Congratulations PATRIZIA!
 et Joyeux Anniversaire, avec un peu de retard!

Alain Damlamian

RMR conference in honor of Patrizia Donato ROUEN, 25 \& 26 November 2021

Periodic unfolding for countably many scales In honor of Patrizia Donato

Alain Damlamian
LAMA, UPEC
RMR conference in honor of Patrizia Donato ROUEN, 25 \& 26 November 2021
This is a report on joint work with Doina CIORANESCU and Georges GRISO.

Ω a bounded domain in \mathbb{R}^{N} and $M(\alpha, \beta, \Omega)$ the set of measurable $(N \times N)$-matrix fields in Ω which are almost everywhere α-coercive and with inverse β^{-1}-coercive (where $0<\alpha \leqslant \beta<+\infty$).
Consider the sequence of Dirichlet problems (ε belongs to a positive sequence converging to 0 !):

$$
\left\{\begin{array}{cc}
-\operatorname{div}\left(A^{\varepsilon} \nabla u_{\varepsilon}\right)=f_{\varepsilon} & \text { in } \Omega, \tag{1}\\
u_{\varepsilon}=0 & \text { on } \partial \Omega
\end{array}\right.
$$

for $\left\{f_{\varepsilon}\right\}_{\varepsilon}$ in $H^{-1}(\Omega)$ and $\left\{A_{\varepsilon}\right\}_{\varepsilon}$ in $M(\alpha, \beta, \Omega)$.
The variational formulation:

$$
\begin{equation*}
\int_{\Omega} A^{\varepsilon} \nabla u_{\varepsilon} \nabla v d x=\left\langle f_{\varepsilon}, v\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega) \tag{2}
\end{equation*}
$$

Obvious facts

- $\left\{f_{\varepsilon}\right\}_{\varepsilon}$ bounded in $H^{-1}(\Omega) \Leftrightarrow\left\{u_{\varepsilon}\right\}_{\varepsilon}$ bounded in $H_{0}^{1}(\Omega)$.
- $\left\{f_{\varepsilon}\right\}_{\varepsilon} \longrightarrow f$ in $H^{-1}(\Omega)$ and $\left\{A^{\varepsilon}\right\}_{\varepsilon} \rightarrow A_{0}$ a.e. (or in measure) in Ω $\Rightarrow\left\{u_{\varepsilon}\right\}_{\varepsilon} \rightharpoonup u$ in in $H_{0}^{1}(\Omega)$, u solution of the corresponding Dirichlet problem.

Almost as obvious (follows from the so-called convergence of the energy) :

- $\left\{f_{\varepsilon}\right\}_{\varepsilon} \rightarrow f$ in $H^{-1}(\Omega) \Longleftrightarrow\left\{u_{\varepsilon}\right\}_{\varepsilon} \rightarrow u$ in $H_{0}^{1}(\Omega)$ strong.

Now add a parameter t in T, a nice measure space.
$A_{\varepsilon} \in M(\alpha, \beta, T \times \Omega), f_{\varepsilon}$ in $L^{2}\left(T ; H^{-1}(\Omega)\right)$.
The corresponding variational formulation is:

$$
\begin{align*}
& \int_{T \times \Omega} A^{\varepsilon}(t, x) \nabla_{x} u_{\varepsilon}(t, x) \nabla_{x} v(t, x) d t d x \\
& \quad=\left\langle f_{\varepsilon}, v\right\rangle_{L^{2}\left(T ; H^{-1}(\Omega)\right), L^{2}\left(T ; H_{0}^{1}(\Omega)\right)}, \quad \forall v \in L^{2}\left(T ; H_{0}^{1}(\Omega)\right) . \tag{3}
\end{align*}
$$

The very same facts hold!

- $\left\{f_{\varepsilon}\right\}_{\varepsilon} \rightharpoonup f$ in $L^{2}\left(T ; H^{-1}(\Omega)\right)$ and $\left\{A^{\varepsilon}\right\}_{\varepsilon} \rightarrow A_{0}$ a.e. (or in measure) in $T \times \Omega$
$\Rightarrow\left\{u_{\varepsilon}\right\}_{\varepsilon} \rightharpoonup u$ in $L^{2}\left(T ; H_{0}^{1}(\Omega)\right)$, u solution of the corresponding Dirichlet problem with parameter t.
- $\left\{f_{\varepsilon}\right\}_{\varepsilon} \rightarrow f$ in $L^{2}\left(T ; H^{-1}(\Omega)\right) \Longleftrightarrow\left\{u_{\varepsilon}\right\}_{\varepsilon} \rightarrow u$ in $L^{2}\left(T ; H_{0}^{1}(\Omega)\right)$.

Homogenization for the original problem arises when the sequence $\left\{A^{\varepsilon}\right\}_{\varepsilon}$ does not converge almost everywhere.
The classical example for periodic homogenization :
$A^{\varepsilon}(x)=A\left(\frac{x}{\varepsilon}\right)$ for a given A in $M\left(\alpha, \beta, \mathbb{R}^{N}\right)$ where A is
Y-periodic.
The periodicity cell Y has the "paving property" with respect to a given discrete subgroup G of \mathbb{R}^{N}.
In fact, the group of periods G is naturally given FIRST. From G many fundamental domains Y can be derived (and in the case of perforated domains, the simple parallelotope defined on a basis of G may not be the best choice).

The only difficulty in (2) is well-known: passing to the limit in the product sequence $\left\{A^{\varepsilon} \nabla u_{\varepsilon}\right\}_{\varepsilon}$ of two sequences which both at most converge weakly (up to a subsequence, $\left\{u_{\varepsilon}\right\}_{\varepsilon}$ converges weakly in $H_{0}^{1}(\Omega)$ while $\left\{A^{\varepsilon}\right\}_{\varepsilon}$, being bounded almost everywhere, converges weakly-*, up to a subsequence, in $L^{\infty}(\Omega)$).

Many methods even in the more general case where there is no periodicity at all :

- A symptotic expansions Bensoussan, Lions \& Papanicolaou [3],
- G-convergence De Giorgi \& Spagnolo [7],
- H-convergence Murat \& Tartar [9],
- 2-scale convergence Nguetseng [10] and Allaire [1],
- Periodic Unfolding [6],
- ...

Commercial Break

(Almost) everything you wanted to know about Unfolding but were afraid to ask!

The point of the unfolding method: devise a sequence of transformations (unfolding operators) depending on each ε which

- preserves the weak convergence of $\left\{u_{\varepsilon}\right\}_{\varepsilon}$ (in a modified form) and - transforms the weak convergence of $\left\{A^{\varepsilon}\right\}_{\varepsilon}$ into a convergence a.e.. In the case of a single periodicity scale this holds for the transform of $A^{\varepsilon}(x)=A\left(\frac{x}{\varepsilon}\right)$ or more generally of $A^{\varepsilon}(x)=A\left(x, \frac{x}{\varepsilon}\right)$ where A is a map in $M\left(\alpha, \beta, \Omega \times \mathbb{R}^{N}\right)$ (it must satisfy some extra condition which we will see later).
The transformations are :

$$
\mathcal{T}_{\varepsilon}(\phi)(x, y)= \begin{cases}\phi\left(\varepsilon\left[\frac{x}{\varepsilon}\right]_{Y}+\varepsilon y\right) & \text { for a.e. }(x, y) \in \widehat{\Omega}_{\varepsilon} \times Y \\ 0 \quad \text { for a.e. } & (x, y) \in \Lambda_{\varepsilon} \times Y\end{cases}
$$

UPEC

A first proposition

Proposition. Suppose $p \in[1,+\infty]$. The operator $\mathcal{T}_{\varepsilon}$ is linear and continuous from $L^{p}(\Omega)$ to $L^{p}(\Omega \times Y)$. For every ϕ in $L^{1}(\Omega)$ and w in $L^{p}(\Omega)$,
(i) $\quad \frac{1}{|Y|} \int_{\Omega \times Y} \mathcal{T}_{\varepsilon}(\phi)(x, y) d x d y=\int_{\hat{\Omega}_{\varepsilon}} \phi(x) d x$,
(ii) $\left|\int_{\Omega} \phi d x-\frac{1}{|Y|} \int_{\Omega \times Y} \mathcal{T}_{\varepsilon}(\psi) d x d y\right| \leqslant \int_{\Lambda_{\varepsilon}}|\phi| d x$,
(iii) $\left\|\mathcal{T}_{\varepsilon}(w)\right\|_{L^{p}(\Omega \times Y)} \leqslant|Y|^{1 / p}\|w\|_{L^{p}(\Omega)}$.

For $\phi \in W^{1,1}(\Omega)$,

$$
\nabla_{y}\left(\mathcal{T}_{\varepsilon}(\phi)\right) \equiv \varepsilon \mathcal{T}_{\varepsilon}(\nabla \phi)
$$

This equality holds on the whole of $\Omega \times Y$.

The main tool from unfolding

Theorem. $p \in(1,+\infty) .\left\{w_{\varepsilon}\right\}_{\varepsilon}$ a sequence in $W^{1, p}(\Omega)$ such that

$$
w_{\varepsilon} \rightharpoonup w \quad \text { weakly in } W^{1, p}(\Omega) .
$$

Then, up to a subsequence, there exists some \widehat{w} in $L^{p}\left(\Omega ; W_{\text {per }, 0}^{1, p}(Y)\right)$ such that
(i) $\mathcal{T}_{\varepsilon}\left(\nabla w_{\varepsilon}\right) \rightharpoonup \nabla w+\nabla_{y} \widehat{w} \quad$ weakly in $L^{p}(\Omega \times Y)^{N}$,
(ii) $\frac{1}{\varepsilon}\left(\mathcal{T}_{\varepsilon}\left(w_{\varepsilon}\right)-\mathcal{M}_{\varepsilon}\left(w_{\varepsilon}\right)\right) \rightharpoonup y^{c} \cdot \nabla w+\widehat{w} \quad$ weakly in $L^{p}\left(\Omega ; W^{1, p}(Y)\right)$.

Moreover

$$
\begin{align*}
& \|\widehat{w}\|_{L^{p}\left(\Omega ; W_{p e r}^{1, p}(Y)\right)} \leqslant C \liminf _{\varepsilon \rightarrow 0}\left\|w_{\varepsilon}\right\|_{W^{1, p}(\Omega)} \\
& \left\|\nabla w+\nabla_{y} \widehat{w}\right\|_{L^{p}(\Omega \times Y)} \leqslant|Y|^{1 / p} \liminf _{\varepsilon \rightarrow 0}\left\|\nabla w_{\varepsilon}\right\|_{L^{p}(\Omega)} \tag{3}
\end{align*}
$$

where the constant C only depends on the Poincaré-Wirtinger constant of Y.

For $p=+\infty$, the same convergences hold for the weak-* topologies.

Unfolding with two microscopic scales

For two scales $\left(\varepsilon, \varepsilon_{2}\right)$ and two periodicity cells Y and Z, let $\delta=\varepsilon_{2} / \varepsilon$ and $\varepsilon=(\varepsilon, \delta)$. To separate the scales, both ε and δ go to 0 . Set $\mathcal{T}_{\varepsilon} \doteq \mathcal{T}_{\delta}^{Z} \circ \mathcal{T}_{\varepsilon}^{Y}$. It maps functions on Ω to functions on $\Omega \times Y \times Z$.

Characterize the sequences A^{ε} for which $\mathcal{T}_{\varepsilon}\left(A^{\varepsilon}\right)$ converges almost everywhere or in measure in $\Omega \times Y \times Z$.

Option 1: $A^{\varepsilon}(x)=A\left(x,\left\{\frac{x}{\varepsilon}\right\}_{Y},\left\{\frac{\left\{\frac{x}{\varepsilon}\right\}_{Y}}{\delta}\right\}_{Z}\right)$, YES provided

Option 2: $A^{\varepsilon}(x)=A\left(x, \frac{x}{\varepsilon}, \frac{x}{\varepsilon \delta}\right)=A\left(x,\left\{\frac{x}{\varepsilon}\right\}_{Y},\left\{\frac{x}{\varepsilon \delta}\right\}_{Z}\right)$
NO in generalSee below

Even when A is independent of x :
Suppose the map A is smooth from Ω to $M(\alpha, \beta, Y \times Z)$ and $Y \times Z$-periodic but not independent of z. For A^{ε} given by Option 2, the sequence $\mathcal{T}_{\varepsilon}\left(A^{\varepsilon}\right)$ does not in general contain a subsequence which converges a.e. in $\Omega \times Y \times Z$.

The two arguments of A in the formula for $\mathcal{T}_{\varepsilon}\left(A^{\varepsilon}\right)$ are computed below on the set $\left(\widehat{\Omega}_{\varepsilon_{1}} \times \widehat{Y}_{\delta} \times Z\right)$ outside of which it is zero (the measure of its complement in $\Omega \times Y \times Z$ goes to 0 with (ε, δ)).

$$
\begin{aligned}
& (1) \doteq\left[\frac{x}{\varepsilon}\right]_{Y}+\delta\left[\frac{y}{\delta}\right]_{Z}+\delta z, \\
& (2) \doteq \frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}+\left[\frac{y}{\delta}\right]_{Z}+z
\end{aligned}
$$

From the Y-periodicity of A with respect to its first variable, argument
(1) can be replaced by $\delta\left[\frac{y}{\delta}\right]_{Z}+\delta z=y+\delta\left(z-\left\{\frac{y}{\delta}\right\}_{Z}\right)$.

Obviously, it converges uniformly to y in Y.

From the Z-periodicity of A with respect to its second variable, veec $=$ argument (2) can be replaced by

$$
\left\{\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}+z\right\}_{Z}
$$

This is problematic! The limit points of $\left\{\frac{1}{\delta} \mathbf{G}+z\right\}_{Z}$ may very well happen to be dense in Z.

A simple solution : adjust the second unfolding formula (from y to z) by subtracting the small term in δZ

$$
\delta\left\{\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}\right\}_{Z}
$$

Then the arguments become

$$
\begin{aligned}
(1) & \doteq\left\{\left[\frac{x}{\varepsilon}\right]_{Y}+\delta\left[\frac{y}{\delta}\right]_{Z}+\delta z-\delta\left\{\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}\right\}_{Z}\right\}_{Y} \\
(2) & \doteq\left\{\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}-\left\{\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}\right\}_{Z}+\left[\frac{y}{\delta}\right]_{Z}+z\right\}_{Z}
\end{aligned}
$$

The first arguments converges as before. By Z-periodicity, the second argument is simply z since $\left[\frac{y}{\delta}\right]_{Z}$ is a Z-periods and so is

$$
\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}-\left\{\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}\right\}_{Z} \equiv\left[\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}\right]_{Z}!
$$

But this adjustment is at the cost of reducing \widehat{Y}_{δ} a little more to \widetilde{Y}_{δ} (it takes out another layer of order δ).

$$
\hat{Y}_{\delta} \text { and } \tilde{Y}_{\delta} \text { : }
$$

This has the effect of increasing the subregion of Ω where the composed unfolding is set to 0 in order to avoid overlaps for the integral formula to hold.

The formula for the adjusted unfolding operator $\widetilde{\mathcal{T}}_{\delta}^{Z}$ for a function ϕ defined on Y is given by

The adjustment is simply a choice (at our disposal) of a sequence of vectors $\left\{\eta_{\delta}\right\}_{\delta}$ in Z. It depends upon the parameters of the problem x, ε, δ (it is $\left\{\frac{1}{\delta}\left[\frac{x}{\varepsilon}\right]_{Y}\right\}_{Z}$ in the calculation above).
The idea of adjustments first appeared in [8] (Meunier et Van Schaftingen) for two microscopic scales (under the name of microscopic translations) where they did not introduce \widetilde{Y}_{δ} so had to track the overlaps.
In our work, we investigated this procedure for countably many scales.

$$
\widetilde{\Lambda}_{i-1, \delta_{i}}=\bigcup(\square \cup \square)
$$

$\delta_{i}\left(\xi_{i}+\overline{Y_{i}}\right), \xi_{i} \in \mathbf{G}_{i}$

UPEC $=$
$\tilde{Y}_{i-1, \delta_{i}}$ and $\widetilde{\Lambda}_{i-1, \delta_{i}},(i=2, \ldots, n)$

Various configurations of contiguous cells of type Y_{i-1}

$$
i=2, \ldots, N
$$

We now have :
$\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ and introduce $\boldsymbol{\delta}=\left(\delta_{1}=\varepsilon_{1}, \delta_{2}=\frac{\varepsilon_{2}}{\varepsilon_{1}}, \ldots, \delta_{n}=\frac{\varepsilon_{n}}{\varepsilon_{n-1}}\right)$.
Both ε and δ are assumed to go to zero (thus, the scales are separated). Y_{1}, \ldots, Y_{n} periodicity cells (associated to rank- N subgroups \mathbf{G}_{i}).
For $i=2, \ldots, n$,

$$
\begin{align*}
& \mathcal{Y}^{i} \doteq Y_{1} \times \ldots \times Y_{i-1} \times Y_{i}, \\
& \tilde{\mathcal{Y}}_{\varepsilon}^{i} \doteq \tilde{Y}_{1, \delta_{2}} \times \ldots \times \tilde{Y}_{i-1, \delta_{i}} \times Y_{i} \tag{4}
\end{align*}
$$

The compounded unfolding operators $\widetilde{\mathcal{T}}_{\varepsilon}^{i}$ are defined recursively:

$$
\begin{aligned}
& \widetilde{\mathcal{T}}_{\varepsilon}^{1} \doteq \mathcal{T}_{\varepsilon_{1}}^{1} \\
& \widetilde{\mathcal{T}}_{\varepsilon}^{i} \doteq \widetilde{\mathcal{T}}_{\delta_{i}}^{i} \circ \widetilde{\mathcal{T}}_{\varepsilon}^{i-1} \quad \text { for } i=2, \ldots, n
\end{aligned}
$$

If you want an explicit formula !

For ϕ defined on Ω,

$$
\widetilde{\mathcal{T}}_{\varepsilon}^{i}(\phi)(x, \boldsymbol{y})=\left\{\begin{array}{c}
\phi \circ \widetilde{\mathfrak{S}}_{\varepsilon}^{i}(x, \boldsymbol{y}) \text { for a.e. }(x, \boldsymbol{y}) \in \widehat{\Omega}_{\varepsilon_{1}} \times \widetilde{\mathcal{Y}}_{\varepsilon}^{i} \tag{5}\\
0 \quad \text { otherwise }
\end{array}\right.
$$

with

$$
\begin{equation*}
\widetilde{\mathfrak{S}}_{\varepsilon}^{i}\left(x, \boldsymbol{y}_{\mid i}\right) \doteq \varepsilon_{1}\left[\frac{x}{\varepsilon_{1}}\right]_{Y_{1}}+\sum_{j=2}^{i} \varepsilon_{j}\left(\left[\frac{y_{j-1}}{\delta_{j}}\right]_{Y_{j}}-\eta_{j, \delta_{j}}\left(x, \boldsymbol{y}_{\mid(j-2)}\right)\right)+\varepsilon_{i} y_{i} . \tag{6}
\end{equation*}
$$

Lemma. For $(x, \boldsymbol{y}) \in \widehat{\Omega}_{\varepsilon_{1}} \times \widehat{\mathcal{Y}}_{\varepsilon}^{n}$ and $j=1, \ldots, n-1$,

$$
\begin{align*}
& \left|\widetilde{\mathfrak{S}}_{\varepsilon}^{n}(x, \boldsymbol{y})-\widetilde{\mathfrak{S}}_{\varepsilon}^{j}\left(x, \boldsymbol{y}_{\mid j}\right)\right| \leqslant 2 \varepsilon_{j+1} \operatorname{diam}\left(Y_{j+1}\right) \tag{7}\\
& \left.\quad \mid \widetilde{S}_{\varepsilon}^{n}\left(x, \boldsymbol{y}_{\mid j}\right)-x\right) \mid \leqslant \varepsilon_{1} \operatorname{diam}\left(Y_{1}\right) .
\end{align*}
$$

For $i=1, \ldots, n$ define the sets $\widetilde{\Omega}_{i, \varepsilon}$ by

$$
\widetilde{\Omega}_{i, \varepsilon} \doteq \widetilde{\mathfrak{S}}_{\varepsilon}^{i}\left(\widehat{\Omega}_{\varepsilon_{1}} \times \widetilde{\mathcal{Y}}_{\varepsilon}^{i}\right)
$$

Note that

$$
\forall i=1, \ldots, n-1, \quad \widetilde{\Omega}_{i+1, \varepsilon} \subset \widetilde{\Omega}_{i, \varepsilon}
$$

Proposition. [Integral formula for $\tilde{\mathcal{T}}_{\varepsilon}^{n}$] For every ϕ in $L^{1}(\Omega)$ and w in $L^{p}(\Omega)(p \in[1,+\infty])$,
(i) $\frac{1}{\left|\mathcal{Y}^{n}\right|} \int_{\Omega \times \mathcal{Y}^{n}} \widetilde{\mathcal{T}}_{\varepsilon}^{n}(\phi)(x, \boldsymbol{y}) d x d \boldsymbol{y}=\int_{\tilde{\Omega}_{n, \boldsymbol{\varepsilon}}} \phi(x) d x$,
(ii) $\left|\int_{\Omega} \phi d x-\frac{1}{\left|\mathcal{Y}^{n}\right|} \int_{\Omega \times \tilde{\mathcal{Y}}^{n}} \widetilde{\mathcal{T}}_{\varepsilon}^{n}(\phi)(x, \boldsymbol{y}) d x d \boldsymbol{y}\right| \leqslant \int_{\Omega \backslash \tilde{\Omega}_{n, \varepsilon}}|\phi| d x$,
(iii) $\left\|\widetilde{\mathcal{T}}_{\varepsilon}^{n}(w)\right\|_{L^{p}\left(\Omega \times \mathcal{Y}^{n}\right)} \leqslant\left|\mathcal{Y}^{n}\right|^{1 / p}\|w\|_{L^{p}(\Omega)}$.

Question : $\left|\widetilde{\Omega}_{n, \varepsilon}\right| \rightarrow|\Omega|$ when $\delta \rightarrow 0$? YES !
Since

$$
\left|\widetilde{\Omega}_{\varepsilon}^{n}\right|=\left|\widehat{\Omega}_{\varepsilon_{1}}\right| \times \prod_{i=1}^{n-1} \frac{\left|\tilde{Y}_{i, \delta_{i+1}}\right|}{\left|Y_{i}\right|}
$$

Theorem. Suppose $p \in(1,+\infty)$ and $\boldsymbol{\delta} \rightarrow 0$.
Let $\left\{w_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $W^{1, p}(\Omega)$ such that $w_{\varepsilon} \rightharpoonup w$ weakly in $W^{1, p}(\Omega)$.
Then
(i) $\widetilde{\mathcal{T}}_{\varepsilon}^{n}\left(w_{\varepsilon}\right) \rightharpoonup w$ weakly in $L^{p}\left(\Omega \times \mathcal{Y}^{n-1} ; W^{1, p}\left(Y_{n}\right)\right)$,
(ii) up to a subsequence, there exists \widehat{w}_{1} in $L^{p}\left(\Omega ; W_{p e r, 0}^{1, p}\left(Y_{1}\right)\right)$ and, for $i=2, \ldots, n, \quad \widehat{w}_{i}$ in $L^{p}\left(\Omega \times \mathcal{Y}^{i-1} ; W_{\text {per }, 0}^{1, p}\left(Y^{i}\right)\right)$ such that

$$
\widetilde{\mathcal{T}}_{\varepsilon}^{n}\left(\nabla w_{\varepsilon}\right) \rightharpoonup \nabla w+\sum_{i=1}^{n} \nabla_{y_{i}} \widehat{w}_{i} \quad \text { weakly in } L^{p}\left(\Omega \times \mathcal{Y}^{n}\right)^{N}
$$

Moreover, for $i=1, \ldots, n$,

$$
\left\|\nabla w+\sum_{j=1}^{i} \nabla_{y_{j}} \widehat{w}_{j}\right\|_{L^{p}\left(\Omega \times \mathcal{Y}^{i}\right)} \leqslant\left|\mathcal{Y}^{i}\right|^{1 / p} \liminf _{\delta \rightarrow 0}\left\|\nabla w_{\varepsilon}\right\|_{L^{p}(\Omega)}
$$

For $p=2$, the left-hand side of this inequality is actually simplified since the integral over Y_{j} of $\nabla_{y_{j}} \widehat{w}_{j}$ is zero:

$$
\begin{aligned}
& \left\|\nabla w+\sum_{j=1}^{i} \nabla_{y_{j}} \widehat{w}_{j}\right\|_{L^{2}\left(\Omega \times \mathcal{Y}^{i}\right)}^{2} \\
& =\left|\mathcal{Y}^{i}\right|^{1 / 2}\|\nabla w\|_{L^{2}(\Omega)}^{2}+\sum_{j=1}^{i}\left(\left\|\nabla_{y_{j}} \widehat{w}_{j}\right\|_{L^{p}\left(\Omega \times \mathcal{Y}^{i}\right)}^{2} \prod_{k=j+1}^{i}\left|Y_{k}\right|\right) .
\end{aligned}
$$

The homogenization result

Theorem. Suppose that A^{ε} in $M(\alpha, \beta, \Omega)$ is such that
$\tilde{\mathcal{T}}_{\varepsilon}^{n}\left(A^{\varepsilon}\right)$ converges in measure (or a.e.) to some A in $\Omega \times \mathcal{Y}^{n}$.
Consider the problem

$$
\int_{\Omega} A^{\varepsilon} \nabla u_{\varepsilon} \nabla v d x=\left\langle f_{\varepsilon}, v\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Suppose $\left\{f_{\varepsilon}\right\}_{\varepsilon}$ converges strongly to f in $H^{-1}(\Omega)$ when $\boldsymbol{\delta}$ goes to 0 . Then, there exist $u_{0} \in H_{0}^{1}(\Omega)$ and for $i=1, \ldots, n$,

$$
\begin{aligned}
& \widehat{u}_{i} \in L^{2}\left(\Omega \times \mathcal{Y}^{i-1} ; H_{p e r, 0}^{1}\left(Y_{i}\right)\right) \text { satisfying } \\
& u_{\varepsilon} \rightharpoonup u_{0} \quad \text { weakly in } H_{0}^{1}(\Omega), \\
& \widetilde{\mathcal{T}}_{\varepsilon}^{n}\left(u_{\varepsilon}\right) \rightharpoonup u_{0} \quad \text { weakly in } L^{2}\left(\Omega \times \mathcal{Y}^{n-1} ; H_{0}^{1}\left(Y_{n}\right)\right) \\
& \widetilde{\mathcal{T}}_{\varepsilon}^{n}\left(\nabla u_{\varepsilon}\right) \rightharpoonup \nabla u_{0}+\sum_{i=1}^{n} \nabla_{y_{i}} \widehat{u}_{i} \text { weakly in } L^{2}\left(\Omega \times \mathcal{Y}^{n}\right)^{N},
\end{aligned}
$$

which are the (unique) solutions of the following variational system:

$$
\left\{\begin{array}{l}
\frac{1}{\left|\mathcal{Y}^{n}\right|} \int_{\Omega \times \mathcal{Y}^{n}} A(x, \boldsymbol{y})\left(\nabla u_{0}+\nabla_{y_{1}} \widehat{u}_{1}+\ldots+\nabla_{y_{n}} \widehat{u}_{n}\right) \\
\quad \cdot\left(\nabla \Phi_{0}+\nabla_{y_{1}} \widehat{\Phi}_{1}+\ldots+\nabla_{y_{n}} \widehat{\Phi}_{n}\right) d x d \boldsymbol{y}=\langle f, \Psi\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)} \\
\forall \Psi \in H_{0}^{1}(\Omega), \forall \widehat{\Phi}_{1} \in L^{2}\left(\Omega ; H_{p e r, 0}^{1}\left(Y_{1}\right)\right), \\
\quad \ldots, \forall \widehat{\Phi}_{n} \in L^{2}\left(\Omega \times \mathcal{Y}^{n-1} ; H_{p e r, 0}^{1}\left(Y_{n}\right)\right)
\end{array}\right.
$$

Also (convergence of the energy),

$$
\widetilde{\mathcal{T}}_{\varepsilon}^{n}\left(\nabla u_{\varepsilon}\right) \rightarrow \nabla u_{0}+\sum_{i=1}^{n} \nabla_{y_{i}} \widehat{u}_{i} \text { strongly in } L^{2}(\Omega \times \mathcal{Y})^{N}
$$

The convergence of the energy gives a corrector :

$$
\nabla u_{\varepsilon}-\nabla u_{0}-\sum_{i=1}^{n} \tilde{\mathcal{U}}_{\varepsilon}^{i}\left(\nabla_{y_{i}} \widehat{u}_{i}\right) \rightarrow 0 \text { strongly in } L^{2}(\Omega)
$$

where $\tilde{\mathcal{U}}_{\varepsilon}^{i}$ is the adjoint of $\tilde{\mathcal{T}}_{\varepsilon}^{i}, i=1 \ldots, n$.

The formula for the homogenized matrix field can be given in terms the cell-problem:
For almost every $x \in \Omega$ and each ξ in \mathbb{R}^{N} for $i=1, \ldots, n$, let $\eta_{i}^{\xi}(x, \boldsymbol{y})$ in $L^{2}\left(\Omega \times \mathcal{Y}^{i-1} ; H_{p e r, 0}^{1}\left(Y_{i}\right)\right)$ be the solution of

$$
\left\{\begin{array}{l}
\frac{1}{\left|\mathcal{Y}^{n}\right|} \int_{\mathcal{Y}^{n}} A(x, \boldsymbol{y})\left(\xi+\nabla_{y_{1}} \eta_{1}^{\xi}+\ldots+\nabla_{y_{n}} \eta_{n}^{\xi}\right)\left(\nabla_{y_{1}} \Phi_{1}+\ldots+\nabla_{y_{n}} \Phi_{n}\right) d x d \boldsymbol{y}=0, \\
\forall \Phi_{1} \in H_{p e r, 0}^{1}(Y), \Psi_{2} \in L^{2}\left(\mathcal{Y}^{1} ; H_{p e r, 0}^{1}\left(Y_{2}\right)\right), \ldots, \Psi_{n} \in L^{2}\left(\boldsymbol{\mathcal { Y }}^{n-1} ; H_{p e r, 0}^{1}\left(Y_{n}\right)\right) .
\end{array}\right.
$$

This problem, with parameters x and ξ has a unique solution by the Lax-Milgram theorem.
Now, the homogenized matrix field is obtained by integration :

$$
\begin{equation*}
A^{h o m}(x) \xi=\frac{1}{\left|\mathcal{Y}^{n}\right|} \int_{\mathcal{Y}^{n}} A(x, \boldsymbol{y})\left(\xi+\nabla_{y_{1}} \eta_{1}^{\xi}+\ldots+\nabla_{y_{n}} \eta_{n}^{\xi}\right) d \boldsymbol{y} \tag{8}
\end{equation*}
$$

Splitting the integral on \mathcal{Y}^{n}, one can see that the homogenized matrix can be obtained by a backward iteration of n successive single-scale homogenizations starting with the smallest scale y_{n}, then y_{n-1}, etc, and finishing with y_{1}.

When does the condition on the coefficients hold?

Proposition. Assume A in $M\left(\alpha, \beta, \Omega \times \mathcal{Y}^{n}\right)$ is almost everywhere continuous as a map of $\Omega \times \mathcal{Y}^{n-1}$ to $L^{1}\left(Y_{n}\right)^{N \times N}$. Set

$$
\widetilde{A}^{\varepsilon}(x)=A\left(x,\left\{\frac{x}{\varepsilon_{1}}\right\}_{Y_{1}},\left\{\frac{x}{\varepsilon_{2}}\right\}_{Y_{2}}, \ldots,\left\{\frac{x}{\varepsilon_{n}}\right\}_{Y_{n}}\right) .
$$

Then, there exist a family of adjustments such that $\widetilde{\mathcal{T}}_{\varepsilon}^{n}\left(\widetilde{A}^{\varepsilon}\right)$ converges in measure to A in $\Omega \times \mathcal{Y}^{n}$ when δ goes to 0 .

The adjustments are in fact universal (independent of A) and defined recursively (an easy extension of the case of 2 microscopic scales):

Recursive formula for adjustments

$$
\begin{aligned}
& \eta_{2, \delta_{2}}(x) \doteq\left\{\frac{1}{\delta_{2}}\left[\frac{x}{\varepsilon_{1}}\right]_{Y_{1}}\right\}_{Y_{2}} \\
& \text { and for } i=2, \ldots, n \\
& \eta_{i, \delta_{i}}\left(x, \boldsymbol{y}_{\|(i-2)}\right) \doteq\left\{\frac{\varepsilon_{1}}{\varepsilon_{i}}\left[\frac{x}{\varepsilon_{1}}\right]_{Y_{1}}+\sum_{j=2}^{i-1} \frac{\varepsilon_{j}}{\varepsilon_{i}}\left(\left[\frac{y_{j-1}}{\delta_{j}}\right]_{Y_{j}}-\eta_{j, \delta_{j}}\left(x, \boldsymbol{y}_{\mid(j-2)}\right)\right)\right\}_{Y_{i}}
\end{aligned}
$$

Remark. The same method readily applies to the case of perforated domains.

The case of countable scales

Let n go to ∞ !

For i in $\mathbb{N}^{*}, \mathbf{G}_{i}$ and Y_{i} are given, $\boldsymbol{y} \doteq\left(y_{1}, \ldots\right)$ belongs to $\mathcal{Y} \doteq \prod_{i \in \mathbb{N}^{*}} Y_{i}$. Functions defined on finite products of Y_{i} 's can be considered as defined on \mathcal{Y}.

A simplification:
The actual microscopic periods are the $\varepsilon_{i} \mathbf{G}_{i}$. Multiplying \mathbf{G}_{i} by a factor $\lambda_{i}>0$ and replacing ε_{i} by $\lambda_{i}^{-1} \varepsilon_{i}$ does not change the problem.

So we can assume every cell Y_{i} is with measure 1 and so are the finite products $\mathcal{Y}^{n}=\prod_{i=1}^{n} Y_{i}$ as well as \mathcal{Y}. Notation:

$$
\check{\mathcal{Y}}^{n} \doteq \prod_{i=n+1}^{i=\infty} Y_{i}, \text { with the convention } \check{\mathcal{Y}}^{0}=\mathcal{Y}
$$

The sequences ε and δ are given in $\ell^{\infty}\left(\mathbb{N}^{*}\right)^{+}$and in the limit will gipe to 0 in that space (denoted below simply $\boldsymbol{\delta} \rightarrow 0$). As soon as $\|\boldsymbol{\delta}\|_{\ell^{\infty}\left(\mathbb{N}^{*}\right)}<1$, the corresponding ε is in $\ell^{1}\left(\mathbb{N}^{*}\right)$.
A sequence of adjustment $\left\{\eta_{n, \delta_{n}}\right\}_{n \geqslant 2}$ is given.
More notations:

$$
\widetilde{\mathcal{Y}}_{\varepsilon}=\prod_{i \in \mathbb{N}^{*}} \tilde{Y}_{i, \delta_{i+1}} \subset \mathcal{Y}
$$

$$
\widetilde{\Omega}_{\varepsilon}^{n} \searrow_{n \rightarrow \infty} \widetilde{\Omega}_{\varepsilon} \doteq \bigcap_{i>1} \widetilde{\Omega}_{\varepsilon}^{i}
$$

$$
\left|\widetilde{\Omega}_{\varepsilon}^{n}\right|=\left|\widehat{\Omega}_{\varepsilon_{1}}\right| \times \prod_{i=1}^{n-1}\left|\widetilde{Y}_{i, \delta_{i+1}}\right|=\left|\widehat{\Omega}_{\varepsilon_{1}}\right| \times \prod_{i=1}^{n-1}\left(1-\left|\widetilde{\Lambda}_{i, \delta_{i+1}}\right|\right)
$$

So

$$
\left|\widetilde{\Omega}_{\varepsilon}\right|=\left|\widehat{\Omega}_{\varepsilon_{1}}\right| \times \prod_{i=1}^{\infty}\left(1-\left|\widetilde{\Lambda}_{i, \delta_{i+1}}\right|\right)
$$

Hence, $\widetilde{\Omega}_{\varepsilon}$ is not a null set iff $\sum_{i=1}^{\infty}\left|\widetilde{\Lambda}_{i, \delta_{i+1}}\right|<\infty$. If the units cells are parallelotopes, this sum is a weighted $\ell^{1}\left(\mathbb{N}^{*}\right)$ norm for $\boldsymbol{\delta}$.

The countable scale unfolding operator

Assume $\widetilde{\Omega}_{\varepsilon}$ is not a null set. For p in $[1,+\infty)$ and ϕ in $L^{p}(\Omega)$, the sequence $\left\{\widetilde{\mathcal{T}}_{\varepsilon}^{n}(\phi)\right\}_{n}$ converges strongly in $L^{p}(\Omega \times \mathcal{Y})$. Its limit is denoted $\tilde{\mathcal{T}}_{\varepsilon}(\phi)$.
By going to the limit $(n \rightarrow \infty)$ in the integral formula at level n
For every ϕ in $L^{1}(\Omega)$ and w in $L^{p}(\Omega)(p \in[1,+\infty])$,
(i) $\quad \int_{\Omega \times \mathcal{Y}} \widetilde{\mathcal{T}}_{\boldsymbol{\varepsilon}}(\phi)(x, \boldsymbol{y}) d x d \boldsymbol{y}=\int_{\widetilde{\Omega}_{\varepsilon}} \phi(x) d x$,
(ii) $\left|\int_{\Omega} \phi d x-\int_{\Omega \times \tilde{\mathcal{Y}}^{\prime}} \widetilde{\mathcal{T}}_{\varepsilon}(\phi)(x, \boldsymbol{y}) d x d \boldsymbol{y}\right| \leqslant \int_{\Omega \backslash \tilde{\Omega}_{\varepsilon}}|\phi| d x$,
(iii) $\left\|\tilde{\mathcal{T}}_{\varepsilon}(w)\right\|_{L^{p}(\Omega \times \mathcal{Y})} \leqslant\|w\|_{L^{p}(\Omega)}$.

The operator $\tilde{\mathcal{T}}_{\varepsilon}$ is linear and continuous from $L^{p}(\Omega)$ to $L^{p}(\Omega \times \mathcal{Y})$ for $p \in[1,+\infty)$.

$$
\begin{aligned}
\mathcal{H}_{p} \doteq & \left\{\boldsymbol{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{n}, \ldots\right) \in W_{p e r, 0}^{1, p}\left(Y_{1}\right) \times \prod_{n=2}^{\infty} L^{p}\left(\mathcal{Y}_{n-1} ; W_{p e r, 0}^{1, p}\left(Y_{n}\right)\right)\right. \\
& \text { such that the series } \left.\boldsymbol{D}(\boldsymbol{\varphi}) \doteq \sum_{n=1}^{\infty} \nabla_{y_{n}} \varphi_{n} \text { is convergent in } L^{p}(\mathcal{Y})^{N}\right\}
\end{aligned}
$$

It is graded because each φ_{i} depends only upon $\left(y 1, \ldots, y_{i}\right)$. It is a Banach space for the norm

$$
\|\boldsymbol{\varphi}\|_{\mathcal{H}_{p}} \doteq\|\boldsymbol{D}(\boldsymbol{\varphi})\|_{L^{p}(\boldsymbol{\mathcal { }})^{N}}
$$

and $\boldsymbol{D}(\boldsymbol{\varphi})$ is a kind of generalized gradient for φ.

The condition on the sequence $\{\delta\}$ to guaranty that $\left|\widetilde{\Omega}_{\varepsilon}\right| \rightarrow|\widehat{\Omega}|$ is

Condition (\mathcal{C}) :

$$
\sum_{i=1}^{\infty}\left|\widetilde{\Lambda}_{i, \delta_{i+1}}\right| \rightarrow 0
$$

From now on, Condition (\mathcal{C}) will be assumed to hold.
For the case of parallelotopes, this is equivalent to a weighted $\ell^{1}\left(\mathbb{N}^{*}\right)$ norm of δ to go to 0 .

Theorem. Suppose $p \in(1,+\infty)$ and let $\left\{w_{\varepsilon}\right\}_{\varepsilon}$ be a sequence in $W^{1, p}(\Omega)$ such that

$$
w_{\varepsilon} \rightharpoonup w \text { weakly in } W^{1, p}(\Omega)
$$

(i) Then,
(ii) Up to a subsequence, there exists \widehat{W} in $L^{p}\left(\Omega ; \mathcal{H}_{p}\right)$ such that

$$
\begin{equation*}
\tilde{\mathcal{T}}_{\varepsilon}\left(\nabla w_{\varepsilon}\right) \rightharpoonup \nabla w+\boldsymbol{D}(\widehat{W}) \text { weakly in } L^{p}(\Omega \times \mathcal{Y}) \tag{9}
\end{equation*}
$$

Moreover,

$$
\|\nabla w+\boldsymbol{D}(\widehat{W})\|_{L^{p}(\Omega \times \mathcal{y})} \leqslant \liminf _{\varepsilon \rightarrow 0}\left\|\nabla w_{\varepsilon}\right\|_{L^{p}(\Omega)} .
$$

For $p=2$,

$$
\begin{aligned}
\|\nabla w+\boldsymbol{D}(\widehat{W})\|_{L^{2}(\Omega \times \boldsymbol{\mathcal { Y }})}^{2}=\|\nabla w\|_{L^{2}(\Omega)}^{2} & +\|\boldsymbol{D}(\widehat{W})\|_{L^{2}(\Omega \times \mathcal{Y})}^{2} \\
& \leqslant \liminf _{\varepsilon \rightarrow 0}\left\|\nabla w_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2} .
\end{aligned}
$$

Introduce the space (here we write \mathcal{H} for \mathcal{H}_{2})

$$
\mathcal{V} \doteq H_{0}^{1}(\Omega) \times L^{2}(\Omega ; \mathcal{H})
$$

The norm of $\Psi \doteq\left\{\psi_{0}, \widehat{\psi}\right\} \in \mathcal{V}$ is given by

$$
\|\Psi\| \mathcal{V}=\left(\left\|\nabla \psi_{0}\right\|_{L^{2}(\Omega)}^{2}+\|\boldsymbol{D}(\widehat{\psi})\|_{L^{2}(\Omega \times \mathcal{Y})}^{2}\right)^{1 / 2}
$$

Homogenization with countably many scales

Consider the same Dirichlet problem.
Theorem. Assume Condition (\mathcal{C}) is satisfied.
Suppose $\left\{f_{\varepsilon}\right\}_{\varepsilon} \rightarrow f$ in $H^{-1}(\Omega)$ and there exists a map B such that

$$
B^{\varepsilon} \doteq \widetilde{\mathcal{T}}_{\varepsilon}\left(A^{\varepsilon}\right) \text { converges in measure to } B \text { on } \Omega \times \mathcal{Y}
$$

when δ goes to 0 in $\ell^{1}\left(\mathbb{N}^{*}\right)$.
Then, there exists $\left(u_{0}, \widehat{U}\right)$ in \mathcal{V} satisfying

$$
\begin{aligned}
& u_{\varepsilon} \rightharpoonup u_{0} \quad \text { weakly in } H_{0}^{1}(\Omega), \\
& \widetilde{\mathcal{T}}_{\varepsilon}\left(u_{\varepsilon}\right) \rightharpoonup u_{0} \quad \text { weakly in } L^{2}(\Omega \times \mathcal{Y}), \\
& \widetilde{\mathcal{T}}_{\varepsilon}\left(\nabla u_{\varepsilon}\right) \rightharpoonup \nabla u_{0}+\boldsymbol{D}(\widehat{U}) \text { weakly in } L^{2}(\Omega \times \mathcal{Y})^{N},
\end{aligned}
$$

which is the unique solution of the following infinite dimensional variational system:

$$
\left\{\begin{align*}
& \forall\left(\psi_{0}, \widehat{\Psi}\right) \in \mathcal{V} \tag{10}\\
& \int_{\Omega \times \mathcal{Y}} B(x, \boldsymbol{y})\left(\nabla u_{0}(x)+\boldsymbol{D}(\hat{U})(x, \boldsymbol{y})\right) \\
& \cdot\left(\nabla \psi_{0}(x)\right.+\boldsymbol{D}(\widehat{\Psi})(x, \boldsymbol{y})) d x d \boldsymbol{y} \\
&=\left\langle f, \psi_{0}\right\rangle_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}
\end{align*}\right.
$$

There is a corrector given by

$$
\nabla u_{\varepsilon}-\nabla u_{0}-\tilde{\mathcal{U}}_{\varepsilon}(\boldsymbol{D}(\widehat{U})) \rightarrow 0 \text { strongly in } L^{2}(\Omega)
$$

where $\tilde{\mathcal{U}}_{\varepsilon}$ is the adjoint of $\tilde{\mathcal{T}}_{\varepsilon}$ and has the series representation ,

$$
\tilde{\boldsymbol{U}}_{\varepsilon}(\boldsymbol{D}(\widehat{U}))=\sum_{n=1}^{\infty} \tilde{\boldsymbol{U}}_{\boldsymbol{\varepsilon}}^{n}\left(\boldsymbol{\mathcal { P }}_{n}(\boldsymbol{D}(\widehat{U}))\right)
$$

Remark. Problem (10) has a unique solution by the Lax-Milgram theorem.

The homogenized matrix is again obtained from the "cell problem" ${ }^{\mathrm{JBEC}}=$ now defined on \mathcal{H} :
For a.e. $x \in \Omega$ and each ξ in \mathbb{R}^{N} let $\boldsymbol{\eta}_{\xi}(x, \boldsymbol{y})$ in \mathcal{H} be the unique solution of

$$
\begin{equation*}
\int_{\mathcal{Y}} B(x, \boldsymbol{y})\left(\xi+\boldsymbol{D}\left(\boldsymbol{\eta}_{\xi}\right)(x, \boldsymbol{y})\right) \cdot \boldsymbol{D}(\widehat{\Psi})(x, \boldsymbol{y}) d \boldsymbol{y}=0 \tag{11}
\end{equation*}
$$

for all $\widehat{\Psi}$ in \mathcal{H}.
This problem, with parameters x and ξ has a unique solution in \mathcal{H} by the Lax-Milgram theorem.
The homogenized matrix field is

$$
\begin{equation*}
A^{h o m}(x) \xi=\int_{\mathcal{Y}} B(x, \boldsymbol{y})\left(\xi+\boldsymbol{D}\left(\boldsymbol{\eta}_{\xi}\right)(x, \boldsymbol{y})\right) d \boldsymbol{y} \tag{12}
\end{equation*}
$$

This is not reiterated homogenization, due to the lack of a smallest scale. There is, however, a solution to partially dispose of this difficulty.

Approximation by finitely many micro-scales

Proposition. Set

$$
B_{n}=\mathcal{M}_{\breve{\mathcal{Y}}^{n}}(B),
$$

which depends only upon $\left(x, \boldsymbol{y}_{\mid n}\right) \in \Omega \times \mathcal{Y}_{n}$. It converges to B in measure in \mathcal{Y}. Let $A_{n}^{\text {hom }}$ denote the associated n-scale-homogenized matrix field. The sequence $\left\{A_{n}^{\text {hom }}\right\}_{n}$ converges a.e. in Ω to the homogenized matrix field $A^{\text {hom }}$ associated with B.

Proof. The problem with B_{n} can be viewed as a problem with countably many scaled (only the first n scales are active), and the formula for $A_{n}^{h o m}$ can be written

$$
A_{n}^{h o m}(x) \xi=\int_{\mathcal{Y}} B_{n}(x, \boldsymbol{y})\left(\xi+\boldsymbol{D}\left(\boldsymbol{\eta}_{\xi}^{n}\right)(x, \boldsymbol{y})\right) d \boldsymbol{y}
$$

where, for every ξ in $\mathbb{R}^{N}, \boldsymbol{\eta}_{\xi}^{n}$ is the solution of the cell problem associated with B_{n}.

Since $\left\{B_{n}\right\}_{n}$ converges in measure in \mathcal{Y}, the standard convergence result (the first one recalled at the beginning of thid talk!) implies: for a.e. x in Ω and every $\xi \in \mathbb{R}^{N},\left\{\boldsymbol{\eta}_{\xi}^{n}\right\}_{n}$ converges strongly in the space \mathcal{H} to the solution $\boldsymbol{\eta}_{\xi}$ of the cell problem associated to B. Consequently, in view of its formula $\left\{A_{n}^{h o m}\right\}_{n}$ converges to $A^{h o m}$ a.e. in Ω.

Instead of B_{n}, one can use as an alternate approximation

$$
B_{n}^{\varepsilon}=\mathcal{M}_{\tilde{\mathcal{Y}}^{n}}\left(B^{\varepsilon}\right)
$$

An example of coefficient matrix field with countably many verc $=$

 scalesFor a coefficient matrix field A defined on $\Omega \times \mathcal{Y}$ which is continuous at a.e. point of $\Omega \times \mathcal{Y}$, consider the matrix field on Ω defined by

$$
\widetilde{A}^{\varepsilon}=A\left(x,\left\{\frac{x}{\varepsilon_{1}}\right\}_{Y_{1}}, \ldots,\left\{\frac{x}{\varepsilon_{n}}\right\}_{Y_{n}}, \ldots\right) .
$$

Proposition. Assume Condition (\mathcal{C}) is satisfied. There exists a sequence of adjustments $\eta_{1, \varepsilon_{1}}, \eta_{2, \delta_{2}}, \ldots$ such that for every A in $M(\alpha, \beta, \Omega \times \mathcal{Y})$ which is almost everywhere continuous, $\tilde{\mathcal{T}}_{\varepsilon}\left(\tilde{A}^{\varepsilon}\right)$ converges almost everywhere to A on $\Omega \times \mathcal{Y}$.
The adjustments are given by the same recursive formula as in the finite case.

Remark. Here also, the same method readily applies to the case of perforated domains. The condition for the convergence of δ to 0 in order to satisfy Condition \mathcal{C} can be more complicated ...

Remark. For the case of countably many scales, a different approach is used in [2] (Allaire \& Briane) which avoids Condition (C). Following an idea of J.-L. Lions, it makes the assumption (which can also be used with Unfolding!) that

- the sequence $\|\boldsymbol{\delta}\|_{\ell^{\infty}\left(\mathbb{N}^{*}\right)}$ goes to 0 and
- the map A is the uniform limit in $M(\alpha, \beta, \Omega \times \mathcal{Y})$ of a sequence $\left\{A_{n}\right\}_{n}$, where each A_{n} depends only on $\left(x, y_{1}, \ldots, y_{n}\right)$ only.

Then, for each n, there is an homogenized matrix field $A_{n}^{\text {hom }}$ and applying a result in Boccardo \& Murat [4], the sequence $\left\{A_{n}^{\text {hom }}\right\}_{n}$ converges uniformly for $n \rightarrow \infty$ to a limit which is the homogenized matrix for the full problem. For perforated domains ...

REFERENCES

[1] Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992).
[2] G. Allaire and M. Briane, Multiscale convergence and reiterated homogenization, Proc. Royal Soc. Edinburgh, 126 A (1996), 297-342.
[3] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl. 5, North Holland 1978.
[4] L. Boccardo and F. Murat, Homogénéisation de problèmes quasi-linéaires, Atti del Convengno su Studio dei Problemi dell' Analisi Funzionale, Bressanone 79 Sell, 1981, 13-53, Bologna: Pitagora, 1982.
[5] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Série 1, 335 (2002), 99-104.
[6] D. Cioranescu, A. Damlamian and G. Griso, The Periodic Unfolding Method, Series in Contemporary Mathematics 3, Springer, Singapore, 2018
https://doi.org/10.1007/978-981-13-3032-2
[7] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital., 4, 8 (1973), 391-411.
[8] N. Meunier and J. Van Schaftingen, Periodic reiterated homogenization for elliptic functions, J. Math. Pures Appl., 9, 84 (2005), 1716-1743.
[9] F. Murat and L. Tartar, H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R. Kohn editors, Progress in Nonlinear Differential Equations Appl., 31, Birkhäuser-Verlag, Boston 1997, 21-44.
[10] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-629.

