
HAL Id: hal-03768500
https://hal.science/hal-03768500v1

Submitted on 18 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Radio Resource Dimensioning for Low Delay Access in
Licensed OFDMA IoT Networks

Yi Yu, Lina Mroueh, Philippe Martins, Guillaume Vivier, Michel Terré

To cite this version:
Yi Yu, Lina Mroueh, Philippe Martins, Guillaume Vivier, Michel Terré. Radio Resource Dimen-
sioning for Low Delay Access in Licensed OFDMA IoT Networks. Sensors, 2020, 20 (24), pp.7173.
�10.3390/s20247173�. �hal-03768500�

https://hal.science/hal-03768500v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


sensors

Article

Radio Resource Dimensioning for Low Delay Access
in Licensed OFDMA IoT Networks †

Yi Yu 1,2,‡ , Lina Mroueh 1,*,‡ , Philippe Martins 3, Guillaume Vivier 4 and Michel Terré 2

1 Institut Supérieur d’Electronique de Paris, 92130 Issy Les Moulineaux, France; yi.yu@isep.fr
2 Conservatoire National des Arts et des Métiers, 75003 Paris, France; michel.terre@cnam.fr
3 Telecom Paris, 91120 Palaiseau, France; philippe.martins@telecom-paris.fr
4 Sequans Communications, 92700 Colombes, France; gvivier@sequans.com
* Correspondence: lina.mroueh@isep.fr
† This paper is an extended version of our paper published in: Mroueh, L.; Yu, Y.; Terre, M.; Martins, P.

Statistical Uplink Dimensioning in Licensed Cellular Low Power IoT Networks. In Proceedings of the 2018
25th International Conference on Telecommunications (ICT), St. Malo, France, 26–28 June 2018.

‡ These authors contributed equally to this work.

Received: 31 October 2020; Accepted: 4 December 2020; Published: 15 December 2020
����������
�������

Abstract: In this paper, we focus on the radio resource planning in the uplink of licensed Orthogonal
Frequency Division Multiple Access (OFDMA) based Internet of Things (IoT) networks. The average
behavior of the network is considered by assuming that active sensors and collectors are distributed
according to independent random Poisson Point Process (PPP) marked by channel randomness.
Our objective is to statistically determine the optimal total number of Radio Resources (RRs)
required for a typical cell. On one hand, the allocated bandwidth should be sufficiently large
to support the traffic of the devices and to guarantee a low access delay. On the other hand,
the over-dimensioning is costly from an operator point of view and induces spectrum wastage.
For this sake, we propose statistical tools derived from stochastic geometry to evaluate, adjust and
adapt the allocated bandwidth according to the network parameters, namely the required Quality
of Service (QoS) in terms of rate and access delay, the density of the active sensors, the collector
intensities, the antenna configurations and the transmission modes. The optimal total number of
RRs required for a typical cell is then calculated by jointly considering the constraints of low access
delay, limited power per RR, target data rate and network outage probability. Different types of
networks are considered including Single Input Single Output (SISO) systems, Single Input Multiple
Output (SIMO) systems using antenna selection or Maximum Ratio Combiner (MRC), and Multiuser
Multiple Input Multiple Output (MU-MIMO) systems using Zero-Forcing decoder.

Keywords: LPWAN; licensed OFDMA-based IoT; resource planning; stochastic geometry

1. Introduction

Cellular licensed IoT technology has been an emerging and evolving Low Power Wide Area
(LPWA) technology which provides long range, low power and low cost connectivity for IoT
devices [1]. It can be deployed in existing cellular networks from which it inherits many of the
features that determine its behavior [2], such as Long Term Evolution (LTE) networks. With the
booming development of Fifth Generation (5G) technology, evolutions of cellular IoT standards have
been proposed and put into practice by 3rd Generation Partnership Project (3GPP) [3]. It will further
promote the development of IoT technology. 5G technologies primarily include non-standalone and
standalone technologies. The former is the early-drop technology that operators plan to connect new
radio 5G base stations to the Fourth Generation (4G) core network until 5G connectivity migrates
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to the native 5G Core network mode which means shifts to standalone mode [4]. For the 4G and
nonstandalone 5G connections, Orthogonal Frequency Division Multiple Access (OFDMA) technology
can be employed to enable multi-carrier transmission and network access. OFDMA can take advantage
of multiuser diversity and robustness to multipath fading for the uplink communications. Moreover,
it provides more degrees of freedom for resource allocation and facilitates multiplexing and diversity
gains [5,6]. Due to the limited spectrum of licensed IoT, as the network gradually scales up, one of
the key issues we face is how to effectively use these resources to support large-scale IoT devices.
In addition, the cost of IoT has been a major concern, and the improvement of spectrum efficiency can
help reduce the cost of cellular IoT networks.

In this paper, we focus on the uplink of OFDMA-based cellular IoT networks with multiple
antennas receiver. The average statistical behavior of the network is considered where the active
sensors and collectors are randomly distributed in a given area according to a random Poisson Point
Process (PPP). The randomness of the wireless channel is considered as a mark of the Poisson position
and results from stochastic geometry using marked PPP as in [7–19] will be invoked. These tools were
investigated in [20–23] to compute an upper-bound on the resource outage probability in a cellular
network considering random PPP marked by the random fading. Unlike the previous contributions
in [20–23] where the network is considered as noise limited, this study is more general as it takes into
account the impact of interference on the statistical dimensioning. In [24], our dimensioning model is
restricted to the single user case with multiple antennas receivers, in which only the receiver diversity,
namely, the antenna selection technique, is performed without exploiting the spatial multiplexing gain.
This paper generalizes our previous contribution in [24] by considering MU-MIMO schemes where
multiple users can be scheduled over one RR. It introduces indeed a new criterion for performing
dimensioning based upon low delay access. We also provide a comparison between the energy
consumption of the different considered transmission modes.

We consider first single-user (SU) communication with receiver diversity transmission modes
such as antenna selection considered in [24] and the Maximum Ratio Combining (MRC). Next,
we consider multiuser (MU) transmission where a distance-based scheduling algorithm is proposed
with neighboring sensors nodes that are scheduled on the same RR. The interuser interferences are
canceled using a Zero-Forcing decoder. The remaining diversity when not all the degrees of freedom
are consumed is extracted using a MRC. The number of RR required by a single node in the SU case of
by a group of nodes in the MU case is limited by the lowest Modulation and Coding Scheme (MCS).
We define the network outage as the event that occurs when the number of request RRs exceed the
number of the available ones. Whenever this event occurs, the sensor node has to delay its transmission
to the next time transmission interval (TTI). Our goal is to determine the number of required RR to
be allocated at the network side depending on the network load and the collector density in order to
guarantee that the average delay access does not exceed a preset threshold.

The rest of the paper is organized as follows. We introduce in Section 2 the network model and its
properties. In Section 3, we review first the dimensioning concentration inequality used in [21–24] that
provides an upper-bound on the network outage probability and hence on the number of required
RR. This upper-bounds depends on the average total number of required RR that we computed for
the single-user case as in [24] and for the multiuser case that we introduce in this paper. We also
characterize in each case the power distribution. The results presented in this section are general and
are not related to the transmission mode fading distribution observed by the collector or the statistical
behavior of interference that are characterized in Section 4. Numerical results are provided in Section 5
to compare the transmission mode in terms of required RRs and energy consumption in function of
the collectors density and the average required delay. Finally, Section 6 concludes the paper.

2. IoT Network Model

We consider a sensor network in which a random number of active nodes sensors and collectors
are distributed in a given area A according to two independent homogeneous PPP with intensities
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λa and λb. We assume that the sensors are equipped with a single antenna and that the collector is
equipped with nr receiver antennas. We assume that a sensor is active na times per day, the mean
service time is ν−1 (s) and the interarrival rate is na

24×60×60 ρ per second and per km2. The active sensors
nodes form then a spatial PPP Φa with intensity

λa =
na

24× 60× 60
ρν−1. (1)

The frequency reuse pattern in the network is equal to 1. At a given collector situated at y0 ∈ Φb,
the received power on a given RR from a sensor x ∈ Φa transmitting with power PRR (mW per RR)
is computed as, Pr(y0, x) = PRR α |y0 − x|−β A f where α and β are respectively the attenuation
factor (that includes the average shadowing) and the path-loss exponent that are computed from
the Okumura-Hata model, A f is the fading coefficient with distribution depending on the antenna
configuration and the used transmission mode (single-user or multiuser). The sensor nodes are
considered as static and the fading channel is considered as flat during the transmission. The Channel
State Information (CSI) is only available at the receiver side and not at the transmitter side. Each sensor
is connected to the collector on which the average received power (by averaging over the fading
and the shadowing) is the highest. This is equivalent to connect the sensor to the nearest collector.
Assuming a collector y0, the set of the sensors connected to this latter is defined as Φc(y0) = {x ∈
Φ : ∀y ∈ Φb − {y0} : |y0 − x| < |y− x|}. Nodes transmitting in the same frequency band generate
additive interference with power

I (y0) = ∑
xi∈ΦI(y0)

PRRα |y0 − xi|−β A f ,i, (2)

with
ΦI (y0) = ∪y∈Φb ,y 6=y0 {xi : xi randomly selected in Φc(y)} . (3)

The received SINR at the given collector y0 is,

SINR(y0, x) =
PRR α |y0 − x|−β A f

Pn + I(y0)
, (4)

with Pn being the random exponential noise power with mean power of P̄n = KTB where K is the
Boltzmann’s constant K = 1.379× 10−23 W Hz−1 K−1, T the absolute temperature in kelvins T = 290 K
and B the bandwidth. The power of the random exponential noise power is characterized by its Laplace
transform as,

LPn(s) = E
[
e−sN

]
=

1
sP̄n + 1

. (5)

Due to Slivnyak-Mecke Theorem in [8], the statistical behavior in the PPP remains unchanged
when adding a collector at the center of this region. This defines the typical cell centered at the origin
Φc(0) as illustrated in Figure 1. The typical cell properties are reviewed in Proposition 1.

Proposition 1 (Typical cell properties). The typical cell average number of sensors is,

Ns , E
[

∑
x∈Φa

1{x∈Φc(0)}

]
=

λa

λb
(6)

The probability distribution function of r = |x| the distances between x ∈ Φc(0) and the o collector is,

f (r) = 2πλb exp(−λbπr2). (7)

The average radius of the typical cell is 1/(2
√

λb).
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Proof. We provide for completeness the proof in Appendix A.
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Figure 1. Network model: typical cell and active nodes.

3. Proposed Statistical Dimensioning Model

Given the density of collectors in the network, we propose a statistical method for resource
planning in the uplink of cellular IoT networks. We assume the network access is an OFDMA and
consider only the Narrowband Physical Uplink Shared Channel (NPUSCH) which carries the uplink
user data and uplink control information. In an NB-IoT network or LTE-M, identical to the LTE
network, the smallest block of radio resource elements that can be invoked is called the Resource Block
(RB) or Radio Resource Block (RRB). It contains several OFDM symbols. Each RR corresponds to
180 kHz in the frequency domain and 0.5 ms in the time domain. In the 5G, different numerologies
were defined to reduce the RR duration and hence the latency by increasing the RR bandwidth.
In the following, the RR corresponds to the LTE resource block and the RR with numerology 0 in the
5G terminology. For the single-user and multiuser cases, our main objective here is to statistically
determine the total number of required RRs to minimize the occurrence of the network outage event.
When the total number of RRs required is larger than the number of RRs available on the collector side,
this is considered as an outage event.

3.1. Dimensioning Objectives in a Typical Cell

In the typical cell illustrated in Figure 1, the collector o allocates according to the level of the
received SINR, 1 to Nmax RRs to the sensor node in order to achieve its target data rate C0. The required
number of RRs is,

NRR(x, A f , I, Pn) =
Nmax

∑
k=1

k× 1{
SINR(x) ∈ [γk ; γk−1[

}. (8)

with γk being the threshold SINR required to achieve a target rate of C0/k within a single RR and
γ0 > γ1 > . . . > γNmax and γ0 → ∞. Note that γ0 (respectively γNmax ) is the threshold SINR to decode
the highest (respectively lowest) Modulation and Coding (MCS) scheme. If SINR(0, x) < γNmax ,
the sensor will not be able to decode the lowest MCS and the collector does not attribute any RR to this
user. This event of having insufficient SINR occurs with probability, we intentionally do not refer to
this probability as outage to avoid confusion with the network outage probability.

Poff = Prob{SINR(0, x) < γNmax}. (9)
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By setting
A f ,k = γkα−1rβ(Pn + I), ∀1 ≤ k ≤ Nmax, (10)

with A f ,0 = ∞ the threshold fading to achieve a rate Ck ∈ [C0/k ; C0/(k− 1)] over one RR, the number
of RR can be rewritten as,

NRR(x, A f , I, Pn) =
Nmax

∑
k=1

k× 1{
A f ,k≤A f≤A f ,k−1

}. (11)

The total of required RR in this typical cell depicted in Figure 1 is,

NRR,t(0) = ∑
x∈Φc(y0)

NRR(x, A f , I, Pn). (12)

The network is in outage if,

Pout,c(Nt) = Prob{NRR,t(0) > Nt}. (13)

In order to ensure an optimized network dimensioning, the number of total radio resources Nt

that ensure a network outage probability of pth,n, should be found. Using the concentration inequality,
the typical cell outage probability is upper-bounded by,

Pout,c(Nt) ≤ Psup(Nt), (14)

where

Psup(Nt) = exp
(
− vN

N2
max

g
(

Nmax(Nt −mN)

vN

))
, (15)

with

mN = E
[

∑
x∈Φc(o)

NRR(x)
]
, (16)

vN = E
[

∑
x∈Φc(o)

N2
RR(x)

]
, (17)

the function g(t) = (1 + t) log(1 + t) − t and Nt > mN . By setting a threshold pth,n on the
network outage,

Nt = mN +
vN

Nmax
g−1

(
N2

max
vn

log
( 1

pth,n

))
.

3.2. Average Delay and Choice of the Network Threshold

In this subsection, we compute the average delay to connect the sensor device to the network
independently of its transmitting rate. This average delay should not exceed a maximal delay τmax that
we assume proportional to the Time Transmission Interval (TTI). As long as the sensor is not accepted
by the network due to the lack of resource, a new trial will be performed after TTI. We assume that the

probabilities of being rejected after i×TTI are independent and are equal to
(
Pout,c(Nt)

)i
. The average

delay to access to the network is hence,

τ̄ =

(
∞

∑
i=0

i× TTI×
(
Pout,c(Nt)

)i
)
≤
(

∞

∑
i=0

i× TTI× pi
th,n

)
. (18)
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This expression can be simplified to,

τ̄ ≤ TTI
pth,n

(1− pth,n)2 . (19)

By choosing pth,n such that

TTI
pth,n

(1− pth,n)2 , τmax, (20)

we make sure that the average delay in the network does not exceed τmax. By letting κ = τmax/TTI,
the network threshold is,

pth,n =
(2κ + 1)−

√
1 + 4κ

2κ
< 1. (21)

3.3. Expressions of mN and vN

In this subsection, we derive the expressions of mN and vN in (16) and (17) considering the
single-user and multiuser cases. We recall that all sensor devices are equipped with a single antenna
and the number of antennas at the collector is nr. The distribution of the fading coefficient in (4) will
be specified in the next section depending on the antenna configuration and transmission mode.

3.3.1. Single-User Case

Proposition 2 (Single-user case). The expressions of mN and vN are,

mN = Ns ×
Nmax

∑
k=1

k×Er EI,Pn EA f [1{A f ,k≤A f <A f ,k−1}] (22)

vN = Ns ×
Nmax

∑
k=1

k2 ×Er EI,Pn EA f [1{A f ,k≤A f <A f ,k−1}] (23)

with Ns = λa/λb the average number of sensors as shown in (6), and Er[(.)] =
∫ ∞

0 (.) f (r)dr with f (r) defined
in (7).

Proof. Please refer to Appendix B.

Note that (22) can be interpreted as following: Ns is the average number of sensor in the typical
cell; each sensor requires each 1 to Nmax RRs depending on their distance to the collector, the channel
conditions and the additive interference and noise.

3.3.2. Multiuser Case

In the multiuser case, we assume that each RR is shared by nu users simultaneously as depicted
in Figure 2. To cancel the interuser interference, the collectors uses a Zero-Forcing (ZF) decoder.
The equivalent fading observed by each sensor j device is denoted by A(j)

f having a distribution that
will be specified in the next section.
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Figure 2. MU-MIMO: nu users are simultaneously scheduled on the same radio-resource.

Distance based multiuser scheduling scheme: In this scheme, the active users are sorted according
to their proximity to the collector into different groups of nu users, each independently of their fading.
As shown in Figure 3, the first group contains the nu nearest neighbor to the typical collector, the second
group the (nu + 1)th to 2nth

u collector neighbor and so on. We adjust the number of allocated RRs to
the furthest user from the collector in each group independently of the fading coefficient experienced
by other users. The furthest node x in each group i is the i × nth

u neighbor of the collector and it
corresponds to the radius of the ball B(|x|) with radius |x| containing i× nu nodes.

r1
r2

r3
r4

Figure 3. Illustration of the scheduling with nu = 4. The number of RR is adjusted with respect to
the furthest node in each group, to say i, situated at distance ri corresponding to the radius of the ball
containing inu − 1 nodes.

Proposition 3 (Multiuser case). The expressions of mN and vN are

mN = Ns ×
Nmax

∑
k=1

k×Er EI,Pn EA f

[
1{A f ,k≤A f <A f ,k−1} ∑

i∈N∗
Prob

{
|B(r)| = inu − 1

}]
(24)

vN = Ns ×
Nmax

∑
k=1

k2 ×Er EI,Pn EA f

[
1{A f ,k≤A f <A f ,k−1} ∑

i∈N∗
Prob

{
|B(r)| = inu − 1

}]
(25)
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where B(r) is the ball with radius r, and

∑
i∈N∗

Prob
{
|B(r)| = inu − 1

}
= exp(−λaπr2) ∑

i∈N∗

(πλar2)(inu−1)

(inu − 1)!
. (26)

with N∗ being the set of nonzero positive integers. The distribution of r in the typical cell is given by f (r) defined
in (7).

Proof. Please refer to Appendix C.

Note that Proposition 3 is a generalization of Proposition 2 with nu = 1. For nu = 1,

∑
i∈N∗

(πλar2)(i−1)

(i− 1)!
= exp(−λaπr2) (27)

and the expressions of mN in (24) becomes equal to (22).

3.4. Distribution of the Sensor Power Consumption

We assume that the transmitted power is fixed to PRR per RR and the total power over Nmax RRs
does not exceed Pmax = NmaxPRR. The power is then a discrete random variable and its Probability
Mass Function (PMF) is given in Proposition 4.

Proposition 4 (Total sensor power PMF). For the general case, the sensor power PMF is,

Prob{Pt = kPRR} =
Ns

Ng
Er EI,Pn EA f

[
1{A f ,k≤A f <A f ,k−1} ∑

i∈N∗
Prob

{
|B(r)| = inu − 1

}]
, (28)

with 1 ≤ k ≤ Nmax, Ng the number of the groups of nu sensors in the typical cell such that,

Ng =
∫ ∞

0
2πλar exp(−λbπr2) exp(−λaπr2) ∑

i∈N∗

(πλar2)(inu−1)

(inu − 1)!
dr (29)

and Ns = λa/λb.

Proof. The proof is similar to Proposition 3 and the PMF can be obtained by averaging over the whole
power in the typical cell normalized by the size of this latter. In each ring delimited by the (i− 1)× nth

u
and i× nth

u neighbor, the nu sensors adjust their power to the the i× nth
u furthest neighbor.

4. Dimensioning Tools: Interference and Fading Characterization

In this section, we characterize the fading and interference distribution required to compute the
average number of RR considering different antenna configuration using Single-User and Multiuser
(MU-MIMO) communications.

4.1. Single-User: Case of Single Antenna Receiver

In this subsection, we review first from [9] the characterization of the Laplace transform of
interference and the distribution of the fading in the SISO case averaged on the random noise plus
interference.

4.1.1. Interference Laplace Transform

Considering a SISO antenna configuration, the Laplace transform of the interference is,
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LI(s) = E
[
e−sI

]
= E

[
∏

xi∈ΦI

e−sPRR α|xi |−β A f ,i

]
, (30)

in which ΦI is the set of the interfering nodes that transmit on the same RR as shown in (3). The set of
interfering nodes ΦI cannot be considered as homogeneous PPP and its exact statistical distribution
is generally a difficult problem to model. For this, we use the same approximation proposed in [7]
that is shown to almost capture the statistical behavior of the interference field. Let di be the distance
between the interferer and the intended collector. The probability of finding at least one collector in
the ball with radius di centered at the interferer is (1− e−λbπd2

i ). In this case, a node at distance di
from the intended collector is considered as interfering with probability of (1− e−λbπd2

i ). It was shown
in [7] that the effective interference observed at the tagged collector can be approximately modeled
as a nonhomogeneous PPP with intensity λb(1− e−λbπd2

i ). Considering exponential power fading
attenuation coefficients, the interference Laplace transform from (30) for the SISO case is,

LI(s) = E
[

∏
xi∈ΦI

1
1 + sPRR α |xi|−β

]
. (31)

Using the Probability Generating Functional (PGFL) property, the Laplace transform is then,

LSISO
I (s) ≈ LI(s) , exp

(
−2πλb

∫ ∞

0

[
sPRR α u−β

1 + sPRR α u−β

]
(1− e−λbπu2

)udu
)

. (32)

4.1.2. Average Fading Distribution

Proposition 5 (SISO case). Given a node position r = |x|, the SISO fading distribution averaged on the
random noise and interference,

EI,Pn EA f [1{A f ,k≤A f <A f ,k−1}] = LPn(sk)LI(sk)−LPn(sk−1)LI(sk−1), (33)

with sk = γkP−1
RR α−1rβ.

Proof. Please refer to Appendix D.

4.2. Single-User Case with Multiantenna Receiver

We assume a SIMO configuration depicted in Figure 4 which nr antennas are used at the receiver
and only a single antenna at each sensor node. Let F1, . . . , Fnr denote the fading coefficients between
the sensor device and the nr receive antennas. Assume that the receiver antennas are sufficiently
separated to assume that the random exponential fading coefficients are independent.

Figure 4. Receiver diversity with SIMO configuration.
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Two transmission modes are considered: the first transmission is the antenna selection in which the
transmission is performed on the path with highest fading coefficient. The second transmission is the
Maximum Ratio Combiner (MRC), in which the received signals at the different antenna are combined.

4.2.1. Antenna Selection

Given a node position r = |x|, the SIMO fading distribution with antenna selection averaged on
the random noise and interference, A f = max(F1, . . . , Fnr ) is distributed as the maximum between nr

i.i.d exponential variables. The CDF function is then,

Prob{A f ≤ u} = (1− e−u)nr =
nr

∑
p=0

(−1)p
(

p
nr

)
e−pu. (34)

Proposition 6 (Antenna selection). The interference Laplace transform with antenna selection is identical to
the SISO case in (32),

Lsel
I (s) = LI(s). (35)

Given a node position r = |x|, the SIMO fading distribution with MRC averaged on the random noise
and interference,

EI,Pn EA f [1{A f ,k≤A f <A f ,k−1}] =
nr

∑
p=0

(−1)p
(

p
nr

)[
LPn(psk−1)LI(psk−1)−LPn(psk)LI(psk)

]
(36)

Proof. The interfering signal is received on a random fading coefficient that is exponentially distributed
as in the SISO case. The identify in (36) can be deduced from the distribution of A f given in (34).

4.2.2. Maximum Ratio Combiner (MRC)

Using a MRC, the equivalent fading coefficient A f = F1 + . . . + Fnr is the sum of nr random
exponential i.i.d. random variables and it is distributed as chi-squared random variable with 2nr

degrees of freedom. The CDF of A f is,

Prob{A f ≤ u} = 1−
nr−1

∑
p=0

1
p!

upe−u. (37)

Proposition 7 (MRC decoder). The interference Laplace transform with MRC is identical to the SISO case
in (32)

LMRC
I (s) = LI(s). (38)

Given a node position r = |x|, the SIMO fading distribution with MRC averaged on the random noise
and interference,

EI,Pn EA f [1{A f ,k≤A f <A f ,k−1}] =
nr−1

∑
p=0

1
p!

(
Ξp(sk)− Ξp(sk−1)

)
(39)

with

Ξp(s) = (−1)p
p

∑
j=0

sp
(

j
p

)
djLPn(s)

dsj
dp−jLI(s)

dsp−j , (40)

where dj f (s)
dsj is the derivative of order j of the function f (s) for j ∈ N∗ and d0 f (s)

ds0 = f (s).

Proof. The proof of this proposition is detailed in Appendix E.



Sensors 2020, 20, 7173 11 of 22

4.3. Multiuser with Multiantenna Receiver

In order to cancel the multiuser interference, a Zero-Forcing decoder is used by projecting the
nr × 1 received signal on the kernel of the space formed by the nr × 1 fading vectors of the (nu − 1)
other scheduled users. As stated by [25], the orthogonality constraints consume (nr − nu + 1) degrees
of freedom. The receiver diversity for each sensor device is limited then to (nr − nu + 1).

To extract this diversity, we assume that the ZF decoder is followed by a MRC that combines the

(nr − nu + 1) received observation. The fading coefficient A(j)
f observed by each sensor in Figure 2 is

then chi-squared distributed with 2(nr − nu + 1) degrees of freedom.

Proposition 8 (MU case with ZF-MRC decoder). For the MU-MIMO case with ZF decoder followed by a
MRC, the equivalent fading distribution averaged on the random noise and interference,

EI,Pn EA f [1{A f ,k≤A f <A f ,k−1}] =
nr−nu

∑
p=0

1
p!

(
Ξp(sk)− Ξp(sk−1)

)
. (41)

The interference Laplace transform is approximated by,

LMU
I (s) ≈ LI(nus). (42)

Proof. For the multiuser case, nu users in each cell transmit in the same RR. The interference becomes
higher than the SISO case. As all neighboring users are multiplexed on the same RR, we approximate
the sum of interference coming from the group of nu users by an interfering signal generated by a
random interferer transmitting with nuPRR. We have validated this approximation using numerical
results as it will be shown in the next section.
The rest of the proof is similar to Proposition 7 considering 2(nr − nu + 1) degrees of freedom.

5. Numerical Results

In this section, we consider the uplink of a sensor network corresponding to the licensed IoT with
parameters summarized in Table 1.

Table 1. Network Parameters.

Parameters Value

Intensity of active nodes λa = 5.5 nodes per km2

Intensity of collectors λb = 0.1 to 0.9 nodes per km2

Transmission power PRR = 6.3 dBm
RR per node 1 to 6 RRs
Configuration SISO, single-user 1× 8 SIMO,

1× 8 MU-MIMO with nu = 2 or 4
Okumura-Hata model α = 10−14.1, β = 3.5
Target data rate ≥500 bps

We assume that the density of nodes ρ = 500 sensors per km2 transmitting on average once
each half-an-hour, na = 48 during 20 seconds. The active node density is then λa = 5.5 sensors
per km2. We consider a cellular network with ranges between 500 m to 1.5 km corresponding to a
collector density of λb = 0.9 nodes per km2 down to 0.1 nodes per km2 (the ranges are obtained with
a confidence margin of 95%). The maximal power is limited to 14 dBm and is uniformly distributed
among the allocated RRs. Table 2 gives the matching between the SINR range with the required
number of RRs to achieve a target rate of C0 = 500 bps. This data are derived from the Link Layer
Simulation (LLS) provided in [26] on the Physical Uplink Shared Channel (PUSCH) of LTE-Cat M.
To evaluate network performances, we consider a path-loss in an urban/suburban environment with
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α = 10−14.1 and β = 3.5. We consider the following antenna configurations: SISO, single SIMO with
nr = 8, multiuser SIMO with nr = 8 and nu = 2 or nu = 4.

Table 2. MCS table: SINR versus RR required to achieve R = 500 bps.

RR Per Node SINR Range (dB)

1 [–20.6; +∞]

2 [–22.6; –20.6]
3 [–23.6; –22.6]

4 [–23.7; –23.6]

5 [–23.9; –23.7]

6 [–25.1; –23.9]

5.1. Accuracy of the Theoretical Model

Table 3 indicates the percentage difference between the mean number of RRs required in the
typical cell derived by using our statistical dimensioning tools and the empirical network simulation
results. The mean number of required RRs using former method is denoted as mN , the simulation one
is denoted as mN,s. Consequently, the percentage difference is ∆mN/mN,s = |mN − mN,s|/mN,s.
We consider different collector intensities (from 0.1 to 0.9 nodes/km2) and different antenna
configurations as well as transmission modes. As presented in the Table 3, the comparison shows that
the difference between the results obtained by our statistical tools and the simulated values is very
small, which verifies the accuracy of our model and approach.

Table 3. The percentage change ∆mN/mN,s of the theoretical values mN and the empirical values mN,s.

λb SISO 1 × 8 SIMO 1 × 8 SIMO 1 × 8 MU-MIMO 1 × 8 MU-MIMO
Selection MRC nu = 2 nu = 4

0.1 0.0012 0.0120 0.0417 0.0157 0.0392
0.3 0.0395 0.0435 0.0239 0.0144 0.0050
0.5 0.0201 0.0041 0.0398 0.0208 0.0916
0.7 0.0006 0.0080 0.0070 0.0206 0.2001
0.9 0.0206 0.0593 0.0292 0.0757 0.2811

5.2. Average and Total Number of RR

Figure 5 further illustrates the specific value of mN considering different network configurations.
As shown in the figure, for the given active sensor and collector intensities λa and λb, respectively,
assuming a maximum delay of 1 ms, the SISO system always requires the highest mean number of RRs.

With the use of SIMO and MU-MIMO, multiantenna techniques achieve higher data rates through
increased spectral efficiency, with a corresponding reduction in the required RRs. The multiple
receive antennas system has the potential to enhance signal robustness and increase system capacity.
In particular, the MU-MIMO system significantly reduces the mean number of RRs required in a typical
cluster. Meanwhile, as collector intensity λb increases, the mean number of RRs required for various
configurations decreases. When λb increases, the radius of the typical cell will decrease, while the
number of active sensor nodes per unit area remains the same, which means that each collector needs
to serve fewer nodes in the cell and thus the number of RRs required decreases.
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Figure 5. Mean number of required Radio Resources (RRs) in a typical cell considering λb ranges from
0.3 to 0.9 nodes/km2 with λa = 5.5 nodes/km2, τmax = 1 ms.

Figure 6 presents the total number of required RRs in a typical cell versus the collector intensity.
It maintains the same trend as in Figure 5, with MU-MIMO being the best performing case, followed by
SIMO and then SISO.

a
=5.5

0.3 0.5 0.7 0.9

b
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SISO

SIMO sel 1x8
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MU-MIMO 2 users 1x8

MU-MIMO 4 users 1x8

Figure 6. Total number of required RRs in a typical cell versus the collector intensity λb with
λa = 5.5 nodes/km2, τmax = 1 ms.

5.3. Empirical Distribution and Actual Average Delay

Figure 7 illustrates the empirical Cumulative Distribution Function (CDF) of the total number Nt

of RRs required for the typical cell with λa = 5.5 nodes/km2 and λb = 0.5 nodes/km2.
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Figure 7. The empirical Cumulative Distribution Function (CDF) of Nt total number of RRs required for
the typical cell in which the maximal delay τmax = 1 ms, λa = 5.5 nodes/km2 and λb = 0.5 nodes/km2.

For example, according to Figure 6, for the same value of λa, λb, we find that the Nt value required
for the SISO system is 19. In Figure 7, we can see that Nt = 19 corresponds to a CDF value of 0.88.
This means that there is a network outage probability of 1− 0.88 = 0.12 meaning that the network
cannot attributed RR to 12% of nodes in the typical cell. The corresponding average delay can be then
computed using (19).

Figure 8 show the actual average access delay corresponding to different antenna configurations
and transmission modes for given intensities of active sensors and collectors λa, λb and the maximum
access delay τmax = 1 ms. It can be seen from the figure that the average access delay τ is less than
the maximum access delay τmax. SIMO with MRC transmission mode requires the longest access
time because it has the lowest individual off probability, i.e., it serves the largest percentage of active
nodes. The second highest access delay is the SIMO with antenna selection scheme. For the SISO
configuration, the average access delay is relatively lower because in this mode, many nodes are in off
state and not served. For the MU-MIMO system, each time there are nu nodes transmitting information
simultaneously and being processed by the collector. The larger the nu is, the shorter the average
access delay required.
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Figure 8. Low access delay τ with statistical dimensioning in which the maximal delay τmax = 1 ms,
λa = 5.5 nodes/km2 and λb = 0.5 nodes/km2.
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5.4. Tolerated Delay and Overdimensioning

Figure 9 gives a comparison of the theoretical and empirical values of Nt for a typical cell that
guarantee an average delay of 1 ms.

a
= 5.5, 

b
= 0.5

SISO SIMO sel SIMO MRC MU-MIMO 2 MU-MIMO 4

Transmisson mode

0

2

4

6

8

10

12

14

16

18

20

N
t

Theoretical

Empirical

Figure 9. Comparison between theoretical and empirical Nt values in which λa = 5.5 nodes/km2 and
λb = 0.5 nodes/km2.

From the figure, it can be seen that the Nt derived by our statistical tool is always larger than the
empirical Nt, i.e., it is overdimensioning. The excess in the radio-resource provided by the theoretical
model ensures that the expected data rate is achieved and the access to the cellular IoT network does
not exceed the predefined average access delay.

In Figure 10, it shows the relationship between the total number of required RRs and the maximal
access delay τmax with λa = 5.5 nodes/km2 and λb = 0.5 nodes/km2. Assuming that τmax ranges from
0.5 to 4 ms, a larger τmax means that the node can wait longer for access to the network. The average
access delay τ of the active nodes must not exceed the maximal delay τ ≤ τmax . In general, a lower
total number of RRs is required to response to the demands of active sensor nodes with a larger τmax.

a
= 5.5, 

b
 = 0.5 
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Figure 10. Total number of required RRs in a typical cell with respect to maximal access delay τmax

with λa = 5.5 nodes/km2 and λb = 0.5 nodes/km2.

5.5. Individual Sensor off Probability

As mentioned in Section 3.1, when the SINR received on the collector side is below the SINR
threshold γNmax , no RR will be assigned to this sensor. In other words, this active sensor is forced to
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be off in this trial. Table 4 illustrates the individual off probability in the typical cell according to the
different antenna configurations, including SISO, 1× 8 SIMO with antenna selection and MRC, 2 users
and 4 users 1× 8 MU-MIMO. From the table, we can see the 1× 8 SIMO with MRC outperforms other
modes in the individual off probability. Although it does not reduce the number of RRs required in
the typical cell significantly compared to the SIMO with antenna selection or the MU-MIMO, it does
reduce the sensor individual off probability, ensuring more sensors to be served. This result gives us a
new way of thinking about resource planning, i.e., we need to take into account both the total number
of RRs assigned to the network and the individual off probability to improve network service.

Table 4. Statistical individual OFF probability with regard to antenna configuration, transmission
mode and collector intensity λb.

λb SISO 1 × 8 SIMO 1 × 8 SIMO 1 × 8 MU-MIMO 1 × 8 MU-MIMO
Selection MRC nu = 2 nu = 4

0.1 23.40% 5.62% 1.01% 1.40% 2.90%
0.3 7.13% 0.31% 0.03% 0.07% 0.27%
0.5 3.97% 0.09% 0.02% 0.05% 0.20%
0.7 2.84% 0.07% 0.01% 0.05% 0.20%
0.9 2.30% 0.06% 0.01% 0.04% 0.21%

5.6. Power Distribution

In Table 5, for a given pair of λa and λb, we elaborate the power distribution with the different
transmission modes in the typical cell. The transmission power of each RR is fixed to PRR = 25/6 mW
(6.3 dBm), so the maximal transmission power is NmaxPRR = 25 mW (14 dBm) with Nmax = 6. For each
transmission mode, Table 5 shows the specific percentage share of each transmit power. Where off
represents a number of nodes to which no RR is assigned and therefore have a transmission power
of 0 mW. From PRR to 6PRR corresponds to the transmission power of the nodes that are assigned the
corresponding number of 1 to 6 RRs, respectively. As marked in the light grey part of the table, it can
be noticed that SIMO with MRC mode has the least number of off nodes, meanwhile with 99.92% of
the nodes being transmitting information at PRR power. Therefore, it has the best power distribution.
MU-MIMO with nu = 2 also has a good power distribution, with only 0.05% of nodes off and 99.80%
of nodes transmitting at PRR. SISO has the worst performance, with up to 3.97% of nodes unable to
transmit information and only 90.76% of nodes transmitting at low power.

Table 5. The power distribution with the different transmission modes in the typical cell,
PRR = 25/6 mW, λa = 5.5 nodes/km2, λb = 0.5 nodes/km2.

Power SISO 1 × 8 SIMO 1 × 8 SIMO 1 × 8 MU-MIMO 1 × 8 MU-MIMO
(mW) Selection MRC nu = 2 nu = 4

Off 3.97% 0.09% 0.02% 0.05% 0.20%
PRR 90.76% 99.39% 99.92% 99.80% 99.17%

2PRR 2.81% 0.35% 0.04% 0.10% 0.40%
3PRR 1.11% 0.09% 0.01% 0.03% 0.12%
4PRR 0.10% 0.01% 0.00% 0.00% 0.01%
5PRR 0.20% 0.01% 0.00% 0.00% 0.02%
6PRR 1.06% 0.06% 0.01% 0.02% 0.09%

6. Conclusions

In this paper, we focus on licensed OFDMA-based IoT networks which corresponds to NB-IoT,
LTE-M and to some extent 5G network using the numerology 0. We assume a wireless sensor network
in which sensor nodes and collectors are distributed according a spatial PPP. A statistical method
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based on PPP is proposed to model and analyze the average behavior of the cellular IoT networks.
This method is used for statistical resource planning to support the dominant uplink communications
in the IoT networks and fulfill the network requirements in terms of limited transmission power
per RR, low access delay, preset network outage probability and target data rate. Different antenna
configurations and transmission modes are taken into account, e.g., SISO, SIMO, and MU-MIMO.
Based on the preset tolerated average access delay and target data rate, the specific total number of
RRs required for the typical cell is further calculated. Numerical results are finally given to assess
our statistical analysis. We compare the theoretical results with the empirical simulation results in
detail. The comparison shows that the results obtained from our statistical model are very close to the
empirical results. Moreover, the results highlight and quantify the radio resources gain obtained by
the receiver diversity techniques and the multiuser gains.
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Appendix A. Proof of Proposition 1

Consider the set of all active nodes x ∈ Φa generated by the homogeneous PPP, the node x is in
the typical cluster Φc(0) if the origin is o is the closest point to x among all the other collectors y ∈ Φb,
i.e., |x| < |y− x|, ∀y ∈ Φb . We can note that the following indicator function

∏
y∈Φb

1{|x|<|y−x|) =

{
1 x ∈ Φc(0),

0 otherwise.
(A1)

The average number of users in this typical cell is,

E
[
1{x∈Φc(0)}

]
= ∑

x∈Φa

[
∏

y∈Φb

1{|x|<|y−x|)

]
(A2)

Using Campbell Theorem,

∑
x∈Φa

[
∏

y∈Φb

1{|x|<|y−x|)

]
=
∫ [

∏
y∈Φb

1{|x|<|y−x|)

]
λadx. (A3)

For a given x ∈ Φa, we use the PGFL property on the PPP of Φb,

E
[

∏
y∈Φb

1{r<|y−x|}

]
= exp

(
− λb

∫
R2
(1− 1{r<|y−x|})dy

)
= exp

(
− λb

∫
|y−x|2<r2

dy
)

. (A4)

Note that |y − x|2 = |y|2 + |x|2 − 2|y||x| cos(θz − θy) where |y| and θy (resp. r = |y| and θx)
are the polar coordinates of z (resp. y). The condition |y − x|2 < r2 in (A4) is then equivalent to
|y| < 2|x| cos(θy − θx) with 0 ≤ (θy − θx) ≤ π to guarantee a positive range of ry. The corresponding
integral is then,

∫
|y−x|2<r2

dy =
∫ π−θx

0

∫ 2r cos(θy−θx)

0
rydrydθy =

∫ π−θx

0
r2 cos2(θy − θx)dθy = πr2 (A5)

independently of x. Replacing in (A3), Equations (A4) and (A5), we have,

E
[
1{x∈Φc(0)}

]
=
∫ ∞

0

∫ 2π

0
exp(−λbπr2)λardrdθ =

λa

λb
. (A6)

Finally, the pdf of r can be deduced using the CDF of r,

Prob{x ∈ Φc(0)} = Prob{ ∏
y∈Φb

1{r<|y−x|}} = exp(−λbπr2) (A7)

Appendix B. Proof of Proposition 2

The average number of radio-resources in the typical cluster is,

mN = E
[

∑
x∈Φc(o)

NRR(x, A f , I, Pn)
]
= EΦ,Φb ,A f ,I,Pn

[
∑

x∈Φa

∏
y∈Φb

NRR(x, A f , I, Pn) 1{|x|<|y−x|)}︸ ︷︷ ︸
f (x)

]
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Using Campbell Theorem,

mN = EA f ,I,Pn

[
λa

∫
EΦb

[
f (x)

]
dx
]
. (A8)

with dx = rdrdθ and

EΦb

[
f (x)

]
= NRR(x, A f , I, Pn) EΦb

[
∏

y∈Φb

1{|x|<|y−x|)}

]
. (A9)

Using the relationships (A4) and (A5),

mN =
λa

λb
EI,PnEA f

[∫
NRR(r, A f , I, Pn) 2πλbr exp(−λbπr2)dr

]
. (A10)

Notice that 2πλbr exp(−λbπr2) is nothing but the pdf of the smallest distance between the sensor
and its nearest collector. This implies that,

mN =
λa

λb
Er EI,Pn EA f

[
NRR(r, A f , I, Pn)

]
. (A11)

Appendix C. Proof of Proposition 3

Considering the distance based scheduling algorithm, we adjust the dimensioning of each group
with respect to the i× nth

u nearest neighbor to the typical collector (i ∈ N∗). We let ri denote the distance
between this i × nth

u nearest neighbor xi = riejθi and the typical collector. The average number of
required RR in the typical cluster is the total number of RR required by this i× nth

u nearest neighbors,
such that,

mN = Eri ,θi ,A f ,I,Pn

[
∑

ri :i∈N∗
NRR(ri, A f , I, Pn) ∏

y∈Φb

1{ri<|y−xi |},

]
(A12)

By average on the collectors distribution as in Proof in Appendix B,

EΦb

[
∏

y∈Φb

1{r<|y−xi |}

]
= exp(−λbπr2

i ). (A13)

The average number of required RR is then,

mN = EA f ,I,Pn

[
∑

i∈N∗

∫
NRR(ri) exp(−λbπr2

i ) fRi (ri)dri

]
(A14)

with

fRi (ri) =
2(πλa)inu

(inu − 1)!
r2inu−1

i exp(−λaπr2
i ) (A15)

being the distribution of i× nth
u nearest neighbor of the typical collector.

Appendix D. Proof of Proposition 5

Using a single antenna receiver, the SISO fading coefficients are Rayleigh distributed and A f has
an exponential distribution, and,

EA f [1{A f ,k≤A f <A f ,k−1}] = e−(Pn+I)sk − e−(Pn+I)sk−1 . (A16)

Proposition 5 is obtained considering the average behavior of the noise and interference.
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Appendix E. Proof of Proposition 7

Appendix E.1. Laplace Transform of the Interference with MRC

To show that the Laplace transform remains the same, we let hx = [hx,1 . . . hx,nr ] denote the
complex Gaussian vector containing the (signal) fading coefficients and hy = [hy,1 . . . hy,nr ] the fading
vector between the interferer and the collector. When using a MRC decoder, the nr observations of x
are projected into the orthonormal vector ux = hx/‖hx‖. The equivalent interferer channel is then the
scalar product between ux and hy. Let uy = hy/‖hy‖, the equivalent fading seen by each interferer
A f ,i = |〈ux, hy〉|2 is exponentially distributed. This is a consequence that the cosinus square of an
angle between a Gaussian vector and a given direction cos2(ux, hy) is beta distributed with parameters
1 and (nr − 1) as shown in [27]. This leads to a distribution of β(1, nr − 1) multiplied by a chi-squared
with 2nr degrees of freedom which is exponentially distributed. In other words,

A f ,i = |〈ux, hy〉|2 = ‖hy‖2 cos(ux, uy) ∼ χ2
2nr
× β(1, nr − 1) = exprnd(1). (A17)

Appendix E.2. Fading Distribution

Using the distribution of A f in (37),

EA f [1{A f ,k≤A f <A f ,k−1}] =
nr−1

∑
p=0

1
p!

[
(Pn + I)psp

k e−(Pn+I)sk − (Pn + I)psp
k−1e−(Pn+I)sk−1

]
, (A18)

By averaging over the noise and the interference level, Proposition 7 is obtained by invoking the
following lemma:

Lemma A1. Let Ξi(s) = E
[
si(Pn + I)ie−s(Pn+I)] Then,

Ξi(s) = (−1)i
i

∑
j=0

si
(

i
j

)
djLPn(s)

d sj
di−jLI(s)

d si−j . (A19)

Proof. The expansion of Ξi(s) = E
[
si(Pn + I)ie−s(Pn+I)] gives

Ξi(s) =
1
i!

i

∑
j=0

si
(

i
j

)
E
[

Pj
n Ii−je−s(Pn+I)

]
. (A20)

Due to the independence of Pn and I,

Ξi(s) =
1
i!

i

∑
j=0

si
(

i
j

)
E
[

Pj
ne−sN

]
E
[

Ii−je−sI
]

. (A21)

Note that, for a given random variable X, we have,

dk

dks

(
LX(s)

)
=

dk

dks

[∫
R

e−sx pX(x)dx
]

= (−1)k E[Xke−sX ]
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