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ABSTRACT The shielding design is one of the most difficult phases in developing an inductive power
transfer system (IPT) for electric vehicles. In this aspect, the combination of metamodeling with a multiobjec-
tive optimization algorithm provides an efficient approach. Here, Polynomial Chaos Expansions (PCE) and
Multigene Genetic Programming Algorithm (MGPA) methods are used and compared to describe the mutual
inductance of the IPT system in the function of the design variables on the shielding. These metamodels are
obtained based on a number of 3D Finite Element Method (FEM) computations. Then, a multiobjective
optimization algorithm coupled with the PCE metamodeling technique is applied to determine the optimal
design variables for a practical shielding design when considering the magnetic coupling as well as the cost
of the shielding as objective functions. Such a multiobjective optimization algorithm based on a particle
swarm algorithm coupled with a metamodel on PCE method is proposed, leading to improve around 104 %
of the mutual inductance M and save 14 % of the cost C for the shielding compared to the initial design.

INDEX TERMS Shielding design, polynomial chaos expansion, multigene genetic programming algorithm,

particle swarm algorithm, inductive power transfer system.

I. INTRODUCTION

An inductive power transfer (IPT) system for recharging
electric vehicles (EV) is a technology that avoids electrical or
mechanical contact. Galvanic isolation and spark-free opera-
tion of the IPT system will further enhance the safety aspects
of charging EVs. It allows both stationary and dynamic
charging [1].

In general, the IPT system uses a transmitter and a receiver
where ferrite cores improve power transfer and work as mag-
netic shielding. At the same time, the EV’s chassis plate also
acts as shielding. It is generally made of two kinds of material
respectively: the first is steel material. In a frequency operated
inan EV charging IPT system, the chassis causes eddy current
losses in the magnetic field generated by the transmitting
coil. Even if a ferrite is installed, there is still a strong mag-
netic flux leakage outside the ferrite core plate [2]; the other
is carbon-fiber laminate (CF). Compared to the steel plate,
carbon fibers are slightly stiffer. Nowadays, carbon fiber
production is expensive, so carbon-laminate composites are
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only used in structures that are entirely performance-oriented.
However, the shielding performances of the CF composite
panels are very poor [3]. Therefore, relying only on the ferrite
plate to shield the magnetic flux leakage is not only expensive
but also often ineffective and heavy for the receiver installed
on the electric vehicles. So an aluminum plate between the
chassis and the ferrite for the receiver is required to keep
the transmission efficiency, minimize the cost of the shield-
ing design and mitigate the magnetic field formed by the
IPT transmitting coil. The optimization of such shielding in
practical 3D configurations remains a key point in the design
of efficient IPT systems.

To meet the design aims above, multiobjective optimiza-
tion algorithms have been widely used in the IPT system
domain, such as the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [4] and multiobjective particle swarm
(MOPSO) algorithm [5]. Reference [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16] used the multiobjective
optimization algorithms with 3D FEMs to analyze the per-
formance of IPT systems. A comprehensive parametric
sweep can be time-consuming, depending on the number of
variables and the parameters defined for the optimization
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algorithms. So some researchers proposed some approaches:
one is to run sweeps of only significant parameters that
impact the system performance [6], [7], [8], [9], [10], and
the other is to select a base pad design and then sweep the
selected critical parameters [11], [12], [13], [14], [15], [16]
separately. These research papers did not mention the exact
computational time spent in the whole process (3D FEM with
the optimization algorithms).

To strongly reduce the time cost of such multiobjective
optimization with 3D FEM computations, the relationship
between observed outputs (mutual inductance, coupling coef-
ficient, leakage field flux density, coil quality factor, and
so on) and design variables (coils and ferrite shape, size,
thickness, material properties) has been explored recently by
several metamodeling techniques. In [17], [18], and [19], the
authors proposed the multiobjective GPA (MGPA) method
to express the self-inductance and the mutual inductance
versus geometrical parameters of the ferrite and coils, which
needs nearly 1000 samples (five variables) to find an accurate
behavior model. References [20], [21] introduced a polyno-
mial chaos expansion method to build a metamodel to express
the mutual inductance in the case of different situations cov-
ering a wide range of geometrical parameters and material
properties, which demanded small data set (55 samples for
four variables). These approaches allow obtaining the perfor-
mances of the system and may be very useful for a sensitivity
analysis. Nevertheless, they have never been combined with
an optimization algorithm for the analysis of the IPT system.
Optimizing a realistic/practical problem with a traditional
approach (coupling, for example, 3D FEM with an optimiza-
tion algorithm) is very costly. Instead, using a metamodel
with an optimization algorithm drastically reduces the com-
putational time.

The aim of this paper is to prove that the multiobjective
optimization methods can be used very efficiently with the
PCE metamodeling to find the best shielding dimensions of
the system, taking into account both the transmission effi-
ciency and the cost. This approach is applied to a practical
IPT system under perfect alignment conditions. Section II
analyzes the relationship between the maximum transmission
efficiency and the mutual inductance and discusses how FEM
calculations work on the 3D structure. Section III introduces
the Polynomial Chaos Expansions (PCE) method and MGPA
method to build metamodels for quantifying how the mutual
inductance is influenced by the geometrical dimensions of
the shielding based on the training data set from 3D FEM
computations. Section IV is devoted to the combination of the
PCE metamodeling technique with different multiobjective
algorithms. Conclusions are drawn in Section V.

Il. PROBLEM STATEMENT

The design of an IPT system involves system-level spec-
ifications that must be matched with a proper choice of
architectures and components. These requirements include
system performances (efficiency, voltage, current), bud-
gets (cost, volume), environmental conditions, and system
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FIGURE 1. An inductive power transfer system.

TABLE 1. Simulation parameters and IPT operating status.

Parameter Value Unit
Operating frequency f; 85 kHz
Transmitter power 2500 w
Transmitting coil current 42 A
Air gap 150 mm

reliability (robustness, lifetime). Fig.1 shows the block dia-
gram of an IPT system. The operating parameters of the
system considered in this paper are listed in Table 1 [22], [23].

In this work, as shown in Fig. 2, the IPT system is a realistic
3D structure consisting of two identical rectangle-shaped
coils with copper windings (orange), ferrite core plates (dark
grey) [23], and aluminum plate (blue) [22]. Here, the ferrite
and aluminum plates are collectively referred to form the
shielding. The dimensions of the IPT system are shown in
Table 2. The turns of the coils were predefined because they
corresponded to an existing system for power transfer that
was built and studied in GeePs (See references [22], [23]),
and the external size of the coils was predefined because
references [24], [25] provided some design guidelines that
the optimal value of the width of a rectangular coil is three
times the air gap between the transmitter and the receiver.

For the IPT system transmission efficiency, circuit models
with lumped parameters are often used, and the compensation
networks are designed to minimize the reactive component
of the power supply. Following [1], [20], [22], [23], the
series-series compensation is taken into account. Equation (1)
describes the relationship between the maximum transmis-
sion efficiency nmax and the mutual inductance M when the
transmitter and the receiver are identical [20].

Ry
7 foM

where R; is the resistance of the transmitter as same as the
receiver.

The mutual inductance M is mainly influenced by the air
gap between the transmitter and the receiver indicated in the
red frame in Fig.1. According to the system power, the size
and shape of the coils have been previously defined [22],
[23], but how to define the shielding (ferrite and aluminum)
remains a challenging problem for the global system effi-
ciency and the total cost.

ey

Nmax = 1 —
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FIGURE 2. (a) A pair of coils (orange) with ferrite plate (grey) and
aluminum plate (blue) and (b) a single rectangular coil with shielding
plates.

Here, a full 3D numerical model of the IPT system has been
implemented in the commercial software COMSOL [26]. The
coil windings are modeled as homogenous volumes with a
uniform current density [18]. Preliminary studies [1], [18]
have shown that this assumption has a negligible impact
on the final value of the observables (mutual inductance
and magnetic field). Then, a second-order Artificial Mate-
rial Single Layer Method (AMSL) [27] was adopted for
the modeling of aluminum shielding instead of transition
boundary condition in order to save computational time. The
global mesh leads to 712225 elements. The time for a single
3D FEM computation was about 4~5 minutes on an Intel
Xeon W-2125 processor, but when calculating the mutual
inductance M with the metamodel, it needs less than 1 second.

In order to save the computational time for the whole
optimization process, the design process of the IPT system
consists of two parts: a metamodel to describe the mutual
inductance M dependence with the design variables (in the
red line framework) instead of 3D FEM computations (in the
black dotted line framework), and an algorithm to perform
the optimization, as shown in Fig.3.

VOLUME 10, 2022

TABLE 2. Parameters of the IPT system.

Symbol  Quantity Value [Unit]
External length dimension
L -eng 450 [mm]
of the coils
External width dimension of
w, . 486 [mm]
the coils
d, Coil thickness S [mm]
Distance between wire and
dy. . 0.3 [mm]
wire
I Ferrite length 500 [mm]
A Ferrite width 600 [mm]
d Distance between coil and § [mm]
of ferrite
t; Ferrite thickness 2 [mm]
Ly Aluminum length 800 [mm]
wy Aluminum width 1800 [mm]
ty Aluminum thickness 2 [mm]
Distance between ferrite and
dia X 5 [mm]
aluminum
A Ferrite relative permeability 3000
o, Aluminum conductivity 34.2 [MS/m]
N Coil turns 6
I
Mutual inductance N L
X Initial training data set X from
M Metamodeling }— marameter space
MGPA method / PCE method)

____________________________ from 3D FEM o
.................. (one run cost 4~5 minutes ) Enrich
: Calculate the mutual ! Calculate the mutual training data
s FEMM of eachi U i) m’: of each Builda mutula;;nducla;ce setX
| runcost4~5minutes) _ (one run cost< 1 second) ™ G";;‘;":&":d Jfmode (eﬂ)m 9

Optimization algorithm

Achieve the defined
RMSE error?

Achieve the termination
criteria?

Yes

Sensitivity analysis (PCE method)

FIGURE 3. General flowchart of the design process.

Ill. MUTUAL INDUCTANCE METAMODELING

Now, PCE [28] and MGPA [29] methods are investigated
to describe how the mutual inductance M (unit: wH) is
influenced by the properties of the shielding. The procedure
to identify these metamodels is shown in the orange line
framework in Fig.3. Given the geometry and the ranges of
possible geometrical dimensions of the shielding, the design
can be achieved by working on the following eight design
variables given in Table 3 with their range of value:

A. MUTUAL INDUCTANCE METAMODEL ON PCE METHOD
The metamodel for expressing the mutual inductance M
based on a vector X of N independent design variables is
shown based on the PCE method:

M =" cq®u(X) )

acA

where ®,(X) are multivariate polynomials orthonormal with
respect to the joint probability density function of the design
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TABLE 3. Range of the shielding geometrical dimensions.

Parameter ~ Min [mm] Max [mm]
d., 1 5

w, 536 974

I, 495 900

d, 1 10

t, 1 10

w, 590 1072

L 545 990

d,, 1 20

variables xi, - -- , xy. Here, all the design variables follow

a uniform distribution, so the orthogonal polynomials are
Legendre. In (2) « is a multi-index that identifies the com-
ponents of the multivariate polynomials ®,(X) [28]; A is
the set of selected multi-indices of multivariate polynomials.
The hyperbolic truncation scheme makes use of the so-called
g — norm to define the truncation, and it consists in retaining
all multi-indices o of g —norm (0 < g < 1) less than or equal
to the degree p as follows [28]:

N 1/q
AVPl = {a e NV 1 o, = (Z“?) = O
i=1

In order to reduce the number of samples to build an accurate
metamodel on the PCE method, the Least Angle Regression
(LAR) is adapted to decrease the number of coefficients with
high-dimensional problems to be estimated in PCE. It allows
selecting the polynomial bases which have the most effect on
M the truncation set AN-":4. For more details, readers may
refer to [28], [30].

Then, based on the PCE metamodel, a sensitivity analysis
can be easily performed with the coefficients of this meta-
model. The first-order PCE-based Sobol index S; for the input
design variable x; can be estimated as [31]:

. > Cg,
G _ Varg, [Ex  [IMOlxill _ aea; @
' VIV (X)] S &2

a€eA\{0}

withA; ={a € A:a; > 0,0; =0, Vj # i} and X -; notation
indicates the set of all variables except x;. The S; of the
i variable closer to 1 shows that this variable has more
impact on the mutual inductance M.

In a word, the advantage of the PCE method is that it needs
a smaller number of training samples to achieve accurate
results when using the LAR method compared to the tradi-
tional models. Another strong advantage, as described above,
is to easily perform a sensitivity analysis to determine the
most impacting parameter, since the Sobol’s indices can be
directly expressed with the coefficients of the polynomials.

In this paper, the sparse PCE metamodels are constructed
with an adaptive degree varying from 5 to 20, and the hyper-
bolic scheme in Equation (3) is set to g = 0.45 reduce the
size of the polynomial basis.
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B. MUTUAL INDUCTANCE METAMODEL ON MGPA
METHOD

In MGPA, each prediction M of the mutual inductance M is
formed by the weighted output of each of the genes in the
multigene individual plus a bias term. Each gene is a function
of the N input variables xp, - - - , xy. The mutual inductance
metamodel M on the MGPA method can be written as [29]:

M:d0+d1xgene1+~~—|—dQ><geneQ (@)

where dy = bias term; dy, - -, dp are the gene weights;
Q is the number of genes. The weights are automatically
determined by a least-square procedure for each multigene
individual. The number and structure of the genes may
include a set of elementary functions (sum, multiplication,
division, logarithm, arctangent, hyperbolic tangent, sine,
exponential, and power function, etc.), which is automatically
evolved during a run using training data set [17], [18], [29].

The process to build the mutual inductance metamodel on
the MGPA method is [17], [18], [29]: MGPA works on a
population of individuals (models), each one representing a
potential solution for the mutual inductance. During its evo-
lution, the MGPA transforms the current population of mod-
els into a new population by applying the classical genetic
operations (selections, cross-over, mutation, etc.). When it
achieves the maximum generation, the MGPA metamodel
will be picked out in terms of high coefficient of deter-
mination (R%) and low model complexity [29]. The model
complexity is computed as the simple sum of the expressional
complexities of its constituent genes and R? is calculated as
below [29]:

S (Meem(Xe) — (X))
R=1-—X! (6)

i (Mrem(Xr) — % in: Mrem(X3))?
k=1 k=1

where Mppm(Xy) is the k™ value of the 3D FEM computation
result, M (Xx) is the predicted k™ value on the MGPA meta-
model, and m is the number of samples in the training data
set. This value ranges from O to 1.

The advantage of the MGPA method is to automatically
evolve both the structure and the parameters of the mathe-
matical equations based on the training data set.

In this paper, the maximum number of genes is defined
as 20, and each gene is limited to a depth of 10.

C. NUMERICAL RESULTS
Here, the database used to build the metamodels is generated
by the Latin hypercube sampling (LHS) method [32], which
is consistently more effective than Monte Carlo.

In order to compare the accuracy of different metamodels
over the same data set, it can be estimated by the Relative
Generalization Error (RGE) between the model-predicted
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values and the FEM values:

n

Z (Mmetamodel(Xv) - MFEM(XV))2

n—1 y=1
ERGE = P m )
> Meem(Xy) — 1 3" Mpem(X,))?
v=1 v=1

where n is the number of the samples in the data set,
Mrem(X,) is the v value of the 3D FEM computation result,
M metamodel(Xy) is the v predicted value on the metamodel
built by the PCE/MGPA method.

After the mutual inductance metamodel is constructed,
a test data set, different from the training data set, can be used
to validate the predictive performance. The test error can also
be calculated by RGE.

To illustrate the procedure, a study case is considered
in this paper. The training data set is constituted of 400
samples, and the test data set is constituted of 136 samples,
which totally cost 44.7 hours of FEM computation time on
an Intel Xeon W-2125 processor. The MGPA method has
been executed over ten runs in order to build an accurate
metamodel, with a population of 300 models evolving over
150 generations for each run. The time used on the MGPA
method takes 311.44 seconds, while the time to elaborate a
metamodel on the sparse PCE method takes 2.7 seconds, both
run on an Intel(R) Core 15-8365U processor.

Matamodel accuracy

——MGPA metamodel Training error
—— PCE metamodel Training error
I\ —=—MGPA metamodel Test error

\ —=—PCE Test error

Relative generalization error

ok . .
50 100 150 200 250 300 350 400
Number of training samples

FIGURE 4. Comparison of the MGPA and PCE metamodel accuracy.

Fig. 4 shows that the number of training samples will
influence the accuracy of the metamodels. The accuracy
of the metamodel M on the PCE method increases with
the number of samples increasing, while the accuracy of
the metamodel M on the MGPA method did not change a
lot. This is because the chosen MGPA metamodel depends
on R? and model complexity, but when increasing the num-
ber of training samples, R> nearly keeps the same value
(on the left side of Fig. 5), no matter how the model com-
plexity is (on the right side of Fig. 5). It shows that R? close
to 1 does not guarantee that the MGPA metamodel fits all
the samples well [33], [34], [35]. R? limits the accuracy
improvement of the MGPA metamodel even with increasing
number of training samples to a great extent in this case.
A further possible improvement would be to add another
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FIGURE 5. Relationship between coefficient of determination (model
complexity) and number of training samples.

criteria, such as leave-one-out error or RGE on the training
samples, in order to build a more accurate MGPA metamodel.

So, the metamodel M on the PCE method is chosen to
represent the mutual inductance with these eight design vari-
ables. Fig.6 reveals that the first-order Sobol index calculated
through the metamodel M is the same, independently of the
number of the training samples. It can be derived that the
length and the width of ferrite have more influence on the
mutual inductance M compared to other design variables,
so in order to get more mutual inductance, the ferrite should
be much longer and much wider.

__ First-order Sobol'index

[ 50 training samples
0.0 | EE100 training samples
[T771150 training samples
(I 200 training samples
0.8 | I 250 training samples
7300 training samples
(I 350 training samples
I 400 training samples |

o
9

o
o

First-order Sobol'index
e o
= o

o
w

02

0.1

o Lalnirem IIHII”II PR T
de—c deg di_al [ Ll t¢ we Wa
Design variables

FIGURE 6. First-order Sobol index of PCE metamodel.

IV. OPTIMIZATION PROCESS

The initial structure of the shielding design corresponds to
the real case studied and built in GeePs [21], [22], [23].
Generally, in such configurations, as shown in Fig.2, after
the initial design, an enhanced, detailed design is normally
realized through many additional trials related to simulations
and experiments. If using the NSGA-II or MOPSO algo-
rithms directly coupled with COMSOL 3D FEM, new values
of the design variables are provided and used in the COMSOL
3D environment for every generation. So, it may cost approx-
imately 2000 hours considering the population size and gen-
eration size defined below. But when calculating the mutual
inductance with the metamodel, it needs less than 1 second.
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Therefore, the proposed approach may save around 50 times
the computational time (including the time to calculate the
training samples and the test samples). At the same time,
it can also save computational resources (the price of the Intel
Xeon W-2125 processor is much higher than the Intel(R) Core
15-8365U processor).

Therefore, to reduce the computational time and resources
in the case of 3D FEM computations combined with a mul-
tiobjective algorithm, it is worth coupling a metamodel on
the PCE method with an optimization algorithm for obtaining
the optimum design variables on Intel(R) Core i5-8365U
processor.

A. OBJECTIVE FUNCTIONS

Here, the first objective function is the mutual inductance
metamodel M with design variables, which has to be max-
imized, referred to (1) for the maximum transmission effi-
ciency. The second objective function is the cost of the
shielding, which has to be minimized. The estimation of the
shielding cost is described in the following Equation:

C=lrxwsXtrXxcr+lyg X wy X ca ®)

where g, wy, tr, [y and wy) are the dimensions of the shielding
components, as indicated in Fig.2; c¢f and ¢y are the cost
coefficients of ferrite and aluminum, respectively, shown
in Table 4 [9].

TABLE 4. Cost coefficients of ferrite and aluminum.

Symbol  Quantity Value [Unit]

1N Ferrite price 0.18 [$/cm’ ]

c Aluminum price 333.68 [ $/m’ ]

al

B. MULTIOBJECTIVE OPTIMIZATION
In order to better choose the optimization algorithm for the
design of the shielding, two efficient algorithms have been
selected and compared: NSGA-II [36], [37] and MOPSO
[38], [39]. The optimization settings are listed in Table 5.
During the optimization process, the geometrical condi-
tions and the exposure to electromagnetic fields satisfying
practical constraints are taken into account to maximize the
mutual inductance with the least cost of the shielding and
limit the analysis to only feasible designs. The scheme to
handle these constraints in the optimization process is based
onreferences [36], [38]. Here, the first constraint shown in (9)
is: that the size of the aluminum should be bigger than the size
of the ferrite. In fact, an aluminum plate of the same size as
the ferrite plate cannot shield the uncovered area’s magnetic
field on the surface of the steel plate, which works like the

chassis [2], [16]:
It <lay, wr<wa 9

The other constraint is that the magnetic flux density leakage
Bmax at the measurement point which is 800 mm far from
the center of the air gap should be smaller than 27 uT

91232

TABLE 5. Optimization settings.

NSGA-II MOPSO

Population size 400

Parameter Parameter

Population si 4
opuiation s1ze 00 Repository size 200

Maximum Maximum

. 150 . 150
generation generation
g:ooszggy 0.8 Inertia weight 0.5
. Personal &
Ivrlgtt:::é?l? " 0.2 Global learning 2
P Y coefficients

(RMS value) defined by ICNIRP guidelines [40], [41],
as Fig.7 shows.

Alu mlm]' m plate

Wz Ferritd plate

X+
000000 FReccer D O0000

Measurement point

Binay < 27uT
000000 Tanjivr $00000
I ——
l

FIGURE 7. Measurement point of the magnetic flux density leakage.

C. RESULTS AND DISCUSSION

In the initial design from Section II, the computed self-
inductance L; of the transmitter is 59.56 uH, the self-
inductancel, of the receiver is 55.95 pH, the mutual induc-
tance M between the transmitter and the receiveris 12.29 uH,
the global cost C of ferrite and aluminum shielding is 696.5 $,
and the magnetic flux density leakage Bnax at the measuring
point is 7.31 uT.

Here, Fig.8 shows that the mutual inductance increases
with the cost of the shielding, and MOPSO can find better
solutions than NSGA-II. The magenta value from NSGA-II
and the green value from MOPSO are chosen, which satisfies
that the size of the aluminum should be bigger than the ferrite,
simultaneously the mutual inductance reaches the maximum,
and the cost achieves the minimum in the defined ranges of
design variables.

The optimization results of NSGA-II and MOPSO are
listed in Table 6. Both optimization algorithms converge to
find the optimal design variable values. As a consequence of
the range of solutions found in Fig.8 and the computational
time cost in Table 6, MOPSO will be chosen to design the
shielding in the studied IPT system.

TABLE 6. Optimization results.

Parameter  NSGA-II MOPSO  Parameter NSGA-II  MOPSO
d,, [mm] 1.5 1 dy , [mm] 8.4 20
w,[mm] 793 940 L, [uH] 75.82 80.44

[, [mm] 752 832 L, [uH] 75.56 80.28
d,[mm] 1.8 1.1 M [uH] 22.80 25.05

t, [mm] 14 1 Cost [$] 558.8 599.6
wy[mm] 917 1036 B, [uT] 7.76 8.57

1, [mm] 844 920 Time [s] 886.5 714.3
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Compared with the initial design, the optimization pro-
cedure of MOPSO improved by approximately 104% the
mutual inductance M and saved 14% of the cost Cof the
shielding. However, the magnetic flux density leakage Bmax
is 8.57 uT, 1.2 times higher than the initial value, but it still
meets the ICNIRP guidelines.

V. CONCLUSION

Solving a multiobjective optimization based on the PCE
metamodeling technique for the design of the IPT system
considerably reduces the computational time and computa-
tional resources. It comes out from this work that combining
a metamodel on the PCE method with MOPSO is proposed
to take into account the geometric parameters defining the
ferrite and aluminum shielding, thus improving the mutual
inductance and reducing the cost of the IPT system under
the ICNIRP guidelines. Practical implementation of such
shielding is in progress, and experimental validation of the
predictions will be presented in a forthcoming paper. Such an
optimization approach could be efficiently used for various
IPT shielding topologies.
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