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Introduction

The performances and intensification of many industrial processes using bubble columns or chemical reactors are directly related to the phenomenon of gas-liquid mass transfer. Predicting the transfer rate between the two phases in such configurations rich of contaminants or surfactants is therefore of high interest, but complex. An inclusion passing through a medium with impurities becomes easily contaminated with a small amount of surfactants, which decrease its translation velocity to the one of a solid sphere of same size, as observed in various experimental and numerical studies [START_REF] Clift | Bubbles, Drops and Particles[END_REF][START_REF] Bel Fdhila | The effect of surfactant on the rise of a spherical bubble at high reynolds and peclet numbers[END_REF][START_REF] Takemura | Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble[END_REF][START_REF] Palaparthi | Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles[END_REF][START_REF] Takagi | Surfactant effects on bubble motion and bubbly flows[END_REF] even when the surface tension is not significantly affected [START_REF] Lalanne | Determination of interfacial concentration of a contaminated droplet from shape oscillation damping[END_REF]. Frumkin and Levich [START_REF] Frumkin | On surfactants and interfacial motion[END_REF][START_REF] Levich | Physicochemical Hydrodynamics[END_REF] identified the surface tension gradient resulting from the surfactants advection due to the bubble motion, to account for the velocity decrease. From this gradient appears an interfacial stress resisting to the bubble motion known as the Marangoni force, which tends to smooth this gradient as shown in figure 1. Advected surfactants at the bubble rear form a stagnant cap where the interface velocity is zero (zone of immobile interface), as Horton et al. [START_REF] Horton | Experimental determination of circulation velocities inside drops[END_REF] observed in their experimental results through the circulation motion inside drops in the presence of impurities; along this immobile zone, the sur-face tension is lowered. Reversely, the front part is free of surfactants, the flow satisfies a slip condition (zone of mobile interface) and the surface tension is locally higher. Pesci et al. [START_REF] Pesci | Computational analysis of single rising bubbles influenced by soluble surfactant[END_REF] proposed a computational analysis of a rising bubble influenced by soluble surfactants and pointed out the significant impact of the surfactant concentration and the initial surface contamination on the terminal velocity and the bubble path. As mentioned by Palaparthi et al. [START_REF] Palaparthi | Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles[END_REF], soluble surfactants adsorb from the liquid to the bubble surface, then are swept from the front to the trailing pole where the locally high concentration of surfactants leads to desorption. Therefore, a steady-state kinetics can be reached where the adsorption flux globally balances the desorption flux. When the rate of surface convection of surfactants is much higher than their rate of exchange with the bulk and that of surface diffusion, the stagnant-regime is obtained, characterized by a contamination angle 𝜃 𝑐𝑎𝑝 . Such a stagnant-cap regime can also be obtained with a simulation which deals with insoluble surfactants, i.e. by neglecting any transfer of surfactant from or to the bulk (the total mass of adsorbed surfactants at the interface is thereby constant in the simulation), by considering their surface transport and the interfacial Marangoni force [START_REF] Levich | Physicochemical Hydrodynamics[END_REF][START_REF] Cuenot | The effects of slightly soluble surfactants on the flow around a spherical bubble[END_REF]. The latter approach is used in this investigation.

In the creeping flow regime, Sadhal and Johnson [START_REF] Sadhal | Stokes flow past bubbles and drops partially coated with thin films. part 1 : Stagnant cap of surfactant filmexact solution[END_REF] have quantified the rising velocity decrease and proposed an analytical relation between the contamination angle 𝜃 𝑐𝑎𝑝 and the reduced drag coefficient 𝐶 * 𝐷 defined from the clean bub- ble and the solid sphere coefficients, the latter corresponding to a bubble with a fully-immobile interface. Cuenot et al. [START_REF] Cuenot | The effects of slightly soluble surfactants on the flow around a spherical bubble[END_REF] investigated on the transient evolution of a bubble contaminated by soluble surfactants at high Reynolds numbers and obtained a close behaviour of the reduced drag coefficient as [START_REF] Sadhal | Stokes flow past bubbles and drops partially coated with thin films. part 1 : Stagnant cap of surfactant filmexact solution[END_REF] despite the different hydrodynamic conditions. The same results were observed in the numerical investigation of Piedfert et al. [START_REF] Piedfert | Numerical simulations of a rising drop with shape oscillations in the presence of surfactants[END_REF] for a droplet contaminated by insoluble surfactants and rising in another liquid, at high Reynolds number and low density and viscosity ratios. Under clean conditions, correlations of the mass transfer around a rising bubble are given in various studies, such as Clift et al. [START_REF] Clift | Bubbles, Drops and Particles[END_REF] under creeping flow conditions, Lochiel and Calderbank [START_REF] Lochiel | Mass transfer in the continuous phase around axisymmetric bodies of revolution[END_REF] for spherical and spheroidal bubbles at high Schmidt and Péclet numbers, Takemura and Yabe [START_REF] Takemura | Gas dissolution process of spherical rising bubbles[END_REF] for high Reynolds and Péclet numbers. Based on previous numerical studies [START_REF] Dani | Direct numerical simulation of mass transfer from spherical bubbles : the effect of interface contamination at low reynolds number[END_REF][START_REF] Saboni | Effect of the viscosity ratio on mass transfer from a fluid sphere at low to veryhigh peclet numbers[END_REF][START_REF] Figueroa-Espinoza | Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid[END_REF], Colombet et al. [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF] proposed a more general correlation of the Sherwood number, valid for a wide range of Péclet and Reynolds numbers. This prediction is based on the maximum Péclet number calculated from the maximum interface velocity which characterizes the mass transfer rate around a clean and rising bubble in the most accurate way, according to the authors. The impact of surfactants is generally not considered in mass transfer models, whereas significant effects were observed in both experiments and numerical simulations. Indeed, Takemura and Yabe [START_REF] Takemura | Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water[END_REF] investigated on the dissolution rate of a carbon dioxide contaminated bubble with experiments and simulations for 𝑅𝑒 < 100 and observed a transfer rate decrease until the same rate as for a solid sphere. Then, the authors introduced the reduced Sherwood number 𝑆ℎ * defined from the values predicted for a clean bubble and for a solid sphere. They estimated 𝑆ℎ * by a function of 𝐶 * 𝐷 , without taking into account any other effect of the Schmidt number apart from the contribution in the predictions used for the normalization. This transfer decrease was also analyzed in the exper- imental study of Vasconcelos et al. [START_REF] Vasconcelos | Gas-liquid mass transfer to single bubbles : effect of surface contamination[END_REF], where the mass transfer rate was observed to follow two contrasted regimes by measuring the dissolution of single bubbles: depending on the contamination level of the liquid, the mass transfer is found to be consistent with predictions of a clean bubble or to that of a solid sphere, with a sharp decrease reported between these two limits. To quantify this decrease, Painmanakul et al. [START_REF] Painmanakul | Effect of surfactants on liquid-side mass transfer coefficients[END_REF] proposed a correlation which predicts the Sherwood number with a weighting given to the Sherwood number of a clean bubble and a solid sphere depending on the rate of surface covered by surfactants, the latter parameter being calculated from the Langmuir adsorption isotherm for soluble surfactants. Another study was performed by Dani et al. [START_REF] Dani | Direct numerical simulation of mass transfer from spherical bubbles : the effect of interface contamination at low reynolds number[END_REF][START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF] by means of direct numerical simulations: the stagnant-cap regime was assumed, by directly imposing the contamination angle and splitting the bubble surface into a mobile and immobile interface, thus the resolution of the surfactant transport equation coupled to the Marangoni stress was not required in their numerical method. They showed that while the Sherwood number depends on all the parameters 𝑅𝑒, 𝑆𝑐 and 𝜃 𝑐𝑎𝑝 , the values of 𝑆ℎ * are found to lie between an upper limit defined by the 𝐶 * 𝐷 function of 𝜃 𝑐𝑎𝑝 from [START_REF] Sadhal | Stokes flow past bubbles and drops partially coated with thin films. part 1 : Stagnant cap of surfactant filmexact solution[END_REF] in the creeping flow regime only (whatever 𝑆𝑐), and a lower limit defined by another function of 𝐶 * 𝐷 provided that both the Reynolds and Schmidt numbers are large; however, for intermediates values of these paremeters, the points are dispersed between these two limits. Recent experimental investigation with Planar Laser Inhibition induced by Fluorescence (PLIF, [START_REF] Xu | Comparison of three different techniques for gas-liquid mass transfer visualization[END_REF]) was carried out by Jimenez et al. [START_REF] Jimenez | Oxygen mass transfer and hydrodynamic behaviour in wastewater: Determination of local impact of surfactants by visualization techniques[END_REF] to evaluate the mass transfer from oxygen bubbles in demineralized water, water contaminated by surfactants and filtered water extracted from a sewage plant, therefore in liquid phases with impurities or surfactant concentrations above the critical micellar concentration. The authors also observed a significant decrease of the mass transfer rate while the liquid side diffusion coefficient remained unchanged. Similar results were observed by Lebrun and al. [START_REF] Lebrun | Gas-liquid mass transfer around a rising bubble : combined effect of rheology and surfactant[END_REF], including the case of liquids of complex rheology. A relevant comparison between experimental results from Madhavi et al. [START_REF] Madhavi | Studies on bubble dynamics with mass transfer[END_REF] and the numerical model of Jia and Zhang, which takes into account bubble shrinkage during dissolution and contaminants accumulation based on the stagnant-cap approach, was carried out on the bubble size evolution in [START_REF] Jia | Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change[END_REF]. However, there exists no general correlation on the Sherwood number able to quantify the gradual transfer decrease from that around clean bubbles towards that around solid spheres [START_REF] Abadie | Oxygen transfer of microbubble clouds in aqueous solutions -application to wastewater[END_REF] depending on the coverage rate of the interface.

In this paper, direct numerical simulations of the hydrodynamics and mass transfer around a spherical rising bubble, contaminated by insoluble surfactants, are considered. The latter are already adsorbed at the interface, convected along the bubble surface at a rate which is much higher than that of both surface diffusion and adsorption-desorption, which makes strong surface concentration gradients and Marangoni effect to develop, resulting in the stagnant-cap regime. With this numerical approach, the contamination angle is not imposed but is a result of the simulation model, like in [START_REF] Fleckenstein | Simplified modeling of the influence of surfactants on the rise of bubbles in vof-simulations[END_REF][START_REF] Pesci | Computational analysis of single rising bubbles influenced by soluble surfactant[END_REF] and unlike most of the previous numerical studies with mass transfer around contaminated bubbles [START_REF] Dani | Direct numerical simulation of mass transfer from spherical bubbles : the effect of interface contamination at low reynolds number[END_REF][START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF][START_REF] Takemura | Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble[END_REF][START_REF] Jia | Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change[END_REF]. Once the steady state for the hydrodynamics is reached, the mass transfer dynamics (physical absorption) of a solute from the gas to the liquid phase is computed, by assuming a slight rate of mass transfer so that the change of the bubble volume can be neglected. The aim of this study is to quantify the impact of the different parameters (Reynolds number, contamination angle, Schmidt number) on the bubble dynamics and the Sherwood number. As there is no existing general correlation describing the external mass transfer rate in the presence of surfactants, the main motivation of the present work is to provide a complete model taking into account the relevant parameters, from a clean to a fully contaminated bubble.

Physical model and numerical methods

In this section, details are provided about the mathematical formalism used to describe the physical phenomenon. The direct numerical simulations were performed with the in-house code DIVA (Dynamics of Interfaces for Vaporization and Atomization) based on the Level-Set and Ghost Fluid methods, of which the numerical methods are detailed in 2.2.

Governing equations

Incompressible two-phase flows are simulated with the momentum and the mass conservation by solving the Navier-Stokes equations in a one-fluid approach,

𝜌 ( 𝐷⃗ 𝑢 𝐷𝑡 + (⃗ 𝑢 ⋅ ⃗ ∇) ⃗ 𝑢 ) = -∇𝑝 + ∇.(2𝜇 D) + 𝜌 ⃗ 𝑔 , (1) 
∇ ⋅ ⃗ 𝑢 = 0 , ( 2 
)
where 𝜌 and 𝜇 are respectively the fluid density and viscosity, ⃗ 𝑢 the velocity field, 𝑝 the pressure, D the rate of deformation tensor, ⃗ 𝑔 the gravity acceleration. Across the interface, the following jump condition on the normal stresses due to capillary effects is satisfied,

[⃗ 𝑛 ⋅ (-𝑝 Ī + 2𝜇 D) ⋅ ⃗ 𝑛] = 𝜎𝜅 , (3) 
where [.] is the interface jump condition operator defined as

[𝐴] = 𝐴 𝑙𝑖𝑞 -𝐴 𝑔𝑎𝑠 for a field 𝐴, 𝜎 the surface tension, 𝜅 = -∇.⃗ 𝑛 the interface curvature with ⃗ 𝑛 the normal vector to the interface. Here, the phase change induced by mass transfer is not considered, therefore the normal velocity is continuous across the interface, as well as the tangential velocity (no interfacial slip between the two phases), leading to,

[⃗ 𝑢] = ⃗ 0 . ( 4 
)
In the absence of surfactant exchanges from or to the bulk phase, the initially adsorbed surfactants are advected along the bubble surface following a surface advection-diffusion equation [START_REF] Levich | Physicochemical Hydrodynamics[END_REF][START_REF] Stone | A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface[END_REF],

𝜕Γ 𝜕𝑡 + ∇ 𝑠 ⋅ ( Γ ⃗ 𝑢 ) = 𝐷 𝑠 Δ 𝑠 Γ , ( 5 
)
where Γ is the surface concentration of surfactants, ∇ 𝑠 = ( 𝐼-⃗ 𝑛⊗⃗ 𝑛 ) ⃗ ∇ the surface gradient operator, 𝐷 𝑠 the surface diffusion coefficient and Δ 𝑠 the surface laplacian operator. By developing the second term of eq.( 5), the surfactant transport equation on the interface becomes,

𝜕Γ 𝜕𝑡 + 𝑢 𝑠 ⋅ ∇ 𝑠 Γ + Γ ∇ 𝑠 ⋅ ⃗ 𝑢 = 𝐷 𝑠 Δ 𝑠 Γ , ( 6 
)
where 𝑢 𝑠 is the tangential velocity. In eq.( 6), note that the partial time derivative is taken along the normal to the interface. In this study, the surface diffusion term is neglected, by assuming an infinite surface Péclet number for the surfactant transport. Note that this is a reasonable hypothesis based on typical values of the surface diffusion coefficient [START_REF] Valkovska | Determination of bulk and surface diffusion coefficients from experimental data for thin liquid film drainage[END_REF]. Surface advection leads to a non-uniform Γ profile along the interface, which triggers gradients of surface tension and resulting Marangoni interfacial stresses, mathematically described as a jump condition of the tangential viscous stresses across the interface,

[ 𝜇 ( 𝜕𝑢 𝑠 𝜕𝑛 + 𝜕𝑢 𝑛 𝜕𝑠 ) ] = ∇ 𝑠 𝜎 . ( 7 
)
Note that, in the frame moving with the bubble, the normal velocity 𝑢 𝑛 is zero (and is continuous) along the whole surface of the spherical bubble, leading to 𝜕𝑢 𝑛 𝜕𝑠 = 0. The surface tension 𝜎 locally varies depending on the surfactant concentration,

𝜎 = 𝜎 0 -𝑅 𝑔 𝑇 Γ , ( 8 
)
where 𝜎 0 is the surface tension in a clean configuration, 𝑅 𝑔 the gas constant and 𝑇 the temperature which remains constant in this study. Note that eq. ( 8) is only valid in dilute surface concentration of surfactants, i.e. far from the packing. In a gas-liquid configuration, the resistance to mass transfer mainly lies in the liquid phase where the diffusion is much slower than in the gas phase, therefore only the liquid side is considered in this study by computing the advection-diffusion equation for the concentration 𝐶 of a single species of dissolved gas,

𝜕𝐶 𝜕𝑡 + ⃗ 𝑢 ⋅ ∇ ⃗ 𝐶 = 𝐷 ∇ ⋅ (∇ ⃗ 𝐶) , ( 9 
)
where 𝐷 is the diffusion coefficient associated to the soluteliquid binary mixture. In this study, the system of eq. ( 1), ( 2), ( 6), ( 9) are computed until steady-state in the frame moving with the bubble, with their respective jump and boundary conditions.

Numerical methods

The above equations are implemented in the in-house code DIVA [START_REF] Tanguy | A level set method for vaporizing two-phase flows[END_REF][START_REF] Tanguy | Benchmarks and numerical methods for the simulation of boiling flows[END_REF][START_REF] Lalanne | On the computation of viscous terms for incompressible two-phase flows with Level Set/Ghost Fluid Method[END_REF][START_REF] Villegas | A ghost fluid/level set method for boiling flows and liquid evaporation: application to the leidenfrost effect[END_REF][START_REF] Lepilliez | On twophase flow solvers in irregular domains with contact line[END_REF] which has been extensively validated by theoretical, experimental and numerical comparisons for various studies including the dynamics of shape oscillations of rising bubbles [START_REF] Lalanne | Non-linear shape oscillations of rising drops and bubbles: Experiments and simulations[END_REF] and droplets in the presence of surfactants [START_REF] Piedfert | Numerical simulations of a rising drop with shape oscillations in the presence of surfactants[END_REF], fluids-membrane interaction [START_REF] Dalmon | Fluids-membrane interaction with a full eulerian approach based on the level set method[END_REF] where a similar numerical approach was used to impose a jump condition on the tangential stresses across the interface, mass transfer in the presence of phase change phenomena [START_REF] Orazzo | Direct numerical simulations of droplet condensation[END_REF][START_REF] Villegas | Direct numerical simulation of the impact of a droplet onto a hot surface above the leidenfrost temperature[END_REF][START_REF] Urbano | Direct numerical simulation of nucleate boiling in zero gravity conditions[END_REF] or within gas-liquid Taylor flows [START_REF] Butler | Numerical simulation of mass transfer dynamics in taylor flows[END_REF].

The Level-Set method [START_REF] Osher | Fronts propagating with curvaturedependent speed: Algorithms based on hamilton-jacobi formulations[END_REF] is used to compute the interface motion by solving a convection equation for a distancefunction 𝜙 of which positive and negative values correspond respectively to liquid and gas field,

𝜕𝜙 𝜕𝑡 + ⃗ 𝑢 ⋅ ∇𝜙 = 0 . ( 10 
)
A reinitialization step as proposed in [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF] is used to maintain 𝜙 as a signed distance function, at each time step. A sharp implementation for the jump conditions at the interface is carried out with the Ghost Fluid method [START_REF] Fedkiw | A Nonoscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)[END_REF], which consists in extrapolating the discontinuous variables across the interface by computing ghost values in order to enforce an accurate discretization of the derivatives near the interface. The Navier-Stokes incompressible equations ( 1) are solved with a projection method where the pressure and viscous discontinuities are taken into account with the Ghost Fluid Conservative viscous Method (GFCM) detailed in [START_REF] Lalanne | On the computation of viscous terms for incompressible two-phase flows with Level Set/Ghost Fluid Method[END_REF], in an implicit formulation as mentioned in [START_REF] Lepilliez | On twophase flow solvers in irregular domains with contact line[END_REF]. The Poisson equation resulting from this projection step is solved by a BlackBox MultiGrid (BBMG) solver [START_REF] Dendy | Black box multigrid[END_REF] which ensures a fast and stable resolution. The convective terms of equations ( 1), ( 9) and ( 6) are computed with a fifth order Weighted Essentially Non-Oscillatory (WENO-Z) schemes [START_REF] Borges | An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[END_REF], the temporal derivatives with a second order Runge-Kutta schemes and other spatial derivatives with second order finite difference schemes.

The surfactant concentration Γ field is extended to both sides of the interface by a constant extrapolation in the nor-mal direction [START_REF] Aslam | A partial differential equation approach to multidimensional extrapolation[END_REF] as suggested in [START_REF] Xu | An eulerian formulation for solving partial differential equations along a moving interface[END_REF],

𝜕 Γ 𝜕𝜏 + 𝑠𝑖𝑔𝑛(𝜙)⃗ 𝑛 ⋅ ⃗ ∇ Γ = 0 , ( 11 
)
in order to remove the normal derivative:

⃗ 𝑛 ⋅ ⃗ ∇ Γ = 0 , ( 12 
)
where Γ is the extrapolated surfactant concentration field and 𝜏 a fictitious time required to obtain the condition given by eq.( 12). Therefore, ∇ 𝑠 Γ = ∇ Γ is satisfied, which enables the resolution of eq. ( 6) on a mesh grid which is not boundaryfitted. Besides, the use of the extended Γ field allows to compute the time derivative in eq.( 6) as the usual Eulerian one at a fixed point of space, as explained in [START_REF] Pereira | On the transport equation for an interfacial quantity[END_REF]. Benchmarks for a validation of this equation implementation have been performed in [START_REF] Piedfert | Numerical simulations of a rising drop with shape oscillations in the presence of surfactants[END_REF].

A sharp methodology has been used to take into account the Marangoni jump condition on the tangential viscous stresses in the Navier-Stokes equations. For a 2D example, the viscous term of (1) gives,

∇.(2𝜇 D) = ⎛ ⎜ ⎜ ⎝ 𝜕 𝜕𝑥 ( 2𝜇 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 ( 𝜇 ( 𝜕𝑢 𝜕𝑦 + 𝜕𝑣 𝜕𝑥 )) 𝜕 𝜕𝑥 ( 𝜇 ( 𝜕𝑢 𝜕𝑦 + 𝜕𝑣 𝜕𝑥 )) + 𝜕 𝜕𝑦 ( 2𝜇 𝜕𝑣 𝜕𝑦 ) ⎞ ⎟ ⎟ ⎠ , ( 13 
)
in which the jump condition from eq.( 7) is imposed in the cells crossed by the interface following the methodology of [START_REF] Kang | A boundary condition capturing method for multiphase incompressible flow[END_REF] such as,

[ 𝜇 𝜕𝑢 𝜕𝑥 ] = 𝑛 𝑥 ∇ 𝑠 𝜎 , [ 𝜇 𝜕𝑢 𝜕𝑦 ] = 𝑛 𝑦 ∇ 𝑠 𝜎 , ( 14 
)
[ 𝜇 𝜕𝑣 𝜕𝑥 ] = 𝑛 𝑥 ∇ 𝑠 𝜎 , [ 𝜇 𝜕𝑣 𝜕𝑦 ] = 𝑛 𝑦 ∇ 𝑠 𝜎 . ( 15 
)
These jump conditions are added in the projection step of the resolution by the GFCM method. Validation and details about this implementation can be found in [START_REF] Dalmon | Fluids-membrane interaction with a full eulerian approach based on the level set method[END_REF]. Concerning mass transfer of the solute, a Dirichlet boundary condition is imposed at the immersed interface to set the solute concentration to a value of 𝐶 𝑖𝑛𝑡 . Here, it is assumed that 𝐶 𝑖𝑛𝑡 remains constant (as predicted by the standard Henry law), considering therefore that the mass transfer decrease is only due to a modification of the hydrodynamics in these simulations, and that there is no additional mass transfer barrier at the interface due to the presence of adsorbed surfactants (note that a more sophisticated modelling including hindrance effect [START_REF] Bothe | Sharp-interface continuum thermodynamics of multicomponent fluid systems with interfacial mass[END_REF] could be achieved by modifying this boundary condition). In the present computations, the immersed Dirichlet condition at the interface is achieved by using the second order numerical scheme proposed in [START_REF] Gibou | A second-orderaccurate symmetric discretization of the poisson equation on irregular domains[END_REF]. Moreover, for an accurate calculation of the concentration gradients at the interface and their transport, quadratic extrapolations are used to build extensions of the liquid phase concentration inside the gas by ensuring the continuity of the concentration profile and of its first and second normal derivatives at the interface, as proposed in [START_REF] Aslam | A partial differential equation approach to multidimensional extrapolation[END_REF]. Hydrodynamics conditions and results for a contaminated bubble. At each (𝐴𝑟, 𝑀𝑎), the Reynolds number 𝑅𝑒 and the contamination angle 𝜃 𝑐𝑎𝑝 are obtained from the numerical resolution.

Results

Simulations are performed in a 2D axisymmetric coordinate configuration with a non-uniform Cartesian mesh. The bubble of radius 𝑅 is maintained at the center of the domain of size 𝑙 𝑟 × 𝑙 𝑧 = 8𝑅 × 16𝑅 to avoid containment effects, in a moving frame by using a method similar to [START_REF] Mougin | The generalized kirchoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow[END_REF]. For the velocity field, symmetric and wall conditions are respectively imposed at 𝑟 = 0 and 𝑟 = 𝑙 𝑟 , and free boundary conditions are imposed at the top and bottom boundaries. The following boundary conditions are imposed for the mass field: a Dirichlet condition 𝐶 𝑖𝑛𝑡 = 1 mol.m -3 at the bubble surface, a Neumann condition with a zero flux at 𝑟 = 0 and Dirichlet conditions with 𝐶 ∞ = 0 at 𝑟 = 𝑙 𝑟 , 𝑧 = 0 and 𝑧 = 𝑙 𝑧 . First, the hydrodynamics of the rising bubble in the presence of the adsorbed surfactants is computed until steady-state. Then, mass transfer is solved based on the converged velocity field.

Concerning the hydrodynamics, simulations are carried out at constant density and viscosity ratios respectively of values 815 and 63, corresponding to the case of a bubble immersed in a liquid, at three different values of the Archimedes numbers 𝐴𝑟 which fixes the ratio between gravitational and viscous forces. For a given 𝐴𝑟, simulations are performed at different Marangoni numbers 𝑀𝑎, which compare the intensity of the stress due to the Marangoni effect to the viscous shear stress, and is varied in the range 𝑀𝑎 = 0-20 by changing the average surfactant concentration at the interface Γ to consider cases between that of a fully mobile to a fully im-mobile interface. Therefore, at a given 𝐴𝑟, increasing 𝑀𝑎 leads to a decrease of the Reynolds number 𝑅𝑒 based on the bubble rising velocity, its values lying between 11 and 100 in this study (data are provided in table 1). In addition, the Weber 𝑊𝑒 number, which compares the inertial stress tending to deform the bubble over the average surface tension, is maintained to a very small value (𝑊𝑒 < 0.01) in all simulations, which ensures that the bubble shape is spherical. All these dimensionless parameters are defined by

𝐴𝑟 = 𝑔 𝑑 3 𝜌 𝑙𝑖𝑞 ( 𝜌 𝑙𝑖𝑞 -𝜌 𝑔𝑎𝑠 ) 𝜇 2 𝑙𝑖𝑞 , 𝑅𝑒 = 𝜌 𝑙𝑖𝑞 𝑈 ∞ 𝑑 𝜇 𝑙𝑖𝑞 , ( 16 
)
𝑊𝑒 = 𝜌 𝑙𝑖𝑞 𝑈 2 ∞ 𝑑 𝜎 , 𝑀𝑎 = 𝑅 𝐺 𝑇 Γ 𝜇 𝑙𝑖𝑞 𝑈 , ( 17 
)
where 𝑑 the bubble diameter, 𝜌 𝑙𝑖𝑞 and 𝜌 𝑔𝑎𝑠 are respectively the liquid and gas densities, 𝜇 𝑙𝑖𝑞 the liquid dynamic viscosity, 𝑈 ∞ the rising terminal velocity, 𝜎 is the average surface tension calculated from eq.( 8), Γ the average surfactant concentration at the interface, 𝑅 𝐺 = 8.314 J.K -1 .mol -1 the ideal gas constant and 𝑇 the temperature set to 𝑇 = 293.15K. Note that 𝑀𝑎 has been defined by using the bubble velocity 𝑈 corresponding to the clean bubble case (Γ = 0) at same 𝐴𝑟, since it is set before running the simulations with surfactants for which 𝑈 ∞ is not a priori known. For each couple (𝐴𝑟, 𝑀𝑎), once the hydrodynamics steady state is reached, the angle of contamination 𝜃 𝑐𝑎𝑝 is measured from the surfactant concentration profile along the bubble surface as displayed in figure 2, as well as the corresponding Reynolds number related to the terminal rising velocity. In this way, the relevance of this approach lies in the free parameters 𝜃 𝑐𝑎𝑝 and 𝑅𝑒 which are direct results from the complete numerical resolution which couples the hydrodynamics with the Marangoni stresses.

Once the hydrodynamics steady state is reached, the mass transfer is solved for different Schmidt numbers from 𝑆𝑐 = 5 to 𝑆𝑐 = 70, which induces a Péclet number 𝑃 𝑒 range of 50 -7000,

𝑃 𝑒 = 𝑈 ∞ 𝑑 𝐷 , 𝑆𝑐 = 𝜇 𝑙𝑖𝑞 𝜌 𝑙𝑖𝑞 𝐷 . ( 18 
)

Effects of surfactants on the hydrodynamics

Regarding the stagnant-cap regime, when the steady state is reached, the advection term of equation eq.( 5) is equal to zero and the following relation is obtained,

𝑢 𝑠 Γ = 0 , ( 19 
)
with 𝑢 𝑠 the tangential velocity at the interface. Surface profiles of surfactant concentration and tangential velocity obtained by simulation are plotted in figure 2 at 𝐴𝑟 = 4.28⋅10 2 and 𝑀𝑎 = 0.3. The front part is free of surfactants and the interface velocity is non-zero, until 𝜃 ≈ 2.0 which is the contamination angle for this case where a strong surface gradient of concentration and tangential velocity appears. At the rear (𝜃 > 2.0), the interface is immobile and the surfactant concentration is non-zero. This result is in good agreement with the theoretical condition expressed in eq.( 19) and demonstrates an accurate capture of the strong gradients around 𝜃 𝑐𝑎𝑝 . Moreover, a satisfactory spatial convergence is obtained in table 2 for the contamination angle when changing the mesh size. The drag force between the liquid and the bubble is calculated from the following expression,

⃗ 𝐹 𝐷 = ∮ 𝑆 -𝑝𝐼 ⋅ ⃗ 𝑛 d𝑆 + ∮ 𝑆 2𝜇𝐷 ⋅ ⃗ 𝑛 d𝑆 , ( 20 
)
where the former integral corresponds to the pressure drag force and the latter one to the viscous drag force, and the drag coefficient is finally obtained,

𝐶 𝐷 = ‖ ⃗ 𝐹 𝐷 ‖ 1 2 (𝜋𝑅 2 ) 𝜌 𝑙𝑖𝑞 𝑈 2 ∞ . ( 21 
)
Drag coefficients of bubbles with fully mobile (clean case) and fully immobile (solid-like case in terms of hydrodynamics) are respectively compared to the correlation of Mei et al. [START_REF] Mei | A note on the history force on a spherical bubble at finite reynolds number[END_REF],

𝐶 𝑐𝑙𝑒𝑎𝑛 𝐷 = 16 𝑅𝑒 [ 1 + ( 8 𝑅𝑒 + 1 2 ( 1 + 3.315 𝑅𝑒 1∕2 )) -1 ] , (22) 
and Clift et al. [START_REF] Clift | Bubbles, Drops and Particles[END_REF],

𝐶 𝑠𝑜𝑙𝑖𝑑 𝐷 = 24 𝑅𝑒 ( 0.1935 𝑅𝑒 0.6305 ) . ( 23 
)
Sadhal and Johnson [START_REF] Sadhal | Stokes flow past bubbles and drops partially coated with thin films. part 1 : Stagnant cap of surfactant filmexact solution[END_REF] introduced a reduced drag coefficient to quantify the impact of surfactants on the hydrodynamics, Spatial convergence of the drag coefficient for a clean and a fully covered (with fully immobile interface) bubble at 𝐴𝑟 = 4.28 ⋅ 10 2 , compared respectively to the correlation eq.( 22) of Mei et al. [START_REF] Mei | A note on the history force on a spherical bubble at finite reynolds number[END_REF] for a clean bubble and the correlation eq.( 23) of Clift et al. [START_REF] Clift | Bubbles, Drops and Particles[END_REF] for a solid sphere. Spatial convergence of the drag coefficient and the contamination angle of a partially contaminated bubble, at same 𝐴𝑟 and 𝑀𝑎 = 0.5. 

𝐶 * 𝐷 = 𝐶 𝐷 -𝐶 𝑐𝑙𝑒𝑎𝑛 𝐷 𝐶 𝑠𝑜𝑙𝑖𝑑 𝐷 -𝐶 𝑐𝑙𝑒𝑎𝑛 𝐷 , ( 24 
)
𝐶 * 𝐷 -𝑆𝐽 = 1 2𝜋 [ 2 ( 𝜋 -𝜃 𝑐𝑎𝑝 ) + 𝑠𝑖𝑛 ( 𝜃 𝑐𝑎𝑝 ) + 𝑠𝑖𝑛 ( 2𝜃 𝑐𝑎𝑝 ) - 1 3 𝑠𝑖𝑛 ( 3𝜃 𝑐𝑎𝑝 ) ] , ( 25 
)
It has previously been shown that drag coefficients of bubbles at large Reynolds numbers fit also to this correlation [START_REF] Cuenot | The effects of slightly soluble surfactants on the flow around a spherical bubble[END_REF][START_REF] Takemura | Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble[END_REF], with slight discrepancies due to the different hydrodynamic conditions. Drag coefficients obtained in this study at different Marangoni numbers are plotted in fig. 3, and are also in good agreement with eq. [START_REF] Kang | A boundary condition capturing method for multiphase incompressible flow[END_REF]. Numerical details about the spatial convergence of our results can be found in table 2. Note that figure 3 shows that a drag coefficient equal to that of a solid sphere can be reached even if the interface is not fully immobile, provided that 𝜃 𝑐𝑎𝑝 < 𝜋∕3, as observed in [START_REF] Piedfert | Numerical simulations of a rising drop with shape oscillations in the presence of surfactants[END_REF] in the case of contaminated liquid droplets.

In this work, a further analysis of the impact of surfactants on the local hydrodynamics is proposed, hereafter. For this purpose, tangential velocity profiles along the interface are plotted in fig. 4 for different couples (𝐴𝑟, 𝑀𝑎). The velocities 𝑢 𝑠 are made dimensionless with the maximum velocity at the bubble surface for a clean bubble, which depends only on 𝑅𝑒 as shown in [START_REF] Legendre | On the relation between the drag and the vorticity produced on a clean bubble[END_REF],

𝑢 𝑐𝑙𝑒𝑎𝑛 𝑚𝑎𝑥 = 1 2 16 + 3.315𝑅𝑒 0.5 + 3𝑅𝑒 16 + 3.315𝑅𝑒 0.5 + 𝑅𝑒 𝑈 ∞ . ( 26 
)
Fig. 4 shows that, for a clean bubble, the maximal value of the normalized 𝑢 𝑠 , denoted as 𝑢 𝑠 𝑚𝑎𝑥 , is in perfect agreement to 1, and decreases depending on the degree of the interface contamination: the larger the portion of immobile interface (i.e the higher the coverage rate), the smaller the maximum interface velocity. In particular, the normalization by 𝑢 𝑐𝑙𝑒𝑎𝑛 𝑚𝑎𝑥 permits to remove the dependency on 𝑅𝑒, which varies significantly between the different presented cases from 11 to 60. Thus, the ratio 𝑢 * 𝑚𝑎𝑥 = 𝑢 𝑠 𝑚𝑎𝑥 ∕𝑢 𝑐𝑙𝑒𝑎𝑛 𝑚𝑎𝑥 is a function of 𝜃 𝑐𝑎𝑝 only. It can be noted that the velocity decrease from the clean profile is smooth for 𝜃 𝑐𝑎𝑝 > 1.5 while it is stronger at larger coverage rates.To quantify this local aspect, for all our simulation points in the range 10 < 𝑅𝑒 < 100, the values of

𝑢 *
𝑚𝑎𝑥 are plotted as a function of 𝜃 𝑐𝑎𝑝 in fig. 5 by including other data from [START_REF] Cuenot | The effects of slightly soluble surfactants on the flow around a spherical bubble[END_REF] and [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF]. A master curve which gathers all these results is noticeable, whatever the 𝐴𝑟, 𝑅𝑒 and 𝑀𝑎 values in this range. Hence, the following fitting function is proposed to predict this dimensionless maximum velocity, which varies between 0 and 1:

𝑢 * 𝑚𝑎𝑥 = 0.5216 tanh(1.8 𝜃 0.85 𝑐𝑎𝑝 -𝜋∕2) + 0.4784 (27) It is confirmed that 𝑢 *
𝑚𝑎𝑥 does not change in the region of small contamination (𝜃 𝑐𝑎𝑝 ≥ 3𝜋∕4) while it significantly varies for 𝜃 𝑐𝑎𝑝 ≤ 𝜋∕4 when the coverage rate of the interface is high, despite the fact that the drag coefficient is already that of a solid sphere in this region. The scaling of 𝑢 * 𝑚𝑎𝑥 will be further used in this paper to predict the Sherwood number around contaminated bubbles. The only required parameter to compute 𝑢 * 𝑚𝑎𝑥 is the contamination angle, which is plotted in fig. 6 as a combined function of both the Reynolds number and the Marangoni numbers (the latter being defined based on 𝑈 ∞ for this plot). It can be seen that the latter gathers all our simulation points, for Reynolds numbers between 10 and 100. It shows that 𝜃 𝑐𝑎𝑝 is mainly given by the 𝑀𝑎 parameter, but also involves a correction due to inertial effects through 𝑅𝑒.

Such a master curve reveals that, in the range of the investigated parameters, when the interface is fully immobile (𝜃 𝑐𝑎𝑝 = 0), there exists a threshold value of 𝑀𝑎 1.55 ∕𝑅𝑒 0.6 for which a further increase of 𝑀𝑎 (by increasing Γ for example) has no impact on the hydrodynamics anymore. This is consistent with the experimental results of Bel Fdhila et al. [START_REF] Bel Fdhila | The effect of surfactant on the rise of a spherical bubble at high reynolds and peclet numbers[END_REF] and Jimenez et al. [START_REF] Jimenez | Oxygen mass transfer and hydrodynamic behaviour in wastewater: Determination of local impact of surfactants by visualization techniques[END_REF] where the bubble rising velocity was found to be independent of the (bulk) surfactant concentration after a given value. In an experimental configuration, by measuring 𝑈 ∞ and deducing 𝜃 𝑐𝑎𝑝 (from fig. 3), the plot of fig. 6 can provide an estimate of the average surface concentration of surfactants at the interface, which is a quantity involved in 𝑀𝑎 and difficult to measure. 

Effects of surfactants on mass transfer: investigation on the Sherwood number

In this section, the mass transfer rate around the contaminated bubble is quantified. First, simulations for the clean configuration and the fully contaminated bubble are performed to validate the mass transfer solver and the size of the mesh required depending on the Péclet number value. Indeed, to capture thin mass boundary layers corresponding to high 𝑃 𝑒, a very refined Cartesian mesh is required as illustrated in 1. After validation, a parametric study is carried out by varying 𝑆𝑐 for each contaminated bubble of table 1. Then, to evaluate the average mass flux, the Sherwood number 𝑆ℎ is computed once it reaches a constant value, by the following surface integral,

𝑆ℎ = 𝑑 𝐷 (𝐶 𝑖𝑛𝑡 -𝐶 ∞ ) 1 𝑆 ∬ 𝑆 -𝐷 ⃗ ∇𝐶 ⋅ ⃗ 𝑛 d𝑆 . ( 28 
)

Mass transfer around a clean and a fully-contaminated bubble

The two extreme cases of mass transfer around a bubble with fully-mobile (clean bubble) or fully-immobile (solidlike case) interface are considered in this section, as they serve as reference cases for the intermediate regimes of contamination in the next section.

Concerning the case of a clean bubble, at large 𝑃 𝑒 and 𝑅𝑒, the mass transfer rate can be quantified by the potential flow solution of Boussinesq [START_REF] Boussinesq | Calcul du pouvoir refroidissant des courants fluides[END_REF], which is the dimensionless form of the Higbie's penetration theory [START_REF] Higbie | The rate of absorption of a pure gas into a still liquid during short periods of exposure[END_REF], showing that 𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 tends towards 2∕ √ 𝜋𝑃 𝑒 1∕2 . Indeed, such a scaling can be found by balancing the characteristic time of advection 𝜏 𝑎𝑑𝑣 = 𝑑∕𝑈 𝑐 (defined by considering that the characteristic convection velocity 𝑈 𝑐 ∼ 𝑈 ∞ is the tangential velocity of the fluid along the mobile interface, of order of the bubble 

𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 𝑑∕𝛿 𝑐𝑙𝑒𝑎𝑛 ∼ 𝑅𝑒 1∕2 𝑆𝑐 1∕2 (29) 
from the film theory.

For intermediate values of 𝑃 𝑒 and 𝑅𝑒, the mass transfer around a clean bubble can be computed from the relation proposed by Takemura and Yabe [START_REF] Takemura | Gas dissolution process of spherical rising bubbles[END_REF], which includes an empirical correction the Boussinesq solution, established from cases at 𝑅𝑒 < 100 and 𝑃 𝑒 > 1,

𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 1 = ( 2 √ 𝜋 ) [ 1 - 2 3 1 (1 + 0.09𝑅𝑒 2∕3 ) 0.75 ] 0.5 × (2.5 + 𝑃 𝑒 1∕2 ) . ( 30 
)
Another correlation has been proposed by Colombet al. [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF] for a complete range of Reynolds and Péclet numbers,

𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 2 = 1 + [ 1 + ( 4 3𝜋 
) 2∕3 (2 𝑃 𝑒 𝑚𝑎𝑥 ) 2∕3 ] 3∕4 , (31) 
satisfying both the Boussinesq limit and the opposite limit in the pure diffusion case, and defined by using 𝑃 𝑒 𝑚𝑎𝑥 which is the Péclet number based on the maximum velocity at the bubble surface computed from eq. ( 26). According to the authors, the latter parameter is the most relevant one to describe external (or internal) mass transfer of a rising bubble in a stagnant liquid. Note that eq. ( 30) and [START_REF] Legendre | On the relation between the drag and the vorticity produced on a clean bubble[END_REF] give very close prediction of 𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 , with a discrepancy below 5 %, even in a larger range of 𝑅𝑒 than that given by Takemura and Yabe in their original article (𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 1 being always slightly smaller than 𝑆ℎ 𝑐𝑙𝑒𝑎𝑛

2

). Numerical results of this work are compared to the predictions of eq. ( 31) in fig. 7 

Table 3

Spatial convergence on the Sherwood number at 𝜃 𝑐𝑎𝑝 = 0 for 𝑆𝑐 = 30 and 𝑆𝑐 = 60, compared to the prediction of eq. ( 30) and ( 31) for a clean bubble.

at 𝑅𝑒 = 20 and 𝑆𝑐 = [1 -1000]. A good agreement is obtained, with maximal differences of about 10 %. By increasing the Schmidt number, a thinner mesh is required to accurately capture the mass flux at the interface in direct numerical simulations (without introducing subgrid-scale models for mass transfer as in [START_REF] Bothe | A volume-of-fluid-based method for mass transfer processes at fluid particles[END_REF][START_REF] Weiner | Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles[END_REF]). The spatial convergence is shown in table 3, and our numerical results are observed to be properly converged provided the mass boundary layer is described by at least ten mesh cells.

Concerning mass transfer around a fully-contaminated bubble (i.e. with a fully-immobile interface), Takemura and Yabe [START_REF] Takemura | Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water[END_REF] have shown that the corresponding Sherwood number is the same as for the case of a solid sphere. In this extreme case, 𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 scales differently than 𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 . Indeed, the characteristic convection velocity for interfacial mass transfer scales in that case as 

𝑈 𝑐 = 𝑈 ∞ 𝛿 𝑠𝑜𝑙𝑖𝑑
𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 ∼ 𝑑∕𝛿 𝑠𝑜𝑙𝑖𝑑 𝑚 ∼ 𝑅𝑒 1∕2 𝑆𝑐 1∕3 . ( 32 
)
It can be noted, by comparing eq. ( 32) and eq. ( 29), that the exponent of the Schmidt number differs in between the case of a solid sphere compared to that of a clean bubble (whereas that of 𝑅𝑒 is the same), explaining that the mass transfer rate is smaller in the former case at the same values of 𝑅𝑒 and 𝑃 𝑒, with a thicker average mass boundary layer around the bubble with fully immobile interface. In this way, the Sherwood number around a fully-contaminated bubble can be described by the correlation of Clift et al. [START_REF] Clift | Bubbles, Drops and Particles[END_REF], obtained from numerical simulations,

𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 = 1 + 𝑅𝑒 0.41 𝑆𝑐 1∕3 ( 1 + 1 𝑃 𝑒 ) 1∕3 , ( 33 
)
to describe the transfer around a solid sphere at 𝑅𝑒 ≤ 400 and 0.25 ≤ 𝑆𝑐 ≤ 100. Results from our simulations and the prediction of eq. ( 33) on 𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 are compared in fig. simulations and eq.( 33), the discrepancy being of approximately 0.4 %.

In the following section, the case of a partially contaminated bubble is addressed.

Global Sherwood number for a contaminated bubble

A parametric study is carried out by varying the Schmidt number, at given values of the couple (𝐴𝑟, 𝑀𝑎). From the validation tests, the range 𝑆𝑐 = [5 -70] has been chosen in order to satisfy the mesh criteria permitting an accurate computation of 𝑆ℎ (the corresponding meshes have ten points in the mass boundary layer, for a total of about one million points in the whole domain).

For two different values of 𝐴𝑟, fig. 9a and 9b plots the evolution of both the Sherwood and the Reynolds numbers when increasing 𝑀𝑎 i.e. the degree of contamination of the interface from the fully-mobile to the fully-immobile condition, as a function of the resulting 𝜃 𝑐𝑎𝑝 . Both 𝑅𝑒 and 𝑆ℎ are divided by the value related to the clean case defined as the case at same 𝐴𝑟 and 𝑀𝑎 = 0, in order to highlight the deviation of the mass transfer from the reference of the clean bubble. At a given 𝐴𝑟, such numerical experiments correspond to experimental conditions describing a bubble of same physical parameters except its surface concentration of adsorbed surfactants. In that case, it can be seen that 𝑅𝑒 is divided approximately by a factor 2 in between the two extreme interface mobility conditions. Moreover, at a given 𝑆𝑐, 𝑆ℎ decreases when increasing 𝑀𝑎 (thus decreasing 𝜃 𝑐𝑎𝑝 ) from the clean to the fully-contaminated bubble case, a strong correlation being noticed between the decrease of the ratios 𝑆ℎ∕𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 and 𝑅𝑒∕𝑅𝑒 𝑐𝑙𝑒𝑎𝑛 . However, 𝑆ℎ∕𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 can be divided by a factor larger than 2, and the higher 𝑆𝑐, the higher this reduction factor. The influence of 𝑆𝑐 needs to be understood by analyzing the 𝑆ℎ values at same 𝑅𝑒.

For this purpose, the global Sherwood numbers at 𝐴𝑟 = 4.28 ⋅ 10 2 are plotted on fig. 10, 𝑅𝑒 being the same for the points at same 𝜃 𝑐𝑎𝑝 (on vertical lines). Under this condition of same 𝑅𝑒, it clearly appears that 𝑆ℎ does not always follow the same function of 𝑆𝑐. Indeed, at 𝜃 𝑐𝑎𝑝 = 𝜋 (clean case), when 𝑆𝑐 is increased from 5 to 70 (multiplied by [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF], 𝑆ℎ is increased by a factor 3.7 = 14 1∕2 ; at 𝜃 𝑐𝑎𝑝 = 1.5, 𝑆ℎ is increased by a factor 2.9 and at 𝜃 𝑐𝑎𝑝 = 0 (solid-like case) the factor is of 2.3 ≈ 14 1∕3 . Thus, when a bubble is covered by surfactants, another effect than the Reynolds number decrease due to the partial immobilization of the interface explains the decrease of 𝑆ℎ: at a given 𝑅𝑒, the influence of 𝑆𝑐 depends on 𝜃 𝑐𝑎𝑝 . Indeed, the rate of variation of 𝑆ℎ as a function of 𝑆𝑐 lies between the two limits of 𝑆𝑐 1∕2 , as for a clean bubble, and 𝑆𝑐 1∕3 , as for a solid sphere, as shown in the previous section, by monotonously decreasing in between as evidenced here. The different behaviours in terms of 𝑆𝑐, induced by the partial immobilization of the interface, can be spatially observed on the concentration fields. At 𝐴𝑟 = 4.28 ⋅ 10 2 , the dimensionless solute concentration in the liquid phase, dimensionless surfactant concentration on the bubble surface and velocity fields are plotted at 𝑆𝑐 = 40 in fig. 11, for 𝑀𝑎 = 0.3 on the left, 𝑀𝑎 = 0.7 in the middle and 𝑀𝑎 = 2 on the right. For each case, based on the concentration fields, at the angular position corresponding to 𝜃 𝑐𝑎𝑝 , one can observe a singularity of the boundary layer thickness along the interface which suddenly becomes thicker for 𝜃 ≥ 𝜃 𝑐𝑎𝑝 , i.e. at the rear part where the interface velocity drops to zero. The average thickness of the mass boundary layer of a partially contaminated bubble therefore lies between the two extreme cases of clean bubble and solid sphere, in consistency with the variation of the exponent of 𝑆𝑐 in 𝑆ℎ. However, whatever the contamination angle, it is noted in fig. 11 that the mass boundary layer is always thinnest at the front part of the bubble, resulting that it is the location where the maximum part of the transfer takes place around the bubble, similarly to the case of clean bubbles [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF][START_REF] Figueroa-Espinoza | Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid[END_REF].

Profiles of local mass flux

The distribution of the local mass flux is analyzed, by plotting the profiles of the local Sherwood number,

𝑆ℎ 𝑙𝑜𝑐 = -𝑑 ⃗ ∇𝐶 ⋅ ⃗ 𝑛 (𝐶 𝑖𝑛𝑡 -𝐶 ∞ ) , ( 34 
)
around the interface in fig. 12, for the case at constant 𝑆𝑐 = 70 and 𝐴𝑟 = 4.28 ⋅ 10 2 but at different Marangoni numbers (thus at different 𝑅𝑒). In the part free of surfactants, the mass flux follows the profile of the clean bubble but with a lower intensity than for the fully mobile case. It is confirmed that the main part of the transfer is always due to the front part of the bubble. Then 𝑆ℎ 𝑙𝑜𝑐 drops around 𝜃 𝑐𝑎𝑝 and follows a different evolution for 𝜃 > 𝜃 𝑐𝑎𝑝 . Indeed, the local flux profile presents a singularity around 𝜃 𝑐𝑎𝑝 as a consequence of the transition of the mass boundary layer thickness depending on the local interface mobility, as it was also mentioned in [START_REF] Jia | Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change[END_REF].

One can notice that the local mass flux profiles are different at 𝑀𝑎 = 2 and 𝑀𝑎 = 3, whereas (i) the 𝑅𝑒 of both cases is the same (equal to the one of a solid sphere as shown in figure 3) and (ii) the evolution as 𝑆𝑐 already corresponds to an evolution as 𝑆𝑐 1∕3 from the analysis of the corresponding points (at the two smallest 𝜃 𝑐𝑎𝑝 values) in fig. 10. However, the local hydrodynamics is different between these two cases, as shown by the tangential velocity profiles at the interface given in fig. 4: the case at 𝑀𝑎 = 2 still presents a mobile zone along its interface (𝜃 𝑐𝑎𝑝 = 0.35), with a maximal velocity strongly reduced (𝑢 * 𝑚𝑎𝑥 = 0.1) compared to what it would be at same 𝑅𝑒 for a clean bubble based on fig. 5, whereas at 𝑀𝑎 = 3 the interface is fully immobile. This is sufficient to explain that the local flux differ around the North pole between these two cases. On this example, the consequence in the global Sh is small but, at larger 𝑆𝑐 and 𝑅𝑒, similar differences in the local flux of the mobile zone lead to higher discrepancies in the global 𝑆ℎ. For example, it is the case in fig. 9a for the two points of 𝜃 𝑐𝑎𝑝 = 0 and 𝜋∕4, at 𝑆𝑐 = 20 and 𝐴𝑟 = 1.57 ⋅ 10 3 , for which 𝑅𝑒 is the same and the difference on 𝑆ℎ is about 10%, and other examples with more significant differences can be found with the numerical results of [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF]: at 𝑆𝑐 = 500 and 𝑅𝑒 = 100, two cases at 𝜃 𝑐𝑎𝑝 = 0 and 0.75 respectively give 𝑆ℎ = 59.6 and 80.4.

The global 𝑆ℎ for contaminated bubbles can definitely not be predicted only by the knowledge of the global parameters 𝑅𝑒 and 𝑆𝑐. Let us now analyze the separated contributions on the transfer flux from the immobile part (from 𝜃 = 𝜃 𝑐𝑎𝑝 to 𝜋) and from the mobile part of the interface (integrated from 𝜃 = 0 to 𝜃 𝑐𝑎𝑝 ), by comparing them to the integrals over the same limits for the respective cases of a solid sphere and a clean bubble used as references at same 𝑅𝑒 and 𝑆𝑐.

Concerning the immobile zone of the interface, between the cases at 𝑀𝑎 = 1 (partially-mobile) and 𝑀𝑎 = 3 (fullyimmobile) from fig. 12, at same 𝑆𝑐 and close 𝑅𝑒, the mass flux integrated only from 𝜃 = 𝜃 𝑐𝑎𝑝 to 𝜃 = 𝜋 is smaller at 𝑀𝑎 = 1 than the same integral for the solid-like case at 𝑀𝑎 = 3 while the 𝑅𝑒 at 𝑀𝑎 = 1 is even larger by 6%. This is probably a consequence of the presence of the hydrodynamic singularity at 𝜃 𝑐𝑎𝑝 that thickens the mass boundary layer around this point, emphasized here in this case at

𝑀𝑎 = 1.
Concerning the mobile zone of the interface, fig. 13 is in- ). However, even by considering only the mobile zone, for the case at 𝑀𝑎 = 0.7, the mass flux integrated between 𝜃 = 0 and 𝜃 𝑐𝑎𝑝 ≈ 𝜋∕2 is lower than the same integral for the clean bubble, the values of 𝑆ℎ 𝑙𝑜𝑐 being smaller at each 𝜃 for the case at 𝑀𝑎 = 0.7 but with a stronger decrease close to 𝜃 𝑐𝑎𝑝 . Note that, for this case, the maximal velocity of the fluid at the interface is 𝑢 * 𝑚𝑎𝑥 = 0.8. For cases at larger 𝑀𝑎 which have a smaller 𝜃 𝑐𝑎𝑝 and characterized by a lower 𝑢 * 𝑚𝑎𝑥 , such a local decrease of the flux in the mobile zone more significantly impacts 𝑆ℎ as the bubble front is the place of maximal transfer rate.
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Thus, these observations prove that the global 𝑆ℎ cannot be found by integrating the local flux of the clean bubble case from 𝜃 = 0 to 𝜃 𝑐𝑎𝑝 and that of the solid sphere from 𝜃 = 𝜃 𝑐𝑎𝑝 to 𝜋. Surprisingly, the respective contributions on the mass flux from both the surfactant-free and the covered interface zones are smaller than their respective references. This can be related to the fact that the local hydrodynamics features are impacted by the Marangoni stresses at the bubble surface: a singularity exists at the angle 𝜃 𝑐𝑎𝑝 , the tangential velocity profile is modified in the remaining mobile zone, the change of its intensity being characterized by 𝑢 * 𝑚𝑎𝑥 in particular and depending on the 𝜃 𝑐𝑎𝑝 value based on the hydrodynamic study.

Prediction of the Sherwood number

In order to quantify the global 𝑆ℎ for partially-contaminated bubbles, some attempts have been made in the literature, based on the knowledge of 𝑅𝑒, 𝑆𝑐 and 𝜃 𝑐𝑎𝑝 , but no general expression have been derived valid for all conditions.

The approach of Painmanakul et al. [START_REF] Painmanakul | Effect of surfactants on liquid-side mass transfer coefficients[END_REF] consisted into considering that the global mass transfer rate results from a weighting system depending on the rate of surface covered by surfactants, by taking into account the global Sherwood number of a clean bubble and a solid sphere,

𝑆ℎ 𝑐𝑜𝑛𝑡 = 𝛼𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 + (1 -𝛼)𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 , ( 35 
)
where 𝛼 is the rate of surface coverage. By using this approach and based on our numerical results on 𝑆ℎ, it is seen that eq. ( 35) always underestimates the Sherwood number values in the partially contaminated regime (1 < 𝜃 𝑐𝑎𝑝 < 2.5) between 15% and 20%. Indeed, such a law provides too much weigh to the Sherwood number of a solid sphere, while the maximal intensity of transfer takes place in the front part of the partially contaminated bubble, as already highlighted from fig. 11.

Another approach was considered by Takemura and Yabe [START_REF] Takemura | Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water[END_REF], who introduced the reduced Sherwood number defined in a similar way as the reduced drag coefficient, 25) in [START_REF] Sadhal | Stokes flow past bubbles and drops partially coated with thin films. part 1 : Stagnant cap of surfactant filmexact solution[END_REF] and the lower limit defined by equation [START_REF] Mougin | The generalized kirchoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow[END_REF] in [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF].

𝑆ℎ * = 𝑆ℎ -𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 -𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 . ( 36 
)
Reynolds and Schmidt numbers, this reduced Sherwood number fits well with the same expression as the drag coefficient, equation [START_REF] Kang | A boundary condition capturing method for multiphase incompressible flow[END_REF]. For higher Reynolds numbers, the authors proposed in [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF] another function of 𝐶 * 𝐷 ,

𝑆ℎ * 𝑙𝑜𝑤𝑒𝑟 = 1 -(1 -(𝐶 * 𝐷 ) 2 ) 0.5 , (37) 
to define another limit for the cases at high Schmidt numbers. The reduced Sherwood numbers of two sets of our data at two different 𝐴𝑟 values from our simulations are plotted in fig. 14. The results are in good agreement with the conclusion from Dani et al. [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF] as they are well included in the two limits. This description enables a visualization of the results without the dependency on 𝑅𝑒, which is involved in the two limits 𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 and 𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 . One could consider that the contribution of the Schmidt number is also well taken into account in these limiting values, as the scaling laws of the mass boundary layers in the case of a clean bubble and a solid sphere are included in the corresponding correlations. However, fig. 14 and results from [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF] prove that an impact of this parameter is remaining as the points are dispersed in between the two limits depending on the 𝑆𝑐 value, and this spreading is larger for intermediate values of 𝜃 𝑐𝑎𝑝 than for low or high 𝜃 𝑐𝑎𝑝 angles. Consequently, considering a reduced Sherwood number 𝑆ℎ * may not be the easier and most appropriate parameter to establish a general correlation.

An alternative for the prediction of the global 𝑆ℎ is now proposed, by combining global and local parameters. For both a clean bubble and a solid particle, the scaling of the mass boundary layer thickness in eq. ( 29) and ( 32) reveals that the Reynolds number is always involved with a power of 1∕2. However, the contribution of the Schmidt number varies between 𝑆𝑐 1∕2 and 𝑆𝑐 1∕3 for these two extreme cases and, in between, it has been shown in the previous section that the contribution of the Schmidt number (at same 𝑅𝑒) can be quantified as a function of the contamination angle 𝑆𝑐 𝑓 (𝜃 𝑐𝑎𝑝 ) , with 𝑓 (𝜃 𝑐𝑎𝑝 ) an increasing function from 1∕3 to 1∕2. In addition, to predict 𝑆ℎ for partially contaminated bubbles, it is also necessary to take into account the change in the local hydrodynamics which depends on the contamination angle and that can significantly impact the local transfer rate in both the mobile and the immobile part of the interface, as emphasized from the analysis of the local fluxes around the interface. In this work, it is proposed to quantify the impact of surfactants on the hydrodynamics through the ratio 𝑢 * 𝑚𝑎𝑥 of the maximal fluid velocity at the interface over its value for a clean bubble, this dimensionless ratio being a function of 𝜃 𝑐𝑎𝑝 and varying between 0 and 1.

In this way, by gathering all the effects analyzed previously, the following expression is proposed to predict the dimensionless global mass flux around a contaminated bubble

𝑆ℎ 𝑐𝑜𝑛𝑡 = 2 + 𝑅𝑒 1∕2 𝑆𝑐 𝑓 (𝜃 𝑐𝑎𝑝 ) [ 𝑢 * 𝑚𝑎𝑥 1.5 2 √ 𝜋 𝑔 𝑐𝑙𝑒𝑎𝑛 + ( 1 -𝑢 * 𝑚𝑎𝑥 ) 1.2 𝑔 𝑠𝑜𝑙𝑖𝑑 ] ( 1 -𝑢 * 𝑚𝑎𝑥 ) 1.2 , ( 38 
)
with

𝑔 𝑐𝑙𝑒𝑎𝑛 = ( 1 - 2 3 1 (1 + 0.09𝑅𝑒 2∕3 ) 1.1 ) 0.45 , ( 39 
)
𝑔 𝑠𝑜𝑙𝑖𝑑 = 𝑅𝑒 -0.09

( 1 + 1 𝑅𝑒 𝑆𝑐 ) 1∕3 , ( 40 
) 𝑓 (𝜃 𝑐𝑎𝑝 ) = 1 3 -0.014 𝜃 2 𝑐𝑎𝑝 + 1 𝜋 ( 1 6 +0.014𝜋 2 ) 𝜃 𝑐𝑎𝑝 . ( 41 
)
The function 𝑓 , used as exponent of 𝑆𝑐, in eq. ( 41), ensures a continuous transition of the thickness of the mass boundary layer from that around a clean interface to an immobile surface. Note that 𝑓 (𝜃 𝑐𝑎𝑝 ) is found to be more relevant than a function of 𝑢 * 𝑚𝑎𝑥 to reproduce the variations of 𝑆ℎ as a function of 𝑆𝑐, when including all the simulation points.

The expression given by eq. ( 38) ensures that the Sherwood number tends towards the limit of the 𝑆ℎ for a solid sphere by means of 𝑔 𝑠𝑜𝑙𝑖𝑑 when 𝜃 𝑐𝑎𝑝 → 0 for which 𝑢 * 𝑚𝑎𝑥 = 0, and towards the limit of the clean bubble thanks to 𝑔 𝑐𝑙𝑒𝑎𝑛 when 𝜃 𝑐𝑎𝑝 → 𝜋 for which 𝑢 * 𝑚𝑎𝑥 = 1. On the one hand, the function 𝑔 𝑠𝑜𝑙𝑖𝑑 comes from the prediction of eq.( 33) from Clift et al. [START_REF] Clift | Bubbles, Drops and Particles[END_REF], and brings a small correction in 𝑅𝑒 and 𝑃 𝑒 to the main evolution of 𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 as 𝑅𝑒 1∕2 𝑆𝑐 1∕3 . On the other hand, 𝑔 𝑐𝑙𝑒𝑎𝑛 is another function based on eq.( 30) from Takemura and Yabe [START_REF] Takemura | Gas dissolution process of spherical rising bubbles[END_REF]. Such a writing permits that 𝑆ℎ tends towards the prediction from the potential theory of Boussinesq [START_REF] Boussinesq | Calcul du pouvoir refroidissant des courants fluides[END_REF] for a clean bubble when 𝑅𝑒 and 𝑃 𝑒 tends towards infinite, and 𝑔 𝑐𝑙𝑒𝑎𝑛 is used to correct the main evolution of 𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 as 𝑃 𝑒 1∕2 at moderate 𝑅𝑒. However, note that 𝑔 𝑐𝑙𝑒𝑎𝑛 corresponds here to a slightly modified expression as compared to the original correction term proposed in [START_REF] Takemura | Gas dissolution process of spherical rising bubbles[END_REF] for clean bubbles: it ensures that the prediction of 𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 when 𝑢 * 𝑚𝑎𝑥 = 1 in eq. ( 38) is closer to the correlation proposed by Colombet et al. [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF] at large 𝑅𝑒 and 𝑆𝑐 in the fully mobile case (the discrepancy between all these expressions being only of a few percents), and it allows to obtain a better fit of all the simulation points.

Between the two limits 𝑔 𝑐𝑙𝑒𝑎𝑛 and 𝑔 𝑠𝑜𝑙𝑖𝑑 , the parameter 𝑢 * 𝑚𝑎𝑥 acts as a weigh and ensures the transition between the clean bubble and the solid sphere pre-factors for intermediate contamination angles.

All numerical data from this study (contaminated bubbles by including the extreme cases of clean bubble and the fully-contaminated one), those of [START_REF] Takemura | Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water[END_REF] at 𝑆𝑐 = 500 and 10 ≤ 𝑅𝑒 ≤ 100 for partially-contaminated bubbles and those of [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF] at 1 ≤ 𝑆𝑐 ≤ 500 and 1 ≤ 𝑅𝑒 ≤ 100 are plotted in fig. 15. A very good agreement is obtained with eq.( 38), which permits to gather all the results under a single formulation in a very large range of physical parameters (more Figure 15: Proposed correlation for the Sherwood number around contaminated bubbles, eq. 38 (combined with eq. ( 27) for 𝑢 * 𝑚𝑎𝑥 ), compared to simulations from this study and data from numerical works [START_REF] Takemura | Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water[END_REF] and [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF]. Lines --corresponds to limits 10% above and below the proposed correlation. The correlation is validated for 1 ≤ 𝑅𝑒 ≤ 100, 1 ≤ 𝑆𝑐 ≤ 500 and all 𝜃 𝑐𝑎𝑝 values from 0 to 𝜋. than 4 orders of magnitude of variation of Pe, and whatever the angle of contamination), with a maximal discrepancy of 10 % and a coefficient correlation of 0.99. In particular, this correlation is relevant to deal with experimental cases of gasliquid mass transfer at very high Schmidt numbers.

As it was mentioned by Colombet et al. [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF] in the case of a clean bubble, the maximum fluid velocity at the interface is appropriate to describe the mass transfer, and it is shown in this paper that it is also relevant in the case of a contaminated bubble in the stagnant-cap regime. This study therefore brings a new highlight in the role of 𝑢 𝑚𝑎𝑥 : this maximal tangential velocity can be used to quantify the regulation of the mass transfer intensity for partially contaminated bubbles between the rate of a clean bubble and a solid particle, by valuing the contribution from the front part free of surfactants where the main transfer rate takes place.

Note that the proposed correlation is valid without distinguishing the cases where a vortex is present at the bubble rear or not, similarly to the transfer rate correlations around solid particles. Indeed, as mentioned by [START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF] for bubbles with partially mobile interface, flow separation occurs at an angle which depends on 𝜃 𝑐𝑎𝑝 for 𝑅𝑒 ≥ 20. However, eq. [START_REF] Olsen | Mass transfer between bubbles and seawater[END_REF] shows that such detail on the hydrodynamics is not required for the prediction of the global mass transfer rate around partially contaminated bubbles.

Conclusion and perspectives

In this paper, Direct Numerical Simulations have been performed to study the influence of surfactants on mass transfer around bubbles in the stagnant-cap regime. The cou-pling between the hydrodynamics and the Marangoni effect is solved so that the numerical configuration corresponds to the experimental conditions of rising bubbles with different concentrations of adsorbed surfactants, where 𝑅𝑒 and 𝜃 𝑐𝑎𝑝 are not imposed but obtained as results. Computation of the hydrodynamics have first been validated through comparisons on the drag coefficient with previous studies. Then, a local analysis has enabled to predict the decrease of the maximum velocity for the fluid at the interface, that is found to depend only on the angle of contamination in the investigated range of Reynolds numbers 𝑂(10 -100), and which is shown to be one relevant parameter to quantify the mass transfer rate around these contaminated bubbles. A general correlation, eq. 38, has finally been proposed to quantify the Sherwood number between the two limits of the clean and solid-like bubbles in a very large range of 𝑅𝑒 and 𝑆𝑐. It permits to gather all the cases at any coverage rate of the interface, and 𝑆ℎ depends on both global and local parameters: the Reynolds number 𝑅𝑒, the Schmidt number 𝑆𝑐, the angle of contamination 𝜃 𝑐𝑎𝑝 , and the normalized maximum surface velocity 𝑢 * 𝑚𝑎𝑥 . For practical purpose, based on results of the present investigation, 𝑢 * 𝑚𝑎𝑥 can be predicted by using the correlation eq.( 27), which requires only 𝜃 𝑐𝑎𝑝 as input, the latter being a crucial parameter to characterize the hydrodynamics in the stagnant-cap regime. 𝜃 𝑐𝑎𝑝 can be estimated from fig. 3 or fig. 6, by knowing either the rise velocity of the contaminated bubble (then computing the drag coefficient) or the amount of adsorbed surfactants at the interface (the latter can be evaluated by measuring the time scales of the bubble shape oscillation for example, as proposed in [START_REF] Lalanne | Determination of interfacial concentration of a contaminated droplet from shape oscillation damping[END_REF]).

The parametric study reveals the strong transfer rate drop when a bubble is partially contaminated, as compared to the case of a clean bubble at same 𝐴𝑟 and 𝑆𝑐. This decrease can finally be explained by the coupling between (i) the bubble velocity decrease induced by the Marangoni effect (𝑅𝑒 is reduced), and (ii), even at same 𝑅𝑒, local phenomena which depend on the angle of contamination 𝜃 𝑐𝑎𝑝 : when a part of the interface is immobilized, first, the mass boundary layer is thicker in this zone, globally resulting in a lower contribution of the Schmidt number which makes 𝑆ℎ to decrease, secondly the local hydrodynamics in the mobile zone is also affected and contributes again to a decrease of 𝑆ℎ, such impact being characterized by a reduction of the tangential velocity 𝑢 * 𝑚𝑎𝑥 . Note that 𝑆ℎ is mainly sensitive to the hydrodynamic condition in the front part of the interface since it is the region of maximal contribution in the total transfer rate.

In this investigation, no bubble volume decrease due to mass transfer has been considered. The prediction of the mass transfer coefficient in steady conditions, around a bubble of given size, is however relevant to model the slow dissolution of gas bubbles, as a quasi-steady process [START_REF] Tanaka | Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt[END_REF][START_REF] Olsen | Mass transfer between bubbles and seawater[END_REF]. Regarding the impact of surfactants, the present study can be considered as a first stage in the understanding of the transfer decrease in the presence of soluble surfactants leading to the stagnant-cap regime, reached here under the insolu-ble limit (no adsorption/desorption fluxes). A description of the transient adsorption and desorption processes of soluble surfactants, allowing for a complete comparison between experimental and numerical results, would be complementary to this work.
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 1 Figure 1: Schematization of the stagnant-cap regime for a spherical rising bubble in a quiescent liquid. Adsorbed surfactants are advected to the bubble rear where they form a constant stagnant-cap angle 𝜃 𝑐𝑎𝑝 in steady state.

Figure 2 :

 2 Figure 2: Surfactant concentration and tangential velocity at the bubble surface at 𝐴𝑟 = 4.28 ⋅ 10 2 and 𝑀𝑎 = 0.3, corresponding to 𝑅𝑒 = 15.04.

Figure 3 :

 3 Figure 3: Comparison between reduced drag coefficients from this study to the correlation proposed by Sadhal and Johnson [49], at different Archimedes and Marangoni numbers.

Figure 4 :

 4 Figure 4: Dimensionless velocity profiles along the bubble surface at two different Archimedes numbers and at different Marangoni numbers for each of them. -: 𝐴𝑟 = 4.28 ⋅ 10 2 , --: 𝐴𝑟 = 1.57 ⋅ 10 3 .

Figure 5 :

 5 Figure 5: Evolution of the maximal velocity 𝑢 * 𝑚𝑎𝑥 at the bubble surface at different contamination angles.

Figure 6 :

 6 Figure 6: Evolution of the stagnant-cap angle as a function of the Marangoni and Reynolds numbers, at three different Archimedes numbers. In this figure, 𝑀𝑎 is defined on the rising velocity reached in the steady-state of the contaminated bubble.

Figure 7 :

 7 Figure 7: Comparison between the global Sherwood number obtained for a clean bubble at 𝑅𝑒 = 20 and the correlation (31) from [10].

  velocity gradient 𝑈 ∞ ∕𝛿 𝑠𝑜𝑙𝑖𝑑 ℎ within the hydrodynamic boundary layer (of thickness 𝛿 𝑠𝑜𝑙𝑖𝑑 ℎ ∼ 𝑑∕ √ 𝑅𝑒) is exerted at the scale of the mass boundary layer of thickness 𝛿 𝑠𝑜𝑙𝑖𝑑 𝑚 . By equalizing the convection 𝑑∕𝑈 𝑐 and diffusion time scales (𝛿 𝑠𝑜𝑙𝑖𝑑 𝑚 ) 2 ∕𝐷, a scaling law of 𝛿 𝑠𝑜𝑙𝑖𝑑 𝑚 can be obtained. By considering that 𝑆ℎ 𝑠𝑜𝑙𝑖𝑑 ∼ 𝑑∕𝛿 𝑠𝑜𝑙𝑖𝑑 𝑚 from the film theory, it results that

  Reynolds number depending on the contamination angle.

Figure 9 :

 9 Figure 9: Sherwood and Reynolds numbers at 𝐴𝑟 = 4.28 ⋅ 10 2 and 𝐴𝑟 = 1.57 ⋅ 10 3 . The reference values 𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 and 𝑅𝑒 𝑐𝑙𝑒𝑎𝑛 correspond to the values obtained for the case at same parameters (same 𝐴𝑟 and 𝑆𝑐 in particular) except that 𝑀𝑎 = 0 (without surfactants).

Figure 10 :

 10 Figure10: Global Sherwood number at 𝐴𝑟 = 4.28⋅10 2 for each simulation of (𝐴𝑟, 𝑀𝑎), at different Schmidt numbers (each point corresponds to a simulation). The Reynolds number corresponding to these simulations varies in the range[START_REF] Cuenot | The effects of slightly soluble surfactants on the flow around a spherical bubble[END_REF][START_REF] Dalmon | Fluids-membrane interaction with a full eulerian approach based on the level set method[END_REF][START_REF] Dani | Direct numerical simulation of mass transfer from spherical bubbles : the effect of interface contamination at low reynolds number[END_REF][START_REF] Dani | Effect of spheroid bubble interface contamination on gas-liquid mass transfer at intermediate reynolds numbers: from dns to sherwood numbers[END_REF][START_REF] Dendy | Black box multigrid[END_REF][START_REF] Fedkiw | A Nonoscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)[END_REF][START_REF] Figueroa-Espinoza | Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid[END_REF][START_REF] Fleckenstein | Simplified modeling of the influence of surfactants on the rise of bubbles in vof-simulations[END_REF][START_REF] Frumkin | On surfactants and interfacial motion[END_REF][START_REF] Gibou | A second-orderaccurate symmetric discretization of the poisson equation on irregular domains[END_REF].

Figure 11 :

 11 Figure 11: Mass transfer around a partially contaminated bubble and velocity field at 𝐴𝑟 = 4.28 ⋅ 10 2 , 𝑆𝑐 = 40 and at different Marangoni numbers : 𝑀𝑎 = 0.3 on the left (leading to 𝑅𝑒 = 15.0), 𝑀𝑎 = 0.7 (𝑅𝑒 = 13.0) in the middle and 𝑀𝑎 = 2 (𝑅𝑒 = 11.6) on the right. Dimensionless solute concentration in the liquid and dimensionless surfactant concentration at the interface are plotted.

Figure 12 :

 12 Figure 12: Local Sherwood number along the bubble surface at 𝐴𝑟 = 4.28⋅10 2 , 𝑆𝑐 = 70 and at different Marangoni numbers (corresponding to different Reynolds numbers). Note that, at these 𝑅𝑒 values between 11 and 20, there is no recirculation vortex at the rear part of the bubble.

Figure 13 :Figure 14 :

 1314 Figure 13: Comparison of the profile of local Sherwood between a clean bubble and a partially contaminated bubble (𝜃 𝑐𝑎𝑝 = 1.49) at same Reynolds number 𝑅𝑒 = 13.1 and at 𝑆𝑐 = 15.

  DNS of mass transfer around a spherical contaminated bubble in the stagnant-cap regime

	Nomenclature		
	Δ 𝑠	surface laplacian	𝜇	dynamic viscosity (Pa.s)
	∇ 𝑠	surface gradient	𝜌	density (kg.m -3 )
	Subscripts	𝜎	surface tension (N.m -1 )
	𝑔𝑎𝑠	gas side properties or variables	Superscripts
	𝑙𝑖𝑞	liquid side properties or variables	𝑐𝑙𝑒𝑎𝑛 case of a clean bubble
	𝑠	surface or tangential variables	𝑠𝑜𝑙𝑖𝑑	case of a solid sphere
	Constants	Variables
	𝜎 0	surface tension in a clean configuration (N.m -1 )	D	deformation tensor
	⃗ 𝑔	gravitational acceleration (m.s -2 )	Γ0	initial average surfactants concentration (mol.m -2 )
	𝐷 𝑠	surfactant surface diffusion coefficient (m 2 .s -1 )	Γ	average surfactants concentration (mol.m -2 )
	𝑙 𝑟	domain radial length (m)	𝛿 ℎ	thickness of the hydrodynamics boundary layer (m)
	𝑙 𝑧	domain longitudinal length (m)	𝛿 𝑚	thickness of the mass boundary layer (m)
	𝑅 𝑔	gas constant (J.mol -1 .K -1 )	Γ	surfactants concentration field (mol.m -2 )
	𝑇	temperature (K)	𝜅	interface curvature
	Dimensionless numbers	𝜙	level set function
	𝐴𝑟	Archimedes number	𝜃 𝑐𝑎𝑝	angle of contamination (rad)
	𝐶 𝐷	drag coefficient	⃗ 𝑛	interface normal vector
	𝐶 * 𝐷	normalized drag coefficient	⃗ 𝑢	velocity field (m.s -1 )
	𝑀𝑎	Marangoni number	⃗ 𝑢 𝑖𝑛𝑡	interface velocity (m.s -1 )
	𝑃 𝑒	Péclet number	Γ	extrapolation field of the surfactants concentration
	𝑃 𝑒 𝑚𝑎𝑥 Péclet number based on the maximum interface ve-locity	𝐶	(mol.m -2 ) solute concentration field (mol.m -3 )
	𝑅𝑒	Reynolds number	𝐷	diffusion coefficient (m 2 .s -1 )
	𝑆𝑐	Schmidt number	𝑑	bubble diameter (m)
	𝑆ℎ	Sherwood number	𝑝	pressure field (Pa)
	𝑆ℎ *	normalized Sherwood number	𝑅	bubble radius (m)
	𝑢 * 𝑚𝑎𝑥	dimensionless maximum interface velocity	𝑈 ∞	terminal rising velocity (m.s -1 )
	𝑊 𝑒	Weber number	𝑈 𝑐	characteristic convection velocity (m.s -1 )
	Properties	𝑢 𝑚𝑎𝑥	maximum interface velocity (m.s -1 )
	σ	average surface tension (N.m -1 )	𝑢 𝑠	tangential velocity (m.s -1 )

Table 1

 1 

	𝐴𝑟	𝑀𝑎	𝑅𝑒	𝜃 𝑐𝑎𝑝
	4.28.10 2	0	19.7	𝜋
	4.28.10 2	0.1 18.5 2.34
	4.28.10 2	0.3 15.0 1.97
	4.28.10 2	0.5 13.7 1.73
	4.28.10 2	0.7 13.0 1.49
	4.28.10 2	1	12.2 1.22
	4.28.10 2	2	11.6 0.35
	4.28.10 2	3	11.6	0
	1.57.10 3	0	57.6	𝜋
	1.57.10 3	0.1 56.0 2.42
	1.57.10 3	0.3 44.2 2.08
	1.57.10 3	0.5 38.5 1.87
	1.57.10 3	0.7 35.8 1.64
	1.57.10 3	1	33.4 1.39
	1.57.10 3	2	30.1 0.77
	1.57.10 3	20	29.6	0
	2.81.10 3	0	94.5	𝜋
	2.81.10 3	0.1 97.5 2.42
	2.81.10 3	0.3 68.6 2.13
	2.81.10 3	0.5 57.8 1.91
	2.81.10 3	0.7 53.5 1.65
	2.81.10 3	1	50.5 1.40

Table 2

 2 

	Meshes	References
	256 × 512 512 × 1024 1024 × 2048 𝐶 𝑐𝑙𝑒𝑎𝑛 𝐷	𝐶 𝑠𝑜𝑙𝑖𝑑 𝐷

  for the simulations performed

	𝑆ℎ for different meshes	References
	𝑆𝑐 256	512	1024	𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 1	𝑆ℎ 𝑐𝑙𝑒𝑎𝑛 2
	× 512	×1024	×2048		
	30 24.1	23.8	22.7	22.5	22.4
	60 29.8	34.0	34.5	30.9	31.1

  Comparison between the global Sherwood number obtained for a fully covered bubble (at 𝑅𝑒 = 11.6 and 𝑅𝑒 = 30.1) and the correlation (33) from[START_REF] Clift | Bubbles, Drops and Particles[END_REF], for 𝑆𝑐 < 100.
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8, at two different 𝑅𝑒 and several 𝑃 𝑒 values until 1000. One can observe the very good agreement between the numerical
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