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ABSTRACT

We report experiments on the dynamics of vibrated particles constrained in a two-dimensional vertical container, motivated by the
following question: how to get the most out of a given external vibration to maximize internal disorder (e.g. to blend particles) and
agitation (e.g. to absorb vibrations)? Granular media are analogs to classical thermodynamic systems, where the injection of energy
can be achieved by shaking them: fluidization arises by tuning either the amplitude or the frequency of the oscillations. Alternatively,
we explore what happens when another feature, the container geometry, is modified while keeping constant the energy injection. Our
method consists in modifying the container base into a V-shape to break the symmetries of the inner particulate arrangement. The
lattice contains a compact hexagonal solid-like crystalline phase coexisting with a loose amorphous fluid-like phase, at any thermal
agitation. We show that both the solid-to-fluid volume fraction and the granular temperature depend not only on the external vibration
but also on the number of topological defects triggered by the asymmetry of the container. The former relies on the statistics of the
energy fluctuations and the latter is consistent with a two-dimensional melting transition described by the KTHNY theory.

Introduction

Driven granular matter is a classic out-of-equilibrium system exhibiting pattern-forming instabilities1. These media are usually
composed of many macroscopic particles that interact through short-range repulsive interactions2, 3. Among various patterns,
one of the most studied in the last two decades has been the solid-liquid-like phase transition, depending mainly on the driving
acceleration and the packing fraction4–14. In particular, granular matter exhibits patterns and instabilities that resemble those
of molecular fluids15, 16 and has the ability to organize similarly to the phases of condensed matter. The interplay between
defects and vibrations in granular media is a central question: it constitutes a basic mechanism of transition to spatio-temporal
disorder17 in grains driven far from equilibrium. In highly ordered lattices, e.g. granular crystals, such an interplay is a way to
trigger nonlinear instabilities leading to strong energy localization18, 19 and spontaneous symmetry breaking20, 21. Indeed, the
spatial arrangements of grains range from (i) crystalline solids, in which atoms form a perfectly periodic lattice extending in all
directions, to (ii) amorphous matter, such as fluids or glasses, in which the atoms are fully disordered. The former possesses a
long-range order, and the latter is both orientationally and positionally isotropic22–24. Specifically, in two-dimensional systems
of particles, an intermediate state of matter is also possible, namely a hexatic phase. In this configuration, the atoms are
distributed randomly, as in a fluid or glass so that the translational order becomes short-range, but they keep the quasi-long-range
orientational order found in the crystal. The nature of this transition has been extensively studied since the 70’s and predicted
by Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory25, 26. Here, the solid-liquid melting phase is mediated by
topological defects, such as vortices in a superfluid or dislocations and disclinations in a crystal27–30. This concept has recently
been taken to granular media31–36 and ensembles of hard discs37, 38. Unraveling the nature of the phase transition in 2D vibrated
granular media however remains an open and intense debate39–47, inquiring as to whether it is a first-order one or a continuous
one25. As a matter of fact, transitions triggered by the unbinding of dislocations, as predicted by the KTHNY scenario, are
likely of the second-order continuous type46 whereas the observation of phase coexistence is a fingerprint of a first-order
transition43. For instance, the coexistence of liquid-solid states has been observed in a quasi-one-dimensional driven granular
media, where a first-order like transition was found to be mediated by waves and triggered by negative compressibility, as in a
van der Waals gas model48. More recently, the role of the energy dissipation49 and of the container’s roughness50 have been
investigated, demonstrating that particles inelasticity49 and surface topography50 both have the ability to alter the nature and the
order of the solid-liquid transition, from a two-step continuous one (involving an intermediate hexatic phase) to a discontinuous
first-order-like one (involving an intermediate state where liquid and solid coexist). Practically, understanding how to control
the amount of disorder and agitation of particles is meaningful in contexts relevant to industrial processing of granular materials,
like segregation and mixing of seeds and pills51, 52 or vibrations mitigation53–57, for instance. Here, our objective is twofold. On
the one hand, we aim at quantifying how the geometry of the container affects the temperature (i.e. the internal energy) of the
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Figure 1. (a) Sketch of the experimental setup. (b) Image crop displaying few particles and the instantaneous velocity field
(yellow arrows). (c) The local order parameter ψ6( j) probes the internal orientations of the nearest neighbors (NN) of a particle
j, thanks to the Delaunay triangulation (DT) of the lattice. (d) The local compaction C( j) is the ratio of particle cross-section
(in orange) to cell area (in gray) of the Voronoi tessellation (VT, dual of the DT). Maps in a sample at rest (θ,Γ) = (10◦,0) of (e)
the coordination number Z( j) (i.e. the number of NN of j) revealing the disclinations (isolated particles with Z = 5 or Z = 7)
and the dislocations (pairs uniting Z = 5 and Z = 7, see the white lines), (f) the magnitude of the order parameter |ψ6( j)| and (g)
the relative compaction Cr( j) =C( j)/Chcp.

system at constant energy injection. On the other hand, we explore how this modification impacts the amount of disorder within
the system: how the system transits from a solid-like to fluid-like state for different container shapes. In particular, we seek to
unravel whether one can tune the state of the matter to a given solid-to-fluid volume fraction by maintaining a constant energy
injection into the system. The experimental setup under consideration is shown in Fig. 1(a). It consists of a transparent vertical
Hele-Shaw cell filled with monodisperse spherical beads. The bottom of the cell is a V-shape wall with a given angle θ. The cell
is vibrated vertically by a shaker with displacement amplitude A and frequency f = ω/2π = 30 Hz, such that the dimensionless
acceleration is Γ = Aω2/g, being g the gravitational acceleration. A fast camera placed in front of the sample records a picture
(at rest) or a movie (under vibrations) from which one extracts, firstly, the instantaneous position, displacement and velocity
fields of every particle in the cell, and secondly, all the topological features of the lattices (see Methods).

Results and discussion
We describe the topology of a two-dimensional lattice of particles (in terms of defects, local compaction and order parameter)
as a function of the container shape, first at rest and then as a function of the amplitude of vibrations. A phase transition is
revealed by tracking how the solid-to-fluid volume fraction evolves as a function of both the injected energy and the container’s
geometry. We also perform a statistical analysis of the velocity field to evaluate how the thermal fluctuations are affected within
the same parameters space. We show that a Maxwell-Boltzmann description of the vibrations ties all these features together to
estimate the energy to initiate a topological defect.

Disorder and defects at rest
First, we analyze the system at rest, under a quasi-static rain-like deposit of the grains, in order to exemplify and study its
spontaneous ordering. The coordination number Z, the relative compaction Cr and the order parameter |ψ6| (see the definitions
in Methods) are represented in Fig. 1 for a V-shape bottom surface with θ = 10◦. We observe that a large number of grains settle
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Figure 2. (a) Fraction of disclinations, (b) fraction of dislocations, (c) order parameter, (d) relative compaction, (e) solid
fraction and (f) normalized solid fraction as a function of V-shape angle θ and acceleration amplitude Γ. (a,b,e,f) are averages
over time whereas (c,d) are averages over time and particles.

in a dense hexagonal arrangement, with Z = 6, Cr ≃ 1 and |ψ6| ≃ 1 locally. Topological defects originating from the three edges
of the container’s base initiate quasi-one-dimensional fractures extending throughout the lattice, until the top surface. These
long-range defects accommodate the symmetry breaking of the V-shape base, by impeding the tendency to form a hexagonal
lattice. As shown in Fig. 1(f,g) these branches are both loose (Cr < 1) and less ordered (|ψ6| < 1) defects. They correspond to
weak and brittle unconsolidated regions, where the particles are free to move or slide one on the others, i.e. where melting may
initiate more favorably under vibrations. The potential energy stored in these defects is taken from the energy implemented
to prepare the lattice, which may likely contribute later, either to increase the temperature of agitation or to lower the energy
required to transit from a weakened solid phase to a fluid phase.

Disorder and defects under vibrations
We repeat the estimations of Z, Cr, |ψ6| and defect number versus time and space under dynamic conditions, for four acceleration
amplitudes Γ (from 4 to 10, increasing A at constant f ) and seven V-shape angles θ. A V-shape with θ = 0◦ or θ = 30◦ matches
the symmetry of a hexagonal lattice, whereas it breaks this symmetry for angles in between. First, we checked that the
temporal evolution of Z is relatively constant in time, with small fluctuations, revealing around six neighbors on average (see
Fig. S3 in the Supplementary Information). This indicates that the system spontaneously maintains a hexagonal arrangement
independent of the angle of the base and the energy of vibration. Looking in detail (see for instance the animations, Fig. S6 in the
Supplementary Information) reveals that, as for the static case shown in Fig. 1(e), a small fraction of particles can temporarily
lose (Z = 5) or gain (Z = 7) one nearest neighbor (NN). These 5-folded and 7-folded defects are referred to disclinations when
isolated: they break the local orientational symmetry in a crystal58. In a perfect hexagonal lattice, they originate in connected
pairs (named 5∪7 in the following) referred to dislocations, that break the translational order of the lattice32. Dynamically, the
creation-annihilation and the mobility of topological defects (both observed in our system, see Fig. S2 in the Supplementary
Information) are the basic relaxation mechanisms by which a lattice accommodates disorder59. According to KTHNY theory,
dislocations appear at the solid-to-hexatic phase transition whereas disclinations, resulting from the unbinding of dislocations at
a higher temperature, appear at the hexatic-to-fluid transition49. In Fig. 2(a,b), ⟨n5+n7⟩ and ⟨n5∪7⟩ denote the time-averaged
number of disclinations and dislocations, respectively; the complementary fraction, at least 80% of the sample, corresponds to a
crystal state, Z = 6. According to expectations, the number of topological defects increases with the amplitude of the vibration
Γ. In particular, the presence of disclinations and dislocations reveals that the system has undergone the two-phases transitions
predicted by the KTHNY theory, with part of the system being in a fluid-like state (i.e. amorphous) and the other being in a
crystal-like state (i.e. solid or hexatic). A pure hexatic phase would contain dislocations only. Remarkably, the shape of the
container also affects the fraction of both topological defects at constant energy injection: they are maximized in a container
that breaks the symmetry of the sample, see Fig. 2(a,b) at θ = 10◦. These observations are consistent with the evolution of the
time-and-space averaged ⟨Cr⟩ and ⟨|ψ6|⟩, see Fig. 2(c,d): increasing the injected energy or breaking the symmetry of the lattice
induces a more diluted and disordered structure, as one can expect when a crystal melts. Interestingly, both Cr and |ψ6| present
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Figure 3. Snapshots of solid-like (blue) and fluid-like (red) particles at four instants of vibrations within a period of oscillation.
Top: (θ,Γ) = (10◦,10). Bottom: (θ,Γ) = (30◦,4). The particles located at the outer edge of the ensemble, shown in white, are not
used in the analysis.

a minimum close to θ = 10◦, for which the number of topological defects is also maximum. Finally, note how correlated are
the curves of Cr and |ψ6|, revealing a linear proportionality between order and density (see also Fig. S4 in the Supplementary
Information).

Phase detection and evolution
Locally, a cluster of particles can be considered as a solid (jammed, dense, crystallized) or a fluid (unjammed, loose,
amorphous) depending on criteria on the order parameter7, 9, 22, 23, 29, 30, 32, 33, 36, 37, 41, 43–45, 47, 49, 50, 60–64 and/or on the packing
fraction5, 6, 9–12, 24, 32, 34, 46, 49. Based on our observations (see Fig. S4 in the Supplementary Information), inspecting the
probability density function of the local order parameter in lattices at several driving amplitude and containers shape, reveals
a sharp peak centered on |ψ6| ≃ 1 (i.e. hexagonal crystal chunks) and a wider one spanning around |ψ6| ≃ 0.5 (i.e. random
amorphous phases). These two contributions are well separated by a local minimum located near |ψ∗6| = 0.85; this value
constitutes a good candidate for a criterion to distinguish solid-like and fluid-like phases. Alternatively, we checked that a
criterion on the local compaction, C∗r = 0.9, provides a similar discrimination level owing to the linear correlation between |ψ6|

and Cr (see Fig. S4 in the Supplementary Information). We thus differentiate phases at the particle level depending on the local
order parameter, whether the particle j and its NN are in{

a crystallized and dense solid-like state if |ψ6( j)| ≥ 0.85,
an amorphous and loose fluid-like state if |ψ6( j)| < 0.85. (1)

This definition is used in Fig. 2(e,f) to represent the time-averaged solid fraction ⟨nS /N⟩ in a vibrated lattice, as a function of Γ
and θ, where nS (t) is the instantaneous number of solid-like particles according to Eq. 1 and N is the total number of particles in
the sample. The solid fraction nS (t)/N fluctuates at the frequency of the external driving (see the Fig. S4 in the Supplementary
Information) and the time-average quantifies how the coexistence of phases evolves in the system: in the most fluidized case,
one finds about 5% of particles in a solid-like state, whereas, for the least fluidized case, there is approximately 60% of such
particles. As expected, the largest solid fractions are obtained for the smallest acceleration. In contrast, at constant acceleration,
a minimum of the solid fraction is reached when the container and the lattice are geometrically dissimilar. The maximum is
reached when they have the same symmetries, at θ = 0◦ and θ = 30◦. More precisely, a min-max normalization of the curves
presented in Fig. 2(e) shows that the geometry at which the minimum solid fraction is reached, θ = 10◦, does not depend on
the driving amplitude, see Fig. 2(f). The fact that the normalized data collapse on a master curve demonstrates that the solid
fraction can be tuned independently by acting on the geometry of the container only, at constant input energy. Consistently, the
solid fraction is minimum at θ = 10◦ because at this value, the sample contains the largest fraction of topological defects in
addition to being in the loosest and the more disordered state, see Fig. 2(a-d). The condition given in Eq. 1 also facilitates
the instantaneous monitoring of the phases, as illustrated in Fig. 3 for two contrasted sets of parameters (θ,Γ) = (30◦,4) and
(θ,Γ) = (10◦,10). According to Fig. 2, the former case corresponds to a geometry matching the symmetry of a hexagonal
lattice considered at low driving amplitude whereas the latter case boosts the solid-to-liquid phase ratio, in terms of both the
container shape and the energy injection. Each column display instantaneous snapshots of the system at four different stages
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ṽ y
)

<latexit sha1_base64="sw+08v3axdM1xvEaM7PbIgRcDFM=">AAACGHicbZA7TsNAEIbXvAmvAGUoVkRIVMGOEEk6JBrKICUBKbGs9WacrLJ+aHccJbJccA0uQAs3oEO0dFyAc+CYUAT4q2/nnxnN/m4khUbT/DCWlldW19Y3Ngtb2zu7e8X9g44OY8WhzUMZqjuXaZAigDYKlHAXKWC+K+HWHV3N/NsxKC3CoIXTCGyfDQLhCc4wKznFUg+F7EMyTp3J2dhJeggTTDhImaZOsWxWzFz0L1hzKJO5mk7xs9cPeexDgFwyrbuWGaGdMIWCS0gLvVhDxPiIDaCbYcB80HaSfyKlJ16oKA6B5u+F3pZlJ14YIAR8YUnCfK2nvpsN+wyH+rc3K/7ndWP06nYigijOd9KTzPNiSTGks5BoXyjgKKcZMK5Edj7lQ6YYxyzKQiEPplG/qFUb9C/8BNOpVqyLyvnNefnyaB7RBimRY3JKLFIjl+SaNEmbcHJPHskTeTYejBfj1Xj7bl0y5jOHZEHG+xcmRaFY</latexit>
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ṽy/vcell

0

1

2

3

−1 0 1 −1 0 1 −1 0 1 −1 0 1

<latexit sha1_base64="1k9hfLxgUqy3RUON8PsUdYvP0ck=">AAACEHicbZA7TsNAEIbXvAmvACUUK6JIQULBjhCPDomGEqS8pMRE682YrNi1rd0xwrJyCS5ACzegQ7TcgAtwDhwTihD+6pv5Z0aj34ukMGjbn9bM7Nz8wuLScmFldW19o7i51TRhrDk0eChD3faYASkCaKBACe1IA1OehJZ3dzHyW/egjQiDOiYRuIrdBsIXnGHW6hW3Va92k3QPKl2EB0zVoRnu94olu2rnotPgjKFExrrqFb+6/ZDHCgLkkhnTcewI3ZRpFFzCsNCNDUSM37Fb6GQYMAXGTfPnh7Tsh5riAGheT8zWHTf1wwAh4BNHUqaMSZSXLSuGA/PXGzX/8zox+qduKoIozm/Scub5saQY0lE4tC80cJRJBoxrkb1P+YBpxjGLsFDIgzk7PT6pndFp+A2mWas6x9Wj66PS+e44oiWyQ/ZIhTjkhJyTS3JFGoSThDyRZ/JiPVqv1pv1/jM6Y413tsmErI9vXbucdg==</latexit>

m
y 2
(m

/s
)

<latexit sha1_base64="6DkjlYc0pX8cshMmZQRPky4vYjk=">AAACEXicbVDLSsNAFJ34rPUVHztdDJZCBSlJEdvuCm5cVrAqNKFMpjft4OTBzI1YQ7/CH3Crf+BO3PoF/oDfYRrroupZnXvPvYfD8WIpNFrWhzE3v7C4tFxYKa6urW9smlvblzpKFIcOj2Skrj2mQYoQOihQwnWsgAWehCvv5nSiX92C0iIKL3AUgxuwQSh8wRlmq5656+AQkDlHFQfhDtM+DMaHPbNkVa0c9C+xp6REpmj3zE+nH/EkgBC5ZFp3bStGN2UKBZcwLjqJhpjxGzaAbkZDFoB20zz9mJb9SNEsBc3nmdsL2039KEQI+YxJygKtR4GXPQcMh/q3Nln+p3UT9BtuKsI4yT1pOdP8RFKM6KQd2hcKOMpRRhhXIotP+ZApxjHrsFjMi2k2Tuq1Jv1Lfoq5rFXtk+rx+XGptT+tqED2yAGpEJvUSYuckTbpEE7uySN5Is/Gg/FivBpv36dzxvRnh8zAeP8CvVCdPg==</latexit>

✓ (deg)

0

0.05

0.10

0.15

0 10 20 30

<latexit sha1_base64="1k9hfLxgUqy3RUON8PsUdYvP0ck=">AAACEHicbZA7TsNAEIbXvAmvACUUK6JIQULBjhCPDomGEqS8pMRE682YrNi1rd0xwrJyCS5ACzegQ7TcgAtwDhwTihD+6pv5Z0aj34ukMGjbn9bM7Nz8wuLScmFldW19o7i51TRhrDk0eChD3faYASkCaKBACe1IA1OehJZ3dzHyW/egjQiDOiYRuIrdBsIXnGHW6hW3Va92k3QPKl2EB0zVoRnu94olu2rnotPgjKFExrrqFb+6/ZDHCgLkkhnTcewI3ZRpFFzCsNCNDUSM37Fb6GQYMAXGTfPnh7Tsh5riAGheT8zWHTf1wwAh4BNHUqaMSZSXLSuGA/PXGzX/8zox+qduKoIozm/Scub5saQY0lE4tC80cJRJBoxrkb1P+YBpxjGLsFDIgzk7PT6pndFp+A2mWas6x9Wj66PS+e44oiWyQ/ZIhTjkhJyTS3JFGoSThDyRZ/JiPVqv1pv1/jM6Y413tsmErI9vXbucdg==</latexit>

m
y 2
(m

/s
)

0

0.05

0.10

4 6 8 10

<latexit sha1_base64="Eq3VaqHE8b45/BZNVhx8BWpKcuI=">AAACAHicbZDLTsJAFIanXrHeUJe6mEhIXJEWCZcdiRuXmFAggUqmwxQmzHSamalJ07DxBdzqG7gzbn0TX8DnsNS6QPxX3zn/OScnvxcyqrRlfRobm1vbO7uFPXP/4PDouHhy2lMikpg4WDAhBx5ShNGAOJpqRgahJIh7jPS9+c3S7z8QqagIujoOicvRNKA+xUinLYePr+/jcbFkVaxMcB3sHEogV2dc/BpNBI44CTRmSKmhbYXaTZDUFDOyMEeRIiHCczQlwxQDxIlyk+zZBSz7QkI9IzCrV2a7tpv4ItAkwCtHEsSVirmXLnOkZ+qvt2z+5w0j7TfdhAZhlN2E5dTzIwa1gMsw4IRKgjWLU0BY0vR9iGdIIqzTyEwzC6bVrDeqLbgOv8H0qhW7Xqnd1UrtizyiAjgHl+AK2KAB2uAWdIADMKDgCTyDF+PReDXejPef0Q0j3zkDKzI+vgGqzJa5</latexit> m
y 3

<latexit sha1_base64="6DkjlYc0pX8cshMmZQRPky4vYjk=">AAACEXicbVDLSsNAFJ34rPUVHztdDJZCBSlJEdvuCm5cVrAqNKFMpjft4OTBzI1YQ7/CH3Crf+BO3PoF/oDfYRrroupZnXvPvYfD8WIpNFrWhzE3v7C4tFxYKa6urW9smlvblzpKFIcOj2Skrj2mQYoQOihQwnWsgAWehCvv5nSiX92C0iIKL3AUgxuwQSh8wRlmq5656+AQkDlHFQfhDtM+DMaHPbNkVa0c9C+xp6REpmj3zE+nH/EkgBC5ZFp3bStGN2UKBZcwLjqJhpjxGzaAbkZDFoB20zz9mJb9SNEsBc3nmdsL2039KEQI+YxJygKtR4GXPQcMh/q3Nln+p3UT9BtuKsI4yT1pOdP8RFKM6KQd2hcKOMpRRhhXIotP+ZApxjHrsFjMi2k2Tuq1Jv1Lfoq5rFXtk+rx+XGptT+tqED2yAGpEJvUSYuckTbpEE7uySN5Is/Gg/FivBpv36dzxvRnh8zAeP8CvVCdPg==</latexit>

✓ (deg)

−0.5

0

0.5

0 10 20 30

<latexit sha1_base64="6DkjlYc0pX8cshMmZQRPky4vYjk=">AAACEXicbVDLSsNAFJ34rPUVHztdDJZCBSlJEdvuCm5cVrAqNKFMpjft4OTBzI1YQ7/CH3Crf+BO3PoF/oDfYRrroupZnXvPvYfD8WIpNFrWhzE3v7C4tFxYKa6urW9smlvblzpKFIcOj2Skrj2mQYoQOihQwnWsgAWehCvv5nSiX92C0iIKL3AUgxuwQSh8wRlmq5656+AQkDlHFQfhDtM+DMaHPbNkVa0c9C+xp6REpmj3zE+nH/EkgBC5ZFp3bStGN2UKBZcwLjqJhpjxGzaAbkZDFoB20zz9mJb9SNEsBc3nmdsL2039KEQI+YxJygKtR4GXPQcMh/q3Nln+p3UT9BtuKsI4yT1pOdP8RFKM6KQd2hcKOMpRRhhXIotP+ZApxjHrsFjMi2k2Tuq1Jv1Lfoq5rFXtk+rx+XGptT+tqED2yAGpEJvUSYuckTbpEE7uySN5Is/Gg/FivBpv36dzxvRnh8zAeP8CvVCdPg==</latexit>

✓ (deg)

<latexit sha1_base64="1s5puxJINJo7C+rdBU7HpfQkzGk=">AAACAHicbZDLTsJAFIaneMN6Q13qYiIhcUVaQrjsSNy4xIQCCVQyHaYwYWbazExNmoaNL+BW38Cdceub+AI+h6XWBeK/+s75zzk5+b2QUaUt69MobG3v7O4V982Dw6Pjk9LpWV8FkcTEwQEL5NBDijAqiKOpZmQYSoK4x8jAW9ys/MEDkYoGoqfjkLgczQT1KUY6bTl8Ur+PJ6WyVbUywU2wcyiDXN1J6Ws8DXDEidCYIaVGthVqN0FSU8zI0hxHioQIL9CMjFIUiBPlJtmzS1jxAwn1nMCsXpvt2W7iB0ITgdeOJIgrFXMvXeZIz9Vfb9X8zxtF2m+5CRVhlN2EldTzIwZ1AFdhwCmVBGsWp4CwpOn7EM+RRFinkZlmFky71WjW2nATfoPp16p2o1q/q5c7l3lERXABrsA1sEETdMAt6AIHYEDBE3gGL8aj8Wq8Ge8/owUj3zkHazI+vgGsZpa6</latexit> m
y 4

0

2

4

0 10 20 30

<latexit sha1_base64="6DkjlYc0pX8cshMmZQRPky4vYjk=">AAACEXicbVDLSsNAFJ34rPUVHztdDJZCBSlJEdvuCm5cVrAqNKFMpjft4OTBzI1YQ7/CH3Crf+BO3PoF/oDfYRrroupZnXvPvYfD8WIpNFrWhzE3v7C4tFxYKa6urW9smlvblzpKFIcOj2Skrj2mQYoQOihQwnWsgAWehCvv5nSiX92C0iIKL3AUgxuwQSh8wRlmq5656+AQkDlHFQfhDtM+DMaHPbNkVa0c9C+xp6REpmj3zE+nH/EkgBC5ZFp3bStGN2UKBZcwLjqJhpjxGzaAbkZDFoB20zz9mJb9SNEsBc3nmdsL2039KEQI+YxJygKtR4GXPQcMh/q3Nln+p3UT9BtuKsI4yT1pOdP8RFKM6KQd2hcKOMpRRhhXIotP+ZApxjHrsFjMi2k2Tuq1Jv1Lfoq5rFXtk+rx+XGptT+tqED2yAGpEJvUSYuckTbpEE7uySN5Is/Gg/FivBpv36dzxvRnh8zAeP8CvVCdPg==</latexit>

✓ (deg)

<latexit sha1_base64="tl/2lVI11MkWuDJG9Jh5nwXowPc=">AAACBHicbZC7TsMwFIadcivhVmCEwaKqxFSSquplq8TCWKTeUBtVjuu0Vu0ksh1EFHXlBVjhDdgQK+/BC/AcuCEMpfyD9fv85xwdfW7IqFSW9WnkNja3tnfyu+be/sHhUeH4pCeDSGDSxQELxMBFkjDqk66iipFBKAjiLiN9d369zPv3REga+B0Vh8ThaOpTj2KkdOlu3hk/XOknHheKVtlKBdeNnZkiyNQeF75GkwBHnPgKMyTl0LZC5SRIKIoZWZijSJIQ4TmakqG2PuJEOkl68AKWvEBANSMw/a/0dmwn8QJfER+vLEkQlzLmrh7mSM3k32xZ/C8bRsprOAn1wyjdCUs68yIGVQCXQOCECoIVi7VBWFB9PsQzJBBWGptppmCajVq90oTr5hdMr1K2a+XqbbXYOs8Q5cEZuACXwAZ10AI3oA26AAMOnsAzeDEejVfjzXj/ac0Z2cwpWJHx8Q22Ophn</latexit> k
T

x
/
k
T

y

0

0.2

0.4

0.6

0 10 20 30

<latexit sha1_base64="6DkjlYc0pX8cshMmZQRPky4vYjk=">AAACEXicbVDLSsNAFJ34rPUVHztdDJZCBSlJEdvuCm5cVrAqNKFMpjft4OTBzI1YQ7/CH3Crf+BO3PoF/oDfYRrroupZnXvPvYfD8WIpNFrWhzE3v7C4tFxYKa6urW9smlvblzpKFIcOj2Skrj2mQYoQOihQwnWsgAWehCvv5nSiX92C0iIKL3AUgxuwQSh8wRlmq5656+AQkDlHFQfhDtM+DMaHPbNkVa0c9C+xp6REpmj3zE+nH/EkgBC5ZFp3bStGN2UKBZcwLjqJhpjxGzaAbkZDFoB20zz9mJb9SNEsBc3nmdsL2039KEQI+YxJygKtR4GXPQcMh/q3Nln+p3UT9BtuKsI4yT1pOdP8RFKM6KQd2hcKOMpRRhhXIotP+ZApxjHrsFjMi2k2Tuq1Jv1Lfoq5rFXtk+rx+XGptT+tqED2yAGpEJvUSYuckTbpEE7uySN5Is/Gg/FivBpv36dzxvRnh8zAeP8CvVCdPg==</latexit>

✓ (deg)

<latexit sha1_base64="raZXUKE4XQO+9gwqiqRk0ykWAd4=">AAACDnicbZBLSgNBEIZ74ivGV6JLXTQGQUHCTBCT7AJuxJVCooHMEHramqRJz4PuGjUMuYMXcKs3cCduvYIX8BxOxriI8V99VX9VUfxuJIVG0/w0cguLS8sr+dXC2vrG5laxtH2tw1hxaPNQhqrjMg1SBNBGgRI6kQLmuxJu3OHZxL+5A6VFGLRwFIHjs34gPMEZpq1esTRs2ceHth/bCA+YXIyPesWyWTEz0XmwplAmU132il/2bchjHwLkkmndtcwInYQpFFzCuGDHGiLGh6wP3RQD5oN2kuz1MT3wQkVxADSrZ2ZblpN4YYAQ8JkjCfO1HvluuuwzHOi/3qT5n9eN0as7iQiiOLtJD1LPiyXFkE6iobdCAUc5SoFxJdL3KR8wxTimARYKWTCN+mmt2qDz8BvMdbVinVZOrk7Kzb1pRHmyS/bJIbFIjTTJObkkbcLJPXkiz+TFeDRejTfj/Wc0Z0x3dsiMjI9vDJ+bxQ==</latexit> k
T

(µ
J)

0

0.2

0.4

0 10 20 30

Γ= 4 Γ= 6 Γ= 8 Γ= 10

a b c d

e

f

g

h

i

j

Figure 4. Probability density function of the horizontal and vertical velocity fluctuations, ṽx,y/vcell, for (a,b) (θ,Γ) = (30◦,4)
and (c,d) (θ,Γ) = (10◦,10). The red lines in (a-d) are the best fits with the normal distribution, see Eq. 2. Vertical standard
deviation my

2 versus (e) θ and (f) Γ. (g) Vertical skewness my
3 and (h) vertical kurtosis my

4 versus θ for different Γ. (i)
Horizontal-to-vertical temperature ratio, kTx/kTy, and (j) mean temperature, kT = (kTx + kTy)/2, versus θ for different Γ.

of oscillations, t/T = [0,1/4,1/2,3/4]. Blue stands for a solid-like particle and red stands for a fluid-like particle. For the
asymmetric configuration at large driving amplitude, (θ,Γ) = (10◦,10), the displacement field appears disorganized and diluted:
the sample is more fluidized. In contrast, the symmetric configuration within the smallest driving amplitude, (θ,Γ) = (30◦,4)
appears more organized and denser, with wide clusters of crystallized and jammed structures. Both examples demonstrate the
coexistence of solid-like and fluid-like phases in the sample, on average. Remarkably, the value of the solid fraction is transient
as it oscillates around an average value at the driving frequency (see Fig. S4 in the Supplementary Information), unlike the
horizontal granular beds vibrated out-off-plane, in which the phases are quasi-stationary39, 48.

Statistical analysis of the thermal fluctuations
Analyzing now the fluctuations of the velocity field, obtained by tracking the trajectories of all particles (see Methods), provides
information (i) on how the kinetic energy is statistically distributed inside the granular medium and (ii) on how the transfer of
external vibration into internal agitation is affected by the geometry and the driving. The velocity fluctuations of the particle
j in the x (horizontal) or y (vertical) directions is ṽx,y( j, t) = vx,y( j, t)− v̄x,y(t). The quantity v̄ denotes the ensemble average,
over all particles at a given instant: it thus corresponds to the in-plane component of the instantaneous velocity of the center
of mass of the monodisperse sample, v̄x,y(t) = vCM

x,y (t) (see Fig. S5 in the Supplementary Information). In the following, we
analyze qualitatively how is distributed the energy of agitation associated with these fluctuations, before quantifying them
more systematically owing to the analysis of their first four statistical moments as a function of θ and Γ. In particular, the
inspection will show that the thermal agitation is noticeably anisotropic but tends to be satisfactorily approximated by the
Maxwell-Boltzmann distribution at large amplitude and asymmetry.

Probability density function – In Fig. 4(a-d), we present two examples of probability density function (PDF) of the velocity
fluctuations in the (x,y) plane, at low and high fluidizations (same cases as in Fig. 3). In each of the four plots, the red curve
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stands for the best adjustment with the normal distribution,

pdf(ṽx,y) =
√

m/2πkTx,y exp(−mṽ2
x,y/2kTx,y) with mx,y

2 = std(ṽx,y) =
√

kTx,y/m, (2)

where the standard deviation mx,y
2 is estimated over all particles and times; mx,y

2 relates to the granular temperature4, 65–68 in
the horizontal or vertical directions, kTx,y given in Joules, being m the mass of a particle and k a macroscopic equivalent of
the Boltzmann’s constant. A satisfactory fit of the PDF of the individual components with a Gaussian distribution means
that the magnitude of the fluctuations velocity vector follows the Maxwell-Boltzmann distribution69, 70 (see below), though a
careful inspection allows to reveal slight discrepancies. One sees for instance that both PDF in the vertical direction shown in
Fig. 4(b,d) are slightly skewed on the left, indicating an excess (resp. a lack) of negative (resp. positive) velocities. This stems
from the asymmetry introduced by the gravity field (see the motions in Fig. S5 in the Supplementary Information), in addition
to the inelastic rebound at the collision between the free-falling granular lattice and the bottom of the container57. Consistently,
we observe that unlike the vertical velocity distribution, the distribution of the horizontal velocity fluctuations is better centered
in both examples. Also noticeable, the horizontal and the vertical PDFs appear sharper than the normal distribution. Such a
non-Gaussian trend is also consistent with the dissipative nature of the interactions between particles53, 66, 71, leading to an
excess of those with low velocity/low kinetic energy. However, the sharpening of the PDFs has been shown to have a negligible
effect on the estimation of the temperature in systems driven stationarily71. Finally, we note that the velocity fluctuations are
significantly anisotropic: the width of the PDFs in the horizontal direction is thinner than in the vertical direction, compare for
instance Figs. 4(a,c) and 4(b,d). Such anisotropy is a well-known consequence of the unidirectional driving69, 70, the energy
being injected in the vertical direction.

Statistical moments – We rationalize now the inspection of the statistical properties by estimating systematically the n-th
central moments µx,y

n = ⟨(ṽx,y)n⟩ of the horizontal/vertical agitation versus Γ and θ. Here, the average, ⟨. . . ⟩, is performed over
all particles and times. More details on the dynamical evolution of the statistical moments are provided in the Supplementary
Information, see for instance the time-dependent boxplots shown in Fig. S5. On average, the first moment is exactly zero,
µ1 = 0, since the instantaneous velocity of the center of mass of the granular slab is removed from all the particles in each frame.
The second moment provides the standard deviation, m2 =

√
µ2, which is a measure of the magnitude of the fluctuations. The

skewness m3 = µ3/µ
3/2
2 indicates the asymmetry of the PDF and the normalized kurtosis m4 = µ4/µ

2
2−3 quantifies its sharpness68.

It is worth noting that all the moments are calculated using unbiased estimators. Also, the high order statistical moments
being more sensitive to the experimental noise than the lower ones, we improve the accuracy of both m3 and m4 by discarding
irrelevant outliers data (defined as the velocity fluctuations whose magnitude is larger than three times the standard deviation).
As a matter of fact, the skewness and the kurtosis are zero for a normal distribution, m3 =m4 = 0: both these statistical moments
thus measure the relative degree of similarities between the observed fluctuations and the Maxwell-Boltzmann distribution68.
The evolution of the different moments as a function of Γ and θ are summarized in Fig. 4(e-h). First, we observe that the standard
deviation increases monotonically with the magnitude of the excitation Γ, see Fig. 4(e,f), revealing an expected augmentation of
the internal thermal agitation with the external driving amplitude. Interestingly, my

2 also depends on θ at given Γ = const. In
particular, the magnitude of the fluctuations is boosted at intermediate angles (10◦ < θ < 20◦), where one previously found that
the amount of topological defects is maximum and the order parameter, the compaction and the solid fraction are minimum, see
Fig. 2. More asymmetry thus induces more defects, disorder and looseness, leading to stronger agitation. The evolution of the
skewness in the vertical direction is also consistent with the examples given in Fig. 4(a-d). It is slightly positive but very close
to a normal distribution (my

3 ≃ 0.1) for intermediate angle (10◦ ≤ θ ≤ 20◦). For the more symmetric configurations (θ ≃ 0◦ and
θ ≃ 30◦) a larger variability of my

3 is observed. However, these deviations do not reveal a clear and monotonic tendency, such
that on average, the skewness could be considered roughly independent on Γ and θ. In contrast, the normalized kurtosis of the
vertical component of the velocity appears more significantly affected by the driving amplitude and the geometry. In particular,
it tends to that of a normal distribution, my

4 ≃ 0, for intermediate angles (10◦ < θ < 20◦). In this region, the larger the driving
amplitude, the closer to a normal distribution. Unlike the skewness, the normalized kurtosis monotonically rises when the
geometry becomes more symmetric (θ = 0◦ and θ = 30◦), indicating a deviation from a Gaussian distribution resulting from the
container geometry. Here, note that the contrast between symmetric and asymmetric geometries tends to fade as the amplitude
of the driving increases. Nevertheless, the ratio of horizontal-to-vertical standard deviations confirms the systematic anisotropy
of the temperature field69, 70, see Fig. 4(i). Interestingly enough, the ratio appears relatively Γ-independent but θ-dependent: the
anisotropy is more pronounced for symmetric containers than for asymmetric ones. Further quantitative analysis (see below)
of the thermal agitation will be carried on with the definition of an average isotropic-like temperature, T = (Tx +Ty)/2, as
proposed by Barrat et al.69. The plot of such a temperature, shown in Fig. 4(j), confirms that for a given container’s geometry,
the injected energy is converted into thermal agitation that increases monotonically with the input. It also demonstrates that,
unlike classical fluids or solids, the internal temperature can be changed significantly by acting on the container’s shape only, at
constant external excitation; in particular, the most asymmetrical cases boost the temperature by approximately a factor two.
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Here, the V-shapes with intermediate angles enhance both the magnitude of the fluctuations and the temperature isotropy, by
scattering the vertically injected momentum more efficiently, out of the gravity and out of the lattice’s symmetry axes. This
efficiency relies on particles’ mobility, i.e. on topological defects: a defect is activated when the displacement of a particle is
energetically possible, see the Sec. 6 in the Supplementary Information, without preferred direction. Although the magnitude
and the isotropy of the temperature appear related, this suggests a leading effect of the former on the generation of disorder:
the larger the temperature, the more topological defects, see the correlation between Figs. 2(a,b) and Fig. 4(j), whereas the
temperature anisotropy is only a function of θ, see Fig. 4(i).

Maxwell-Boltzmann distribution – The statistical analysis thus demonstrates that the normal distribution given in Eq. 2 is
relevant for both components of the velocity fluctuations at all amplitudes within the intermediate range of V-shape angles,
whereas it appears limited to the highest excitation magnitudes in the symmetric configurations. Nevertheless, extending the
validity of the Ansatz over the whole range of probed parameters and conceding a homogeneous isotropic temperature69,
entails that the magnitude of the velocity vector fluctuations, ṽ = |⃗ṽ| with ⃗̃v = ṽx x⃗+ ṽyy⃗, can be approximated by the Maxwell-
Boltzmann distribution69, 70, pdf(ṽ) = (mṽ/kT )exp(−mṽ2/2kT ). Consequently, the Maxwell-Boltzmann cumulative density
function, cdf(ṽ) =

∫ ṽ
0 pdf(ṽ)dṽ, would represent the probability to find a particle with an energy in between 0 and E = mṽ2/2 in

a system at temperature T . As a consequence, if E stands for the energy threshold required to generate a dislocation, then all
the particles with lower energy statistically pertain to a solid-like phase; therefore, the solid fraction would read as

ns/N = cdf(E,T ) = 1− exp(−E/kT ). (3)

Figure 5(a) represents the solid fraction given in Fig. 2(e) versus the temperature shown in Fig. 4(j), in addition to the average
solid fraction detected in the static case (T = 0). The latter is obtained from ten realizations of static heaps for each angle
(see Methods), as seen in Fig. 1(e,f,g). Fitting the Eq. 3 to the dataset at T > 0 provides a measure of the energy threshold,
E = (108±28) nJ. For the sake of comparison, this value corresponds to a fraction of the work done by the weight of a particle
to elevate it by one diameter, E ≃ (0.16± 0.04)×mgd. It is coherent with the gravitational potential energy difference per
particle, between an elementary hexagonal crystal standing vertically, and a 5-folded (with one void) or 7-folded (with an
extra NN) topological defect. The magnitude of the fitted energy E thus relies on the typical energy to create a topological
defect (here a dislocation) in a hexagonal lattice. Alternatively, in Fig. 5(b), the same dataset is represented in a lin-log scale:
the slope between the logarithm of the fluid fraction and the inverse of the temperature is −E. Strikingly, both fractions of
defects (disclinations and dislocations) taken from Fig. 2(a,b), have a trend versus the temperature which is similar to that of
the fluid fraction: all three increase with T at the same rate, in agreement with the assumption that E in Eq. 3 relies on the
energy to create a topological defect. Consistently, the intercepts of the black, the blue and the red lines (i.e. the fractions
at infinite temperature) in Fig. 5(b) reveals approximately 1 topological defect per 6 fluid-like particles, in agreement with a
trivial expectation in a hexagonal lattice. Irrespective of Eq. 3, another important feature of the results presented in Fig. 5(a)
is the collapse of the dataset on a master curve which solely depends on the temperature, regardless of the V-shape angle.
This reveals an indirect effect of the geometry on the phases under vibrations: the V-shape affects the temperature, which in
turn intrinsically modifies the solid-to-fluid ratio. As an example, the two colored markers close to kT = 0.2 µJ in Fig. 5(a)
correspond to different geometries and amplitudes, (θ,Γ) = (10◦,6) and (θ,Γ) = (30◦,8), but lead to similar temperature and
solid fraction nonetheless, as seen also in Fig. 5(d). In other words, this means that one can reach a given operating point,
defined in terms of disorder and agitation, via any combination of the container’s shape and injected energy. Without loss of
generality, it is thus possible to fix the system’s state at a minimal energy cost with an appropriate shape.

Order parameter susceptibility across phase transition.
Finally, insight on the nature of the observed phase transition and the location of the transition points is provided here. In
Thermodynamics, the susceptibility72 provides such information, which diverges discontinuously in a first-order transition or
as a power-law singularity in a second-order transition. In both case, a sharp peak of the susceptibility indicates a transition
point. In particulate systems, an analog of the thermodynamic susceptibility73 exists and has proven reliable to probe their
phase transitions32, 49, 50, 61, e.g. to resolve accurately the hexatic phase in granular media32. In 2D lattices, two parameters
are relevant, depending on the nature of the symmetry broken across the phase transition61, namely the translational and the
orientational order parameter susceptibility, χT and χ6. In the frame of a two-step transition, χT (revealing the solid-hexatic
transition) diverges at a lower temperature than χ6 (revealing the hexatic-fluid transition), whereas both diverge at the same
temperature in the case of a first-order transition50. Practically, we make use of χ6 in this study, which is defined as73

χ6 = ⟨|ψ̄
2
6(t)|⟩ − ⟨|ψ̄6(t)|⟩2 = std2(|ψ̄6(t)|), (4)

where ψ̄6(t) =
∑N

j=1ψ6( j, t)/N is the instantaneous ensemble average and ⟨. . .⟩ and std(. . .) denote the mean and standard
deviation over time. From this definition, χ6 is also equal to the square of the standard deviation of |ψ̄6|. Therefore, it reveals
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Figure 5. (a) Solid fraction, (b) fluid fraction superimposed with defects fractions and (c) susceptibility, as a function of
temperature, merging all the data shown in Figs. 1, 2 and 4 at various (θ,Γ) into a single data set. The black curve in (a,b) stands
for the Maxwell-Boltzmann cumulative density function cdf(E,T ) = 1− exp(−E/kT ) with E = 108 nJ, see Eq. 3. The blue and
red curves in (b) are guidelines parallel to the Maxwell-Boltzmann approximation. Black bold markers located at T = 0 in (a)
and (c) correspond to the average data obtained from ten realizations of static heaps at each angle, as seen for instance in Fig. 1.
(d) Snapshots of solid-like (blue) and fluid-like (red) particles, as in Fig. 3, showing weak (first), intermediate (second and third)
and large (fourth) temperatures and solid fractions; note the two intermediate cases with different (θ,Γ) but similar T and nS .

large fluctuations of the lattice’s order parameter, across a transition point32, 49, 50, 61, 73. Figure 5(c) presents the susceptibility
χ6 as a function of the temperature T under vibrations, in addition to the estimation of χ6 at rest, from the repeated sample
preparations (see Methods). A clear peak emerges at T = 0 followed by a smaller plateau at any T > 0, indicating that the loss of
orientational symmetry due to the unbinding of dislocations into disclinations, occurs in the static regime. Indeed, disclinations
and dislocation are found in all static configurations, arising from the geometrical asymmetry of the container during the
rain-like preparation of the samples, see Fig. S1 in the Supplementary Information. It results that the translational symmetry
breaking, leading to the divergence of χT owing to the appearance of dislocations, should occur at the same temperature, T = 0.
The latter assertion is corroborated, alternatively, by analyzing the trends of the Lindemann parameter32, 61, 74 (a measure of the
mean distance traveled by a particle relatively to nearest neighbors) as a function of time, see Fig. S7 in the Supplementary
Information. The Lindemann parameter does not plateau at long durations in any probed configurations, suggesting that the
translational symmetry breaks74 at vanishing temperature, kT = 0, concurrently with the loss of orientational order. This means
that the observed phase transition is of the first-order type, in agreement with the observation of phases coexistence, another
hallmark of such a transition43. It is worth noting that our analysis is compatible with the observations of Komatsu49 and
Downs50, both being performed in a horizontal monolayer lattice vibrated off-plane. In the former study49, the change in the
nature of the liquid-solid transition, from a two-step continuous one to a discontinuous first-order-like one, was attributed to
the particle inelasticity. In our case of a vertical monolayer, strongly inelastic collisions with the container’s occur56 due to
the inelastic collapse of the piles of grains75. In the latter study50, the bottom surface was decorated with periodically spaced
dimples; the surface topography was also shown to alter the order of the phase transition and lead to a first-order one.

Conclusion
In this work, we have studied the fluidization of a vertical monodisperse two-dimensional granular medium by increasing the
energy injection and by quantifying what happens when modifying (and therefore disordering) the container’s geometry. We
reported that altering the shape of the system favors the creation of disclinations and dislocations, breaking the hexagonal
symmetry of the inner particulate lattice. From image analysis, we obtained the instantaneous coordination number Z,
compaction C, order parameter ψ6 of each particle as a function of time. From this, we established a criterion to determine if a
particle is in a solid-like or in a fluid-like phase, by analyzing the probability density function of the order parameter. We then
performed a statistical analysis of the vibrated lattice, where we were able to tune the fluidized state by acting either on the base
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angle and/or the injected energy, independently. Along with this, we found that the velocity fluctuations tend to an isotropic-like
Maxwell-Boltzmann distribution for configurations that favor disorder in the system. Finally, by analyzing the orientational
order parameter susceptibility, we found that the system follows a first-order transition, triggered at T = 0, between solid-like
and fluid-like coexisting phases. A qualitative description then allowed us to bridge the thermal agitation and the solid-to-fluid
fraction to the energy necessary to initiate a topological defect in the lattice. In practice, our finding ends up with a way to
control disorder and agitation by acting only on the geometry of the container, at a reduced injected energy cost. In light of
these observations, some points deserve to be addressed in future works, for instance by considering the benefits of a random
container’s shape instead of the single geometrical singularity of a V-shape base, if one wants to optimize further the thermal
agitation at constant injected energy. Such randomness includes considering the effect of rough walls, with typical surface
roughness of the order of a fraction of beads’ diameter, e.g. Rq ∼ 0.16×d, in agreement with our estimate of the activation
energy of topological defects. Another question is to probe the robustness and the limitations of our findings with regard to
the polydispersity of the particles and to the relative size between the box and the particles, the effect of the geometry likely
becoming less effective in both cases. Also, the melting process here described is specific to 2D lattices but topological defects
exist in all dimensions, suggesting a conceivable extrapolation of our findings. Another practical limitation of our system, in
terms of acceleration, is the gravity below which very little happens. Here, a recent experiment conducted in a 3D sheared
granular system76 showed that topological defects, revealed by x-ray tomography, can be activated by the fluctuations of the
container’s volume, alike the more ordinary thermal agitation. This leads to the perspective of probing incommensurately small
excitations, by analogy, in addition to determining up to what extent the shape of the container affects the mechanical response
of granular media, in a general sense.

Methods

Experimental Setup.— The experimental setup is shown in Fig. 1(a). It consists of a vertical Hele-Shaw cell filled with stainless
steel beads (number N = 550, diameter d = 2.0 mm, density ρ = 8050 kg/m3, mass m = 33.7 µg). The rectangular cell (9×18
cm, gap e = 2.1 mm) is made of aluminum and has a transparent acrylic front cover allowing the visualization of the grains
in between. The gap is large enough to ensure that the particles freely move without being held between the front and back
plates, but thin enough so that the out-of-plane tilt angle, θz ∼ sin−1 [(e−d)/d] ≈ 3◦, is sufficiently small to ensure that the
layer of grains remains flat. At the bottom of the cell, we used a V-shape plastic template produced by a 3D printer (Zortrax
model M200) using Z-ABS filament, for seven different angles θ = [0,5,8,10,20,26,30◦]. A sample is prepared from a random
rain-like deposit of particles in the cell. Due to the use of monodisperse spheres, the sample tends to organize, at rest, according
to an equilateral triangular elementary cell to minimize the global potential energy77. In this sense, the range of V-shape angles,
π−2θ, fits within the limits of a hexagonal lattice. The features and repeatability of the initial static configurations are probed
by reproducing ten times the rain-like deposit for each angle. The cell is then vibrated vertically by a shaker (Vibration Test
Systems model VG 100-8 with power amplifier Techron Crown model 5515). The sinusoidal motion is given by y(t) = Asin(ωt),
where the frequency f = ω/2π = 30 Hz is kept constant in all our experiments. The dimensionless acceleration Γ = Aω2/g is
varied from 4 to 10, being g the gravitational acceleration. An accelerometer (PCB Piezotronics model 352C03) is fixed at the
top of the cell. The signal is then amplified by a signal conditioner (PCB Piezotronics model 480C02) and recorded by an
oscilloscope (Tektronix model TDS 2014C) with a sample rate of 1 kS/s. Finally, the cell is illuminated from the front by LED
lights, and we track the position of the particles with a fast camera (Phantom, model M100) at 1600 fps with a spatial resolution
of 14 pixels/mm during 4 seconds, i.e., over 120 driving periods.

Particle detection, velocity field and lattice topology.— The reflection of LED light on the surface of the spherical particles
produces a bright white spot in addition to smaller lateral spots due to the internal reflections on neighboring grains, see Fig. 1(b).
Spots with a minimal size are detected using IDL’s particle tracking routines78, delivering a sub-pixel resolution of each spot’s
centroid. This procedure automatically discards the smaller secondary reflections and other spurious light sources. Knowing the
positions of every particle, one can then obtain their trajectories as a function of time by minimizing the distance between pairs
of positions in sequences of images. An example of the particle velocity field, obtained from the finite displacement of particles
between two successive images, is shown in Fig. 1(b). From the particle positions, the Delaunay triangulation (DT) of the lattice
can also be calculated in every image. This representation gives information about the nearest neighbors (NN) of every particle.
First, one can estimate the coordination number Z( j), defined as the number of NN per each particle j. Then, one can quantify
the local symmetry. A two-dimensional granular solid can indeed organize spontaneously into a hexagonal lattice62, 63 or into a
square lattice44, 60. Within all of these, we checked that our vertical medium always favored the hexagonal arrangement for all
the probed V-shape angles and driving accelerations (see for instance Fig. 1(e) and the Supplementary Information). Therefore,
we use the hexagonal symmetry as a reference, to describe a local order parameter64 defined as ψ6( j) =

∑N j
n=1 exp(6iθ j

n)/N j,
where θ j

n corresponds to the angles with respect to the horizontal axis of the n-th NN of the j-th particle, as shown in Fig.1(d).
For example, in a perfect hexagonal close packing lattice, |ψhcp

6 | = 1, whereas |ψ6| ∼ 0.5 or below for an amorphous structure62.
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Furthermore, the dual representation of the DT is the Voronoi tessellation (VT) represented in Fig. 1(c). A single cell of the
VT is a polygon whose edges are the perpendicular bisector of the DT segments. By construction, a Voronoi cell contains
one particle only and delimits a region for one specific particle. This quantity allows us to define the local compaction C( j),
defined as the ratio between the particle’s cross-sectional area to the VT cell area, C( j) = πr2/AVT ( j), where r = d/2 is the
particle radius, and AVT ( j) is the area of the polygonal VT cell79 enclosing the j-th particle. In a two-dimensional hexagonal
close packing lattice Ahcp

VT = 2
√

3r2 such that Chcp = π/2
√

3 ≃ 0.91. We thus refer conveniently to a compaction relative to the
hexagonal close packing, Cr( j) =C( j)/Chcp such that 0 <Cr ≤ 1. Note that in the maps shown in Fig. 1 and elsewhere in this
study, the particles pertaining to the frontier of the sample are not considered in the ensemble averages to avoid biasing the
estimations of the mean Cr and ψ6 with particles having arbitrary low Z.
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