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Abstract. Hierarchical multi-label classification is a challenging task implying
the encoding of a high level constraint in the neural network model. Before the
rise of this field, the classification was done without paying attention to the hierar-
chical links existing between data. Nevertheless, information relating the classes
and subclasses may be very useful for improving the network performances. Re-
cently, some works have integrated the hierarchy information by proposing new
neural network architectures (called B-CNN or H-CNN), achieving promising
results. However with these architectures, the network is separated into blocks
where each block is responsible for predicting only the classes of a given level in
the hierarchy. In this paper, we propose a novel architecture such that the whole
network layers are involved in the prediction of the entire labels of a sample, i.e.,
from its class in the top level of the hierarchy to its class in the bottom level.
The proposed solution is based on a Bayesian adjustment encoding the hierar-
chy in terms of conditional probabilities, together with a customized semantic
loss function that penalizes drastically the hierarchy violation. A teacher forcing
strategy learning is used to enhance the learning quality. Thanks to this approach,
we could outperform the state of the art results in terms of accuracy (improved
for all levels) and also in terms of hierarchy coherence.

Keywords: Multi-label classification · Artificial neural networks · hierarchical
classification · semantic loss function

1 Introduction

Classification is a crucial task in everyday life, it is the first thing that is learned by
any living being in order to survive. A smarter task is hierarchical classification since
it involves high-level structural knowledge. As recalled in the survey [11], hierarchical
classification is used in many applications such as text categorization (where know-
ing the hierarchy associated to a word may help a user to disambiguate polysemous
terms), protein function prediction (where the functions are naturally organized into hi-
erarchies like the Enzyme Commission class hierarchy and the Gene ontology), music
genre classification, phoneme classification, 3D shape classification (where some se-
mantic meaning can be assigned to geometry by using an existing class hierarchy like
e.g. Princeton Shape Benchmark), classification of emotional speech (Berlin emotional
speech database).

http://www.irit.fr
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In this study we adopt the point of view defended by Silla and Freitas in their survey
[11] which defines hierarchical classification as the process of doing classification un-
der the guidance of a pre-established taxonomy, in the context of supervised learning.
For instance hierarchical classification is a particular case of structured classification
where meta-data is available about the classes organization. The approaches of hierar-
chical classification can be distinguished according to the depth where it is performed.
For instance some works always classify at the level of leaves nodes, these approaches
are called mandatory leaf-node prediction (MLNP) and others classify at any level of
the hierarchy (non mandatory leaf-node prediction). In non-MLNP approaches, a sam-
ple can be assigned a label of any level in the hierarchy, it is often done by using a
confidence threshold under which no further digging inside the sub-levels of the classi-
fication is done.

Another distinction is done about the way the classifier uses the hierarchy:

– flat classifiers only aim to give the leaf class, then the hierarchy maybe used a pos-
teriori to deduce all the implicitly assigned ancestor. The drawback of this kind of
approaches is that it requires to discriminate among a large number of classes (the
leaves of the taxonomy), moreover, the hierarchy is not used to guide the learning.

– local classifiers are using the predicted upper-class to narrow the choices of the
current class . A disadvantage of these approaches is that an error at a given level
will propagate to the sub-levels.

– global classifiers are trained on the entire class hierarchy at once and do not perform
local training.

In this paper, in order to overcome some limitations of local classifiers and based on
the idea that conditional probabilities should play a role to constrain the links between a
class and its subclasses, we propose a new architecture called "Globally Hierarchically
Coherent"-CNN (GH-CNN) which exploits Bayes’ rule and branching CNN yielding
a powerful architecture with a well-designed semantic loss function that penalizes the
hierarchy violation. The classifier can be considered as global since in the architecture
that we propose the whole network is involved in the prediction of the entire label of
a sample, i.e., from its class in the top level of the hierarchy to its class in the bottom
level. A teacher forcing strategy learning (which uses the ground truth class in order
to predict one of its subclass) is used to enhance the learning quality. Thanks to this
approach, we could outperform the state of the art results in terms of accuracy and
hierarchy coherence for both BreakHis and Fashion MNIST datasets.

2 State of the art about hierarchical classification

Hierarchical multi-label classification (HMC) aims at classifying objects with a set of
labels that respects a given hierarchy constraint. In HMC, the classes of objects are
organized as a tree where the edges correspond to superclass-subclass links. The goal of
HMC is to assign to each object a set of labels corresponding to a path in this hierarchy.
We expose in this state of the art some works dealing with the hierarchical classification.
These approaches can be categorized into three sets: the branch based CNN approaches,
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the local approaches, the approaches that translate the hierarchical constraint inside the
loss function.

In the field of branch based CNN approaches, Zhu and Bain [16] introduce the
Branch Convolutional Neural Network (B-CNN) which is a CNN with a particular ar-
chitecture where the first layers are dedicated to coarse class predictions and the last
layers to fine class prediction according to a given hierarchical structure of the target
classes. The predictions of the different hierarchical levels are then aggregated with a
weighted sum of the loss functions associated to each of them. Moreover the learn-
ing phase is done by following a curriculum incremental strategy (as in [5]) consist-
ing in successively learning coarse to fine concepts. The authors experiments show
that B-CNN improves over the corresponding baseline CNN on the benchmark datasets
MNIST, CIFAR-10 and CIFAR-100. This approach is related to the one developed in
this article because the structure of the network is a little bit similar, however the loss
function used by Zhu and Bain is not used to adjust the output as we do. Similarly,
Seo and Shin [10] are using hierarchical classification for recognizing and classifying
people’s clothing in apparel images. Their proposal is a VGG19 architecture with ad-
ditional intermediary outputs: the network is able to give three predicted values for a
given sample: one at the top level of the hierarchy ( “coarse 1 level”, “coarse 2 level”
and “fine level”). In the approach of Kolisnik et al. [3]: a new architecture, called H-
CNN, is introduced based on B-CNN and designed on VGG16 model to classify with
hierarchy constraint the images of FashionImage dataset. The model is an extension of
the solution proposed in Seo and Shin [10] which separates the neural network into con-
nected blocks where each block is responsible for predicting a class at a given level. The
novelty of this article is the conditional probability update where the probabilities of the
super-classes are multiplied by a Conditional Probability Weight Matrix (CPWM) in or-
der to guide the classification of the subclasses. The conditional probability update was
previously used by Phan et al. [8] to highlight the relationships among diseases in classi-
fication of chest X-rays, and also by Taoufiq et al. [14] for urban structure classification.
Most of these works exploit the hierarchy structure. The experiments done on Kaggle
Fashion Product Images dataset have promising results and enhance the accuracy of
fine-classes prediction compared to a simple model and to a B-CNN model without
conditional probability adjustment. Note that the primary goal of these approaches is
to fine-tune the prediction of the fine-granular classes, it contrasts with our own goal
which is to guarantee a respect of the hierarchy and to obtain accuracy both on super-
classes and subclasses ; moreover our method is different since we are not partitioning
the network in blocks dedicated to some precise level of the hierarchy.

Concerning the local approaches, in [6], Murtaza et al. propose to use hierarchical
classification on the BreakHis dataset (described in Example 1), for this aim, they build
three classifiers: a binary classifier for predicting if the tissue is benign or malignant, a
multi-class classifier for the benign subclasses (A, F, TA, PT) and a second multi-class
classifier for the malignant ones (DL, LC, MC, PC). The architecture is a cascade net-
work where the output of the binary classifier guides the choice of the second classifier
to use. The approach is a local approach in the taxonomy of Silla and Freitas [11], it
separates the network in three parts, our approach takes a different point of view since
it uses a single global architecture for all levels which provides more accurate results.
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Nevertheless, even if [6] makes mistake on some predictions, its results are completely
coherent with the hierarchy (by construction).

Lots of articles deal with using semantic loss function for translating high level
knowledge. Among them we can mention the work of Xu et al. [15] which proposes to
integrate a Boolean logical constraint into a loss function, called semantic loss function.
The article focuses on constraints expressing the exclusive membership to a unique class
when using a layer of sigmoid activation functions. In this article, for each sample s,
the network provides a vector of n probabilities x = (ŷ1, . . . , ŷn) where ŷk represents
the predicted probability that the variables Xk is true for the input s. The semantic loss
function Losss associated to the constraint (called α) that only one variable Xk should
be true (denoted x |= α) is defined by Losss = − log

∑
x|=α

∏
k:x|=Xk

ŷk
∏

k:x|=¬Xk
(1−

ŷk). In the same vein, Giunchiglia and Lukasiewicz propose to impose a hierarchical
constraint by designing an appropriate loss function in [1]. Their solution is based on
enforcing inclusion between the objects of a class to its superclass: if an object is as-
signed to a category A, it should also be assigned to its supercategory B (A ⊆ B). For
that, they adjust the output zB of the superclass B wrt the output ŷA of A, by defining
ŷB = max(zB , ŷA). The final loss function is a sum of the loss function concerning
the output ŷA and the loss function concerning the adjusted output ŷB . Even if [1] im-
poses the respect of the hierarchy, this approach is using a sigmoïd function which is
incompatible with the intra-category exclusivity constraint (ICE) presented below.

3 Notations

We consider a dataset D = {s1, s2, ..., sn} of n samples, with a hierarchy of labels
C = C 1 ∪ C 2 ∪ ... ∪ CC , the labels are organized in a tree of of depth C, where the
more general labels are in the first stratum (or level) C 1 and the most specific ones are in
the stratum CC . Strata are called categories (or levels in the hierarchy). Each stratum C i

is composed of a number Ni of classes: |C i| = Ni. The classes are uniquely identified
by two numbers: the number i of the level and the absolute number of the class in
this level (in [1,Ni]): cij denotes the jth class of the hierarchy level i. The hierarchical
relations between classes are described by two functions ch (for children) and pa (for
parent) where ch(cij) gives the list of the numbers of the classes of level i + 1 that are
subclasses of the class cij , and pa(cij) is the number associated to the superclass of cij in
level i− 1.

The aim of the classification task is to assign to each sample s a multi-label with C
labels: s.label = (c1, . . . , cC) where for all level i, ci ∈ C i. It means that the sample s
is assigned to the class cC which is a subtype of the class cC−1 which itself is a subtype
of cC−2 and so on until c2 is a subtype of c1.

Example 1 BreakHis [13] stands for “Breast Cancer Histopathological Images”. It is
a public dataset of histopathological biopsy images of breath observed by different mi-
croscopic magnifications. In BreakHis dataset, D is the set of histopathological images
with |D| = n = 7909. Each sample s of this dataset is double-labeled. Benign subtypes
are Adenosis (A), Fibro Adenoma (F), Tubular Adenoma (TA) and Phyllodes Tumor
(PT). Malignant sub-types are Ductal Carcinoma (DC), Lobular Carcinoma (LC), Mu-
cinous Carcinoma (MC) and Papillary Carcinoma (PC). The hierarchy has two levels:
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the category C 1 which represents the tumor type, and the category C 2 which is the cat-
egory of the tumor subtype. More precisely, C 1 = {B,M} with N1 = 2 and C 2 = {A,
F , TA, PT , DC, LC, MC, PC} with N2 = 8.

Here, c11 = B and ch(c11) = {1, 2, 3, 4}, i.e., the subtypes of the benign class are the
four first classes of category C 2 namely: A, F, TA and PT respectively corresponding
to c21, c22, c23 and c24. Similarly ch(c12) = {5, 6, 7, 8} contains the number of the classes
of the malign subtypes. Moreover Fibroadenoma is a benign tumor, is translated into
pa(c22) = 1, while Lobular Carcinoma is malign is translated into pa(LC) = pa(c25) =
2.

B M

A F TA PT DC LC MC PC

C 1 :

C 2 :

The following definition expresses two constraints that a hierarchical classifier should
respect:

Definition 1 (ICE and ICH constraints) A classifier is a function that maps a sample
s to a vector of sets of classes s.label = (sc1, sc2, . . . , scC) where for all i ∈ [1, C]
the set s.label(i) = sci is the set of classes of the category C i that are assigned to s
(sci ⊆ C i).

A classifier complies with the intra-category exclusivity constraint (ICE) if each
sample s of the dataset D has a unique label per category:

∀s ∈ D,∀i ∈ [1, C], |s.label(i)| = 1, (ICE)

In the following, we consider ICE classifiers, hence labels are vectors of singleton
sets of classes, thus they are abbreviated into C-uplets of classes (with no curly brackets)
instead of C-uplets of singletons of classes .

An ICE classifier complies with the inter-categories hierarchical constraint (ICH) if
for any sample s, its label represents a path from the root to a leaf in the hierarchy i.e.
s.label = (c1j(1), c

2
j(2), . . . , c

C
j(C)) is s.t.:

c1j(1) ∈ C 1 and ∀i ∈ [2, C], j(i) ∈ ch(ci−1
j(i−1)) and cij(i) ∈ C i (ICH)

In other words, at each level i the label of the sample is a number which correspond
to a subtype of the label of the sample at level i− 1, hence this number is in the list of
numbers ch(ci−1

j(i−1)) associated to the children of ci−1
j(i−1).

4 An architecture compliant with ICE and ICH

The GH-CNN architecture (see Figure 1) is designed in order to ensure that the hierar-
chical constraint existing between classes and subclasses (ICH) and the exclusivity in
the same category constraint (ICE) hold. The network is composed as follows:

– A set of hidden layers described in Section 4.1.
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– A penultimate primary output layer (PNPO) with C outputs : z1, z2, . . . , zC , each
output zi is a vector of length Ni (containing the Ni membership probabilities for
the sample to belong to each class of C i), See Section 4.2.

– The final adjusted finer output layer (FAFO) is a layer composed of C − 1 outputs
adjusted from the PNPO corresponding layers. This adjustment is done through
a Bayesian update that encodes the hierarchical implication. Each output ŷi (i ∈
[2, C]) of this layer is an adjustment via the Bayes’ rule of the vector zi from its
parent class (see Section 4.3).

– A particular loss function that penalizes both hierarchy violation and classification
errors (weighted wrt the depth in the hierarchy), see Section 4.4.

input

ŷ1

z2 ŷ2

ŷ3

zC ŷC

. . .

.|.

.|.

.|.
· · ·

· · ·

· · ·

· · ·

Hidden layers PNPO FAFO

...

= z1 = [P1
1 , . . . ,P1

N1
]

= [PC
1 , . . . ,PC

NC
]zC

= [P2|1
1 , . . . ,P2|1

N2
]

= [P3|2
1 , . . . ,P3|2

N3
]

Fig. 1. The GH-CNN architecture. The nodes .|.⃝ represent the Bayesian adjustement defined by
equation (3).

4.1 The hidden layers

Any neural network backbone can be used for the first layers, the particularity of GH-
CNN architecture only appears at the penultimate and last layers of the network. In
practice, we opted for the VGG19 model as a skeleton for the hidden layers. Our choice
is justified by the great performances of this network in several classification tasks [12]
(cited more than 70 000 times). This model is a pre-trained CNN, with 19 learnable
layers: 16 convolutional layers followed by 3 fully connected layers, with a total of
144M parameters. It was primary used to classify images during the ImageNet compe-
tition [2]. The competition’s aim is to truly classify an image among 1000 daily-object
classes. The huge training set containing millions of images trained for a long training
time, gave to VGG19 the powerful ability to recognize daily-objects achieving land-
mark results [9]. As recalled in Section 2, VGG was also used for fashion images hier-
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archical classification by Kolisnik et al [3] and by Seo and Shin [10] with a promising
learning behavior.

4.2 The penultimate layer of primary outputs (PNPO)

In the GH-CNN architecture, the PNPO layer produces C penultimate outputs called
(yi) with i ∈ [1, C], one for each category C i present in the dataset. The inputs of
PNPO are activated with a softmax function1. Each obtained output zi is a vector of
probabilities of Ni values: zi = (Pi

1,Pi
2, . . . P

i
Ni

) where Pi
j corresponds to the prob-

ability P(s ∈ cij) for a sample s to belong to the jth class of the level C i (this class
being called cij).

4.3 Updating the probability of a subclass in the layer FAFO

The aim of the FAFO layer is to adjust the vector of probabilities zi of classes at level i
into an output vector of probabilities ŷi. This is done iteratively on the levels by stating
that z1 is already adjusted i.e., ŷ1 = z1 then the adjusted probabilities of level i+1: ŷi+1

are computed from zi+1 accordingly to the adjusted probabilities of the super classes
(at level i) ŷi. Indeed, it is clear that the probability vectors zi and zi+1 obtained in the
penultimate layer which represent the probability for the sample to belong to classes
of two consecutive levels i and i + 1 in the hierarchy, do not take into account the fact
that a class cij of the level i is the parent of a set of classes at level i + 1, and that this
set of classes constitute a partition of the class cij (i.e., cij =

⋃
k∈ch(cij)

ci+1
k and for all

k, k′ ∈ ch(cij) with k ̸= k′, it holds that ci+1
k ∩ ci+1

k′ = ∅).

Let us denote by sij the event that the sample s is associated to the jth class of

the level i in the hierarchy, i.e., s.label(i) = cij . Due to the partition of the class into
its subclasses, the events of associating a sample s to one subclass of the class cij is
an EME2. Hence, for coherence purpose, the layer FAFO is designed to adjust each
probability vectors zi in order to enforce that each adjusted probability vector ŷi should
verify the EME law. Intuitively, the knowledge of the superclass must condition the
knowledge of its subclasses. In terms of probabilities, it translates into:

P(sij) =
∑

k∈ch(cij)
P(sij |s

i+1
k )× P(si+1

k )

=
∑

k∈ch(cij)
P(si+1

k )
(1)

Note that the second equality is due to P(sij |s
i+1
k ) = 1 when k ∈ ch(cij), since

when a sample belongs to a subclass of cij , then this sample should belong to cij itself,
which is denoted sij . Now, given a level of the hierarchy i ∈ [2, C], let us consider the

conditional probability, abbreviated Pi|i−1
j , for a sample s to belong to a class cij (for

1 Softmax is an activation function that takes N inputs (xk)k=1..N and gives a probability
vector z of dimension N s.t. its kth component is z(k) = expxk∑N

j=1 exp
xj .

2 EME=exhaustive mutually exclusive set of events
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any j ∈ [1,Ni]) knowing that this sample belongs to the parent class of cij (indexed
by the number pa(cij) in the level i− 1). The knowledge about the fact that the sample
belongs to the parent class ci−1

pa(cij)
is assumed to incompass the fact that the sample

belongs also to the grand-parent class and to the great-grand-parent class and so on
until the root of the hierarchy. Hence, this conditional probability can be expressed as
follows:

Pi|i−1
j = P(sij |si−1

pa(cij)
, si−2

pa(pa(cij))
, ..., s1pa(pa(..(cij))..))

) (2)

According to the softmax function done in layer PNPO, ∀j ∈ [1,Ni], zij can be
viewed as the probability of s to be attributed a label for the level i equal to cij , in short
zij = P(sij), then due to Bayes theorem, we get the equation of the FAFO layer:

ŷij = P
i|i−1
j =

ŷi−1
pa(cij)

× zij∑
t∈ch(pa(cij))

zit
(3)

Finally, the output of FAFO is a vector (ŷi)i∈[1..C] of vectors such that for any i in
[2, C], ŷi = [Pi|i−1

1 , . . . ,Pi|i−1
Ni

] and ŷ1 = z1 = [P1
1 , . . .P1

N1
] (see Figure 1).

Example 2 Suppose that, forwarding a sample through a network associated with the
hierarchy of Example 1 yields to a probability distribution P1 of the tumor type equal
to 0.6 for the Benign class and 0.4 for the malignant one: P1 = (0.6, 0.4) and P2 =
(0.3, 0.025, 0.025, 0.05, 0.2, 0.2, 0.1, 0.1).

After the Bayesian update of P2, we obtain P2|1= (0.453, 0.0375, 0.0375, 0.075,
0.13 , 0.14, 0.066, 0.068). The reader can check that P2|1(1) + P2|1(2) + P2|1(3) +
P2|1(4) = P1(1).

At the end of the forward pass through the network, the sample s is assigned to the
predicted classes of each category having the maximal probability. The final predicted
class inside category C i is thus ĉi = argmax(ŷi) where argmax(v) selects the index i
in the vector v such that v(i) is the maximum value in v, and in case of equal maximal
values in v, one index is chosen randomly among the maxima. Hence, the definition of
ĉi guarantees ICE.

4.4 Hierarchical loss function

In order to support the ICH constraints and to take into account the different levels of
robustness required at different levels of the hierarchy, the loss hierarchical loss function
Lossh.v is composed of two parts Lossh that penalizes the errors with respect to the
ground truth, this penalty is weighted according to the hierarchy level, and Lossv that
translates the semantic constraint ICH.

Losshv = Lossh + Lossv (4)
3 0.45 = 0.3× 0.6/(0.3 + 0.025 + 0.025 + 0.05)
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Hierarchically weighted loss function: Lossh is the part that guarantees the learning
of the classification at each level of the hierarchy. It is a linear combination of the cross-
entropy distance between the prediction and the ground truth at each level:

Lossh =

C∑
i=1

αi × d(yi, ŷi), with αi ∈ N (5)

where d(v, v̂) is the cross-entropy between the two vectors v and v̂ defined by d(v, v̂) =∑
k v(k) log(v̂(k))+(1−v(k)) log(1− v̂(k)). According to the nature of the hierarchy, several

configurations of the weights αi are worth noticing:

– Egalitarian penalty: all αi are equal. The loss function considers equally important the
errors done on superclasses or on subclasses ( in Section 5, it is implemented with αi = 1
for all i).

– Superclass/subclass enhanced penalty These variants are proposed when superclasses (re-
spectively subclasses) are considered as more important than the subclasses (respectively
superclasses) for guiding the learning, the weights should be decreasing (respectively in-
creasing) along the hierarchy. In Section 5, it is implemented with αi = C − i + 1 (or
αi = i respectively) for all i.

– Finest/Coarsest basic model: We remark that (without the Bayesian update) by setting (α1,
. . ., αC−1, αC) = (0, . . . , 0, 1) (or respectively by setting (α1, α2, . . ., αC) = (1, 0, . . . , 0)),
we obtain the basic neural network that classifies the finest class (respectively the coarsest
class) without taking into account its superclasses (respectively its subclasses)

Hierarchy violation loss function We introduce a loss term that penalizes the hierarchy
violation: it is the greatest error done on a prediction at a level where the predicted class and
subclass are not coherent, (the subclass is not a child of the class).

Lossv = max
i∈[1,C] s.t. ĉi+1 not child of ĉi

max(d(yi, ŷi), d(yi+1, ŷi+1)) (6)

where d(v, v̂) is the cross-entropy distance.

5 Experiments and Results

In this section we expose the experiments done on the BreakHis dataset and on Fashion MNIST.
The BreakHis dataset is described in Example 1. The Kaggle Fashion MNIST, is one of the largest
hierarchical dataset, with more than 40k images and 3 hierarchy levels. The coarsest category
contains 4 classes, its subcategory contains 21 classes, and the finest category contains 45 classes.

For both datasets, the images were resized to 250x250, the chosen operators were label con-
servative (Horizontal and vertical flip, HSV coloration and color inversion). The datasets were
split into 70% for training, 10% for validation and 20% for test.

The training phase is divided into three parts:

– a preliminary warm-up (during 15% of the training phase) where the model is only trained
on the coarsest category to ensure a more accurate classification at this level (which will
guide the next levels).
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– a teacher forcing strategy (during 25% of the training phase) where the ground truth of the
superclass is used to guide the learning of a subclass instead of using the predicted results.
The teacher forcing strategy is commonly used with recurrent neural networks (RNNs) [4].
This enabled us to adapt the Losshv .

– a training with one variant of Losshv (during the remaining time).

The algorithms were implemented using the Keras library with Python 3 on Osirim platform [7].
The training period of each experiment contains 1000 epochs, with Adam optimizer, and a train
batch size of 128.

We define the hierarchy violation rate metric (HV) in order to evaluate the variants of GH-
CNN: HV is the number of predicted samples disrespecting the hierarchy divided by the total
number of samples in the test set.

Table 1 represents the results obtained using GH-CNN with the different loss functions, with
teacher forcing strategy and Bayesian adjustment.

Dataset Loss variant Acc1 Acc2 Acc3 F1S1 F1S2 F1S3 HV (Lmin, Lmax)%

B-CNN 98.46 - - - 95.45 - - -
Lossh (1,0) 97.03 76.45* - 98.69 70.64* - 58.13 (0.0035,1.8744)
Lossh (0,1) 85.83* 95.49 - 83.54* 94.26 - 65.14 (0.0058,1.9201)

BreakHis Lossh(1, 1) 97.65 94.91 - 98.45 91.67 - 11.06 (0.0120,2.1352)
Lossh(2, 1) 98.43 96.78 - 99.01 95.57 - 9.15 (0.0177,3.5138)
Lossv 67.03 58.91 - 64.30 52.13 - 66.25 (0.2344,7.3807)
Losshv(2, 1) 98.46 96.81 - 99.11 95.45 - 4.39 (0.0037,6.7671)

Lossh (1,0,0) 99.98 85.14* 69.03* 99.12 80.62* 65.64* 69.45 (0.0002,1.0322)
Lossh (0,0,1) 80.13* 78.02* 93.12 83.62* 75.64* 93.12 71.43 (0.0091,1.7610)

Fashion Lossh (1,1,1) 99.47. 86.63 91.79 93.12 99.53 84.35 18.67 (0.3546,6.2380)
MNIST Lossh (3,2,1) 99.81 88.95 94.61 99.81 86.11 95.41 10.19 (0.0031, 7.1092)

Lossv 71.15 58.21 69.43 69.61 60.03 68.53 78.84 (2.0451,8.2751)
Losshv (3,2,1) 99.31 98.74 95.06 99.62 99.01 94.64 3.45 (0.01984,7.8924)

Table 1. Performances of GH-CNN, the parameters of the Loss functions are inside parenthesis,
(α1, α2[, α3]), Acci and F1Si are the accuracy and F1 score percentages for classes of level i.
(Lmin,Lmax) are the minimal and maximal training loss values. The * means that the model was
only tested (but not trained) for this level.

– For both datasets, the coarsest class only basic model (with Lossh (1,0) or (1,0,0)) is less
accurate for classifying in the finest class than the basic model trained only on the finest
class (even if the first model has a greater performance on the coarsest level). It seems that
the model needs to be fine-tuned on finer classes in order to be more efficient. Besides, for
both basic approaches, the hierarchy violation rate HV is the highest compared to other loss
function variants since there is no information learned about the hierarchical links between
classes during the training.

– For both datasets, the egalitarian loss function increases the accuracy. However, in the first
half of the training period the loss values are higher than for the basic models. It can be
interpreted by saying that the model is learning a more difficult combined task. Note that the
HV rate drastically decreases compared with the basic models, since the network is learning
simultaneously superclasses and classes, an implicit link has to be discovered.
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Fig. 2. Training loss curves (HG-CNN with/without Bayesain update in blue/green)

– The superclass enhanced penalty loss function improves the performances on the super-
classes, then improves the performances on subclasses due to the Bayesian adjustment.

– The hierarchy violation loss function can only be used as a complement it is not useful
per se in terms of classification because the model does not have any feedback about the
accuracy of the class predictions. However, the model GH-CNN trained with Losshv has
the greatest performances in term of accuracy and F1-score for all the levels because the
hierarchy violation loss forces the CNN to discover and respect the hierarchical link between
labels (the hierarchy violation rate is the lowest reaching 4.39% (< αrisk = 5%). Hence
Losshv is achieving an accurate and confident classification with coherent hierarchical links.

– Experiments done without the warm-up phase showed unstable Loss values which leads us
to believe that warm-up helps the network to find the right starting weights for classifying
the coarsest classes, then the teacher forcing strategy improves the learning of the subclasses.
We observe that the highest loss is reached with the Losshv for both datasets, but this high
error deceases during the last 25% training time attesting that the network manages the
classification of each category separately and integrates the hierarchy between the levels.

– Experiments done without the Bayesian update using the Losshv showed a very disturbed
training loss curve (the green curve in Figure 24) compared to training with the Bayesian
update (the blue curve in 2) attesting that the Bayesian curve plays a crucial role in imposing
the ICH.

– Comparing with state of the art works, we can remark that, for BreakHis dataset, almost
all of the approaches did not pay attention to the hierarchical link between classes, except
for [6] where the hierarchy question was addressed (achieving an accuracy of 95.48% of
the tumors type detection and 94.62% for the subtypes), while we obtained with Losshv

98.46% and 96.81% accuracy rates respectively. Concerning the Fashion MNIST dataset,
in [10] a B-CNN model was used (giving an accuracy of 93.33% for the finest level). In
[3], a conditional probability update was used also with a B-CNN (achieving an accuracy of
99.75%, 98.06% and 91.04%) for the three levels respectively. While we achieved, thanks
to the global architecture of HG-CNN, to the Bayesian update and to the well designed loss
function, a greater accuracy of 99.71%, 98.94% and 95.06% respectively.

6 Conclusion and perspectives

This paper presents the GH-CNN, a novel architecture, that encodes the labels hierarchy inside
the network using both a Bayesian adjustment and a particular loss function penalizing hierar-
chy violations. GH-CNN outperforms the state of the art results for both BreakHis and Fashion

4 The vertical axis of Figure 2 is scaled by 3 (e.g. at the first epoch the loss value is 6.76).
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MNIST datasets. As a conclusion, GH-CNN is well designed such that all the layers of the net-
work are involved in the determination of the classes at all the levels. Also, the hierarchical
coherence is imposed by the Bayesian adjustment before the back-propagation and guarantied
thanks to the well-designed loss function. An additional novelty of this paper is the flexibility of
Losshv which can be customized accordingly to the nature of the task. A first perspective of this
work is to compare GH-CNN to a CNN where the loss function contains an encoding of the hier-
archical constraint as proposed in [15] and a second perspective is about exploring the different
combinations of Lossh.
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