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ABSTRACT

Cytological data from flowering plants suggest that the evolution of recombina-

tion rates is affected by the mating system of organisms, as higher chiasma frequencies

are often observed in self-fertilizing species compared with their outcrossing relatives.

Understanding the evolutionary cause of this effect is of particular interest, as it may5

shed light on the selective forces favoring recombination in natural populations. While

previous models showed that inbreeding may have important effects on selection for re-

combination, existing analytical treatments are restricted to the case of loosely linked

loci and weak selfing rates, and ignore the stochastic effect of genetic interference (Hill-

Robertson effect), known to be an important component of selection for recombination10

in randomly mating populations. In this article, we derive general expressions quan-

tifying the stochastic and deterministic components of selection acting on a mutation

affecting the genetic map length of a whole chromosome along which deleterious mu-

tations occur, valid for arbitrary selfing rates. The results show that selfing generally

increases selection for recombination caused by interference among mutations as long15

as selection against deleterious alleles is sufficiently weak. While interference is of-

ten the main driver of selection for recombination under tight linkage or high selfing

rates, deterministic effects can play a stronger role under intermediate selfing rates and

high recombination, selecting against recombination in the absence of epistasis, but

favoring recombination when epistasis is negative. Individual-based simulation results20

indicate that our analytical model often provides accurate predictions for the strength

of selection on recombination under partial selfing.
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INTRODUCTION

Genetic recombination lies at the heart of the sexual life cycle, and is often con-

sidered as one of the main evolutionary benefits of sexual reproduction (Otto, 2021).25

However, considerable variation for the rate and position of meiotic crossovers along

chromosomes exists within and between species (Kong et al., 2010; Johnston et al.,

2016; Stapley et al., 2017; Ritz et al., 2017; Brand et al., 2018; Samuk et al., 2020),

showing that recombination can evolve over short timescales. Rapid changes in recom-

bination rates have also been observed during artificial selection experiments, in re-30

sponse to selection on recombination itself or on other traits (reviewed in Otto and Bar-

ton, 2001), or following major genomic rearrangements such as whole genome duplica-

tions (e.g., Wright et al., 2015). Although substantial progress has been achieved over

recent years in our understanding of the molecular mechanisms governing crossover

formation (Gray and Cohen, 2016; Zelkowski et al., 2019), the evolutionary forces35

acting on recombination in natural populations remain elusive. In most species, at

least one crossover per bivalent seems required to ensure the proper segregation of

chromosomes during meiosis I, while data on human trisomies suggest that homologs

may fail to separate when they are entangled by too many crossovers (Koehler et al.,

1996). These mechanistic constraints probably set lower and upper bounds to the ge-40

netic map length of chromosomes, but may leave some space for evolutionary change

to occur. The evolution of recombination may also be affected by indirect selective

forces, stemming from the effect of recombination on genetic variation. In particular,

higher recombination rates may be favored when negative linkage disequilibria (LD)

between selected loci exist within populations (i.e., when beneficial alleles at some loci45

tend to be associated with deleterious alleles at other loci), as recombination then

increases the variance in fitness among offspring and the efficiency of natural selection

(Otto and Lenormand, 2002; Agrawal, 2006). Different possible sources of negative LD

have been identified, including epistatic interactions among loci (Charlesworth, 1990;

Barton, 1995) and the Hill-Robertson effect, that tends to generate negative LD be-50

tween selected loci from the random fluctuations of genotype frequencies occurring in

finite populations (Hill and Robertson, 1966; Felsenstein, 1974; Otto and Barton, 1997;

Barton and Otto, 2005; Roze and Barton, 2006). Analytical and simulation models
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have shown that the stochastic component of selection for recombination (due to the

Hill-Robertson effect) may be stronger than deterministic components generated by55

epistasis even when population size is rather large, especially when linkage is tight

(Otto and Barton, 2001; Keightley and Otto, 2006; Roze, 2021).

An interesting pattern observed in several genera of flowering plants is that

self-fertilizing species tend to have higher chiasma frequencies than their outcrossing

relatives (Roze and Lenormand, 2005; Ross-Ibarra, 2007). Detailed comparisons be-60

tween the genetic maps of the selfing Arabidopsis thaliana and its outcrossing relative

Arabidopsis lyrata also point to higher recombination rates in A. thaliana (Kuittinen

et al., 2004; Hansson et al., 2006; Kawabe et al., 2006). A possible explanation for

higher recombination rates in selfers could be that polymorphism between homologs

hinders recombination (Borts and Haber, 1987). However, this hypothesis does not65

stand up to closer scrutiny, as available data suggest that substantial levels of diver-

gence are needed to prevent meiotic recombination (Chen and Jinks-Robertson, 1999),

while data from tetraploid rye (Benavente and Sybenga, 2004) and from crosses be-

tween A. thaliana strains with different levels of divergence show that crossovers may

occur preferentially in heterozygous regions (Ziolkowski et al., 2015; Blackwell et al.,70

2020), possibly due to a positive effect of mismatches among homologs on crossover

initiation (Blackwell et al., 2020). Because recombination between homozygous loci

has no genetic effect, selfing reduces the efficiency of recombination in breaking LD

(Nordborg, 2000; Wright et al., 2008), and one may thus expect that increased rates of

recombination could evolve to compensate for this effect. However, indirect selection75

for recombination should vanish under complete selfing (as heterozygosity should then

be extremely rare), and the effect of selfing on selection for recombination may thus

be non-monotonic. Furthermore, it is not immediately obvious that models for the

evolution of recombination under random mating can be directly transposed to the

case of partial selfers. Indeed, simulation models have shown that recombination may80

be favored under different conditions in partially selfing than in outcrossing popula-

tions, though the exact mechanisms remained unclear (Charlesworth et al., 1977, 1979;

Holsinger and Feldman, 1983).

A three-locus model of the effect of partial selfing on the evolution of recom-

bination was analyzed by Roze and Lenormand (2005). The results showed that cor-85
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relations in homozygosity across loci caused by partial selfing generate a selective

force on recombination that is absent under random mating. By breaking correlations

in homozygosity, recombination is favored when dominance-by-dominance epistasis is

negative (meaning that double homozygotes have a lower fitness than expected based

on the fitness of single homozygotes), as recombination increases the mean fitness of90

offspring produced by selfing. In the absence of dominance-by-dominance epistasis (or

when it is positive), recombination is generally disfavored. The analysis also showed

that even a small selfing rate has important consequences, with the effect of breaking

correlations in homozygosity quickly becoming the dominant source of indirect selec-

tion on recombination. However, the method used by Roze and Lenormand (2005) only95

holds when effective recombination rates are large, and thus breaks down when the

selfing rate is not small, or when loci are tightly linked — yet tightly linked loci should

be the ones contributing most to indirect selection for recombination, unless selfing is

strong. Furthermore, this model and the previous simulation models mentioned above

are deterministic, considering infinite populations. From previous results on selection100

for recombination in finite, randomly mating populations (Otto and Barton, 2001;

Keightley and Otto, 2006; Roze, 2021), and from the fact that the effective size of

highly selfing populations may be strongly reduced by interference effects among loci

(Glémin and Ronfort, 2013; Roze, 2016), it seems likely that the Hill-Robertson effect

should be an important component of selection for recombination in selfing organisms,105

but this has not been quantified.

In this article, we provide a general analysis of selection for recombination

caused by interactions among deleterious alleles, in populations with arbitrary selfing

rates. In a first step, we revisit Roze and Lenormand’s (2005) deterministic three

locus model, and show that linkage disequilibrium is the main source of selection for110

recombination in the case of tightly linked loci or under strong selfing, while the effect

of correlations in homozygosity stays negligible. In a second step, we explore how the

stochastic component of selection for recombination (Hill-Robertson effect) is affected

by the mating system, by extending Roze’s (2021) finite population model to partial

selfing. Last, we extrapolate the results from the stochastic and deterministic three-115

locus models in order to quantify the overall strength of selection acting on a modifier

allele increasing the map length of a whole chromosome, and compare the predictions
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obtained with results from individual-based simulations. The results confirm that

the Hill-Robertson effect is often the main component of selection for recombination

when the selfing rate is high, usually generating stronger benefits of recombination as120

selfing increases, but not always. Deterministic effects may become important under

intermediate selfing rates and when the chromosomal map length is sufficiently high,

and may either increase or decrease selection for recombination depending on the sign

and magnitude of the different components of epistasis.

METHODS125

Our baseline model is the three-locus deterministic recombination modifier

model with partial selfing considered by Roze and Lenormand (2005), that we re-

analyze in order to obtain more accurate results for arbitrary selfing and recombination

rates. In a second step, this model is extended to include the effect of random drift in

finite populations. Finally, extrapolations are used to predict the overall strength of130

selection acting on a modifier affecting the genetic map length of a whole chromosome.

The three-locus model

Genetic architecture

The model considers two selected loci (each with two alleles, A, a and B, b re-

spectively) and a recombination modifier locus (with two alleles M and m). Through-135

out the following, a, b and m will also be used to refer to the three loci, in order to

keep the notation simple. All notations used are summarized in Table 1. Alleles a

and b are deleterious and affect fitness by a factor 1 − s in homozygotes and 1 − sh

in heterozygotes (s and h thus correspond to the selection and dominance coefficients

of alleles a and b). Deleterious alleles are generated by mutation at a rate u per140

generation; back mutation is ignored. Throughout the paper, we assume that h is

significantly greater than zero and that u � s, so that the equilibrium frequency of

deleterious alleles remains small. As in Roze and Lenormand (2005), epistasis between

alleles a and b is decomposed into three components (see Table 2): additive-by-additive
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epistasis ea×a represents the effect of the interaction between two deleterious alleles,145

one at each selected locus (either on the same or on different chromosomes), while

additive-by-dominance epistasis ea×d represents the effect of the interaction between

three deleterious alleles, and dominance-by-dominance epistasis ed×d the effect of the

interaction between four deleterious alleles. The recombination modifier locus affects

the baseline recombination rate rab between the two selected loci, so that individuals150

with genotypes MM , Mm and mm at the modifier locus have recombination rates rab,

rab + δrabhm and rab + δrab, respectively, with δrab denoting the effect of the modifier

and hm the dominance coefficient of allele m. Note that because recombination only

affects the genotype of meiotic products when it occurs between heterozygous loci,

any effect of the modifier on recombination rates between itself and the selected loci155

(rma, rmb) will not generate any indirect selection at the modifier locus (e.g., Barton,

1995; Otto and Barton, 1997). The results given throughout the paper are valid for

any ordering of the three loci along the chromosome (i.e., either m – a – b or a – m –

b).

Genetic associations160

The change in frequency at the modifier locus involves different forms of genetic

associations between alleles among loci, which are defined as follows. As in Barton and

Turelli (1991) and Kirkpatrick et al. (2002), we define indicator variables Xj,∅ and X∅,j

that equal 1 if the lowercase allele j (where j may be m, a or b) is present (or 0 if absent)

on the maternally (Xj,∅) or paternally (X∅,j) inherited gene of an individual (note165

that the terms “maternally” and “paternally inherited” are simply used to differentiate

the two haplotypes of an individual). The average of these indicator variables over

all individuals in the population gives the frequency of allele j for maternally and

paternally inherited genes, pj,∅ and p∅,j, respectively. The frequency of allele j in the

population, pj, is thus given by (pj,∅ + p∅,j)/2. Centered variables ζj,∅ and ζ∅,j are170

defined as:

ζj,∅ = Xj,∅ − pj,∅, ζ∅,j = X∅,j − p∅,j. (1)

The genetic association between the sets of alleles U and V (that may be ∅, a, b, m,

ab, ma, mb, mab) present on the maternally and paternally inherited haplotypes of
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the same individual is given by:

DU,V = E[ζU,V], (2)

with E the average over all individuals in the population, while175

ζU,V =
(∏

j∈U

ζj,∅

)(∏
k∈V

ζ∅,k

)
. (3)

Because our model does not include any sex-of-origin effect, we always have DU,V =

DV,U. Associations between alleles on the same haplotype DU,∅ = D∅,U will be denoted

DU for simplicity. For example, Da,a measures the excess of homozygotes for allele a

(departure from Hardy-Weinberg equilibrium), while Dab is the linkage disequilibrium

between alleles a and b.180

Life cycle

Each generation starts by selection between newly formed diploid individu-

als, followed by meiosis and syngamy. The effect of selection on allele frequencies and

genetic associations can be computed using the multilocus genetics framework of Kirk-

patrick et al. (2002). For this, the fitness or an individual relative to the mean fitness185

of the population is written as:

W

W
= 1 +

∑
U,V

αU,V (ζU,V −DU,V) , (4)

where the “selection coefficients” αU,V represent the effect of selection acting on the

sets of loci U and V present on the maternally and paternally inherited haplotypes of

an individual. Since we do not assume any sex-of-origin effect we have αU,V = αV,U,

while αU,∅ will be denoted αU for simplicity. The combined effect of selection at loci a190

and b can thus be represented by 9 coefficients: αa, αb represent the effective strength

of selection against the deleterious alleles a and b, αa,a, αb,b the effect of dominance

at the two loci, while αab, αa,b, αab,a, αab,b and αab,ab represent epistatic interactions,

measured as deviations from additivity. Throughout the paper, we will assume that

selection is weak (s is of order ε, where ε is a small term) while epistasis is weaker195

(ea×a, ea×d, ed×d of order ε2). Assuming that deleterious alleles stay at low frequency,
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and under the fitness matrix given by Table 2, αU,V coefficients are, to leading order:

αa = αb ≈ −sh, αa,a = αb,b ≈ −s (1− 2h) ,

αab = αa,b ≈ ea×a + (sh)2 , αab,a = αab,b ≈ ea×d + s2h (1− 2h) , (5)

αab,ab ≈ ed×d + s2 (1− 2h)2 .

The effect of selection on genetic associations (in terms of αU,V coefficients) is given by

equations 9 and 15 in Kirkpatrick et al. (2002), while the change in frequency of the

modifier is given by:200

∆pm =
∑
U,V

αU,VDmU,V. (6)

After selection, individuals produce gametes to form the zygotes of the next genera-

tion. During syngamy, a proportion σ of fertilizations involves two gametes produced

by the same parent (selfing), while a proportion 1 − σ involves gametes sampled at

random from the whole population (outcrossing). Recombination and syngamy do not

change allele frequencies, but do change genetic associations, their effect being given205

by equations 13 and 14 in Roze and Lenormand (2005). These equations, together

with the equations describing the effect of selection on allele frequencies and genetic

associations, have been implemented in a Mathematica notebook (available as Sup-

plementary Material) that can be used to automatically generate recursions on these

variables.210

Approximations

Throughout the paper we assume that the effect of the recombination modifier

(δrab) is weak and compute all results to the first order in δrab. Our three-locus diploid

model can be described by 36 genotype frequencies (leading to 35 independent vari-

ables), or alternatively by 3 allele frequencies (pm, pa, pb) and 32 genetic associations.215

A separation of timescales argument can be used to reduce this large number of vari-

ables: in particular, when selection is weak relative to recombination, allele frequencies

change slowly while genetic associations are rapidly eroded by recombination. In this

case, one can show that genetic associations quickly reach a quasi-equilibrium value,

which can be computed by assuming that allele frequencies remain constant (Barton220

and Turelli, 1991; Nagylaki, 1993; Kirkpatrick et al., 2002). In this quasi-linkage equi-

librium (QLE) state, associations can be expressed in terms of allele frequencies and of
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the parameters of the model, and these expressions can then be plugged into equation

6 to obtain the change in frequency of the modifier. This is the approach used in

Roze and Lenormand (2005) to quantify the strength of selection for recombination225

under partial selfing, assuming that recombination rates are sufficiently large (relative

to the strength of selection) and that the selfing rate is not too large (as selfing reduces

the effect of recombination). However, more accurate expressions can in principle be

obtained in situations where deleterious alleles are maintained at mutation – selection

balance: indeed, in this case changes in allele frequencies depend solely on the effect230

of the recombination modifier, and the QLE approximation thus requires only that

δrab is sufficiently small relative to effective recombination rates (Roze, 2014; Gervais

and Roze, 2017; Roze, 2021). This is the approach used in the present paper to ob-

tain approximations that remain valid under low effective recombination (i.e., when

recombination rates rij or when the outcrossing rate 1− σ are of order ε).235

The Hill-Robertson effect

An expression for the strength of selection for recombination due to the Hill-

Robertson effect between two deleterious alleles in a randomly mating, diploid popu-

lation was derived in Roze (2021). Generalizing this analysis to partial selfing would

be extremely tedious, as a very large number of stochastic moments of genetic associa-240

tions and allele frequencies would need to be computed. However, in the case of tightly

linked loci (rij of order ε), which should be the ones contributing most to selection for

recombination unless the selfing rate is very high, separation-of-timescales arguments

can be used to show that the effects of selection against deleterious alleles, recom-

bination and drift under partial selfing can be predicted by replacing the dominance245

coefficient h, recombination rates rij and the population size N by the effective coef-

ficients h (1− F ) + F , rij (1− F ) and N/ (1 + F ) in the expressions obtained under

random mating, where F = σ/ (2− σ) is the inbreeding coefficient (e.g., Nordborg,

1997; Glémin and Ronfort, 2013; Roze, 2016). We thus introduced these effective

coefficients into the expression derived in Roze (2021) in order to explore how self-250

fertilization affects selection for recombination generated by the Hill-Robertson effect.

As we will see, comparisons with multilocus simulations indicate that this approach

often yields correct results.
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Multilocus extrapolation

Following Roze (2021), the three-locus analysis can be extrapolated to predict255

the overall strength of selection on a modifier affecting the genetic map length R of

a whole chromosome (by an amount δR). For simplicity, we assume that the modifier

is located at the mid-point of a linear chromosome and that the position of each

crossover is sampled in a uniform distribution along the chromosome (no interference).

Deleterious mutations occur at a rate U per haploid chromosome per generation, and260

we assume that all mutations have the same selection and dominance coefficients s

and h, the position of each new mutation being sampled in a uniform distribution

along the chromosome (infinite site model). We make the simplifying assumption that

epistatic effects are identical between all pairs of loci across the genome. Neglecting the

effect of interactions between more than two mutations (for simplicity), the strength265

of indirect selection for recombination can be obtained by integrating the result from

the three-locus analysis over the genetic map (see Supplementary Material). When

the mean number of deleterious alleles per chromosome (n) is large and with epistasis,

more accurate expressions for selection coefficients αU,V at loci j and k segregating for

deleterious alleles are given by:270

αj ≈ −sh+ 2nea×a, αj,j ≈ −s (1− 2h) + 2nea×d,

αjk = αj,k ≈ ea×a + αjαk, αjk,k ≈ ea×d + αjαk,k, αjk,jk ≈ ea×d + αj,jαk,k

(7)

(see Supplementary Material). An approximate expression for the mean number of

deleterious alleles per chromosome n (taking into account the effects of epistasis and

selfing) can be obtained from equation 27 in Abu Awad and Roze (2020). We also

computed the overall strength of selection for recombination under the diploid model

of synergistic epistasis considered by Charlesworth et al. (1991), in which the fitness of275

individuals is given by W = exp [− (αñ+ β ñ2/2)], with ñ = hnhe +nho and where nhe

and nho are the numbers of heterozygous and homozygous mutations present in the

genome of the individual. As shown in Abu Awad and Roze (2020), this is equivalent

to setting ea×a = −β h2, ea×d = −β h (1− 2h) and ed×d = −β (1− 2h)2 in the present

model.280
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Individual-based simulations

Our simulation program (written in C++ and available from Zenodo) is equiv-

alent to the program used in Roze (2021), with the addition of partial selfing and the

different forms of epistasis. It represents a population of N diploids, each carrying a

pair of linear chromosomes. At each generation, the number of new deleterious mu-285

tations per chromosome is drawn from a Poisson distribution with parameter U , and

their position along the chromosome is drawn from a uniform distribution between 0

and 1. The fitness of each individual is computed as:

W = Wc (1− sh)nhe (1− s)nho (1 + ea×a)
n2 (1 + ea×d)n3 (1 + ed×d)n4 (8)

where nhe and nho are the number of heterozygous and homozygous deleterious mu-

tations in the genome of the individual, and where n2, n3 and n4 are the number of290

interactions between 2, 3 and 4 deleterious alleles at two loci, given by:

n2 =
1

2
nhe (nhe − 1) + 2nhenho + 2nho (nho − 1) ,

n3 = nhenho + 2nho (nho − 1) ,

n4 =
1

2
nho (nho − 1)

(9)

(e.g., Abu Awad and Roze, 2020). The term Wc corresponds to a direct fitness effect

of the chromosome map length R; as in Roze (2021), it is set to Wc = exp (−cR), so

that c measures a direct fitness cost per crossover. This parameter reflects the fertility

cost of having too many crossovers (see Introduction); it also ensures that R does295

not evolve towards very large values, and allows simple comparisons with analytical

predictions.

To produce individuals of the next generation, parents are sampled according

to their fitness, each new individual being produced by selfing with probability σ. The

recombination modifier locus is located at the midpoint of the chromosome, with an300

infinite number of possible alleles coding for different values of R (the map length of

the individual being given by the average of its two modifier alleles). One replicate was

performed for each parameter set. During the first 20,000 generations R is fixed to 1

in order to reach mutation–selection balance for deleterious alleles. Then, for an extra

5×106 generations (increased up to 5×107 generations for high values of σ), mutations305
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are introduced at a rate 10−4 at the modifier locus, each mutation multiplying the

value of R by a random number drawn from a Gaussian distribution with mean 1 and

variance 0.04. To allow for large effect mutations, a proportion 0.05 of mutations have

an additive effect on R drawn from a uniform distribution between -1 and 1 (the new

value being set to zero if it is negative). The average map length R, average fitness310

W , average number of deleterious mutations per chromosome n and number of fixed

mutations are recorded every 500 generations (fixed mutations are removed from the

population in order to reduce execution time). The equilibrium value of map length

is computed as the time average of R, after removing the first 5× 105 generations to

allow R to equilibrate. In order to study the effect of variable selection coefficients315

of deleterious mutations, we modified the above baseline simulation program so that

each new mutation is associated with a value of s drawn from a log-normal distribution

(ensuring s > 0): the value of ln (s) is drawn from a Gaussian distribution with variance

sd2 and mean ln (s̄)− sd2/2 (so that the average selection coefficient s̄ stays constant

for different values of sd).320

RESULTS

The deterministic three-locus model

We first reiterate the result obtained by Roze and Lenormand (2005) under high

effective recombination in a more general version, and then provide a new analysis for

the case of weak effective recombination.325

High effective recombination

As found by Roze and Lenormand (2005), the joint effects of selfing and the re-

combination modifier generate an association Dmab,ab even in the absence of selection.

This stems from the fact that recombination tends to break correlations in homozy-

gosity between loci generated by partial selfing (see also Roze, 2009). The association330

Dmab,ab has the sign of −δrab, reflecting the fact that the modifier allele increasing

recombination tends to be found on genetic backgrounds in which the correlation in

13



homozygosity between loci a and b is relatively weaker. At QLE and to the first order

in δrab, it is given by:

D0
mab,ab ≈ −

2δrab (1− 2rab)F (1− F ) [Hm (1 + 2Fγab) + F (γma + γmb − γab)]
[1 + F (γma + γmb + γab)] (1 + 2Fγab)

2 pqmab,

(10)

where the superscript “0” indicates that the effect of selection at loci a and b is ne-335

glected in this expression, and where Hm = hm + pm(1 − 2hm), γij = rij(1 − rij) and

pqmab = pmqmpaqapbqb (with qj = 1 − pj). Equation 10 generalizes equation 32 in

Roze and Lenormand (2005) to arbitrary hm and any ordering of the three loci along

the chromosome. It shows that D0
mab,ab vanishes under random mating (F = 0) and

full selfing (F = 1), because in these cases the mating system does not generate any340

correlation in homozygosity among loci.

The other associations in equation 6 are generated by selection against the

deleterious alleles (of order ε) and by the modifier effect. At QLE, associations Dmi,i,

Dmij,i and Dmi,ij (where i, j are either a or b) are of order ε, while associations Dmi,

Dm,i, Dmij, Dm,ij and Dmi,j are of order ε2 (expressions for these associations are given345

in Appendix A). As a result, one obtains from equations 5 and 6 that the change in

frequency of the modifier is, to leading order:

∆pm ≈ αa,aDma,a + αb,bDmb,b + αab,abD
0
mab,ab, (11)

the association Dma,a being given by:

Dma,a ≈ αb,bF D
0
mab,ab, (12)

(and symmetrically for Dmb,b). Dma,a is positive when δrab > 0 and h < 1/2 (since αb,b

and D0
mab,ab are both negative in this case), reflecting the fact that the modifier allele350

m increasing recombination tends to be found on more homozygous backgrounds at

locus a. Indeed when h < 1/2, homozygous genotypes at loci a and b have, on aver-

age, a lower fitness than heterozygous genotypes, and the correlation in homozygosity

generated by partial selfing increases the efficiency of selection, lowering the frequency

of homozygous genotypes. As the modifier allele increasing recombination tends to355

break this correlation, it is associated to a relative excess in homozygosity at each

selected locus. This effect disfavors recombination (since homozygotes have a lower
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fitness than heterozygotes on average), which is reflected by the first two terms of

equation 11. Equations 11 and 12 give:

∆pm ≈ (2αa,aαb,bF + αab,ab)D
0
mab,ab, (13)

which, using equation 5, becomes:360

∆pm ≈
[
s2 (1− 2h)2 (1 + 2F ) + ed×d

]
D0

mab,ab, (14)

yielding Equation 36 in Roze and Lenormand (2005). Equations 10 and 14 show that

increased recombination is favored when dominance-by-dominance epistasis (ed×d) is

sufficiently negative. Indeed, in this case, breaking correlations in homozygosity (thus

increasing the frequency of genotypes that are homozygous at one selected locus and

heterozygous at the other) tends to increase the mean fitness of offspring.365

Low effective recombination

In the previous analysis, terms in rmi (1− F ) appear in the denominators of

the expressions for Dmi and Dm,i at QLE (see Appendix A), causing these expressions

to diverge (i.e., tend to infinity) as effective recombination rates rmi (1− F ) tends to

zero. Similarly, terms in rmab (1− F ) appear in the denominators of Dmab, Dm,ab,370

Dma,b and Dmb,a, where rmab = (rma + rmb + rab) /2 is the probability that at least

one recombination event occurs between the three loci. This indicates that these

associations should play a more important role in the case of tightly linked loci. In order

to explore this regime, we re-analyzed the model in the case where all recombination

rates are of order ε (see Supplementary Material). This analysis shows that the effect of375

the linkage disequilibrium Dab between deleterious alleles (which was negligible under

high effective recombination) becomes predominant when loci are tightly linked. A

general expression for Dab at equilibrium in terms of αU,V coefficients is given by:

Dab ≈
α̃ab − α̃aα̃b + 2F Gab (αa + αa,a) (αb + αb,b)

r̃ab − α̃a − α̃b

pqab, (15)

where the tilde denotes “effective coefficients”: r̃ab = rab (1− F ), α̃a = αa (1 + F ) +

αa,aF (and similarly for α̃b), while α̃ab = αab (1 + φab)+2αa,bF+(αab,a + αab,b) (F + φab)+380

αab,abφab, where φab is the probability of joint identity-by-descent at the two loci (which

is approximately F when rab is small, see Appendix A). Finally, Gab in equation 15

refers to the identity disequilibrium between the two loci, defined as Gab = φab − F 2
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(Weir and Cockerham, 1973), and thus approximately equal to F (1− F ) under tight

linkage. Equation 15 simplifies to (αab − αaαb) pqab/ (rab − αa − αb) in the absence of385

selfing; this is equivalent to the result obtained by Barton (1995) under strong re-

combination (equation 9b in Barton, 1995), except that αa and αb now appear in the

denominator, due to our assumption that rab is small (of order ε). With selfing, two

important differences appear: (i): the recombination rate and selection coefficients are

replaced by effective coefficients r̃ab, α̃a, α̃b, α̃ab (since increased homozygosity affects390

both the effects of recombination and of selection, as explained in Appendix B), and

(ii): an extra term, involving the identity disequilibrium Gab, appears in the numerator

and tends to generate positive linkage disequilibrium between deleterious alleles.

Using the expressions for αU,V coefficients given by equation 5, equation 15

simplifies to:395

Dab ≈
s2 (1− h)2 (1 + 2F )Gab + ẽ

r̃ab + 2sh̃
pqab, (16)

with ẽ = ea×a (1 + 2F + φab) + 2ea×d (F + φab) + ed×dφab and h̃ = h (1− F ) + F . The

fact that partial selfing generates positive linkage disequilibrium between deleterious

alleles in the absence of epistasis has been noticed in previous analytical and simulation

studies (Roze and Lenormand, 2005; Kamran-Disfani and Agrawal, 2014), and may

be understood as follows. Lineages with different histories of inbreeding coexist in400

a partially selfing population: lineages that have been inbred for many generations

tend to be very homozygous (at all loci), while lineages that have been inbred for

fewer generations tend to be less homozygous. This is the basis of correlations in

homozygosity among loci, represented by the identity disequilibrium Gab. Because

homozygosity increases the efficiency of selection, the frequency of deleterious alleles405

tends to be lower within lineages that have been inbred for longer (purging), and higher

in less inbred lineages, resulting in positive linkage disequilibrium between deleterious

alleles. As shown by equation 16, Dab may become negative when epistasis is negative

and sufficiently strong, the relative importance of ea×d and ed×d increasing as the

selfing rate increases.410

The fact that the allele associated with higher recombination tends to erode

Dab more rapidly in turn generates genetic associations between the modifier and the
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selected loci. In particular, we have:

Dmab ≈ −
δr̃abHmDab

r̃mab − α̃a − α̃b

pqm, Dma ≈
α̃bDmab

r̃ma − α̃a

(17)

with δr̃ab = δrab (1− F ), r̃mab = rmab (1− F ), and again α̃a = α̃b ≈ −sh̃, Hm =

hm + pm(1 − 2hm) (Dmb is given by a symmetric expression). These equations take415

the same form as under random mating (e.g., equations 9c and 11 in Barton, 1995)

and are interpreted in the same way: when Dab > 0, AB and ab haplotypes are in

excess in the population, and the allele increasing recombination (allele m if δrab > 0)

tends to reduce this excess, and thus becomes more associated with Ab, aB haplotypes

(which is reflected by a negative value of Dmab). By contrast, when Dab < 0, the allele420

increasing recombination becomes more associated with ab, AB haplotypes (which is

reflected by a positive value of Dmab). When Dmab < 0, selection is less efficient in the

m background (because the frequency of extreme haplotypes AB and ab is lower in

this background), leading to positive values of Dma, Dmb (deleterious alleles are more

frequent in the m background). When Dmab > 0, selection is more efficient in the425

m background (because the frequency of extreme haplotypes AB and ab is higher in

this background), and m thus becomes better purged from deleterious alleles (which

is reflected by negative values of Dma, Dmb).

Under weak recombination, separation of timescale arguments can be used to

express the other associations that appear in equation 6 in terms of Dmab, Dma and430

Dmb (e.g., Roze, 2016); one obtains:

Dmab,ab ≈ Dmab,a ≈ Dma,ab ≈ Dm,ab ≈ Dma,b ≈ F Dmab,

Dm,a ≈ Dma,a ≈ F Dma, Dm,b ≈ Dmb,b ≈ F Dmb.
(18)

Plugging these into equation 6 yields:

∆pm ≈ α̃aDma + α̃bDmb + α̃abDmab, (19)

which again takes the same form as under random mating (equation 8 in Barton, 1995).

From equations 17 and 19, one obtains:

∆pm ≈ −
δr̃abHmDabpqm
r̃mab − α̃a − α̃b

[
α̃ab + α̃aα̃b

(
1

r̃ma − α̃a

+
1

r̃mb − α̃b

)]
, (20)

equivalent to equation 12 in Barton (1995). Given that the equilibrium frequency of435

deleterious alleles is approximately u/(sh̃), thus of order u/ε, equations 16 and 20
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show that under weak effective recombination (i.e., when r̃ coefficients are of order

ε), selection for recombination generated by the linkage disequilibrium Dab is of order

δrabu
2/ε, thus stronger than selection for recombination generated by the term in

D0
mab,ab seen in the previous subsection (of order δrabu

2, see equation 14). When r̃440

coefficients are not small (of order 1), however, indirect selection generated by Dab

becomes of order δrabu
2 ε2 (and thus negligible). A general expression for the change

in frequency of the modifier, valid under both weak and strong effective recombination,

can thus be obtained by summing equations 14 and 20. We noticed that in some cases,

more accurate expressions can be obtained by taking into account indirect effects of445

D0
mab,ab on other genetic associations between the modifier and selected loci (these

terms should be negligible under both weak and strong effective recombination, but

improve the precision of our approximations for intermediate values of recombination

rates); these expressions are given in Appendix C. Two further improvements to our

approximations are made in Appendix C, leading to more accurate expressions when450

epistasis is of the same order of magnitude as the strength of selection (ea×a, ea×d,

ed×d of order ε) and when the selfing rate is high (see Supplementary Material for

derivations).

Figures 1 and S1 show that our approximations provide correct predictions for

the change in frequency at the modifier locus, for all values of the selfing rate between455

0 and 1. The dots in these figures correspond to the results of deterministic simula-

tions, obtained by iterating exact recurrence equations for the 36 genotype frequencies:

allele M is fixed during the first 3000 generations to reach mutation–selection balance

at the selected loci, then allele m is introduced in frequency 0.01 and the population

is allowed to evolve for an extra 1000 generations, ∆pm/pqmab being averaged over the460

last 500 generations (see Supplementary Material). As can be seen in Figure 1, indirect

selection is mostly driven by Dab when recombination rates are small (left figures) or

when the selfing rate approaches 1. In the absence of epistasis, the identity disequilib-

rium generates positive Dab which disfavors recombination (as breaking positive Dab

reduces the variance in fitness, see Figures 1A, 1B). Negative epistasis generates nega-465

tive Dab, which favors increased recombination when effective recombination rates are

sufficiently small (equation 20, Figures 1C-F). The relative effect of the term in D0
mab,ab

becomes more important in the case of loosely linked loci and for intermediate selfing
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rates, either when epistasis is absent (in which case it disfavors recombination, see

equation 14, Figure 1B), or when the dominance-by-dominance component of epistasis470

is important (in which case it favors increased recombination when ed×d < 0, Figure

1F). Finally, selection on recombination vanishes under complete selfing (σ = 1), as

recombination is ineffective in that case.

The Hill-Robertson effect

An expression for the strength of selection for recombination caused by the475

Hill-Robertson effect between two deleterious alleles in a diploid, randomly mating

population was derived by Roze (2021). This expression consists of a sum of terms

corresponding to different mechanisms generating selection for recombination, that all

take the form δrab (sh)2 u2/
[
Ne

∏5
i=1 (rUi

+ xish)
]

where Ne is the effective population

size, Ui is either mab, ma, mb or ab, and xi equals 1, 2, 3 or 4. In the case of loosely480

linked loci (rUi
� sh), the terms in sh in the denominator may be neglected and

the strength of selection for recombination increases as sh increases — being roughly

proportional to (sh)2. In the case of tightly linked loci (rUi
� sh), however, recombi-

nation rates rUi
may be neglected in the denominator and selection for recombination

now decreases as sh increases — being roughly proportional to 1/ (sh)3.485

In order to extend these results to partially selfing populations, we replaced

δrab, rUi
and h by the effective parameters δr̃ab = δrab (1− F ), r̃Ui

= rUi
(1− F ) and

h̃ = h (1− F ) + F in the expression derived in Roze (2021). The effect of increas-

ing selfing (thus increasing F ) on the strength of selection for recombination due to

the Hill-Robertson effect can be understood using the same reasoning as above. When490

effective recombination rates are large relative to the strength of selection against dele-

terious alleles (selfing rate not too large, rUi
not too small so that r̃Ui

� sh̃), selection

for recombination becomes approximately proportional to δr̃ab(sh̃)2/
[
Ne

∏5
i=1 r̃Ui

]
=

δrab(sh̃)2/
[
Ne (1− F )4

∏5
i=1 rUi

]
, which increases as F increases (mostly due to the

decreased effective recombination rates r̃Ui
at the denominator, but also to the increase495

in h̃). When effective recombination rates are small relative to the strength of selection

(high selfing and/or tightly linked loci, so that r̃Ui
� sh̃), selection for recombination

is approximately proportional to δr̃ab/[Ne(sh̃)3] = δrab (1− F ) /[Ne(sh̃)3], which de-
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creases as F increases (mostly due to the decreased effect of the modifier δr̃ab, but

also to the increase in h̃). One thus predicts that increasing selfing should generally500

have a non-monotonic effect on selection for recombination due to the Hill-Robertson

effect (selection for recombination first increasing, and then decreasing towards zero

as F increases from 0 to 1), the position of the maximum depending on sh and on

the values of recombination rates (however, selfing may always decrease selection for

recombination when sh is sufficiently strong and/or linkage sufficiently tight). These505

verbal predictions are illustrated by Figure 2. Note that selfing also has the additional

effect of reducing Ne by a factor 1/ (1 + F ) (Pollak, 1987; Nordborg, 2000), thus in-

creasing the strength of the Hill-Robertson effect, but this effect stays minor relative

to the effect of selfing on effective recombination rates. Selfing may cause stronger

reductions in Ne when deleterious alleles are segregating at many linked loci, however,510

through background selection effects (Glémin and Ronfort, 2013; Roze, 2016).

These results also provide us with some understanding of the relative impor-

tance of stochastic and deterministic sources of selection for recombination: when

effective recombination rates are large, indirect selection due to the Hill-Robertson ef-

fect is of order δrabu
2 ε2/Ne, and should thus be negligible relative to the deterministic515

component (of order δrabu
2). When effective recombination rates are small (of order

ε), however, selection due to the Hill-Robertson effect is now of order δrabu
2/(Ne ε

3),

and may thus become of the same order of magnitude or stronger than deterministic

terms (which are then of order δrabu
2/ε, as shown in the previous subsection).

Multilocus extrapolation520

The three-locus analysis can be extended to compute the overall strength of

indirect selection acting on a modifier affecting the genetic map length of a whole

chromosome. Neglecting the effect of interactions between deleterious alleles at more

than two loci, this can be done by integrating the result from the three-locus model

over all possible positions of alleles a and b. As in Roze (2021), we consider a linear525

chromosome with map length R (in Morgans), along which deleterious mutations occur

at a rate U per chromosome per generation. The modifier is located at the mid-point of

the chromosome, allele m increasing map length by an amount δR/2 when heterozygous
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and δR when homozygous (see Methods). The strength of selection for allele m, defined

as sm = ∆pm/
(
1
2
pmqm

)
, can be decomposed into three terms:530

sm = sdirect + sdet + sHR (21)

where sdirect corresponds to the effect of direct selective pressures acting on R (due to

any direct effect of R on the fitness of individuals), sdet to indirect selection caused

by deterministic interactions between deleterious alleles, and sHR to indirect selection

caused by the Hill-Robertson effect. Assuming a direct fitness cost of crossovers so

that fitness decreases as e−cR as R increases, the direct selection term is given by535

sdirect = −c δR (1 + F ) to the first order in δR (e.g., Gervais and Roze, 2017). From

the analysis above, the term sdet can be further decomposed into sDab
+sD0

mab,ab
, where

sDab
corresponds to the overall effect of deterministically generated linkage disequilib-

ria (Dab) between deleterious alleles (either by epistasis or by identity disequilibria),

given by equations 15 and 20, while sD0
mab,ab

corresponds to the overall effect of as-540

sociations of the form Dmab,ab generated by correlations in homozygosity and by the

modifier effect, given by equations 10 and 13. Because sDab
should be mostly driven by

tightly linked loci, recombination rates are approximated by genetic distances in equa-

tions 15 and 20 (before integrating over the genetic map), while δrab is approximated

by δR rab/R (Roze, 2021). By contrast, loosely linked loci can make a stronger contri-545

bution to sD0
mab,ab

, and the recombination rate between loci i and j in equation 10 is

thus expressed in terms of the genetic distance dij between these loci using Haldane’s

mapping function rij =
[
1− e−2dij

]
/2 (Haldane, 1919), while δrab is approximated

by δR e−2dab dab/R (see Supplementary Material). Note that when U is not small (so

that the mean number of deleterious alleles per chromosome n may be large), and with550

epistasis, the expressions for αU,V coefficients given by equation 7 must be used instead

of equation 5.

Concerning the integration of the term generated by the Hill-Robertson effect,

Roze (2021) showed that using scaled recombination rates ρU = rU/ (sh) eliminates sh

from the integrand, sh only appearing in the integration limits, given by R/ (2sh). The555

same method can be used when rU, δrab and h are changed to effective parameters in

order to incorporate the effect of selfing. In particular, defining scaled recombination

rates ρ̃U = r̃U/(sh̃), one finds that the overall strength of indirect selection generated
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by the Hill-Robertson effect is given by the same expression as under random mating

(equation 3 in Roze, 2021), except that the integration limits become R (1− F ) /(2sh̃)560

and that the whole expression is multiplied by a factor 1/ (1− F )2. When R (1− F )�

sh̃ (which implies that the selfing rate is not too large and s is sufficiently small), the

integral can be approximated by the same integral taken between 0 and infinity, which

is ≈ 1.8 (Roze, 2021), yielding:

sHR ≈
1.8 δRU2

NeR3 (1− F )2
. (22)

Equation 22 is equivalent to equation 1 in Roze (2021), replacing R by R̃ = R (1− F )565

and δR by δR̃ = δR (1− F ). Note that this approximation is not valid when F ap-

proaches 1, however, as R (1− F )� sh̃ cannot hold in this case. Finally, the effective

population size Ne may be significantly lowered by background selection effects when

U is not small. Assuming that the reduction in Ne is mostly due to tightly linked loci,

one obtains that Ne ≈ [N/(1 + F )] exp[−2U/(R̃ + 2sh̃)] (e.g., Hudson and Kaplan,570

1995; Roze, 2016), where N is the census population size.

The evolutionarily stable map length (RES) corresponds to the value of R for

which direct and indirect selection balance each other, that is, sm = 0. Figure 3 shows

RES as a function of the selfing rate σ, for different values of the direct cost of re-

combination c. The curves correspond to the analytical predictions, obtained using575

Mathematica by numerically integrating the results of the three-locus model over the

genetic map to obtain sdet and sHR for a range of values of R, and finding the value

of R for which sm = 0 by interpolation (see Supplementary Material). Note that the

more precise approximations given in Appendix C have been used to compute sdet,

but using equations 10, 13, 15 and 20 often yields similar results. Figure 3 shows that580

the ES map length generally increases as the selfing rate increases, due to stronger

indirect selection caused by the Hill-Robertson effect. While indirect selection van-

ishes under full selfing (σ = 1), the analytical model predicts that the maximum map

length is reached for values of σ very close to 1, in particular when c = 10−3 and

c = 10−4. In the absence of epistasis, the deterministic component of indirect selec-585

tion selects against recombination (sdet < 0). Figure 3 shows that this deterministic

component stays negligible relative to the Hill-Robertson effect for parameter values

leading to low RES (c = 0.01), while its relative effect becomes more important for
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parameter values leading to higher RES (c = 10−4). This agrees with the prediction

that the Hill-Robertson effect becomes stronger than deterministic effects when effec-590

tive recombination rates are sufficiently small. In the absence of epistasis, we generally

found that sdet is mainly driven by sDab
, the effect of sD0

mab,ab
staying negligible (not

shown). Figure 3 also shows that extrapolations from our three-locus model often

provide accurate predictions of the evolutionarily stable map length observed in the

simulations, with discrepancies appearing for high values of the selfing rate. These595

discrepancies may be due to the fact that using effective recombination coefficients to

transpose the result obtained under random mating to the case of a partially selfing

population (as we did to compute sHR) should strictly only hold when loci are suffi-

ciently tightly linked (e.g., Padhukasahasram et al., 2008; Roze, 2016), while loosely

linked loci may significantly contribute to selection for recombination when the selfing600

rate is high. They may also be caused by higher-order genetic associations (involving

more than two selected loci) that are not taken into account in the analysis.

Figure 4 shows the effects of the deleterious mutation rate U , population size N ,

selection and dominance coefficients of deleterious alleles (s, h) on the evolutionarily

stable map length (Figure S2 shows the same results with R on a log scale). As pre-605

dicted, increasing U and/or decreasing N leads to stronger effects of Hill-Robertson

interference between deleterious alleles, favoring higher values of R (see also Roze,

2021). As can be seen in Figure 4A, our analytical approximations overestimate the

ES map length when U is high: this is probably due to the effect of higher-order genetic

associations. Furthermore, in some simulations with U = 0.5, R fell to a very small610

value at some point during the simulation, which led to a quick accumulation of het-

erozygous mutations, the only surviving individuals being heterozygous for haplotypes

carrying different deleterious alleles in repulsion. This accumulation of slightly delete-

rious mutations at the heterozygous state in a low recombining region has previously

been described as pseudo-overdominance (e.g., Charlesworth and Charlesworth, 1997;615

Pálsson and Pamilo, 1999; Waller, 2021). This occurred for 0.5 ≤ σ ≤ 0.7, in which

case the simulation was terminated, as the number of segregating mutations quickly

became very large. Figure 4C shows that selection for recombination is stronger when

deleterious alleles are more weakly selected, as already found by Roze (2021); further-

more, above a given value of s, the equilibrium map length decreases as the selfing rate620
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increases (which can be understood from the reasoning given in the previous subsection

and Figure 2). By contrast, the dominance coefficient h of deleterious alleles has only

little effect on the ES map length (Figure 4D). Figures S3 and S4 show that the results

are not significantly affected by introducing variability in the selection coefficients of

deleterious alleles into the simulation program, nor by limiting to 100 or 1000 the625

number of loci at which deleterious mutations may occur. Figure S5 shows that the

strength of selection for recombination due to the Hill-Robertson effect is accurately

predicted by equation 22 when selection against deleterious alleles is sufficiently weak,

as long as the selfing rate is not too high.

Figure 5 shows the effect of each form of diploid epistasis (ea×a, ea×d, ed×d) and630

of Charlesworth et al.’s (1991) synergistic epistasis coefficient β (that combines the

three forms of epistasis, see Methods) on the ES map length. Note that only negative

values of epistasis were considered, as combinations of deleterious mutations quickly

become beneficial when epistasis is positive and U is not very small. Negative epistasis

tends to lower the strength of the Hill-Robertson effect (dotted curves in Figure 5), by635

increasing the effective strength of selection against deleterious alleles. Nevertheless,

the deterministic effects generated by negative epistasis increase the overall strength

of selection for recombination. Figure S6 shows that this increase is driven by the term

in Dab in the case of negative additive-by-additive (ea×a) and additive-by-dominance

(ea×d) epistasis, the term in D0
mab,ab being negligible when ea×a < 0, while it disfavors640

recombination when ea×d < 0 (one can show that this last effect is generated by the

first term of equation 13, since effective dominance coefficients aj,j are increased by

ea×d, as shown by equation 7). In the case of dominance-by-dominance epistasis (ed×d),

the large increase in recombination observed for moderate values of the selfing rate is

generated by the term in D0
mab,ab, and thus corresponds to the benefit of recombination645

previously described by Roze and Lenormand (2005). One can note that the model

overestimates the strength of selection for recombination in this case. This is possibly

due to the fact that, while the effect of ed×d on effective dominance coefficients aj,j

is negligible as long as epistasis is sufficiently weak, one can show that aj,j increases

with ed×d when dominance-by-dominance epistasis becomes the main source of selec-650

tion against deleterious alleles (see Appendix G in Roze, 2009), reducing selection for

recombination through the first term of equation 13.
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DISCUSSION

Digging into the causes of general empirical patterns such as the positive cor-

relation between selfing rate and chiasma frequency observed within several families655

of flowering plants may help us to gain a better understanding of the selective forces

affecting the evolution of recombination rates. While there is no obvious reason why

the mechanistic constraints associated with chromosomal segregation during meiosis

should differ between outcrossing and selfing species, the mating system of organisms

does affect the benefit of recombination through its effect on genetic variation. Al-660

though indirect selective forces acting on recombination are expected to vanish under

complete selfing (as heterozygosity should then be very rare), the results presented

in this article show that intermediate selfing rates may either increase or decrease

selection for recombination caused by interference (Hill-Robertson effect) among dele-

terious mutations, depending on parameter values. Roughly, selfing leads to stronger665

selection for increased chromosomal map length as long as sh � R (1− F ) (mostly

due to the fact that selfing reduces effective recombination rates, thus increasing the

strength of genetic associations), while selfing decreases selection for recombination

when sh� R (1− F ), due to the fact that changes in recombination rates have little

effect on genetic associations in this regime. Given that most deleterious mutations670

seem to have weak fitness effects (e.g., Charlesworth, 2015), selection for recombina-

tion should thus be increased by selfing, and be maximized for selfing rates slightly

below 1 (as illustrated by Figures 3 and 4).

In agreement with previous results (Otto and Barton, 2001; Keightley and Otto,

2006; Roze, 2021), we found that interference is often the main driver of selection for675

recombination when linkage is tight (or when the selfing rate is strong), while deter-

ministic effects tend to become more important when recombination is frequent. In

the absence of epistasis, the variance in the degree of inbreeding among individuals

caused by partial selfing (associated with a more efficient purging of deleterious alle-

les in more inbred lineages) generates positive associations among deleterious alleles,680

selecting against recombination in infinite populations. As a result, the equilibrium

map length may be lower under moderate selfing rates than under random mating

in large, highly recombining populations, as can be seen in Figure 3 with c = 10−4.
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As in standard models of infinite, randomly-mating populations (Charlesworth, 1990;

Barton, 1995), negative epistasis between mutations tends to favor recombination by685

generating negative linkage disequilibria between deleterious alleles. This effect is of-

ten maximized at high selfing rates, again due to the fact that selfing reduces effective

recombination rates, thus increasing the magnitude of linkage disequilibria. Further-

more, components of epistasis involving dominance (ea×d, ed×d) also contribute to

generating linkage disequilibrium (through an effective epistasis parameter) when the690

selfing rate is greater than zero.

Under high effective recombination, Roze and Lenormand (2005) showed that

correlations in homozygosity among loci generated by partial selfing (identity dise-

quilibria) are the main drivers of indirect selection on recombination rates, favoring

higher recombination when dominance-by-dominance epistasis is negative (as recom-695

bination then benefits from a short-term advantage, by increasing the mean fitness

of offspring). The results of the present article temper the relative importance of

this effect, by showing that it becomes negligible relative to the effect of deterministi-

cally generated linkage disequilibria and Hill-Robertson interference under high selfing

and in the case of tightly linked loci. Nevertheless, moderate selfing rates may fa-700

vor a significant increase in chromosomal map length through this short-term benefit

of breaking identity disequilibria, provided that dominance-by-dominance interactions

are negative and represent a major component of epistasis (Figure 5C). In principle,

the average sign and overall importance of dominance-by-dominance effects can be

inferred from the shape of the relation between the degree of inbreeding of individu-705

als and their fitness (Crow and Kimura, 1970, p. 80), negative ed×d causing a faster

than linear decline in fitness with inbreeding. This method was used on several plant

species and did not yield any clear evidence for negative ed×d (Willis, 1993; Falconer

and Mackay, 1996); however, the methodology used (involving experimental crosses to

increase the degree of inbreeding of individuals) generates a bias against finding neg-710

ative ed×d, as deleterious alleles may have been purged from the more highly inbred

lines. Using an experimental protocol that avoids this bias, Sharp and Agrawal (2016)

found evidence for negative ed×d (on viability) between EMS-induced mutations in

Drosophila melanogaster. While more work is needed to assess the generality of this

result, previous experimental studies showed that epistasis is typically quite variable715
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among pairs of loci (de Visser and Elena, 2007; Kouyos et al., 2007; Martin et al.,

2007). As shown by Otto and Feldman (1997), recombination tends to be less favored

when epistasis is variable, and it would thus be of interest to extend our model to

more realistic fitness landscapes including distributions of epistasis.

While the indirect benefits of increased crossover rates may be strong when720

recombination is rare (e.g., Keightley and Otto, 2006), they typically become rather

weak under frequent recombination (Roze, 2021), and one may thus wonder to what

extent our model can explain a positive effect of selfing on chiasma frequency when at

least one crossover per chromosome occurs during meiosis. When our model is modified

so that 1 crossover per bivalent necessarily occurs (leading to a minimum map length of725

50cM, that is, R = 0.5) and letting R evolve above 0.5 using a similar model as before,

one indeed observes very limited effects of indirect selection on the evolutionarily

stable map length (except for high selfing rates) in the absence of epistasis, for a

deleterious mutation rate per chromosome of U = 0.1 (Figure 6). Substantial increases

in recombination under partial selfing can be favored in the presence of negative ed×d,730

however, chromosomal map length being maximized for moderate selfing rates in this

case (Figure 6A). Furthermore, higher chromosomal mutation rates lead to important

increases in R at high selfing rates due to stronger Hill-Robertson effects, as can be

seen on Figure 6B for U = 0.5. More generally, equilibrium values of R with one

obligate crossover per bivalent should be approximately the same as in Figures 3 –735

5 when setting to 0.5 the points falling below R = 0.5 (with some slight differences

caused by the fact that the distribution of the number of crossovers per chromosome

is not Poisson anymore in this modified model).

Are these results consistent with empirical data on the effect of selfing on recom-

bination? Figure S7 shows chiasma count data from several families of Angiosperms740

(comparing closely related species with contrasted mating systems) that were used

to generate Figure 1 in Roze and Lenormand (2005). As can be seen on Figure S7,

the increase in chromosome map length in selfing species compared with their out-

crossing relatives is generally of the order 20 to 30cM, which seems consistent with

the results obtained here for moderate chromosomal mutation rates, either due to the745

Hill-Robertson effect or to negative values of ea×a, ea×d or Charlesworth et al.’s (1991)

synergistic epistasis coefficient β. The results obtained under negative ed×d seem less
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consistent with the empirical patterns, as they show that R should be maximized for

moderate selfing rates (Figures 5, 6). As the data do not include any precise selfing

rate estimate, it is difficult to assess whether the observed patterns are more consis-750

tent with a gradual increase in R as selfing increases (as predicted for example under

negative ea×a, ea×d or β) or with a sharper increase at higher selfing rates (as predicted

under the action of the Hill-Robertson effect alone). Further insights could be gained

by comparing the genetic maps of closely related species for which estimates of selfing

rates are available.755

As already noted in Roze (2021), the fact that chromosomal map length may

evolve towards values greater than 0.5 even in the absence of selfing (as can be seen

on Figure S7) may seem at odds with the predictions of our model. Several expla-

nations can be proposed to explain this discrepancy. First, the direct fitness cost of

increasing R above 0.5 may be very low, as suggested by recent experiments on A.760

thaliana mutants in which map length is increased up to 7.8 fold without any clear ef-

fect on fertility (Fernandes et al., 2018). Second, relaxing the (unrealistic) assumption

that crossovers occur anywhere along the chromosome with the same probability may

generate stronger effects of indirect selection on the evolutionary stable map length.

In particular, data from Caenorhabditis elegans and humans suggest that structural765

constraints may impose restrictions on the possible localization of obligate crossovers

along chromosomes (Koehler et al., 1996; Ottolini et al., 2015; Altendorfer et al., 2020);

the fact that crossovers are often more frequent in subtelomeric regions (in plants and

animals) may possibly reflect such constraints (e.g., Haenel et al., 2018). Restricting

the position of the obligate crossover in a given chromosomal region should increase770

the strength of indirect selection acting on a modifier allele increasing recombination

in other regions, particularly if the modifier is located in regions with lower recombina-

tion. Effects of non-uniform positions of crossovers along chromosomes and crossover

interference will be explored in a future work. Third, sweeps of beneficial mutations

may also increase the strength of indirect selection for recombination (Hartfield et al.,775

2010; Roze, 2021). Note that this may also enhance the effect of selfing on recombina-

tion, since transitions towards predominant selfing are often followed by a number of

phenotypic changes such as reduced flower size (“selfing syndrome”, e.g., Cutter, 2019)

that may be seen as adaptations to the new mating system, thus involving the spread
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of newly beneficial alleles that may (at least transiently) favor higher recombination780

rates. Recombination rates may also be further increased after transitions to selfing

due to stronger Hill-Robertson effects caused by population bottlenecks and extinc-

tion/recolonization dynamics that often characterize selfing populations (e.g., Guo et

al., 2009; Willi et al., 2018; Orsucci et al., 2020).

Interestingly, predominantly selfing species often maintain low rates of outcross-785

ing in nature (e.g., Bonnin et al., 2001; Bomblies et al., 2010), which may reflect the

effect of selective forces favoring the maintenance of recombination. Indeed, determin-

istic and stochastic multilocus models showed that individuals outcrossing at a low rate

are often selectively favored over complete selfers in conditions where recombination

is advantageous (negative epistasis or finite population size, Charlesworth et al., 1991;790

Kamran-Disfani and Agrawal, 2014). However, higher effective recombination rates

could in principle be achieved by increasing either the outcrossing rate of individuals

or the number of crossovers at meiosis, and one could imagine that one solution or

the other may be favored depending on the different types of direct and indirect se-

lective forces that may act on outcrossing vs. recombination modifiers. Exploring the795

joint evolution of outcrossing and recombination rates in predominantly selfing species

would thus be of interest, both from a theoretical and empirical perspective.

Data availability. All derivations are provided in the Mathematica notebook avail-

able as Supplementary Material at doi.org/10.5281/zenodo.6783728, along with the800

C++ codes used to run the simulations.
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Table 1: Parameters and variables of the model.

1005

σ Selfing rate

s, h, h̃
Selection, dominance and effective dominance coefficients of

deleterious alleles

ea×a, ea×d, ed×d, ẽ

Additive-by-additive, additive-by-dominance,

dominance-by-dominance epistasis and effective epistasis

between deleterious alleles

β Charlesworth et al.’s (1991) synergistic epistasis coefficient

ε Strength of selection (scaling parameter)

u, U Deleterious mutation rate per locus, and per chromosome

rij, r̃ij
Recombination rate and effective recombination rate between

loci i and j

δrab, δ̃rab Effect and effective effect of the modifier on rab

hm Dominance coefficient of allele m at the modifier locus

N , Ne Census and effective population size

R, RES Chromosome map length and evolutionarily stable map length

δR Effect of the modifier on R

DU,V

Genetic association between the sets U and V of loci present on

the maternally and paternally inherited haplotypes of an

individual

αU,V
Effect of selection on the sets U and V of loci present on the

maternally and paternally inherited haplotypes of an individual

W , W Fitness of an individual and average fitness

F = σ/(2− σ)
Inbreeding coefficient (probability of identity by descent at one

locus)

φab Joint probability of identity by descent at loci a and b

Gab = φab − F 2 Identity disequilibrium between loci a and b

pj, qj Frequencies of the lower- and uppercase allele at locus j

n Mean number of deleterious alleles per chromosome
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Table 2: Fitness matrix in the three-locus model.

AA Aa aa

BB 1 1− hs 1− s

Bb 1− hs (1− hs)2 + ea×a (1− hs)(1− s) + 2ea×a + ea×d

bb 1− s (1− hs)(1− s) + 2ea×a + ea×d (1− s)2 + 4ea×a + 4ea×d + ed×d
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Figure 1. Effect of the selfing rate σ on the change in frequency of allele m in

the deterministic three-locus model (scaled by δrab pqmab) with no epistasis (A and

B), negative additive-by-additive epistasis (ea×a = −0.001; C and D) and negative

dominance-by-dominance epistasis (ed×d = −0.001; E and F), and for different re-

combination rates (A, C, E: rma = rab = 0.01; B, D, F: rma = rab = 0.1). Dots1015

correspond to deterministic simulation results (see text for details) and black curves

to the result obtained from equations 6 and C1 – C11, which is the sum of a term

generated by Dab −Da,b (red curves) and a term generated by D0
mab,ab (blue curves);
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dashed blue curves correspond to the strong recombination approximation (Equation

11). Note that the red and black curves are nearly indistinguishable in C, D. The effect1020

of additive-by-dominance epistasis (ea×d) is similar to the effect of additive-by-additive

epistasis (ea×a) for these parameter values, and is shown in Figure S1. Loci are in the

order m – a – b, parameters values are: s = 0.01, h = 0.2, hm = 0.5, while δrab = 0.01

and u = 10−5 in the simulations.
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Figure 2. Effect of the selfing rate σ on the expected change in frequency of allele m

(scaled by δrab u
2/Ne and on a log scale) generated by the Hill-Robertson effect between

alleles a and b, for different values of the strength of selection against deleterious

alleles (blue: s = 0.005; green: s = 0.02; red: s = 0.05) and recombination rates

(A: rma = rab = 0.05; B: rma = rab = 0.005). The value of σ maximizing selection for1030

recombination decreases as s increases and as recombination decreases. When selection

is sufficiently strong and linkage sufficiently tight, selection for recombination decreases

monotonously as σ increases (as can in seen in B for s = 0.02, s = 0.05). Loci are in

the order m – a – b, the dominance coefficient of deleterious alleles is set to h = 0.2.
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Figure 3. Effect of the selfing rate σ on the evolutionarily stable map length RES, for

different values of the cost of recombination c. Solid curves correspond to the analyti-

cal predictions obtained by solving sdirect+sdet+sHR = 0 for R, where sdet and sHR are

obtained by integrating the expressions for the strength of indirect selection generated

by deterministic effects (for sdet) and by the Hill-Robertson effect (for sHR) over the ge-1040

netic map (see Supplementary Material). Dotted curves correspond to the predictions

obtained when ignoring indirect selection caused by deterministic effects (i.e., solving

sdirect +sHR = 0 for R). Dots correspond to individual-based simulation results; in this

and the following figures, error bars are obtained by dividing the simulation output

(after removing the first 5× 105 generations) into 10 batches and calculating the vari-1045

ance of the average map length per batch, error bars measuring ±1.96 SE. Parameter

values are N = 20,000, U = 0.1, s = 0.02, h = 0.2, ea×a = ea×d = ed×d = 0.
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Figure 4. Effect of the selfing rate σ on the evolutionarily stable map length RES,

for different values of the mutation rate U , population size N , strength of selection1050

and dominance coefficient of deleterious alleles (s, h). Dots correspond to simulation

results, curves have the same meaning as in Figure 3, and default parameter values

are as in Figure 3 with c = 0.001 (no epistasis).
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Figure 5. Effect of the selfing rate σ on the evolutionarily stable map length RES, for1055

different values of additive-by-additive (A), additive-by-dominance (B) and dominance-

by-dominance (C) epistasis, and different values of Charlesworth et al.’s (1991) syn-

ergistic epistasis coefficient β (D). Note the different scale of the y-axis in C. Dots

correspond to simulation results, curves have the same meaning as in Figure 3, and

default parameter values are as in Figure 3 with c = 0.001.1060
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Figure 6. Effect of the selfing rate σ on the evolutionarily stable map length RES,

when at least one crossover per chromosome occurs during meiosis (leading to a mini-

mal map length of R = 0.5). Dots correspond to simulation results, curves correspond

to analytical predictions; default parameter values are as in Figure 3 with c = 0.001.1065

A: Blue: no epistasis, green: ed×d = −0.005. B: Blue: U = 0.1, red: U = 0.5.
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APPENDIX A: HIGH EFFECTIVE RECOMBINATION

Under high effective recombination, the associations between the modifier and

the selected loci involved in equation 6 are given by (see Mathematica notebook for

derivation):1070

Dmab,a ≈ Dma,ab ≈ F (αb + αb,b)D
0
mab,ab (A1)

Dma ≈
(1 + 2F rma) [2F (αa + αa,a)αb,b + αab,b + αab,ab]

rma (1− F )
D0

mab,ab (A2)

Dm,a ≈
F (1 + 2rma)

1 + 2F rma

Dma (A3)

Dmab,b, Dmb,ab, Dmb and Dm,b being given by symmetric expressions. Dmab, Dm,ab and

Dma,b are given by:

Dmab ≈
(1 + 2F rma) (1 + 2F rmb)

(1− F ) [rmab + 2F (rmarmb + rmarab + rmbrab) + 6F 2rmarmbrab]

×
[
(1 + 2F rab)TabD

0
mab,ab

− δrabHm (Dab −Da,b) pqm − δrab (1−Hm) (Dmab,m −Dma,mb)
] (A4)

1075

Dm,ab ≈
F [(1 + 2F rma) (1 + 2F rmb) + (1− F ) (rma + rmb + 4F rmarmb)]

(1 + 2F rma) (1 + 2F rmb)
Dmab (A5)

Dma,b ≈
F

(1− F ) [rmab + 2F (rmarmb + rmarab + rmbrab) + 6F 2rmarmbrab]

×
[
(1 + 2F rma)

[
(1 + 2F rmb) (1 + 2F rab)

+ (1− F ) (rmb + rab + 4F rmbrab)
]
TabD

0
mab,ab

− (1 + 2F rmb) [1− (1− 3F ) rma]
[
δrabHm (Dab −Da,b) pqm

+ δrab (1−Hm) (Dmab,m −Dma,mb)
]]

(A6)

(Dmb,a being given by a symmetric expression), with Hm = hm + (1− 2hm) pm, and:

Tab = αab + αab,a + αab,b + αab,ab + 2F (αa + αa,a) (αb + αb,b) (A7)

Dab −Da,b ≈
(1− F ) [α̃ab − α̃aα̃b + 2F Gab (αa + αa,a) (αb + αb,b)]

rab (1− F )
pqab (A8)

Dmab,m −Dma,mb ≈
F (rma + rmb − rab − 2rmarmb)

1 + F (rma + rmb + rab − 2rmarmb)
(Dab −Da,b) pqm. (A9)

The identity disequilibrium Gab is given by φab − F 2, with:1080

φab = F

[
1− 2 (1− F ) rab (1− rab)

1 + 2F rab (1− rab)

]
. (A10)
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APPENDIX B: INTERPRETING EFFECTIVE SELECTION COEFFICIENTS

The form of the coefficients α̃a and α̃ab representing the effective strength of se-

lection against deleterious alleles and the effective epistasis between pairs of deleterious

alleles in a partially selfing population can be understood as follows. Assuming that

deleterious alleles stay rare in the population (u � s), we can neglect homozygotes1085

for deleterious alleles produced by outcrossing, and consider that homozygosity for

deleterious alleles necessarily implies identity-by-descent among these alleles. Then, if

an individual carries allele a on one of its haplotypes, with probability F it also carries

allele a on its second haplotype. In that case, the fitness effect of the deleterious allele

(αa) is increased by αa due to the presence of a on the second haplotype, and by αa,a due1090

to the interaction among those two deleterious alleles: therefore, the effective strength

of selection experienced by deleterious alleles is α̃a = (1 + F )αa +F αa,a (which, using

equation 5, yields α̃a ≈ −sh̃). A similar reasoning can be used to compute the effective

epistasis coefficient. With probability φab, an individual is identical-by-descent at both

loci a and b; with probability F − φab it is identical-by-descent at the first locus and1095

not at the second (or at the second and not at the first), while with the complemen-

tary probability 1− 2F + φab it is identical-by-descent at neither locus. Therefore, an

individual carrying alleles a and b on one of its haplotypes is aabb with probability φab,

aaBb (or Aabb) with probability F − φab, and AaBb with probability 1 + 2F − φab.

In the first case (aabb), the fitness effect of the interaction between a and b (αab) is1100

increased by the interaction between a and b present on the other haplotype (αab),

twice the interaction between deleterious alleles in trans (αa,b), twice the additive-by-

dominance interactions (αab,a, αab,b), and by the dominance-by-dominance interaction

(αab,ab). In the second case (aaAb or Aabb), it is increased by the interaction between

deleterious alleles in trans (αa,b) and by the additive-by-dominance interaction (αab,a1105

or αab,b). This yields:

α̃ab = φab (2αab + 2αa,b + 2αab,a + 2αab,b + αab,ab)

+ (F − φab) (2αab + 2αa,b + αab,a + αab,b) + (1− 2F + φab)αab

= (1 + φab)αa + 2F αa,b + (F + φab) (αab,a + αab,b) + φab αab,ab.

(B1)
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APPENDIX C: GENERAL QLE APPROXIMATIONS

The following expressions combine approximations obtained under different

regimes (high effective recombination, weak recombination, high selfing, epistasis of

order ε2 or ε, see Supplementary Material). The different associations affecting the1110

change in frequency of the modifier (equation 6) are given by (with D0
mab,ab given by

equation 10):

Dmab,ab ≈ D0
mab,ab + F Dmab (C1)

Dmab,a ≈ Dma,ab ≈ F
[
(αb + αb,b)D

0
mab,ab +Dmab

]
(C2)

Dm,ab ≈ Dma,b ≈ Dmb,a ≈ F Dmab (C3)
1115

Dma,a ≈ F
[
αb,bD

0
mab,ab +Dma

]
(C4)

Dm,a ≈ F Dma (C5)

Dmab ≈
(1 + 2F rma) (1 + 2F rmb)

Ymab

[
(1 + 2F rab)TabD

0
mab,ab

− δrabHm (Dab −Da,b) pqm − δrab (1−Hm) (Dmab,m −Dma,mb)
] (C6)

Dma ≈
(1 + 2F rma)

[
[2F (αa + αa,a)αb,b + αab,b + αab,ab]D

0
mab,ab + (α̃b + α̃ab)Dmab

]
rma (1− F )− (1 + 2F rma) α̃a

(C7)

(Dmab,b, Dmb,ab, Dmb,b, Dm,b and Dmb being given by symmetric expressions), with:

Tab = αab + αab,a + αab,b + αab,ab + 2F (αa + αa,a) (αb + αb,b) (C8)

1120

Ymab = (1− F ) [rmab + 2 (rmarmb + rmarab + rmbrab) + 6rmarmbrab]

− (1 + 2F rma) (1 + 2F rmb) (1 + 2F rab) (α̃a + α̃b + α̃ab)
(C9)

Dab −Da,b ≈
(1− F ) [α̃ab − α̃aα̃b + 2F Gab (αa + αa,a) (αb + αb,b)]

rab (1− F )− (1 + 2F rab) (α̃a + α̃b + α̃ab)
pqab (C10)

Dmab,m −Dma,mb ≈
F (rma + rmb − rab − 2rmarmb)

1 + F (rma + rmb + rab − 2rmarmb)
(Dab −Da,b) pqm. (C11)

The change in frequency of the modifier is given by ∆pm =
∑

U,V αU,VDmU,V where

the double sum is over all elements of the set {∅, a, b, ab}, and thus decomposes into

a term generated by D0
mab,ab (that becomes predominant under high effective recombi-1125

nation) and a term generated by Dab − Da,b (that becomes predominant under weak

recombination or strong selfing).
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