relies on a newly defined Gamma Index which provides a new framework for quantification of the similarity between answers of a pair of candidates.

Introduction

In recent times, MCQ (Multiple Choice Questions) based examinations have become an indispensable method for assessing a large group of candidates effectively in a stipulated amount of time. An inevitable consequence is that a portion of candidates indulge in malpractice ( [START_REF] Idnani | Experience of Conducting Online Test During COVID-19 Lockdown: A Case Study of NMIMS University Int[END_REF]). In a selection test, if a large group of students secure high marks by cheating amongst each other, re-evaluation as identification of defaulters is necessary. Hence, a robust statistical method must be used to identify mass cheating. The existing statistical methods (Section 2) to test non-independence in certain student's answers with any other student's answers possess several drawbacks and restrictive assumptions, and are thus not extensive in nature. A new method to identify the existence of a group of students who have practiced mass cheating has been proposed. If such groups indeed exist, the proposed methodology can further identify the students involved in it.

The paper is organized as follows. Popular existing methods and their drawbacks are discussed in Section 2. Our proposed method and its various modifications are described in Section 3 and Section 4. The proposed method is then applied to a simulated data and thoroughly analyzed. These simulations and the GSS sub-algorithm are discussed in Section 5. section 6 lays out the overall methodology in the form of an algorithm which is then applied on the simulated data to get the required results. Next, Section 7 shows the different results obtained, draws a comparison between our proposed method and the existing methods, and argues why the proposed method performs better than the previous methods in various aspects. Finally, Section 8 provides the concluding remarks.

Existing solutions: a survey of the literature

In this section, we discuss some existing literature in this subject. A large number of papers have been published on detection of cheating in tests in the last two decades. Significant attention has been paid to the detection of pairwise answer copying such as in [START_REF] Belov | Direct and inverse problems of item pool design for computerized adaptive testing[END_REF] which deals with direct and inverse problems of item pool design for computerized adaptive testing. [START_REF] Sotaridona | Two new statistics to detect answer copying[END_REF] proposes two important statistics to detect answer copying, while [START_REF] Van Der Linden | and Leonardo Sotaridona, A statistical test for detecting answer copying on multiple-choice tests[END_REF] and [START_REF] Sotaridona | Detecting answer copying using the kappa statistic[END_REF] focus on statistical testing for detecting answer copying on multiple-choice tests and usages of the kappa statistic in MCQ answer similarity detection.

Item selection has been an integral part of examination fraud detection, and many papers have dealt with this subject. [START_REF] Chang | A-stratified multistage computerized adaptive testing[END_REF] and [START_REF] Leung | Item selection in computerized adaptive testing: Improving the a-stratified design with the Sympson-Hetter algorithm[END_REF] develop stratified multistage computerized adaptive testing based methodologies, with a prime focus on item selection. [START_REF] Chen | Controlling item exposure and test overlap in computerized adaptive testing[END_REF] focuses on controlling item exposure and test overlap in computerized adaptive testing (interested readers can also read [START_REF] Stocking | Controlling item exposure conditional on ability in computerized adaptive testing[END_REF]), while [START_REF] Davey | New algorithms for item selection and exposure control with computerized adaptive testing[END_REF] presented one of the first algorithms for item selection and exposure control with computerized adaptive testing. [START_REF] Doong | A knowledge-based approach for item exposure control in computerized adaptive testing[END_REF] proposes a knowledge-based approach for item exposure control in computerized adaptive testing. Some other interesting reads are [START_REF] Impara | Detecting cheating in computer adaptive tests using data forensics[END_REF], [START_REF] Nering | A hybrid method for controlling item exposure in computerized adaptive testing[END_REF], [START_REF] Stocking | A method for severely constrained item selection in adaptive testing[END_REF], [START_REF] Glas | Computerized adaptive testing with item cloning[END_REF] and [START_REF] Yi | Severity of organized item theft in computerized adaptive testing: A simulation study[END_REF].

Furthermore, detection of item pre-knowledge, typically using response-time data, are done in [START_REF] Belov | Detecting item preknowledge in computerized adaptive testing using information theory and combinatorial optimization[END_REF] which focuses on detecting item preknowledge in computerized adaptive testing using information theory and combinatorial optimization. Other important works in detection of item pre-knowledge are [START_REF] Mcleod | Detecting item memorization in the CAT environment[END_REF], [START_REF] Meijer | Detection of advance item knowledge using response times in computer adaptive testing[END_REF], [START_REF] Van Der Linden | Conceptual issues in response-time modeling[END_REF], [START_REF] Van Der Linden | Bayesian procedures for identifying aberrant response-time patterns in adaptive testing[END_REF], [START_REF] Van Der Linden | Using response times to detect aberrant responses in computerized adaptive testing[END_REF] and [START_REF] Meijer | Person fit across subgroups: An achievement testing example, Essays on item response theory[END_REF]. Analysis based on wrong to right (WTR) answer changes is done in [START_REF] Cohen | Handbook on test development: Helpful tips for creating reliable and valid classroom tests Madison[END_REF].

Group synchronized cheating incidents are happening quite often at quite large scales (some recent examples are [START_REF] Khan | Over 1100 students face action for cheating in SPPU's online exams[END_REF], [START_REF]Prolific' online exam cheating at University of Auckland: Student, NZ Herald[END_REF]). However, there is hardly any literature on the detection of group-level collusion (wherein a group of students colludes in a synchronized manner). This is surprising as in today's digital age, coordinated answering by a group of students can be done easily which affects the validity of examinations. This paper focuses on the detection of group-level collusion using cluster analysis based on answer similarities of the students. One of the most popular similarity index scores which has been used in group collusion detection is the M4 index proposed by [START_REF] Wollack | Detection of test collusion using cluster analysis, Handbook of quantitative methods for detecting cheating on tests[END_REF]. It uses the joint probability distribution of the number of matching correct responses and the number of matching incorrect responses. M4 index between two test-takers is,

M 4 = Di,j⩽Dx,y f (i, j), (1) 
where,

D x,y = m⩾x,n=y f (m, n) + m=x,n⩾y f (m, n) -f (x, y). (2) 
Here f (x, y) is the probability that the 2 students have x number of matching correct answers and y number of matching incorrect answers(these terms are explained in section 3.1).

For more details corresponding to the various indices, such as the K, g 2 , ω and the M4 indices, the interested reader can refer to [START_REF]Handbook of quantitative methods for detecting cheating on tests[END_REF]. All these existing methods have some common drawbacks which are discussed below, (1) Distributional Assumption: Almost all similarity indices, except some recent indices such as M 4(1) and the K indices, rely upon normal approximation or Poisson approximation (for example S 1 , S 2 indices). These assumptions may not always hold for any distribution of abilities of candidates. M 4 index is not constrained by such distributional assumptions. (2) Not Getting the Bigger Picture: The obvious drawback of answer-copying and similarity based analysis, is its inability to detect mass-cheating. This is because they are developed specifically for detecting pair-wise cheating. Thus, they cannot usually be used unless some modification is done to the basic pairwise structure, so as to make it suitable to the mass-scale cheating setup. (3) Knowledge of Seating-arrangement: The primary drawback of seatingarrangement knowledge dependent methods for analyzing aberrant response patterns and unusual test scores is that in current examination procedures, online tests and high-tech devices often remove the necessity for close seating arrangements. This is a major drawback that renders these classes of methods ineffective. (4) Prior Information on Source and Copier: Certain indices like K indices requires demarcation of the student pool into sources and copiers upon which the calculation of indices depend upon. So, the entire analysis depends upon this separation and without any prior information from invigilators regarding cheaters, it's impossible to do this separation unambiguously. (5) Availability of Data on Previous Examination: Analysis based on similarity of response patterns and other variables over time, is another method by which collusion is detected. It suffers from the need to classify students into appropriate groups, as these methods( for example the procedures proposed by Jacob and Levitt ( [START_REF] Jacob | Catching cheating teachers: The results of an unusual experiment in implementing theory[END_REF], [START_REF] Jacob | Rotten apples: An investigation of the prevalence and predictors of teacher cheating[END_REF])), use student classification approach to identify cheating group. This method however necessitates the availability of previous year data, as well as suffers from low accuracy when only one of their two proposed indices (ANS and SC) is used. The Bayesian hierarchical linear growth model and other similar approaches which use previous year data for their analysis also suffer from a similar problem. (6) Computational Order: Use of M 4 (1) in conjunction with clustering methods have been previously studied in one special case (nearest neighbor clustering approach) by Wollack and Maynes ([2], [START_REF]Handbook of quantitative methods for detecting cheating on tests[END_REF]). Due to the high computational complexities, this method is very expensive for real-life data where the number of examinees is very high. However it is a particularly novel and developing approach, and our paper builds forward on this idea.

This methodology proposed in this paper attempts to address these drawbacks, and improvements to each of these facets have been listed in section 7. The subsequent section elaborates on the proposed methodology.

Methodology

The methodology proposed in this paper has 3 components:

(1) A Similarity score: Gamma Index (Section 3.1).

(2) A clustering technique: Agglomerative hierarchical clustering (Section 3.2).

(3) Group Similarity scores (Section 3.3).

These are elaborated in the following subsections.

Gamma Index

Gamma index between a pair of test-takers provides a quantification of the similarity in responses between two candidates by calculating the probability of getting more similarity in the response patterns than that in the observed pair. The terms Gamma index and Gamma score have been used interchangeably throughout the text. Certain important definitions classifying the types of responses given by a pair of students to a particular (say i th ) question are,

• MCR (matching correct response) : When both the students answer the i th question correctly, it will be said that pair has given MCR to the i th question. • MIR (matching incorrect response) : When both the students mark the same incorrect option to the i th question, it will be said that pair has given MIR to the i th question. • MR (non-matching response) : When both the students give different answers to that question, it will be said that pair has given MR to the i th question.

Let the MCR and MIR between a pair of individuals are x and y respectively. Then the Gamma score of that pair is defined as p-value(MCR = x, MIR = y) = m:m≥x n:n≥y

f (m, n), (3) 
Where f (m, n) is the joint probability mass function P (MCR = m, MIR = n).

Since this index is a p-value, it lies between (0, 1), and with an appropriate choice of cut-off value (discussed in Section 3.2), It can be concurred whether the pair has given non-independent responses/has cheated or not at a given level of significance. It must be noted that the null hypothesis on which the calculation of the statistic is based on is that the two test-takers have answered the two questions independently. This implies that a small probability of the matched correct and incorrect answers would represent an unlikely and rare event under the null hypothesis that no one has cheated. Hence, the lesser the value of the Gamma index, the more the pair of cheating will be suspected of cheating.

Calculation of Gamma Index:

This subsection deals with the calculation of MCR and MIR. Suppose there are N questions, each with four choices namely, A, B, C, D. If there are n examinees, the values for MCR and MIR for n C 2 pairs must be calculated. Hence, the computational order is O(n 2 ) and the memory allocation order is also O(n 2 ). However the computational complexity of this method has been reduced by the algorithm algorithm 1. This way there are only n × N many comparisons, thus reducing the computation order to O(n). Hence, the computational order for the Gamma index is O(n).

Algorithm 1 MCR MIR Calculation Algorithm

1) For each of the questions (say i th question) four vectors, namely SA, SB, SC, SD are created. In the SA vector, the roll numbers of all the examinees who marked option A in the i th question are stored. Similarly, the other vectors are also developed respectively.

2) Next, the correct option for the i th question is stored. Let's assume option A is the correct solution for the i th question without loss of generalisation.

3) Then, the value of MCR corresponding to all the pairs of examinees contained in the SA vector are increased by 1. The MIR value of all the pairs of individuals in the vector SB are also increased by 1, and same process is repeated for vectors SC and SD.

The methodology for finding the probability densities of MCR and MIR is now outlined. For question i, define p i as the probability of a matching correct response (MCR), q i as the probability of a matching incorrect response (MIR), r i as the probability of a non-matching response (MR). It can easily be noted that

p i + q i + r i = 1. (4) 
Now, a pair of students out of the population is fixed. Furthermore, out of the total N many questions, let X be the count of matching correct responses and Y be the count of matching incorrect responses for the selected pair of test-takers. The joint probability distribution of X and Y is a generalized trinomial distribution that can be computed using a recurrence relation. Hereafter, responses of the previously fixed pair of students to each question will be referred to as a trial that can only have 3 outcomes, namely MCR, MIR or MR.

Let T k be the probability mass function (p.m.f.) of the generalized trinomial distribution of (MCR, MIR) on k trials with probabilities {p 1 , . . . , p k , q 1 , . . . , q k } as defined before. This means that the i th trial is an MCR with probability p i , MIR with probability q i and neither MCR nor MIR with probability 1 -p i -q i . Hence, the joint trinomial p.m.f. of (x, y) for the first k + 1 questions (k ∈ {1, . . . , N -1}) is [START_REF] Van Der Linden | and Leonardo Sotaridona, A statistical test for detecting answer copying on multiple-choice tests[END_REF] subject to the boundary conditions

T k+1 (x, y) = p k+1 T k (x -1, y) + q k+1 T k (x, y -1) + (1 -p k+1 -q k+1 )T k (x, y),
T 0 (0, 0) = 1 and T 0 (x, y) = 0 ∀(x, y) ̸ = (0, 0). ( 6 
)
Using the aforementioned recursive equation eq. ( 5), and the boundary conditions(eq. ( 6)), T k is evaluated at all possible lattice points (x, y) where 0 ≤ x, y ≤ N .

Furthermore, letting f (x, y) be the joint probability density function of (MCR, MIR), ( 7) is obtained.

f (x, y) = T N (x, y) (7) 
The null hypothesis is that all the examinees have answered independently. For the i th question, assume that option A is correct and let p ′ A , p ′ B , p ′ C , p ′ D and p ′ O be the probabilities of marking option A, B, C, D and not marking respectively. Then under the null hypothesis, probability of getting MCR in the i th question i.e., p i is p

′ 2 A . Similarly, q i becomes p ′ 2 B + p ′ 2 C + p ′ 2 D + p ′ 2
O . Now using the empirical probabilities of each option of the i th question, p i and q i are computed.

Since there are n examinees, there exists n C 2 possible pairs of examinees. The Gamma index values are calculated for all possible pairs to identify individuals involved in pair-wise cheating. Since the Gamma index does n C 2 many hypothesis testing, an appropriate cutoff value of the Gamma index, below which the corresponding pairs are suspected of cheating will be the Bonferroni cutoff (to control the FWER) or the Benjamini-Hochberg cutoff (to control the FDR).

Clustering

The Agglomerative hierarchical clustering method is chosen as it can handle nominal data of student responses given a distance/dissimilarity matrix. Moreover, prior knowledge of the exact number of clusters is not a prerequisite for it. In this method, initially separate cluster is assigned to each of the data points. At each step of the algorithm, the two clusters that are the most similar/closest, corresponding to some appropriate criterion are combined into a new bigger cluster (nodes).

We now define a n × n matrix of Gamma values, which shall be used as the distance matrix, where n is the total number of candidates appearing in the exam, and shall call it the Gamma matrix. In other words, p-values of the generalized trinomial distribution T n are themselves being used as distances between responses of candidates. This is based on the idea that a pair of students having a low p-value should have a large similarity in their answers and therefore the distance between their responses should be low. Distance between singleton clusters is simply the Gamma value of the pair of students in those clusters but distance between two clusters where at least one has multiple observations can be done in multiple ways. For cheating detection, the maximum/complete linkage is used.

[2] employs the single linkage clustering (a type of agglomerative clustering where at each step two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other, are combined). The lists of suspected students produced by single linkage clustering method in the large-scale examination setups often comes out to be highly flawed with extremely high inaccuracy. This is primarily due to the fact that it only considers the smallest distance between two members of two distinct clusters as the distance between those two clusters, which is not in true spirit of a "cluster-distance", as it does not consider other members of the groups. We thus utilise complete linkage setups, which provide much more accurate suspected students lists, with better performance. This is because it considers the distance between every pair of members of the clusters. As Maynes and Wollack noted( [START_REF] Wollack | Detection of test collusion using cluster analysis, Handbook of quantitative methods for detecting cheating on tests[END_REF])-"the nearest neighbor/single linkage method, has the advantage of being very simple computationally, but does occasionally link together many clusters, even if the majority of elements from each of the clusters are dissimilar. This finding is not unique to this study; indeed, single linkage is well known to have a tendency to chain together cases ( [START_REF] Aldenderfer | A review of clustering methodsCluster analysis[END_REF]). Other clustering approaches such as average linkage or complete linkage are more apt to produce distinct clusters."

The suspected groups of mass cheaters are obtained by cluster extraction. For this purpose, a cutoff distance is set and the aforementioned agglomerative procedure is iterated until there is no pair of clusters left where the distance between them is less than the cutoff.

For the cutoff value for cluster extraction, the above-mentioned cutoff for Gamma index i.e., the Bonferroni cutoff or the Benjamini-Hochberg cutoff at some predetermined level shall be used. Paired with complete clustering, the Benjamini/Bonferroni cutoff ensures that in any cluster, the Gamma index of every possible pair of students is less than the cutoff value. From this, one can infer at some confidence level that all the individuals in that cluster have not only given nonindependent responses but also have collaborated with others members of the cluster for answering.

Group Similarity Scores (GSS)

Group similarity scores are used to understand the extent of cheating within a suspected group of students. Different group similarity scores can be formulated by summarizing the sub-matrix formed by the Gamma scores of all possible pairs between the members of the suspected group of students. However some of them may not have any reasonable interpretation with respect to the original Gamma values. For example, one can use the determinant of the sub-matrix, but it will be hard to determine which range of values indicates a high level of collective cheating within the group and vice versa.

This paper proposes the following two group similarity scores,

(1) A score: The harmonic mean(H.M.) of the off-diagonal Gamma values for each column is calculated and then the average of these harmonic means is obtained. We shall call this average the A score of the group. Harmonic mean is used because for groups that actually performed mass cheating, the Gamma index takes very small values, say from the order of 10 -10 to 10 -40 and their arithmetic mean will be in the order of 10 -10 , 10 -11 . The H.M. value will be in the vicinity of their minima i.e., 10 -40 . Hence, one can think of this score as similar to the maxima of column-wise minimas but takes into account the Gamma values of all the pairs. Now if A score is greater than the cut-off, then there exists at least one person who didn't interact significantly with the rest of the group. Hence, this implies that the group as a whole didn't commit mass cheating, although some part/parts of that group might have committed coordinated-cheating within themselves.

(2) M score: The 0.25 sample quantile of all the off-diagonal elements of the Gamma sub-matrix is defined as the M score of the group. If this M score lies above the cutoff, it would mean that more than 75% of the off diagonal gamma values lie above the cutoff. This means 75% of the pairs in the group didn't have significant gamma values, and hence this indicates that majority of the members of the suspected group might be innocent.

Next, several simulation studies were performed, and in each simulation study, responses of a large number of innocent students and some cheaters were generated(described in Section 5.1). After extracting clusters, we obtained a collection of groups comprising of suspected cheaters. After extensive simulation studies, it was found that within this collections, almost all groups with both A and M score less than the cut-off were found to be consisting of only simulated cheaters. Furthermore, it was observed that the A and the M scores rose sharply and were almost always higher than the cut-off value, when a few innocent students were wrongly indicted. Hence, group similarity scores play an important role to reduce the ζ value (see section 5.2 in the approach of this paper).

In the next section, some further improvements are made to the aforementioned Gamma index to reduce the number of false positives obtained in given test-data.

Further Improvements

Some means of further improvement of the performance of our method have been proposed in this section, by categorizing test takers, by putting appropriate weights on MCR, MIR and MR values, and also eliminating some of the easiest questions from the analysis. The extensions and improvements described in this section have been imbibed in the final methodology.

Categorizing test-takers

In detecting cheating, logically one should consider the abilities of the examinees, however, it is often the case that the prior information about the examinees is not available. Hence, one has to use the data in hand to estimate the abilities of the examinees. Before analyzing the data, it is not known apriori whether the examinees have cheated or not i.e., the data may be corrupted. So the estimated abilities should not heavily depend on the data. Hence, instead of calculating a numerical value for the ability of each student, we divide the students into d categories according to their scores. The top 100/d% students are in category 1, next top 100/d% are in category 2 and so on. In this manner, although we may be grouping the students from a corrupted data, the chances of wrongly putting an examinee in an incorrect category is much less than assigning a wrong numerical value as the ability of the candidate. This is because, the assigning of a value to the students ability requires a point estimate which can easily get affected by the presence of collusion in the pool of candidates. On the other hand, categorization of students involves determining whether the estimated abilities lies in certain range, which allows some relaxation and flexibility against the error in estimation of ability of the student due to the collusion based distortion.

We note that there are d C 2 + d possible category pair combinations (the same category pair is also possible). For each category of students, the empirical probability of answering each option for each question is calculated. Using these probabilities, the joint empirical probability density of (MCR, MIR) for each possible category combination is further computed. Hence, the p.m.f. of (MCR, MIR) for each of the d C 2 + d category combinations is obtained, using which, the Gamma scores for each pair of individuals are computed.

The above method takes the abilities of the students into account. The abilities are reflected in the probability of marking the correct option in each question. For students in category i and category j (where i < j), the probability of marking the correct option is higher for those in category i than in category j. This modification has been found experimentally to reduce the number of false positives by a great margin.

Weighted Gamma

The Number of MCR among exceptionally bright students are high even in the case where they are answering independently. If MCR and MIR are treated equally, these bright students may be wrongfully identified as mass cheaters by the Gamma statistics. Moreover, MIR is much more reliable evidence of cheating as compared to MCR. To address this issue, weights are applied on MCR and MIR values to give MIR more importance in calculating the Gamma index than MCR.

Suppose the initial weights given to MCR, MIR and MR in equation ( 5)(i.e. p k+1 , q k+1 , 1 -p k+1 -q k+1 ) be referred to as p, q and r respectively. The weights of MCR and MIR are modified, and the weight of MR is left unchanged. This is done so that students who have more MIRs have lower Gamma index i.e., they are caught more often as compared to students who have more MCRs.

Let the normalized weights of MCR and MIR after having removed the effect of MR be x = √ p/ √ 1 -r and y = √ q/ √ 1 -r respectively. Suppose (α, β), (where α + β = 1), is a vector denoting the amount of modification that will be done to the initial MCR/MIR weights. α and β depend on the difficulty of the concerned question. The difficulty of a question is characterized by the proportion of students who have been able to answer that question correctly. (α, β) shall be referred to as weight vector hereafter.

We define the vector

(x 1 , y 1 ) = (x, y) + ⟨(x, y), (α, β)⟩(α, β) ||(x, y) + ⟨(x, y), (α, β)⟩(α, β)|| ℓ2 . ( 8 
)
Note that the modified vector (x 1 , y 1 ) is a rotation of the vector of the initial normalized weights of MCR and MIR in the direction of (α, β). The new weights assigned to MCR, MIR and MR are respectively x 2 1 (1-r), y 2 1 (1-r) and r. The rotation is done through the weight vector (α, β) in such a manner that we deprioritize MCRs compared to MIRs.

Various kinds of weight vectors can be chosen. In this paper, we have done all relevant analysis using the following definition of the weight vector (α, β): α = 0.5(1 + p), and β = 0.5(1 -p),

where p is the proportion of students who have attempted the concerned question correctly. When the students are divided into categories and subsequently categorywise analysis performed, we shall take p to be the mean of the proportion of students who have answered that question correctly from the two categories under consideration (the categories corresponding to the pair of students chosen) and assign weights to MCR, MIR and MR as above.

Elimination of Easy Questions

In almost all MCQ exams, there are some relatively easy problems which most of the candidates can correctly answer without anyone's help. Thus, a huge majority of pairs of candidates will give MCRs to these easy questions, irrespective of whether the pair has answered independently or not. Rather than providing evidence of cheating, these set of easy questions in effect blows up the count of MCRs for almost all the pairs. This may lead to false accusation of pairs of innocent students as cheaters. So, a certain b proportion of easiest questions (0 ⩽ b ⩽ ψ) will be removed and the entire analysis will be performed. In simulation study, the parameter QP = 1 -b will be defined as the question proportion. The value of ψ is chosen in such a way that a large number of question items is not removed (which happens if ψ is too large), and it is preferred that the ψ value is positive and not too small as it will cause the "blowing-up" effect as mentioned above. Experimentally, we obtained the optimum value of QP to be 0.05.

Simulation methodology and GSS sub-algorithm

Mechanism for Simulation

Simulating under Null Hypothesis

The null hypothesis corresponds to all the students answering the questions independently. The simulation of student responses under null is performed in the following manner:

(1) We define simplicity of a question as the probability of answering the question correctly. The probabilities of all the options (including the case of not attempting) for each question are empirically computed from the given sample. Initially, the correct answer probabilities (p 1 ) are generated from a truncated normal distribution ( truncated to [0, 1]) with a predefined mean question simplicity θ and standard deviation of question simplicity σ 2 q , i.e.,

p 1j ∼ F (θ, σ 2 q ), (10) 
where F follows a truncated normal distribution, truncated between 0 and 1, and j is the question number. (2) The other options for j th question are assigned probabilities q 1j , q 2j , q 3j and q 4j (defined as the probability of not attempting) which are defined as

q ij = (1 -p 1j ) × u ij 4 i=1 u ij , (11) 
where u ij ∼ U (0, 1), where i ∈ {1, 2, 3, 4} and j is the question number. The idea behind this definition is to allocate the remaining probability (1 -p 1j ) uniformly to the remaining options of the j th Multiple choice type question.

(3) Next, the students' abilities is imbibed into the simulation structure. A student ability parameter ϕ s is defined using a zero mean gaussian structure (discussed below in detail), and the previously obtained base probabilities of each option for all the questions are modified for each student based on their ability in the following manner, p 1js := prob of correct answer by student s on question j.

q ijs := prob of i th incorrect answer by student s on question j.

Then, p 1js and q ijs are computed in the following manner.

p 1js = u/t, q ijs = u i /t, (13) 
where u, t and u i 's are as follows,

u = p 1j × e ϕs , u i = q ij × e - q ij 4 i=1 q ij ϕs . t = u + 4 i=1 u i
In the above equation, ϕ s ∼ N (0, σ 2 s ), where σ 2 s is the standard deviation of students' ability. (4) Finally, responses to all questions for each student s are generated using the probabilities p 1js and q 1js , q 2js , q 3js , q 4js

Notice that in the definition of u i the negative of q ij / 4 i=1 q ij is used. This formulation ensures that as the students' ability ϕ s increases, the correct answer probability inflates, while the incorrect answer probabilities decrease, and vice versa. Also, the definition of u i ensures that the change in any student's incorrect answer probabilities occur as per the proportion of the original incorrect answer probabilities. It can be seen that ϕ s = 0 corresponds to the average level of student ability, since ϕ s > 0 inflates the probability of correct answers p 1js and deflates the probability of incorrect answers q ijs and vice versa. The more positive the value of ϕ s , the more capable the simulated candidate is. The reason behind generation of ϕ s from N (0, σ 2 s ) is that one roughly gets an equal share of academically bright and poor students.

Hence, one observes that the entire simulation is determined by three parameters, namely mean question simplicity θ, standard deviation of question simplicity σ 2 q , and standard deviation of students' ability σ 2 s . The first two parameters capture the difficulty of the examination and the distribution of the questions with respect to their difficulties, respectively. The truncated normal distribution was taken due to its simplicity and symmetry, but other skewed distributions, such as beta, may be used to construct complicated test papers that are concentrated with questions that are either significantly tough or easy. Finally, σ 2 s allows one to control the degree of spread of the student scores, and is hence a marker of the population ability variability.

Simulating under Alternative Hypothesis

Now, for simulating under the alternative, inclusion of non-independence (corresponding to the occurrence of collusion) in the responses of some individuals is required. Let n 1 , n 2 , . . . , n m be the sizes of m artificially created (using a procedure described below) nonoverlapping groups of cheaters which shall be referred to as collusion groups for the rest of the paper.

(1) Collusion groups are made using the idea of "leader and followers" i.e., for each group there will be a leader and the rest of the members are followers whose answers will be identical to the responses of the leader to some extent. We proceed by simulating the responses of the m leaders using the method explained in Section 5.1.1. (2) Now a set of questions is selected on which the followers' responses will be deliberately made to match with the leader's response with high probability.

Henceforth, this set of questions will be referred to as compromised questions.

Cheating proportion is defined as c(0 < c ⩽ 1), the proportion of the questions to be compromised. A Simple Random Sampling without Replacement (SRSWOR) of size ⌊cN ⌋ out of N questions is done to get that compromised set. (3) Now for simulating the followers, responses to the uncompromised questions are again simulated in the fashion as explained in Section 5.1.1. A cheating-chance w s is generated for each follower s from Uniform (a, b), and for each compromised question, a follower s either copies the group leader's answer with probability w s or answer independently with probability (1 -w s ). Independent response to that particular question is again simulated using the method discuss previously. Different w s for each student demonstrates the fact that everyone may not have the same level of access/interaction with the source of information/collusion, i.e., the leader.

The group collusion simulation in our setup assumes that all students in the same group have a unique leader, which ensures that everyone in the group has a common source of information. Here the degree of synchronized cheating is determined by three quantities, which are cheating proportion c and parameters corresponding to the aforementioned distribution Uniform(a, b) from which cheating-chance w s are generated. The existence of multi-leader groups has not been covered in this paper.

The GSS sub-algorithm

Certain terminology will be defined in this subsection. ζ is defined as the proportion of innocent students flagged by the final algorithm(Section 6) and it is analogous to type 1 error in our setup. Similarly, η is defined as the proportion of students simulated under the alternative hypothesis that are flagged by the algorithm and is analogous to the power in our setup. Similar definitions have been used in [START_REF] Wollack | Detection of test collusion using cluster analysis, Handbook of quantitative methods for detecting cheating on tests[END_REF]. Note that low ζ and high η values are desirable in our setup. The main focus is to maximize η while controlling ζ at a certain predefined level. Now, GSSs are inculcated in our method using the GSS sub-algorithm defined in algorithm 2, Algorithm 2 GSS sub-algorithm

1) The clustering procedure described in Section 3.2 along with Section 3.3 is used to obtain groups of students identified as collusion groups along with the two GSS(A and M index) values of each group.

2) Now, there is a possibility that some groups where the majority are innocent candidates are wrongfully flagged as collusion groups. GSSs (section 3.3) provide a further tool for verifying whether in any group, significant number of pairs of students have indeed indulged in malpractice.

3) In order to reduce the ζ values, such flagged groups where the majority are innocent need to be identified using GSSs and eliminated. This GSS sub-algorithm has two setups: lenient and strict. 4.1) Under the lenient setup, the two GSSs of every flagged group are compared with the Bonferroni cutoff at the predetermined level, and any group whose both the GSSs are above the cutoff is rejected. 4.2) Under the strict system, any flagged group with even 1 of the 2 GSSs above the cutoff is rejected.

As discussed above in Section 3.3, GSSs are a good indication of the presence of innocent students within suspected groups, and this sub-algorithm helps to reject those groups containing wrongly identified students.

Final Methodology/Algorithm

Finally, in this section, we put all the pieces together and define the overall methodology using an algorithm structure in algorithm 3. We use this algorithm to obtain the results of the simulated data and compare them with the results of other existing methods in the following sections.

Algorithm 3 Final algorithm

1) At first, the probabilities of all the options (including the case of not attempting) for all the N questions are generated. Then we simulate the responses a certain number of innocent students(Section 5.1.1).

2)Now we create m colluding groups of students using the procedure in Section 5.1.2.

3) Total scores of all the simulated examinees are computed and then student pool is divided into d categories(Section 4.1). 4)Suppose the question proportion is QP (0.9 ≤ QP ≤ 1). Now, the empirical correct answering probability for each question is computed from the sample. Then the set of (1 -QP ) × N questions with the highest correct answering probabilities or namely the set of (1 -QP ) × N easiest questions are identified and eliminated from the rest of the analysis(section 4.3).

5) Now for each pair combination of categories, probabilities of getting MCRs and

MIRs for all the questions are computed(section 3.1.1) using the empirical probabilities of each option of each question. 6) Then these probabilities of getting MCRs and MIRs are modified by weighted gamma mechanism (Section 4.2) in order to deprioritize MCRs with respect to MIRs.

7)

Then the number of MCRs and MIRs for all possible pair of examinees are computed(Section 3.1.1) and then for each pair combination of categories, the joint pmf of (MCR,MIR) is computed using the recursive relation [START_REF] Van Der Linden | and Leonardo Sotaridona, A statistical test for detecting answer copying on multiple-choice tests[END_REF]. 8) Finally, the Gamma value for all the pairs of examinees are calculated using (3). 9) Using these gamma values, complete linkage clustering is performed. Then the clusters of suspected examinees are extracted using Benjamini Hochberg cutoff(section 3.2). 10) Finally, the GSS sub-algorithm is applied on the extracted clusters(section 3.3 and section 5.2) in order to remove those clusters where majority of the members are innocent.

Results and Discussion

Results

The following results were obtained using the complete variant of agglomerative clustering and the linear system of weighted gamma. The number of categories of testtakers(d) was set to 5. Benjamini Hochberg cutoff at 0.01 level was used as the cutoff for the Gamma indices and the Bonferroni cutoff at 0.01 level was used for the GSS sub-algorithm. The responses to a question paper of 100 problems with mean question simplicity θ = 0.6 (meaning an "average" student will have a probability of 0.6 of getting the answer correct) and the standard deviation of question simplicity σ 2 q = 0.2 were simulated for analysis. Question proportion(section 4.3) was varied between 0.9 and 1 and for the case where question proportion is 0.95, the simulated results were the best.

To capture the different levels of interaction in mass cheating, two parameters were varied, cheating proportion c between three values {0.6, 0.8, 1} and cheating-chance w s between three choices of distribution {Unif (0.75, 0.9), Unif (0.80, 0.95), Unif (0.85, 0.97)} to simulate from, providing a total of nine configurations. For each setup, the responses of 750 innocent students and 10 collusion groups of size equal to 10 were simulated. Student abilities of 850 students are simulated from N (0, σ 2 s ) where σ 2 s is taken as 1. These parameter values are chosen to replicate the student scores in an actual censored test calibrated with the generalized trinomial model.

We first consider table 1. Interestingly, even without GSS, the ζ values in all the 3 × 3 (cheating proportion × cheating-chances) categories are much lower than the predetermined 0.01 level for the Benjamini-Hochberg cutoff, which is a good indication. But wrongly accusing an innocent candidate is quite unjust, hence we resort to GSS to further reduce the ζ value. With the lenient system of GSS, the ζ values decreased in all the 9 categories and the reduction in each cross-category is between 34.98% and 50.19% and with the strict system of GSS, the reduction in each category was between 67.04% and 74.86%. Interestingly, after applying GSS, in some of the simulations, ζ value actually came out to be 0. So, GSS performs satisfactorily in minimizing the number of false positives. Moving on to Table 3, it is observed that the detection rate has a monotonic relationship with cheating proportion, as expected. In c = 1 setup, the followers have been simulated in a manner, that they try to copy all the questions from the leader resulting in an unusual within-group similarities in the answer scripts. Therefore, in this setup, simulated cheaters are easily detectable, as reflected by the values of η. In fact, in the most extreme cheating setup i.e. w s ∼ U (0.85, 0.97) along with c = 1, the value of η came out to be exactly 1, i.e., here the method identified every single simulated cheater. The method has a value of η around 90% in the setup c = 0.8 and w s ∼ U (0.75, 0.9) that increases to 98% for the setup with w s ∼ U (0.85, 0.97). For c = 0.6, the values of η vary from 63% to 82%. Even in the setup with the least amount of cheating, that is, c = 0.6 and w s ∼ U (0.75, 0.9) where the followers only attempted to copy 60% of the leader's answers, the Gamma method was able to identify 63% of the simulated cheaters. Therefore, the proposed methodology is quite powerful in identifying cheaters in an M.C.Q. examination. Although GSS has a great effect on ζ, it has a downside. It decreases the power of the method. Under the lenient system of GSS, for the setup of c = 0.6, the decrease in η across the 3 categories of w s lies between 9.27% and 6.62%, for c = 0.8 the figure is 2.62% to 1.22% and for c = 1 it is 0.68% to 0.23%. For strict system of GSS, for c = 0.6 decrease in η across the 3 categories of w s lies between 15.10% to 21.44%, for c = 0.8 it is 3.45% to 6.79% and for c = 0.6 it is 0.93% to 1.90%. GSS hardly affects the η for the c = 1 setup, and even for c = 0.8 (under lenient GSS) the change is not noteworthy. On other hand for less intensive cheating cases strict GSS causes a significant decrease in η.

As lenient GSS is a good balance between ζ and η, it is suggested to use the lenient system of GSS for practical purposes. If the user prefers a conservative approach, strict GSS can be used.

Also, another important aspect for measuring the strength of this entire algorithm is the interpretability of the flagged clusters. In real life scenarios, the user will be unaware of actual colluding groups. Only the flagged clusters will be available to him. So it is important to see whether the simulated candidates originally belonging to 2 or more different collusion groups are detected as members of same detected cluster. It is easier to conduct successful investigation when a flagged clusters doesn't include members from 2 different collusion groups. Across all the simulations, there was absolutely no intermixing of examinees from different collusion groups in the flagged clusters of colluding students which is a great sign.

Discussion and comparison

In Wollack and Maynes (2016) [START_REF] Wollack | Detection of test collusion using cluster analysis, Handbook of quantitative methods for detecting cheating on tests[END_REF] a similar approach of combining a similarity score M 4 with clustering to detect group level collusion was presented. A basic comparison between Maynes and our method is performed below on the basis of the results.

Across all setups used in Maynes, ζ values varied from 0.0238 and 0.0368. The average ζ was 0.0303, and the standard deviation across the conditions was just 0.0032. In our case ζ varied from 5.9 × 10 -3 to 7.4 × 10 -3 in setups without GSS and in all the setups with GSS, ζ was always less than 4.3 × 10 -3 . Now, η will be compared with respect to the amount of compromised questions(defined in Section 5.1.2) in order to study how the detection power of the two algorithms fare out in different settings of the number of compromised questions. In our setups, cheating proportion c which controls the number of compromised questions has 3 levels. There was usage of 3 different levels of number of compromised questions in Maynes. The comparison will be done between 3 types of frameworks, setups with low number of compromised questions (45 -65% the total number of questions), setups with medium number of compromised questions (65 -85% the total number of questions) and setups with high number of compromised questions (100% the total number of questions) respectively. (Note: The η in Maynes was represented in form of graphs and not numbers. So getting the exact numerical results was impossible) In the following table, "compromised questions" will be abbreviated as C.Q. . We further note that Maynes' method used singular linkage clustering, as discussed before in Section 3.2. In the context of detecting collusion in tests, singular linkage clustering is not at all suitable as it gives "extremely loose" clusters. The shortcomings of applying singular linkage clustering can often be compensated by using a very stringent bonferroni bound, but its result are still quite inferior. Furthermore, due to the singular linkage clustering, some of the flagged clusters in the Maynes setups had candidates from 2 or more colluding groups. This affects the interpretability of the results and also the effectiveness of future investigations based on those results. On the other hand, the associated complete linkage agglomerative clustering makes the Gamma method impervious to this issue.

Moving on to the similarity indices Gamma and M 4, both are actually p-values of generalised trinomial distribution. But Gamma gives a more straight-forward definition of p-value as compared to M 4. One big advantage is that computation of M 4 had quadratic time complexity while Gamma can be computed in linear time. Moreover a weighing system has been introduced inside Gamma for giving different weightage to MIRs and MCRs to deal with high levels of similarity responses (particularly high MCRs) under independent answering, a main source of ζ value in this context. For weighted Gamma, only a linear function of correct answering probabilities has been investigated in this paper and still results particularly with respect to ζ value are promising. M 4 doesn't have such facility this was a big reason behind gap in performance between M 4 and weighted Gamma with respect to the ζ value. There are also plenty of weighing systems which can be analysed and which may give even better results.

Finally the group similarity scores give a simple answer as to why groups of innocents are getting flagged as cheaters. A major takeaway will be the amount of ζ value reduction it introduces at the price of some reduction in η values. In several instances of simulations, GSS manages to completely eradicate ζ value from the detected groups.

This paper provides significant improvements to existing methods and thus can be used for collusion detection in MCQ examinations. The model structure used in the paper is able to perform better on points (1), pt. (2), pt. (3), pt. (4).pt. (5) and pt. (6) discussed in section 2.

Some major highlights of this method include its lack of distributional assumptions (corresponding to pt. (1)), identification of suspected mass-cheaters with a predefined level of confidence using our clustering and group similarity scores based methodology (corr. to pt. ( 2)), the inclusion of a measure of ability of the students in the model structure, the linear order computation time of the method (corr. to pt. ( 6)), its versatility given its general nature and lack of assumptions (corr. to pt. (3), pt. (4) and pt. ( 5)), and finally, its ability to use the entirety of the information provided.

For the above reasons, our method is viable in the majority of the real-life scenarios and this facilitates the retention of information of non-independent answering between students (if any) in an efficient manner compared to all the previously developed group similarity indices.

Conclusion

In this paper, a new methodology to detect groups of candidates, who have engaged in synchronized collusion has been proposed. Group similarity scores are a novel concept in this area of research and have tremendous potential to control the number of false flagging of candidates as cheaters, without excessively compromising the power of the method. Inspired by the M 4 index in Maynes (2016) [START_REF] Wollack | Detection of test collusion using cluster analysis, Handbook of quantitative methods for detecting cheating on tests[END_REF], the Gamma Index (and also its weighted version) has been proposed in this paper, which has brought down the computation complexity of the process to linear time from the previously quadratic time in M 4. The idea of integrating the similarity index along with clustering was introduced in Maynes (2016), but in that paper, it was only applied over single linkage clustering structures. The linear time complexity of Weighted Gamma allows the use of complete and average linkage clustering techniques, which are much more apt in this area of analysis than single-linkage clustering.

This paper also introduced Weighted Gamma, providing a flexible system that allows the user to quantify how much more importance should be given to MIR as compared to MCR. This fact makes this methodology highly adaptable to the requirements of test authorities. A novel weight vector in the Weighted Gamma setup has been investigated, which gave highly satisfactory results and provided further interpretability to the structure. Future works can investigate other kinds of weight vectors along with this technique of collusion detection. Now, the simulated data contained artificially generated innocent students as well as cheaters, so as to emulate the data set of an exam in which collusion took place. The methodology performed well even in the presence of contaminated responses in the data set. The idea of categorizing test takers along with the weighted version of the gamma index makes parameter estimation quite robust to contamination in the responses of colluding candidates (as discussed in Section 4.1). This methodology does not require any prior information corresponding to seating arrangements, time to answer, wrong-to-right erasures, etc. Our method performs well even without the aforementioned information, but future studies including this extra information into the framework of cheating detection described in this paper and relevant applications are highly appreciated.

The current literature contains several ways of detecting pairwise collusion in tests. However, there is a void in the literature regarding the detection of group wise cheating, which is relatively unexplored. In the era of rapid technological advancements, this is a field that requires intensive research in order to ensure that the purpose of the MCQ exams are truly fulfilled and this paper is a humble contribution to this branch of study.

Table 1 .

 1 ζ values under various simulation setups

		Cheating	w s ∼	w s ∼	w s ∼
		Proportion (c) U (0.75, 0.9) U (0.8, 0.95) U (0.85, 0.97)
	No GSS	0.6	0.005933	0.006027	0.005947
		0.8	0.007120	0.006867	0.007427
		1	0.006960	0.007187	0.007453
	Lenient GSS	0.6	0.003133	0.003227	0.003867
		0.8	0.004187	0.004253	0.003987
		1	0.003467	0.003907	0.004187
	Strict GSS	0.6	0.001707	0.001693	0.001747
		0.8	0.002347	0.001800	0.001867
		1	0.001813	0.001880	0.002093

Table 2 .

 2 η values under various simulation setups

		Cheating	w s ∼	w s ∼	w s ∼
		Proportion (c) U (0.75, 0.9) U (0.8, 0.95) U (0.85, 0.97)
	No GSS	0.6	0.6347	0.7940	0.8248
		0.8	0.8976	0.9549	0.9821
		1	0.9794	0.9957	1.0000
	Lenient GSS	0.6	0.5758	0.7414	0.7581
		0.8	0.8741	0.9405	0.9701
		1	0.9727	0.9927	0.9977
	Strict GSS	0.6	0.4986	0.6721	0.7002
		0.8	0.8366	0.9020	0.9482
		1	0.9605	0.9832	0.9907

Table 3 .

 3 Comparison of η values (in terms of %) of Gamma and Maynes method

		η under	η under	η under	η under
		Maynes method Gamma with Gamma with Gamma with
			no GSS	lenient GSS	strict GSS
	Setups with	∼ 10 -30%	63 -82%	57 -75%	49 -71%
	low number				
	of C.Q.				
	Setups with	∼ 25 -80%	89 -98%	87 -97%	83 -94%
	medium				
	number of C.Q.				
	Setups with	∼ 65 -99%	97 -100%	97 -99%	96 -99%
	high number				
	of C.Q.				
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