Chapter 0

Notations and Conventions

In this notes, as usual in the literature of particle physics (the leadership of opposition being the relativity community), the metric signature is chosen to be η := diag (+1, -1, ..., -1). Moreover, natural units, whereby h ≡ 1 and c ≡ 1, are adopted.

The interval 0 < ... < d < D is the set for which the D-dimensional spacetime indices M, N etc. belongs . Let x M := x 0 , x 1 , ..., x d be an inertial coordinate system in the D = 1 + d dimensional Minkowski spacetime,

M D := R 1,d .
A convenient notation for the spatial coordinates associated to the spacetime event x M is x := x 1 , ..., x d . The euclidean norm x of x is:

x := d ∑ k=1 x k 2 .
(1)

Given two events in M D , say x and y, the lorentz product is written by the juxtaposition of symbols:

xy := η MN x M y N = x 0 y 0 -x • y.

(2)

Recall that the d'Alembert operator reads:

x = η MN ∂ M x ∂ N x = ∂ ∂ x 0 2 -∇ 2 x . (3) 
For simplicity's sake, we write ∂ M x := ∂ /∂ x M . In the absence of ambiguity, the coordinate label may be omitted, say, ∂ M x = ∂ M . Moreover, when only one spacetime event is concerned, the x's timelike coordinate is written as t := x 0 .

One writes:

f (r) ∼ O [g (r)] , (4) 
when there are M, L > 0 for which, when |r| > L, it holds that | f (r)| ≤ M |g (r)|.

Chapter 1

Quantum Methods

Feynman's Pathintegral

The evolution of the quantum state of a particle in the real line is described by the Hamiltonian operator H (q, p), called hamiltonian from now on. Here, q (resp. p) is the position (resp. momentum) operator. I am working in Schrödinger-picture. Take two points in the line, say q and q . Let t < t be a time interval. The quantity of interest is: K q ,t ; q,t := q e -ih -1 (t -t)H(q,p) |q .

(1.1)

Physically, K (q ,t ; q,t) is the probability amplitude that an electron, say, detected in a monolithic active pixel sensor (MAPS) at position q when my clock marked t, will be detected at position q when my clock reads t . Mathematically, it is the fundamental solution to the Schrödinger equation in the space-representation (space-rep.). Hence the name kernel for the beast.

I will partition my MAPS between the points q and q in N steps, q 0 , q 1 ..., q N-1 . Likewise, ignoring what Bishop Berkeley (and Zeno for that matter) warned, discretize time as well. Let t 0 = t, t N = t and, by induction, define t k+1 = t k + ε for all k = 1, ..., N -1. Here ε := N -1 (tt).

Use completeness of the basis for state-rep. to derive:

ˆdq |q q| = 1 =⇒ K q ,t ; q,t = N-1 ∏ k=0 ˆdq k a k , (1.2) 
where:

a k := q k+1 | e -ih -1 εH(q,p) |q k = q k+1 | e -ih -1 ε[K(p)+V(q)] |q k .

(1.3) I assumed in the last equality the separability of the hamiltonian into a kinetic term K (p) and a potential V (q). From power series expansion 1 I deduce: e ε(A+B) = e εA e εB + O ε 2 =⇒ a k = q k+1 | e ih -1 εK(p) e ih -1 εV(q) |q k + O ε 2 h-2 , and

(1.4) e -ih -1 εV(q) |q k = e -ih -1 εV (q k ) c-number |q k =⇒ a k = e -ih -1 εV (q k ) q k+1 | e -ih -1 εK(p) |q k + O ε 2 h-2 .
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Use completeness of the basis for state-rep. to see:

ˆd p k+1 |p k+1 p k+1 | = 1 =⇒ q k+1 | e ih -1 εK(p) |q k = ˆd p k+1 q k+1 | e ih -1 εK(p) |p k+1 p k+1 | q k , (1.6) Again, from power series expansion applied to an eigenstate equation, e ih -1 εK(p) |p k+1 = e ih -1 εK(p k+1 ) c-number |p k+1 .

(1.7)

Moreover, I know q| p = (2π h) -1/2 e ih -1 pq , so:

q k+1 | e -ih -1 εK(p) |q k = ˆd p k+1 e -ih -1 εK(p k+1 ) q k+1 | p k+1 × p k+1 | q k (1.8)

= ˆd p k+1 2π h e ih -1 ε p k+1 (q k+1 -q k ) ε -K(p k+1 )
.

(1.9)

Thence:

a k = ˆd p k+1
2π h e ih -1 ε p k+1 (q k+1 -q k ) ε -H(q k+1 ,p k+1 )

+ O ε 2 h-2 (1.10) I can finally write the kernel in discretized form:

K q ,t ; q,t = N-1 ∏ k=0 ˆdq k ˆd p k+1
2π h e ih -1 ε p k+1 (q k+1 -q k ) ε -H(q k+1 ,p k+1 )

+ O ε 2 h-2 .

(1.11)

As the exponential maps a sum into the product of the exponentials,

N-1 ∏ k=0 ˆdq k ˆd p k+1
2π h e ih -1 ε p k+1 (q k+1 -q k ) ε -H(q k+1 ,p k+1 )

(1.12)

= ˆ N-1 ∏ k=0 dq k × ˆ N ∏ k=1 d p k 2π h e ih -1 ε ∑ N-1 k=0 p k+1 (q k+1 -q k ) ε -H(q k+1 ,p k+1 )
.

(1.13) This is how I like to arrive at Feynman pathintegral in phasespace 2 , ˆq =q(t ) q=q(t)

[q (t)]

ˆ d p(t) 2π h := lim N-→∞ ˆ N-1 ∏ k=0 dq k × ˆ N ∏ k=1 d p k 2π h (1.14)
By the teachings of Legendre and Riemann, the action can be written as: 1.15) and thereby our kernel becomes: K q ,t ; q,t = lim

I := ˆtN t 0 dt [p (t) q (t) -H (q, p)] = lim N-→∞ N-1 ∑ k=0 t N -t 0 N p k+1 (q k+1 -q k ) ε -H (q k+1 , p k+1 ) , ( 
N-→∞ ˆ N-1 ∏ k=0 dq k × ˆ N ∏ k=1 d p k 2π h e ih -1 ∑ N-1 k=0 ε p k+1 (q k+1 -q k ) ε -H(q k+1 ,p k+1 )
.

(1.16)

Lastly, from aesthetic needs, I type: K q ,t ; q,t = ˆq =q(t ) q=q(t)

[q (t)]

ˆ d p(t)
2π h e ih -1 I[q(t),p(t)] .

(1.17)

In nonrelativistic quantum mechanics, the hamiltonian for a mass M > 0 particle interacting with the potential V (q) is H (q, p) = p 2 2M +V (q).

(1.18)

Completing the circle (however in complex-plane and spelling Jordan),

ˆdx e -1 2 |A|x 2 +|B|x = 2π A e -B 2 2|A| , ∀ (A, B ∈ R, A = 0) .
In faith élan vital survives analytic continuation, Eqs.(1.10)-(1.17) yields:

a k = e -ih -1 εV (q k+1 ) ˆd p k+1 2π h e ih -1 ε - (p k+1 ) 2 2M + (q k+1 -q k ) ε p k+1 = M 2πihε e ih -1 ε M 2 q k+1 -q k ε 2 -V (qq k+1 ) , (1.19) 
K (q N ,t N ; q 0 ,t 0 ) = lim

N-→∞ M 2πihε N/2 ˆ N-1 ∏ k=0 dq k e ih -1 ∑ N-1 k=0 ε M 2 q k+1 -q k ε 2 -V (qq k+1 ) ,
(1.20)

I = ˆtN t 0 dt M 2 q (t) 2 -V (q (t)) := ˆtN t 0
dt L (q (t) , q (t)) , (1.21)

ˆqN =q(t N )
q 0 =q(t 0 )

[q (t)] := lim

N-→∞ M 2πihε N/2 ˆ N-1 ∏ k=0 dq k , (1.22) K (q N ,t N ; q 0 ,t 0 ) = ˆqN =q(t N ) q 0 =q(t 0 ) [q (t)] exp i h ˆtN t 0 dt M 2 q (t) 2 -V (q (t)) .
(1.23) So reads Feynman pathintegral in configurationspace3 : K (q N ,t N ; q 0 ,t 0 ) = ˆqN =q(t N ) q 0 =q(t 0 )

[q (t)] e ih -1 I .

(1.24)

Wick's Combinatorics

On what follows, let A := A i j be a real, symmetric and nonsingular (N × N)-matrix. I will denote by ∆ i j := A -1 i j the inverse. The permutation group of k-points will be denoted by S k . The inner product of vectors x = (x 1 , ..., x N ) and y = (y 1 , ..., y N ) in N-space reads:

(x, y) := N ∑ k=1 x k y k =⇒ (x, Ay) = N ∑ i,k=1
x i A i j y j = X T (AY ) .

(1.25)

In the last equality, X (resp. Y ) is the line matrix representing the vector x (resp. y). The transpose of X is the column matrix X T .

The "mean" value of a quantity F (x 1 , ..., x N ) in the gaussian distribution C -1 N e -1 2 (x,Ax) is:

F(x) := ˆdN x
C N e -1 2 (x,Ax) F(x).

(1.26) I fix the normalization constant C N by requiring 1 ≡ 1. This gives to me that:

C N = |det A| (2π) N/2 =⇒ F(x) = (2π) N/2
|det A| ˆdN x e -1 2 (x,Ax) F(x).

(1.27)

Happily, this rather cumbersome expression will not be needed below. (I showed it for completeness, which rather important in quantum mechanics.) I prove Wick theorem with help from a simple identity. First note: ˆdN x ∂ ∂ x j e -1 2 (x,Ax) F(x) = 0.

(1.28)

Second, apply chain rule:

∂ F ∂ x j = ˆdN x C N e -1 2 (x,Ax) ∂ F ∂ x j = N ∑ k=1 ˆdN x
C N e -1 2 (x,Ax) F(x)A jk x k (1.29)

Finally, multiply both sides by ∆ i j and sum over i:

N ∑ j=1 ∆ i j ∂ F ∂ x j = N ∑ j,k=1 ˆdN x C N e -1 2 (x,Ax) F(x)∆ i j A jk x k = ˆdN x C N e -1 2 (x,Ax) F(x)x i = x i F(x) (1.30)
The result is our trick to prove Wick's theorem:

x i F (x) = N ∑ j=1 ∆ i j ∂ F ∂ x j .
(1.31)

As a preliminary, take F (x) = 1,

G 1 (x) = x i = ∑ j ∆ i j ∂ ∂ x j 1 = 0. (1.32)
Now a simple notation will prove itself useful, even to state Wick theorem in full generality. For a given ordered list of N elements, say (x 1 , ..., x N ) , I will use a hat to denote the ordered list of N -1 elements with the point x j removed,

x 1 , ..., x j , ..., x N := x 1 , ..., x j-1 , x j+1 , ..., x N .

(1.33) Replace x i → x i 2k+1 and let F (x) = x i 1 ...x i 2k in Eq.(1.31). By x i = 0 and recursion,

x i 1 ...x i 2k+1 = G 2k+1 (i 1 , ..., i 2k+1 ) = N ∑ j 1 =1
∆ (i 2k+1 ) j 1 G 2k-1 i 1 , ..., i j 1 , ..., i 2k (1.34)

= N ∑ j 1 , j 2 =1
∆ (i 2k+1 ) j 1 ∆ (i 2k ) j 2 G 2k-3 i 1 , ..., i j 1 , ..., i j 2 , ..., i 2k-1 = ... = 0.

(1.35)

Likewise, substitute x i → x i 2k and use F (x) = x i 1 ...x i 2k-1 in Eq.(1.31).

x i 1 ...

x i 2k = G 2k (i 1 , ..., i 2k ) = N ∑ j 1 =1
∆ (i 2k ) j 1 G 2k-2 i 1 , ..., , i j 1 , ..., i 2k-1 (1.36)

= N ∑ j 1 , j 2 =1
∆ (i 2k ) j 1 ∆ (i 2k-1 ) j 2 G 2k-4 i 1 , ..., , i j 1 , ..., i j 2 , ..., i 2k-2 = ... = ∑

ϕ∈S k k ∏ σ =1
∆ ϕ(σ )σ .

(1.37)

Propagators: "A Study in Epsilon"

"One of the most remarkable discoveries in elementary particle physics has been that of the complex plane, the theory of functions of complex variables plays the role not of a mathematical tool, but of a fundamental description of nature inseparable from physics." -J. Schwinger [Schwinger(1998)]

Remarks on the D-dimensional Green Function

In this section, we comment on some issues regarding a green function G D (x) of the Klein-Gordon operator x + m 2 with "mass" m > 0:

x + m 2 G (D) (x) = -δ D (x) .

(1.38)

Here, δ D (x) is the D-dimensional Dirac distribution.

Feynman's iε +

The D-dimensional representation (rep., from now on) of δ D (x) is [Friedlander(1998)]:

δ D (x) = ˆdD k (2π) D e -ikx .
(1.39)

Multiplying both sides of Eqs. (1.38, 1.39) by e ikx and integrating over the momenternegy-space, one finds the formal fourier transformed rep. of ∆ D :

G D (x) = ˆdD k (2π) D e -ik•x k 2 -m 2 .
(1.40)

The integral of Eq.(1.39) is ill-posed. In order to regularize the latter, we follow Feynman's prescription, well motivated in [Zee(2010), Schwartz(2014), Sec.14.5]. On what follows, this method will be referred to as the (iε + )-regularization.

Let ε + be a positive infinitesimal [Bell(2008)] and define4 :

K D (x) = ˆdD k (2π) D e -ik•x k 2 -m 2 + iε + .
(1.41)

Applying the Klein-Gordon operator to Eq.(1.41),

x + m 2 K D (x) = ˆdD k (2π) D x + m 2 e -ik•x k 2 -m 2 + iε + (1.42) = - ˆdD k (2π) D k 2 -m 2 k 2 -m 2 + iε + e -ik•x (1.43) = - ˆdD k (2π) D 1 1 + iε + k 2 -m 2 e -ik•x (1.44) = - ˆdD k (2π) D 1 + iε + k 2 -m 2 -1 e -ik•x .
(1.45)

Using the fact that ε + is an infinitesimal, under the assumption K D (x) is a green function to x + m 2 , one derives that:

x + m 2 K D (x) = - ˆdD k (2π) D 1 - iε + k 2 -m 2 e -ik•x = -δ (D) (x) + iε + K D (x) ,
(1.46)

and hence:

x + m 2iε + K D (x) = -δ (D) (x) .

(1.47)

Accordingly, Feynman's regularization in energy-momentum space should be accompanied by a transformation in configuration-space, resp.:

p 2 → p 2 + iε + , x 2 → x 2 -iε + .
(1.48)

Cauchy's Residues

Finally, Eq.( 23) of [Zee(2010), Sec.I.3] is generalized to D-dimensional Minkowski spacetime. Consider the following meromorphic function:

f (z) = e -itz z 2 -(k 2 + m 2 -iε + )
.

(1.49)

There are two second-order poles are located at: (1.50) where the infinitesimal δ := ε + /2E k ∼ O (ε + ).

z ± = ± (E k -iδ ) , E k := k 2 + m 2 ,
Using the theory of residues [START_REF] Stein | [END_REF]], from Eq.(1.41), one derives:

K D (x) = ˆdd k (2π) d 1 2π ˆdz θ x 0 + θ -x 0 f (z) (1.51) = ˆdd k (2π) d 1 2π -θ x 0 2πi Res z→z - f (z) + θ -x 0 2πi Res z→z + f (z) .
(1.52)

Therefore, the final form of the (iε + )-regulated kernel is:

K D (x) = 1 2i (2π) d ˆdk d E k exp [-i (E k |t| -k • x)] .
(1.53)

Horror vacui

"Nature abhors a vacuum." -Aristotle, Phys. IV, 208a-223b.

This section shows the exponential decay of the (iε + )-regulated kernel K D (x) (cf. Eq.(1.41)), for spacelike separated events -x 2 > 0. We study the cases of D = 4 ( [Zee(2010), Exercises I.3.1], resp.) and D = 2 ( [Zee(2010), Exercises I.3.2], resp.).

1.3.2.1 "Nature" (D = 4) Applying Eq.(1.53) to the dimensionality of the physical spacetime (as experimentally accepted at the time of writing), the Feynman propagator reads:

D F (t, x) := K (1+3) (x) = 1 2i (2π) 3 ˆdp 3 E p e -i(E p |t|-p•x) .
(1.54)

We replaced k → p in Eq.(1.54), as this is the familiar momentum-vector in d = 3 dimensions. Likewise, to use the d = 3 commonplace notation, let x := x (resp., p := p) be a non-zero position-vector (resp., momentum-vector). Define the polar angle φ (x, p) between x and p by the implicit function:

cos φ ( x, p) := x • p | x| | p| . (1.55) Moreover, r ( x) := (x 1 ) 2 + (x 2 ) 2 + (x 3 ) 2 , (1.56)
is the radial coordinate.

With the help of Eqs.(1.55, 1.56), the momentum-space can be parametrized with spherical coordinates, such that the integral of Eq.(1.54) gives:

D F (t, x) = 1 2i (2π) 3 ˆ∞ 0 d p k 2 ˆ2π 0 dθ ˆπ 0 sin φ 1 E p e -i(E k |t|-pr cos φ ) (1.57) = 1 2i (2π) 2 ˆ∞ 0 d p p 2 e -iE p |t| E p ˆπ 0 sin φ e ipr cos φ = - 1 2 (2π) 2 r ˆ∞ -∞ d p E p k exp (-iE p |t|) e ipr . (1.58)
Using the simple identity:

e ipr = - i k ∂ ∂ r e ipr , (1.59) 
Eq.(1.58) assumes the following compelling form:

D F (t, x) = 1 2 (2π) 2 r ∂ ∂ r ˆ∞ -∞ d p E p exp [-i (E p |t| -pr)] (1.60) = 1 2 (2π) 2 r ∂ ∂ r ˆ∞ -∞ d p E p exp [i (pr -E p |t|)] . (1.61)
Now, introduce the energy-momentum parametrization:

p (ξ ) := m sinh ξ =⇒ E (ξ ) = m cosh ξ , (-∞ < ξ < ∞) . (1.62) From Eqs.(1.62, 1.60)), D F (t, x) = 1 2 (2π) 2 r ∂ ∂ r ˆ∞ -∞ dξ exp [im (r sinh ξ -|t| cosh ξ )] . (1.63)
If x is spacelike, then a parameter 0 < β < ∞ exists [Naber(2003)], for which:

r = -x 2 cosh (β ) , t = -x 2 sinh (β ) . (1.64)
Accordingly, by Eqs.(1.61, 1.64) and the hyperbolic identity:

sinh (ξ -β ) = sinh β cosh ξ -cosh β sinh ξ , (1.65)
one deduces:

D F (t, x) = 1 2 (2π) 2 r ∂ ∂ r ˆ∞ -∞ dξ exp im -x 2 sinh (ξ -β ) (1.66) = 1 2 (2π) 2 r ∂ ∂ r ˆ∞ -∞ dξ exp im -x 2 sinh ξ .
(1.67)

Remark 1.1. In line 1.67 we used the constancy of β , which depends only on the given event x.

Remark 1.2. The integral in last equation of Eq.(1.67 ) is ill-defined, for:

ˆ∞ -∞ dξ exp im -x 2 sinh ξ cos( √ -x 2 sinh ξ )+isinh √ -x 2 sinh ξ = 2 ˆ∞ 0 dξ cos m -x 2 sinh ξ :=φ (ξ ) , (1.68)
where cos φ (ξ ) oscillates indefinitely, when 0 ≤ φ (ξ ) < ∞ as 0 < ξ < ∞. In some form or another, equation

D F (t, x) = 1 2 (2π) 2 r ∂ ∂ r 2 ˆ∞ 0 dξ cos m -x 2 sinh ξ , (1.69)
is found in many standard textbooks, e.g., [Zee(2010), [START_REF] Greiner | [END_REF]].

Remark 1.3. Nevertheless, in studying the fourier transform of Coulomb potential, [Schwartz(2014), Sec. 3.5.4, Eq.(3.64)] regulates an integral similar to Eq.(1.69) replacing |k| → |k| + iδ + (with δ + > 0 an infinitesimal). This is interesting to show how fourier transform Coulomb potential from momentum to space rep. by deforming the contour in complex k-plane, dispensing with introducing a "fictitious" photon's mass m γ .

Here Eq.(1.67) is regulated by Feynman's prescription in configuration rep., Eq.(1.48):

D F (t, x) = 1 2 (2π) 2 r ∂ ∂ r ˆ∞ -∞ dξ exp im -x 2 + iε + sinh ξ (1.70) = 1 2 (2π) 2 r ∂ ∂ r ˆ∞ -∞ dξ exp im -x 2 sinh ξ e -mδ + sinh ξ damping factor , (1.71) 
where δ + = 2 -1 -x 2 1/2 ε + ∼ O (ε + ). Finally, we work on the asymptotics of D F (t, x), starting with the analytic continuation:

ξ (τ) := τ + iπ 2 , -∞ < τ < ∞. (1.72)
Consequently, Eq.(1.70) becomes: (1.77) whereupon: (1.78) which means:

D F (t, x) = 1 2 (2π) 2 r ∂ ∂ r ˆ∞+iπ/2 -∞+iπ/2 dτ exp im -x 2 + iε + sinh τ + iπ 2 (1.73) = 1 2 (2π) 2 r ∂ ∂ r ˆ{Im(z)=π/2} dτ exp -m -x 2 + iε + cosh τ (1.74) = 1 2 (2π) 2 r ∂ ∂ r ˆ{Im(z)=π/2} dτ exp -m r 2 -t 2 1 + τ 2 2 + O τ 4 (1.75) ∼ r→∞ 1 2 (2π) 2 r ∂ ∂ r e -m √ r 2 -t 2 ˆ∞ -∞ dτ exp - m √ -x 2 2 τ 2 (1.76) = 1 2 (2π) 2 r ∂ ∂ r 2π m √ r 2 -t 2 e -m √ r 2 -t 2 ,
D F (t, x) ∼ r→∞ - 2m √ r 2 -t 2 + 1 8 √ 2π 3/2 (r 2 -t 2 ) 2 m √ r 2 -t 2 e -m √ r 2 -t 2 ,
D F (t, x) ∼ -x 2 →∞ O e -m √ -x 2 .
(1.79)

1.3.2.2 Lorentzian's Flatland (D = 2)
Now we study Eq.(1.53) in a 2-dimensional toy model,

∆ (t, y) := K (1+3) (t, y) = 1 4πi ˆ∞ -∞ d p E p exp [-i (E p |t| -py)] ,
(1.80)

where y := x 1 is the spatial coordinate.

Applying the momentum parametrization of Eq.(1.62), our toy model propagator, Eq.(1.80), becomes:

∆ (t, y) = 1 4πi ˆ∞ -∞ dξ exp [-im (|t| cosh ξ -y sinh ξ )] . (1.81)
It is useful to separate ∆ (t, y) in two contributions, those from y > 0 and y < 0:

∆ (t, y) = θ (y) ∆ (t, y) + θ (-y) ∆ (t, -y) =: ∆ + (t, y) + ∆ -(t, y) . (1.82)
For the purposes of asymptotic analysis, suffices to show both ∆ + (t, y) and ∆ -(t, y) decays exponentially in for spacelike events (namely, y 2t 2 > 0). Since the calculations are similar, we work on ∆ + (t, y):

∆ + (t, y) = 1 4πi ˆ∞ -∞ dξ exp [-im (|t| cosh ξ -|y| sinh ξ )] .
(1.83)

As in D = 4, for spacelike separations, there is a parameter 0 < β < ∞ for which:

y = -x 2 cosh β , |t| = -x 2 sinh β . (1.84)
With this parametrization, one derives from Eqs.(1.83, 1.84) that:

∆ + (t, y) = 1 4πi ˆ∞ -∞ dξ exp im -x 2 (cosh β sinh ξ -sinh β cosh ξ ) (1.85) = 1 4πi ˆ∞ -∞ dξ exp im -x 2 sinh ξ . (1.86)
As before 5 , Eq.(1.86) is regulated by Feynman's (iε + )-prescription in configuration space. Lastly, performing analytic continuation:

ξ (τ) := τ + iπ 2 (-∞ < Reτ < ∞) , (1.87) 5 Recall Eq.(1.71).
and applying steepest descent method, we compute:

∆ + (t, y) = 1 4πi ˆ∞+iπ/2 -∞+iπ/2 dτ exp -m y 2 -t 2 cosh τ (1.88) = 1 4πi ˆ{Im(z)=π/2} dτ exp -m y 2 -t 2 1 + τ 2 2 + O τ 4 (1.89) ∼ y→∞ 1 4πi 2π m y 2 -t 2 1/2 e -m √ y 2 -t 2 , (1.90)
from which we conclude:

∆ + (t, y) ∼ √ y 2 -t 2 →∞ O e -m √ -x 2 .
(1.91)

As the same line of reasoning applies equally well to ∆ -(t, y), toy model propagator, we achived the result:

∆ (t, y) ∼ √ -x 2 →∞ O e -m √ -x 2 .
(1.92)

1.3.2.3 "Mesotron?"
"Since its discovery, the name of the new particle has undergone several evolutionary stages. It was sometimes called 'heavy electron,' sometimes 'light proton,' and then somebody suggested the mesotron, derived from the Greek word mesos, which means 'in between.' But Werner Heisenberg's father, who was a professor of classical languages, objected that the letters 'tr' have no place in that name. Indeed, while the name electron was derived from the Greek word electra, the Greek word mesos has no 'tr' in it. Thus, the name of Yukawa's particle was settled as meson." -G. Gamow [Gamow(1961)] This section studies the tree-level, effective Yukawa potential in D = 1 + d ≥ 2 with mass m 2 > 0. Mathematically, what we are seeking is the fundamental solution to the Helmholtz operator [Sommerfeld(1961)],

∇ 2 + m 2 φ (d) (x) = -δ (d) (x) .
(1.93)

A rigorous, modern mathematical treatment of the subject is given by [Evans(2010), §6.5]. Here, we use a trick due to Schwinger.

Generalizing Eqs.(6, 8) of [Zee(2010), Sec.I.4],

φ (d) (x) = - ˆdd k (2π) d e ik•x k 2 + m 2 .
(1.94)

From [Schwartz(2014), App.B], we learn how to write fractions:

p q = ˆ∞ 0 dα pe -αq . (1.95)
Here, α is known as Schwinger's parameter.

By Eqs.(1.94, 1.95),

φ (d) (x) = - ˆdd k (2π) d ˆ∞ 0 dα exp -α k 2 + m 2 + ik • x (1.96) = - ˆ∞ 0 dα e -αm 2 ˆdd k (2π) d exp d ∑ I=1 -α k I 2 + ik I x I (1.97) = - ˆ∞ 0 dα e -αm 2 ˆdd k (2π) d exp -αk 2 + ik • x (1.98) = - 1 (2π) d ˆ∞ 0 dα e -αm 2 d ∏ I=1 ˆ∞ -∞ dk I exp -α k I 2 + ik I x I (1.99) = - 1 (2π) d ˆ∞ 0 dα e -αm 2 d ∏ I=1 π α e ( ix I ) 2 4α (1.100) = - 1 2 d π d/2 ˆ∞ 0 dα exp -|x| 2 2 1 α + m 2 α α d/2
.

(1.101)

After an exercise in anamnesis, or consulting [Jeffrey and Zwillinger(2007), §8.407 WA 92(8)], one recalls:

ˆ∞ 0 dα exp -A 2 α + B 2 α α d/2 = 2 B A d-2 2 Kd-2 2 (2AB) , (1.102) 
for all A, B ∈ R.

Remark. Here K ν (z) is the modified Bessel function. In terms of the Hankel function of the second-kind H ν (z), the former is given by:

K ν (z) = - iπ 2 e -iπν/2 H (2) -ν (-iz) , (1.103) 
where:

H (2) ν (x) = - 2 exp (iπν/2) iπ ˆ∞ 0 dt exp (-ix cosht) cosh (νt) . (1.104)
Lastly, in Eq.(1.101) we have A = |x| /2 and B = m. Whereby, the right-hand side of Eq.(1.102) provides:

2 d/2 Kd-2 2 (m |x|) . (1.105)
The Yukawa potential in d space dimensions is, therefore,

φ (d) (x) = - 1 2 d/2 π d/2 m |x| d-2 2 Kd-2 2 (m|x|) . (1.106)
Chapter 2

A Song to Faraday and Cavendish

Gravity at Zürich

Let k µ be an onshell1 momentum fourvector. The projector operator in momentum-space is defined by equation (eq.):

G µν (k) := η µν - k µ k ν m 2 . (2.1)
The projector operator is a symmetric two-degree tensor (2-tensor), whose name is justified by it's action upon

k µ , k µ G µν (k) = k µ η µν - (k) 2 k ν m 2 = 0. (2.2)
Later on, it'll be useful to know the projector operator's trace2 :

η µν G µν = δ µ µ - k µ k µ m 2 = 3. (2.3)
Note that eq. ( 2.3) holds for every onshell momentum.

Remark 2.1. Let ε (a)

µν (k) be the polarization symmetric 2-tensors. In Zürich's Massive Gravity Theory [START_REF] Fierz | [END_REF]], those are labelled by 1 ≤ a ≤ 5 and satisfy:

k µ ε (a) µν (k) = 0, (2.4) η µν ε (a) µν (k) = 0. (2.5)
Eqs. (2.4, 2.5) are familiar to students of gravitational waves: they are recognized as the transversetraceless (TT) gauge [Maggiore(2008), §2.2]. In passing, let me say that the gravitational analogue of Lorenz gauge in electrodynamics is de Donder gauge [Stewart(1993), §1.13]. Linearizing Einstein equations, de Donder gauge leads to TT gauge. I consider the textbook [Schutz(1985), §9.1] a highly readable introduction to the subject.

Anyway, on the remainder of this notes, Eqs.(2.4) will be referred to as the TT conditions.

Remark 2.2. Let P µνλ σ (k) be the momentum-space tensorfield of degree four defined by3 :

P µνλ σ (k) := ∑ a ε (a) µν (k) ε (a) λ σ (k) .
(2.6) I'll allow myself the luxury of writing simply P := P µνλ σ .

P enjoys the following symmetries:

P µνλ σ = P ν µλ σ , P µνλ σ = P µνσ λ , P µνλ σ = P λ σ µν .

(2.7)

These follows directly from eq. (2.6) and polarization tensor's ε

(a)
µν symmetry.

The TT conditions (2.4), satisfied by ε

(a)
µν , implies similar properties satisfied by P, as computed below4 ,

k µ P µνλ σ (k) = ∑ a k µ ε (a) µν (k) Transverse =⇒ 0 ε (a)
λ σ (k) = 0, (2.8)

η µν P µνλ σ = ∑ a η µν ε (a) µν Traceless =⇒ 0 ε (a) λ σ = 0.
(2.9)

Now, I will endeavor to use eqs. (2.8) and (2.9), with the normalization condition:

P 1212 = 1, (2.10)
to find a general expression for P as linear combination of k µ and G µν .

P should be written as a linear combination of tensorial products of k µ and G µν . So, by symmetries (2.7) and combinatorics, P is generated by the following elements:

G µν G λ σ , G µλ G νσ + G µσ G νλ ,
(2.11)

k µ k ν G λ σ + k λ k σ G µν , (2.12) k µ k λ G νσ + k µ k σ G νλ + k ν k λ G µσ + k ν k σ G µλ , (2.13) k µ k ν k λ k σ . (2.14)
In other words, there are numbers a 1 , ..., a 5 such that:

P µνλ σ = a 1 G µν G λ σ + a 2 G µλ G νσ + G µσ G νλ + a 3 k µ k ν G λ σ + k λ k σ G µν (2.15) + a 4 k µ k λ G νσ + k µ k σ G νλ + k ν k λ G µσ + k ν k σ G µλ (2.16) + a 5 k µ k ν k λ k σ .
(2.17)

Now, my problem is to find an explicit expression for P. I proceed in three acts.

2.1.1 Act I: Linear Independence Using eqs. (2.4, 2.8) in (2.17), (2.18) which by linear independence, a 3 = a 4 = a 5 = 0.

k µ P µνλ σ = a 3 m 2 k ν G λ σ + a 4 m 2 (k ν G λ σ + k λ G νσ ) + a 5 m 2 k ν k λ k σ = 0,
(2.19) So, I've reduced P simply to:

P µνλ σ = a 1 G µν G λ σ + a 2 G µλ G νσ + G µσ G νλ .
(2.20)

2.1.2 Act II: When η µν Walked With P Recall, from eq.(2.9), that ε

(a)
µν is traceless. Moreover, in eq. ( 2.3), I've shown η µν G µν = 3. Then from Act I, eq.(2.20),

η µν P µνλ σ = 3a 1 G λ σ + 2a 2 G µ λ G µσ . (2.21)
From a straightforward calculation using def. (2.1),

G µ λ G µσ = δ µ λ - k µ k λ m 2 η µσ - k µ k σ m 2 (2.22) = η λ σ - k λ k σ m 2 - k σ k λ m 2 + (k) 2 k σ k λ m 2 vanishes (2.23) = G λ σ . (2.24)
As in every crummy novel, I now present the climax. From eqs.(2.21, 2.24), (2.25) which gives:

(3a 1 + 2a 2 ) G λ σ = 0 =⇒ a 1 = - 2 3 a 2 ,
P µνλ σ = - 2 3 G µν G λ σ + G µλ G νσ + G µσ G νλ a 2 .
(2.26)

Act III: Normalize to Unify

Let's work in rest frame, such that:

k µ = (m, 0) =⇒ Eq.(2.1) G i j = δ i j .
(2.27)

The normalization of def. (2.10) then gives:

P 1212 = - 2 3 δ 12 δ 12 + δ 11 δ 22 + δ 12 δ 12 a 2 = 1 =⇒ a 2 = 1.
(2.28)

Finally:

P µνλ σ = - 2 3 G µν G λ σ + G µλ G νσ + G µσ G νλ .
(2.29) CHAPTER 2. A SONG TO FARADAY AND CAVENDISH 20 2.2 Gravity from Cambridge to Göttingen: "Hypotheses non fungo " "I have not as yet been able to discover the reason for these properties of gravity from phenomena, and I do not feign hypotheses. For whatever is not deduced from the phenomena must be called a hypothesis; and hypotheses, whether metaphysical or physical, or based on occult qualities, or mechanical, have no place in experimental philosophy." -Isaac Newton [START_REF] Newton | The Principia: Mathematical Principles of Natural Philosophy. The Principia: Mathematical Principles of Natural Philosophy[END_REF]]

One recognizes the fundamental solution to the d = 3 + n Poisson equation in fourier representation (rep.) as given (up to a proportionality factor) by:

∆ (d) V (x) ∝ -δ (d) (x) .
(2.30)

Eq. (2.30) may be considered5 as the "static" massless limit of [START_REF] Mol | Problem Sheet II: A Study in Epsilon. Quantum Field Theory II[END_REF], Eq.( 5)], which I've studied in a former problem assignment.

Proportionality constants (ctes.) and physical units will be discussed soon. But before doing so, we make some comments and define the geometry upon which our considerations are based.

Göttingen: Riemann

Let X (d) , g mn be the d = 3 + 1 dimensional space with a flat riemannian metric, modeling a spacelike hypersurface of Kaluza-Klein theory with a compactified large extra-dimension6 , and let x m : X -→ R 3 ×[0, 2π] be a global7 chart on M:

x m := (x 1 , x 2 , x 3 x , x 4 w 0
).

(2.31)

Here, x := x 1 , x 2 , x 3 co-ordinates the non-compact dimensions, while -a 0 /2 ≤ w 0 ≤ a 0 /2 parametrizes the compact dimension with length a 0 . Topologically, it's clear that X is homeomorphic to E 3 × S 1 , where E 3 is the affine geometry of 3-dimensional euclidean space [Arnold(2013), sec. (2.9)].

The line-element describing the riemannian space (X, g mn ) is given by8 :

ds 2 = g mn dx m dx n = (d x) 2 + a 2 0 4π 2 dw 0 2 , (2.32)
where, for simplicity, I defined:

(d x) 2 := 3 ∑ i=1 dx i 2 .
(2.33)

From eq. (2.32), we read the matrix rep. of the metric tensor g mn and it's inverse, resp.:

(g mn ) = diag +1, +1, +1, a 2 0 4π 2 , (g mn ) = diag +1, +1, +1, 4π 2 a 2 0 .
(2.34)

Recall that our main object of study is eq. (2.30). To understand it's properties, I need to compute the d'Alembert operator for the metric g mn :

∆ (d) V x, w 0 = |g| -1/2 ∂ m |g| 1/2 g mn ∂ n V (2.35) = ∂ m ∂ m V x, w 0 .
(2.36)

Remark 2.3. From eq. ( 2.36), one may study the behavior of the propagation of fields in compactified Kaluza-Klein models using the method of separation of variables,

V x, w 0 ≡ V ( x) f w 0 =⇒ ∆ (3) V ( x) V ( x) + 4π 2 a 2 0 f w 0 f (w 0 ) = 0. (2.37)
The stability of extra-dimensions from the analysis of eq. (2.37) can be found in [Penrose(2003), Penrose(2017), sec. 1.11].

My main concern now, however, regards the simpler problem of [Zee(2010), ex. I.6.1].

"Pois(s)on" in Planck's Units

Let ρ : X (d) -→ R ≥0 be a mass density. Clearly,

[ρ] = M L d = M 1-d .
(2.38)

The Poisson equation for a potential V in a d-dimensional space, with mass density ρ, is:

∆ (d) V (x) = k (d) G (d) ρ (x) , (2.39)
where G (d) is the gravitational cte. in d space dimensions.

Nevertheless, note that our potential should have units of energy, (2.40) while the units of the d'Alembert operator are:

[V (x)] = M,
∆ (d) = ∂ ∂ x 2 = 1 L 2 = M 2 . (2.41)
Therefore, the units of the gravitational cte. G (d) in a universe with d spatial dimensions follows from eqs. (2.38-2.41):

[G (d) ] = M 2-d .

(2.42) (2.43) where from now on, G N := G (3) is Newton's cte. of universal gravitation. In passing, note that in Planck units, G N = 1 l P .

[G N ] = 1 M = L, [G (4) ] = 1 M 2 ,

Render to de Rham what's Stoke's

Let Σ → X (d) be an immersion with an outward-pointing unit-normal n m (x). The latter condition means:

g mn N m N n = 1, N m Y n g mn = 0 (∀Y (p) ∈ T p Σ, p ∈ Σ) .
(2.44)

In physics, one calls Σ a (d -1)-brane in the d-dimensional spatial "bulk" X (d) .

From a geometric viewpoint, the submanifold Σ inherits a riemannian metric γ ab from X (d) , g mn , known as the first fundamental form of Σ. In components, let σ a be coordinates naturally adapted to Σ, where 1 ≤ a, b ≤ d -1. Then, (2.45) where d) is a parametrization of the brane into the bulk. An important rôle is played by the first fundamental form's determinant (understood as the Jacobian transformation):

γ ab = g mn ∂ x m ∂ σ a ∂ x n ∂ σ b ,
σ a ∈ Σ → x := x m (σ a ) ∈ X (
|γ| := det (γ ab ) .

(2.46)

Let Z m (x) be a vectorfield in the bulk X (d) . The divergence theorem for higher dimensions (called between mathematicians Stoke's theorem, tough the most generic form of the latter was achived only by de Rham) yields:

ˆΣ ∂ m Z m (x) d d x = ˛∂Σ Z m (x (σ a )) N m (x (σ a )) |γ|d (d-1) σ .
(2.47)

Cambridge Again: I do feign hypotheses

Define the static gravitational field-strength in the universe X (d) , g mn by the d-vectorfield:

F m (x) := - ∂ ∂ x m V (x) .
(2.48)

Moreover, let the "radial" function r : X (d) -→ R ≥0 on the brane Σ be given by: (2.49) and define the unit vectorfield Z m (x) in X (d) ,

r := | x| 2 ,
Z m (x) := ( x, 0) r (x) . (2.50)
Therefore, with definitions of eqs. (, , ), I hypothesize the following ansatz for the gravitational fieldstrength:

F m (x) = f (r) Z m (x) .
Lastly, we apply eqs. (2.39, 2.47)

∂ m g m (d) (x) = -k (d) G (d) ρ (x) .
(2.51)

g (d) (x) := g (d) x, w 0 = g m (d) (| x|) N m (x) (2.52) Σ (r) := {| x| ≤ r} × S 1 a 0 2π (2.53) ∂ Σ = {| x| = r} × - a 0 2 ≤ w 0 ≤ a 0 2 (2.54) M (4) eff := 1 √ G N a 0 .
(2.55)

An Act of Micro-aggression

"The introduction of numbers is an act of violence." -Hermann Weyl [Weyl(2009)]

According to [START_REF] Arkani-Hamed ; Et | Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and tev scale quantum gravity[END_REF]] and [START_REF] Han | Kaluza-klein states from large extra dimensions[END_REF]], if there exists one "large" and compact extra-dimension in our spacetime, with a length scale of: a 0 ∼ 1 mm ≈ 6.25 × 10 31 l P , (2.56) then9 , either by eq. (2.55) (to be motivated in a following version of the present notes), or [Zee(2010), Eq.(3), Sec.(I.6)], the energy-scale at which new physical phenomena would be manifested is of the order: Unfortunately, as shown in the following "Livingstone" plot [Barletta(2014)], the ideas advocated by those authors are by now shown to be wrong. Chapter 3 Feynman's Motives, Schwinger's Sources "Is the purpose of theoretical physics to be no more than a cataloging of all the things that can happen when particles interact with each other and separate? Or is it to be an understanding at a deeper level in which there are things that are not directly observable (as the underlying quantized fields are) but in terms of which we shall have a more fundamental understanding?" -J. Schwinger, in [START_REF] Schwinger | [END_REF]]

M T G := M (4) eff = 1 (1 l P ) × (
"Contrary to what occurs in ordinary topology, one finds oneself confronting a disconcerting abundance of different cohomological theories. One has the distinct impression (but in a sense that remains vague) that each of these theories 'amount to the same thing,' that they 'give the same results'. In order to express this intuition, of the kinship of these different cohomological theories, I formulated the notion of motive associated to an algebraic variety. By this term, I want to suggest that it is the 'common motive' (or 'common reason') behind this multitude of cohomological invariants attached to an algebraic variety, or indeed, behind all cohomological invariants that are a priori possible." -A. Grothendieck, in [Grothendieck(1985)]

The main object in path-integral's quantization of field theories is the partition function Z [J] of fields coupled to a source J. I open §3.1 offering a philosophical comment on Schwinger's source theory and Bohr's "Kopenhagener geist" of quantum theory. You're excused for ignoring those speculations.

In these notes, my aim is to study an interpretation for the perturbative series of Z [J], stated at in Eq.(3.7), with graph theory's concepts. For simplicity, I use a simple model: "quartic hermetian φ 4 -theory."

A hermetian scalar field φ is:

1. A section in line-bundle M D × R π → M D , π • φ = id M D (the identity map in M D ). (3.1)
Alternatively, in algebraic geometry's vainglorious jargon, I simply whisper: short exact sequence:

π • φ : M D φ → M D × R π →M D , (3.2)
splits [Hatcher(2002)].

2. "Hermiticity" is the quality that:

φ (x) = φ † (x) . (3.3)
It's tempting to declare φ a "real" field. This isn't a capital sin. Nevertheless, quantum field theory heighten classical fields from mere sections in associated vector-bundles to (distribution-valued) operators. Hermiticity, therefore, is the pedant's rightful choice.

3. Physically, hermetian, distribution-valued unitary operators provides a mathematical realization of neutral fields.

Lagrange's functional density, or Lagrangian now on1 , for a hermetian scalar field with quartic interaction, is given by:

L = L 0 (φ , ∂ φ ) + L int (φ ) , (3.4)
where the free (interacting, resp.) contributions are:

L 0 (φ , ∂ φ ) = 1 2 (∂ φ ) 2 - 1 2 m 2 φ 2 (x) , L int = - λ 4! φ 4 (x) . (3.5)
The partition function of φ 4 sourced by current J is:

Z [J] = (Z [0]) -1 ˆ[dφ ] exp i ˆdD x L 0 (φ , ∂ φ ) + J (x) φ (x) + iε 2 φ 2 (x) , (3.6) 
where [dφ ] is the pseudo-measure of functional "integral," whatever it is, and ε > 0 an infinitesimal needed to regularize Eq.(3.6).

To simplify our following equations (and with an eye at higher speculations), I omit the dimensionality of spacetime's measure, dx := d D x. Moreover, I refrain from repeating the normalizing factor (Z [0]) -1 of Eq.(3.6), by simply replacing the equality sign by ∼ below. Sincerely, this' a trick: I want to hide my shame of being unable to define it's precise mathematical meaning.

The basic equation of perturbative quantum field theory, motivated from heuristic arguments in §3.2, is:

Z [J] ∼ exp i ˆdx L int -i δ δ J (x) Z 0 [J] . (3.7)
Here, Z 0 [J] is the partition function of the non-self-interacting sourced hermetian scalar field. What a grandiose way of simply referring to Eq.(3.6) with λ = 0! I studied this case in §3.1. For anxious readers, I prescribe Eq.(3.14) instead of SSRI2 .

Lastly, D (x) is the fundamental solution to Feynman's iε-regulated Klein-Gordon operator:

∂ 2 + m 2 -iε D (x) = -δ (x) . (3.8) D (x)
is known as the Feynman propagator, as fairness isn't a matter for science historians, justifying my ignorance about [START_REF] Stueckelberg | ECG Stueckelberg. Forces of interaction in electrodynamics and in the field theory of nuclear forces.(parts ii and iii)[END_REF]].

3.1 The Non-selfish Field "The meme for blind faith secures its own perpetuation by the simple unconscious expedient of discouraging rational inquiry."

Richard Dawkins, on "The Selfish Gene" [Dawkins(1989)] I find very difficult to name a real scalar field φ , when sourced by a current J, a "free" theory. The reason is psychological. A reminiscence from my classical intuition. Quantum mechanically, the observer, whose sources J are deployed as a kapital for performing a measurement (in Bohr's sense [Bohr(1955)]), will reach the conclusion, from absence of particle's creation (or annihilation), that such a theory is non-selfinteracting.

Let λ = 0 in the Lagrangian of Eqs.(3.4, 3.5). From Eq.(3.6), the partition function becomes:

Z 0 [J] := lim λ →0 Z [J] ∼ ˆ[dφ ] exp i ˆdx 1 2 (∂ φ ) 2 - 1 2 m 2 φ 2 (x) + iε 2 φ 2 (x) + J (x) φ (x) .
(3.9)

Under "reasonable" assumptions, for spacelike separations:

lim

-(x-y) 2 →∞ φ (x -y) = 0. (3.10)
A Whig historiography of science [Butterfield(1965)] is continuous overthrown of reasonable assumptions. I don't claim affiliation to this school, except that assumption (3.10) requires some revision in topological field theories.

In any case, with (3.10), the total derivative:

∂ m (φ ∂ m φ ) , (3.11) may be ignored in the Lagrangian contributing to Z 0 [J].
Thence, I can write Eq.(3.9) as:

Z 0 [J] ∼ ˆ[dφ ] exp i ˆdx - 1 2 φ (x) D -1 φ (x) + J (x) φ (x) , (3.12) 
where D -1 is the (iε's regularized) inverse to Klein-Gordon operator, Eq.(3.8).

Playing by analogy, I know that for finite-dimensional integrals:

ˆdn x (2π) n/2 exp - 1 2 n ∑ a,b=1 x a A ab x b + n ∑ c=1 J c x c ∼ exp - 1 2 n ∑ a,b,=1 J a A -1 ab J b . (3.13)
Whereby I take a dubious step, nevertheless, one which Nature seems to agree3 . By Eq.(3.12), I declare:

Z 0 [J] ∼ exp - i 2 ˆdx 1 dx 2 J (x 1 ) D (x 1 -x 2 ) J (x 2 ) . (3.14)
3.2 A Small λ 's Perturbation "In the thirties, under the demoralizing influence of quantum-theoretic perturbation theory, the mathematics required of a theoretical physicist was reduced to a rudimentary knowledge of the Latin and Greek alphabets."

-Res Jöst, as quoted in [START_REF] Streater | [END_REF]]

I return to Eqs.(3.4, 3.6) with humility.

Assuming |λ | 1 and with the power of Euler's series,

Z [J] ∼ ˆ[dφ ] ∞ ∑ n=0 1 n! [iλ φ (x)] n exp i ˆdx [L 0 (φ , ∂ φ ) + J (x) φ (x)] . (3.15)
Functional differentiation, something that should better look alike ordinary ones to deserve the name, yields:

δ δ J (y) exp i ˆdx [L 0 (φ , ∂ φ ) + J (x) φ (x)] = iλ φ (y) exp i ˆdx [L 0 (φ , ∂ φ ) + J (x) φ (x)] . (3.16)
On the shoulders of Eqs.(3.15, 3.16), I obtain:

Z [J] ∼ ˆ[dφ ] exp -ˆdy iL int 1 i δ δ J (x ) exp i ˆdy [L 0 (φ , ∂ φ ) + J (x) φ (x)] .
(3.17)

My lesson from Sec.(3.1) was Eq.(3.14), which gives me a form to compute Z [J] with more humble tools:

Z [J] ∼ exp -ˆdx iL int 1 i δ δ J (x) Z 0 [J] . (3.18)
Particularizing this result to Eq.(3.5) motivates Eq.(3.7), as I desired.

Dyson's Holiday

It was a holiday exercise in combinatorics. At least for an Englishman undergraduate, to find an interpretation of Eq.(3.18) in a language from graph theory [Dyson(1949)].

From the expansion:

Z [J] ∼ ∞ ∑ V =0 1 V ! - λ 4! ˆdy δ 4 δ J (y) 4 V ∞ ∑ P=0 1 P! ˆJ (x 1 ) D (x 1 -x 2 ) J (x 2 ) dx 1 dx 2 P , (3.19) 
he noted that for any term, with a fixed E := 4V -2P ≥ 0 number of unpaired edges (which otherwise vanishes by functional differentiation), there are: 2P! (4V -2P)! , ways for the 4V functional derivatives (δ /δ J)'s act upon 2P sources J's.

Any source in P is recognized as an edge paired within some functional derivative in V . Those edges are called propagators, and functional derivatives vertices. I have, in any expansion of Eq.(3.19) for E fixed, 2! choices of propagators and 4! to vertices. Moreover, exchanging vertices (propagators, resp.) between themselves, gives V ! (P!, resp.) ways to recombine that term in a graph, thereby cancelling any Taylor's coefficients in series (3.19).

Hence, let Γ = (V, P) be a graph with V vertices and P paired edges, with symmetry factor S (Γ) arising from the possible rearrangements of unpaired edges. If between ... one treats all the objects as if those were commutative, Eq.(3.19) becomes:

Z [J] ∼ ∑ Γ(V, P) ∈ graphs (-iλ ) V S (Γ) ˆdy δ 4 δ J (y) 4 V ˆdx 1 dx 2 J (x 1 ) D (x 1 -x 2 ) J (x 2 ) P .
(3.20)

Example

In this example we consider four sources, localized around the spacetime events x 1 , ..., x 4 .

J (x) = 4 ∏ a=1 δ (x -x a ) . (3.21)
Now my endeavor is to demonstrate how to attribute a diagrammatic interpretation for the perturbation series associated to φ 4 -theory, Eq.(3.19).

To this end, let Γ := Γ (2, 4) be a graph with vertex number V = 2 (interactions) and E = 4 unpaired edges (sources), corresponding to the amplitude M (Γ) at order O λ 2 . From Eq.(3.19), M (Γ) is given by:

M (Γ) = (iλ ) 2 S Γ ˆdy 1 dy 2 δ 4 δ J (y 1 ) 4 δ 4 δ J (y 2 ) 4 6 ∏ a=1 ˆdx a J (x a ) D (x a+1 -x a ) J (x a+1 ) (3.22) = (iλ ) 2 S Γ ˆdy 1 dy 2 D (x 1 -y 1 ) D (x 2 -y 1 ) D (x 3 -y 2 ) D (x 3 -y 2 ) unpaired edges D 2 (y 2 -y 1 ) internal edges , (3.23) 
where S Γ = 2 is the symmetry-factor.

Recalling the expression for Feynman propagator in momentum-space,

D (x) = ˆdD k (2π) D e ix•k k 2 -m 2 + iε , (3.24)
Eq.(3.23) provides:

M (Γ) = (iλ ) 2 S G ˆdy 1 dy 2 6 ∏ a=1 ˆdD k a (2π) D 1 k 2 a -m 2 + iε e i ∑ 4 b=1 x b •k b e iy 1 •(k 5 -k 2 -k 4 -k 6 ) e iy 2 •(k 5 -k 2 -k 4 -k 6 ) . (3.25)
Performing the integration in Eq.(3.25) over y 1 and y 2 , one obtains a product involving two Dirac's distributions, (2π

) 2D δ D (k 5 -k 2 -k 4 -k 6 ) δ D (k 5 -k 2 -k 4 -k 6 ) . (3.26)
Over the 6D-dimensional momentum-space, the effect of Eq.(3.26) within measure

∏ 6 a=1 d D k a is to ensure both total-momenta conservation, 4 ∑ a=1 k a = 0, (3.27)
and the parametrization one of the momentum variables, say k 6 , as a function of the others:

k 6 = k 5 -(k 1 + k 2 ) = k 5 -(k 3 + k 4 ) . (3.28)
Lastly, applying the constraints of Eqs.(3.27, 3.28) to integral representation of M (Γ) in Eq.(3.25) gives:

M (Γ) = 1 2 (2π) D δ D 4 ∑ a=1 k a 4 ∏ b=1 ˆdD k b (2π) D e ix b •k b k 2 b -m 2 + iε (3.29) × ˆdD k (2π) D (-iλ ) 2 (k 2 -m 2 + iε) (k -k 1 -k 2 ) 2 -m 2 + iε . (3.30)
In momentum-space representation, which is obtained after applying the Fourier transformation over the variables k 1 , ..., k 4 in Eq.(3.30), the amplitude associated to the graph Γ assumes our final form:

M (Γ) = (-iλ ) 2 2 ˆdD k (2π) D 1 (k 2 -m 2 + iε) (k -k 1 -k 2 ) 2 -m 2 + iε . (3.31)
3.5 Vafa on "Amateurish Philosophy" and Chew's Black Box.

"Most of the greatest evils that man has inflicted upon man have come through people feeling quite certain about something which, in fact, was false." Bertrand Russell, in Unpopular Essays (1950). [Russell(1958)]

-

The Bootstrap consolation

In "Puzzles to Unravel the Universe," the influential physicist Cunrum Vafa, from Harvard, claims every theoretical physicist to be an "amateur philosopher." I quoted Schwinger's at the beginning of these notes. Also, I hinted my on at Sec.(3.1). Now, let us follow Geoffrey Chew and Heisenberg's.

"The simple framework of S-matrix theory and the restricted set of questions that it presumes to answer constitutes a major advantage over quantum field theory. The latter is burdened with a superstructure, inherited from classical electromagnetic theory, that seems designed to answer a host of experimentally unanswerable questions.'' -G. F. Chew, in [Chew(1966)]. [Added emphasis.]

"The present paper seeks to establish a basis for theoretical quantum mechanics founded exclusively upon relationships between quantities which are in principle observable." -W. Heisenberg (1925), translation from [Van Der Waerden(2007)].

Abstracting from Feynman, Stueckelberg, Wick and Dyson's rules, based on graph theory, which follows from Eq.(3.20) and was exemplified at Sec.(3.4), in a style à lá Veltman's pragmatic approach, we close our discussion of the present Chapter with the following computation of the 4-point function.

Scattering Amplitude

's p 1 p 2 -→ p 3 p 4 in λ φ 4 -Model p 1 p 2 p 3 p 4 k 1 k 2 k 3 k 4 k 5 k 6 t V 1 V 2 V 3 V 4 Figure 3.2: Graph Γ := Γ (4, 2) with V = 4 vertices, E = 4 unpaired-edges (sources)
, and the amplitude M Γ contributing to two "neutral mesons's" scattering at order O λ 4 .

M Γ (p 1 , p 2 , p 3 , p 4 ) = (-iλ ) 4 6 ∏ a=1 ˆdD k a (2π) D i k 2 a -m 2 + iε (3.32) × (2π) D δ (D) (p 1 + p 2 -k 1 -k 4 ) Vertex #1 × (2π) D δ (D) (k 1 + k 5 -k 2 -k 3 ) Vertex #2 (3.33) × (2π) D δ (D) (k 3 + k 4 -k 5 -k 6 ) Vertex #3 × (2π) D δ (D) (k 2 + k 6 -p 3 -p 4 ) Vertex #4 . (3.34)
Chapter 4

Emmy Nöther: The "Queen's Gambit" of Quantum Fields

"Master" Equation: An Outline

As is often the case in the practice of theoretical physics, the following strategy is adopted in order to prepare ourselves in dealing with more realistic theories. One begins by considering a simplified model, but which retains some of the mathematical features of the model of our original interest, but which is neither trivial nor so much involved as the former, in such a way that one may hope to obtain a better understanding of both qualitative and mathematical aspects, so as to be better prepared to return one original problem.

In this section, the author outlines a general method, using the formalism of functional integration, to obtain a set of identities relating propagators of gauge field theories, whose importance will be discussed in the section that follows).

To start our investigations, let us consider the simple Lagrangian for a non-hermetian scalar field:

L 0 := η MN (∂ M ϕ) ∂ N ϕ † -m 2 ϕ † ϕ. (4.1)
The Lagrangian of Eq.(4.1) is invariant under the global phase-transformations:

ϕ (x) → e -iα ϕ (x) , ϕ † (x) → e iα ϕ † (x) , (4.2) 
which in infinitesimal form, reads:

δ α ϕ = -iαϕ, δ α ϕ † = iαϕ † . (4.3)
Since the parameter α is constant over spacetime, Eqs.(4.2, 4.3) are referred in literature (cf. [Zee(2010), Peskin(2018)]) as "global" gauge transformations. This author will adopt this terminology in what follows, as it suffices to motivate the general methods, in our simplified model, before dealing with QED.

Remark 4.1. In the next coming notes to our advanced course in the quantum theory of fields, exactly the same methodology described in the present section, for our "toy-theory," will be generalized in order to be applied in the derivation of BRST cohomology, when dealing with quantization of gauge theories with non-Abelian groups. (Nevertheless, those techniques are still restricted to compact Lie groups, given the existence of an invariant Haar measure needed to normalize the pathintegral pseudo-measure. Thereby, even when trying to overcome the loophole of the non-renormalizability of General Relativity, when the latter is reformulated as a gauge theory in the Lorentz frame-bundle [Schweizer(1980), [START_REF] Hehl | [END_REF], Blagojevic(2001), Thiemann(2008), Freedman and Van Proeyen(2012)], new complications appears.) Notation 4.1. For the sake of notational simplicity, the set of fields with their resp. hermetian conjugates and derivatives, will be denoted simply as:

Ψ := ϕ (x) , ∂ ϕ (x) ; ϕ (x) , ϕ † (x) , ∂ ϕ † (x) .
(4.4)

Remark 4.2. This student accepts apologies due to his excess of pedantry. Nevertheless, it's again an opportunity to emphasize, once in a while, fundamental differences between canonical and pathintegral quantization. The former method defines fields as operators, taking values in Schwartz space of distributions1 [Friedlander(1998)]. As for the functional integral formalism, one conceives fields in the classical sense (connections in principle bundles whereby a gauge theory is defined upon, or as sections in the associated vector or spin bundles).

Notice that in pathintegral quantization, however, fields not necessarily are what Dirac's [Dirac(1981b)] would class "c-numbers," namely, either classical or commuting objects, as one requires the use of Grassmann algebras for defining Schwinger's sources to obtain a generating functional for fields obeying Fermi-Dirac statistics.

The present notes follows Schwinger's principle of the quantum action and of sources. Then, let J (x) and J * (x) be classical external currents to be coupled, resp., to the classical fields ϕ (x) and ϕ * (x). For the sake of notational simplicity, one includes both currents J (x) and J * (x) as S := (J (x) , J * (x)).

Upon such considerations, the action to our simplified model is given by:

S [S ] = S 0 [S ] + ˆdD x [J * (x) ϕ (x) + J (x) ϕ * (x)] , where: S 0 [Ψ] := ˆdD x L 0 [Ψ] . (4.5)
In the pathintegral formalism, quantization is performed by introducing the appropriate partition function Z [S ] with sources,

Z [S ] := ˆ[dϕ] [dϕ * ] exp (iS {J }) (4.6) = ˆ[dϕ] [dϕ * ] e iS 0 exp i ˆdD x [J * (x) ϕ (x) + J (x) ϕ * (x)] . (4.7)
The usual partition function, namely, the vacuum-to-vacuum transition amplitude, will be denoted as:

Z 0 := lim S -→0 Z [S ] . δ Z δ J * (x) = ˆ[dϕ] [dϕ * ] e iS 0 exp i ˆdD x [J * (x) ϕ (x) + J (x) ϕ * (x)] ϕ (x) , (4.8) δ Z δ J (x) = ˆ[dϕ] [dϕ * ] e iS 0 exp i ˆdD x [J * (x) ϕ (x) + J (x) ϕ * (x)] ϕ * (x) . (4.9)
whereby the hermetian field operators are replaced simply complex conjugate of c-valued fields.

δ α Z {J } = 0, δ α ˆ[dϕ] [dϕ * ] e iS 0 exp i ˆdD x [J * (x) ϕ (x) + J (x) ϕ * (x)] = ˆ[dϕ] [dϕ * ] e iS 0 × δ α exp i ˆdD x [J * (x) ϕ (x) + J (x) ϕ * (x)] = α ˆ[dϕ] [dϕ * ] e iS 0 +i ´dD x [J * (x)ϕ(x)+J (x)ϕ * (x)] ˆdD x [J * (x) ϕ (x) -J (x) ϕ * (x)] ,
inverting the order of integration2 yields:

ˆdD x J * (x) ˆ[dϕ] [dϕ * ] e iS 0 +i ´dD y [J * (y)ϕ(y)+J (y)ϕ * (y)] ϕ (x) - J (x) ˆ[dϕ] [dϕ * ] e iS 0 +i ´dD y [J * (y)ϕ(y)+J (y)ϕ * (y)] ϕ * (x) = 0. ˆdD x J (x) δ Z {J } δ J (x) -J * (x) δ Z {J } δ J * (x) = 0. (4.10)
The simplicity of Eq.(4.10) may be misleading. Nevertheless, there lies the reason behind it's importance. Thereby, following [Zinn-Justin(1999)], Eq.(4.10) will be referred to as a Master equation.

Our first Master equation was derived for a "toy-model," the free non-hermetian scalar field. Hence, no one should be surprised about the apparent lack of information provided by Eq.(4.10). However, as will be shown, in QED on the following, and in the notes that will be submitted in due time, what we have obtained so far is our first non-perturbative result in quantum field theory.

The importance of such a result will become clear when introducing BRST symmetries and, finally, the "renormalization program."

Exercise. Let the external source in Eq.(4.10) be given by J (x) = δ (D) (x). (I): Derive: Ω T {ϕ (x)} Ω -Ω T ϕ † (x) Ω = 0. (II): Then, check the vanishing of vacuum expectation values of single operators in the free non-hermetian scalar field. Moreover, apply the functional derivative δ /δ J (y) to our Master equation, obtaining similar results for higher-order Green's functions.

Exercise. Now the reader is invited to consider a more interesting theory: Yukawa complex scalar field ϕ with mass µ > 0, coupled to real scalar field φ with mass m > 0, for which the Lagrangian reads:

L = L 0 + L int , (4.11) L 0 := η MN (∂ M ϕ) ∂ N ϕ † + η MN (∂ M φ ) ∂ N φ -µ 2 ϕ † ϕ -m 2 φ 2 , L int := -λ ϕ † ϕ φ . (4.12)
Note that both "free" and interacting terms in Eq.(4.12) are globally invariant under a phase-change, see Eq.( 4.3). Thereby the Master equation holds good. Apply the steps (I, II) delineated in our former exercise to obtain non-trivial relations between the Green's function. (In particular, the 2-point and 3-point vertex amplitudes.)

4.2 The "Master" of Quantum Electrodynamics

Mathematical Formulation

Let A M be the electromagnetic potential and x M Lorentz coordinates in Minkowski spacetime R 1,D-1 . In this section, we assume D = 4. From a geometric perspective, namely, that of p-bundles, A := A µ dx µ is the Maxwell connection 1-form3 . The covariant derivative associated to A is then defined as D µ := ∂ µ + iqA µ , where q < 0 is the elementary unit of charge, and whereupon the curvature arising from parallel is

F = (1/2) D [µ A ν] dx µ ∧ dx ν .
Nevertheless, in particle physics, one is usually habituated with the following terminology: A µ (x) is the (bosonic) field whose excitations are identified with photons, while the components F µν of the associated curvature is the (Faraday) field-strength.

Moreover, in the associated spin-bundle, letting {γ µ , γ ν } = 2η µν I be generators of the complexified Clifford algebra (Cl 1,3 (R)) C and using e M = dx M as (holonomic) frame-fields, the Dirac-field is represented by the 4-spinor section ψ. The spin-connection is so defined by

∇ spin := γ µ D µ .
The dynamics of QED is governed by the Lagrangian:

L QED = - 1 2 Tr (F ∧ F) + i ψ ∇ spin -m ψ, (4.13) 
or in components, which is more familiar for physicists, one reads:

L QED = - 1 4 F µν F µν + i ψγ µ D µ ψ -m 2 ψψ. (4.14)

QED Propagators and Vertices

In this subsection, a brief outline of the scheme of canonical quantization to QED, whose main purpose is simply to motivate our definitions of S (p) and Γ µ . Moreover, a method by means of which those may be computed.4 

Generalities on the Canonical Quantization (for Abelian theories)

The linearity of field equations, a characteristic quality of Abelian gauge theories, such as that of the classical equations of motions following as the Euler-Lagrange of L QED , written explicit in components in Eq.(4.14),

gives ones an expectation that canonical quantization is a feasible method to obtain that set of quantities, such as the Green's functions, needed to compute the physical predictions of the theory and observable, as the S-matrix.

Usually, there exists a well-known, succinctly outlined here. One starts with introducing creation and annihilation operators. These satisfies a (Jordan) algebra, determined by the equal-time commutation (or anticommutation, depending on fields' statistics) relations, given by the nature of the fields themselves. Thence, one is assured, as regards the principle of micro-causality [Wightman and Schweber(1955)], as required by Poincaré invariance, is satisfied. Now, assume our imaginary theory builder is able to normal-order generators of operators which, when taken together, constitute a complete set of commuting observables [Dirac(1981b)]. One of those (hermetian) operators, of fundamental importance when adopting either Heisenberg representation or, as required later on, interaction representation [Weinberg(1995), Ch.3, §5], is the generator of the evolution operator, the Hamiltonian.

If the Hamiltonian, besides those other operators 5 , can be expressed as polynomials of creation and annihilation operators, particularly what is to be recognized as the "interaction" term, then one is assured that Wichmann-Eyvind-Crichton [START_REF] Wichmann | [END_REF]] principle of cluster decomposition holds good. For a simplified review, consult [Weinberg(1995), Ch.4].

Finally, observable quantities, such as the S-matrix, are obtained applying Dyson's series to the LSZ reduction equation in order to compute time-ordered, vacuum-to-vacuum (known as vevs.) expectation values, with the help of Wick's theorem [START_REF] Itzykson | [END_REF], Ch.5, §3.3].

Propagators and Vertices in Canonical Quantization

Definition 4.1. Let (•, •) be the inner product of the projective Hilbert space P(H ) of the physical states in the canonically quantized QED. Let Ω 0 denote the ground-state of the canonical QED, through which the naught under-script is employed to empathize our blessed ignorance as far as the Faddeev-Kulish states exists (and their related infrared theorems [Weinberg(1965)]). Close our definitions by denoting with T { } the time-ordering of the arbitrary field-operators 's.

Recall, from an elementary course in QED [START_REF] Mandl | [END_REF]], that the fermionic propagator iS (p) and the 3-vertex function Γ µ (p 1 , p 2 , k) are defined, resp., in energy-momentum representation, as the fourier transforms of vevs,

iS (p 2 -p 1 ) := ˆdD x 1 d D x 2 e ip•(x 2 -x 1 ) (Ω 0 , T { ψ (x 2 ) ψ (x 1 )} Ω 0 ) , (4.15) (2π) D δ (D) (p 1 + p 2 -k) Γ µ (p 1 , p 2 , k) := Γ µ (p 1 , p 2 , k) , (4.16) 
where:

Γ µ (p 1 , p 2 , k) = ˆdD x 1 d D x 2 d D y e i(p 1 •x 1 +p 2 •x 2 -k•y) (Ω 0 , T {A µ (y) ψ (x 2 ) ψ (x 1 )} Ω 0 ) . (4.17)
5 Also, this student feels the need for completeness and thereby mention the importance of operators related to symmetries. A prominent rôle is staged by the spacetime-translation operators, and the ones representing the action of Lorentz boots on physical states Ψ (belonging to one's theory Hilbert space, Ψ ∈ H). Employing a well-known notation, the corresponding generators of spacetime-translations and Lorentz boosts are, resp., K i and J i . These, together with commutation relations acting on H, constitute an algebra isomorphic to the Lie algebra of the (proper-orthochronos Lorentz group) L ↑ + . For the interested reader, cf. [Weinberg(1995), Ch.2, Vo.I] for a detailed discussion.

Remark 4.3. Note that a proportionality factor 1/ (2π) D , within the measure of energy-momentum space, may "oscillate" non-periodically, according to the tastes of textbook writers. Thankfully, by Poincaré recurrence theorem, mapping one author psychological state to a Hamiltonian system, one proves the measure of equations, sensible to variations of personalities, vanishes, for sufficiently large-times. As there are, at time of writing, no feasible experimental test which could falsify our goal of a future study of superstring theory, such large-times are of no concern.

Applying Wick's theorem and performing the integrations from the fourier transformations, one arrives at the explicit results: Conclusion 4.1. The unrenormalized6 Dirac-propagator for QED is given by:

S (p) = η µν γ µ p ν + m p 2 -m 2 + iε + , (4.18)
where ε + > 0 is the Feynman's protégée infinitesimal.

(Sometimes, the imaginary unity is present as a factor in both sides, as such is the particular form of the Dirac-propagator suitable to compute amplitudes perturbatively, by means of Feynman-Dyson graphs). Conclusion 4.2. The unrenormalized (as a precise definition is explained in ¶6) 3-vertex connected function Γ µ (p 1 , p 2 , k) for QED is, indexed as dictated by the matrix-representation of the generators {γ µ } of Cl R (1,3) C (the space-time algebra of Minkowski space),

Γ µ (p 1 , p 2 , k) αβ = -iq (γ µ ) αβ . (4.19)
Notation 4.2. When one is interested in the limiting expression of Eq.(4.19), through which the energymomentum of ingoing and outgoing states of the Dirac-field are such as p 1 = p 2 =: p, it proves itself useful to introduce the notation:

V µ (p; k) αβ := lim p 1 →p Γ µ (p 1 , -p 1 , k) αβ = -iq (γ µ ) αβ . (4.20)

"Effective" Action

It was learned in our discussion of Faddeev-Popov method (recall our former notes [Mol(2021)]) that, to correctly define the pathintegral measure in field space, in the presence of gauge symmetries, one should: (i) replace the phasespace of possible field configurations by it's factor under the action of gauge symmetry group;

(ii) introduce into the pathintegral measure contributions from geisterfeld, namely, unobservable fields violating spin-statistics theorem; and finally, (iii) modify the original Lagrangian with a gauge fixing term.

To proceed, an a posteriori fact (cf. [Mol(2021)] for details) will be assumed on what follows, the reason being a significant simplification of our calculations. For an Abelian gauge theory, if one chooses the family of covariant gauges (labelled by the real parameter ξ ), a procedure which is simply realized by adding to Eq.(4.14) the gauge-fixing term: (4.21) any coupling between propagators of geisterfeld to bosonic field A µ is inexistent.

L GF := - 1 2ξ ∂ µ A µ 2 ,
In effect, the final effect, arising from performing the functional integral of geisterfeld, ends with a sourceindependent phase-factor multiplying Z . Henceforth, one should allow oneself to ignore the Faddeev-Popov geisterfeld, in so far as an Abelian theory, with a carefully chosen gauge-fixing, is concerned.

Let the action for the ordinary QED be denoted by:

S 0 A µ , ψ, ψ := ˆdD x L QED , (4.22)
while the spacetime integral over the coupling between the c-number source J µ to A µ , and the Grassmannvalued sources σ and σ to the Dirac field, be given by:

J := J [J µ , σ , σ ] = ˆd4 x J µ (x) A µ (x) + σ (x) ψ (x) + ψ (x) σ (x) . (4.23)
Hence, the "effective" action for our theory is:

S eff = S 0 + ˆd4 x - 1 2ξ ∂ µ A µ 2 + J µ (x) A µ (x) + σ (x) ψ (x) + ψ (x) σ (x) . (4.24)
Remark 4.4. Admittedly, the adjective "effective" for the action from Eq.(4.24) is, at this moment of our studies, an abuse of language. At least from the viewpoint of Renormalization (Semi-group) Theory [START_REF] Collins | Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion. AN INTRODUCTION TO RENORMALIZATION[END_REF]], the true effective action capable of rendering QED a fully predictive theory (of course, in the formalism of Lagrangian field theories quantized by functional integration), should include counter-terms, as will be discussed soon, in order to renormalize the "bare" parameters appearing in Eq.(4.14).

Remark 4.5. It may be worth mentioning that, besides the framework of Renormalization Group (RG), there are alternative approaches capable of rendering QED a finite and predictive theory, by taking care simultaneously of the rôle played by micro-causality and the mathematical structure of relativistic quantum field theories, in which those fields should be treated as a distribution-valued operators, constituting a module nevertheless not an algebra. It's know as the Epstein-Glaser approach or causal perturbation theory. For original papers, see [START_REF] Epstein | The role of locality in perturbation theory[END_REF]]. A pedagogical introduction is presented detailed by [Scharf(2013)].

Honestly, this author have still been unable to decide if the mathematical complications, which are intrinsic to the Epstein-Glaser approach, provides sufficient reason for any possible replacement of a highly successful and physically motivated research program, such as RG theory.

Moreover, those mathematical complications certainly requires no high level of sophistication and abstraction, such as the ones which culminated in the works of mathematical gauge theories [Atiyah(1988)] and topological QFTs [Witten et al.(1982), Witten(1988)]. The difficulties are mostly technicalities arising from old-fashioned analysis and very long computations.

"Master" Equation

Lastly (but not least!), the generating functional for the Green's functions of QED (taking into account all the reservations which have been hopefully clarified above), can be written as:

Z :=Z [J µ , σ , σ ] = ˆ dA µ [dψ] [d ψ] exp ( iS eff ) . (4.25)
Remark 4.6. At this point, one should take notice of the fact that, in the limit whereby the external currents vanishes, namely, J , σ , σ → 0, one recovers from the generating functional (cf. Eq.(4.25)) the wellknown partition function of one's theory,

Z 0 := lim J µ , σ , σ →0 Z [J µ , σ , σ ] = ˆ dA µ [dψ] [d ψ] e i ´d4 x -1 4 F µν F µν +i ψγ µ D µ ψ-m 2 ψψ-1 2ξ (∂µA µ ) 2 .
(4.26)

From our geometric construction of QED in §4.2.1, we should expect that gauge symmetry is an intrinsic feature of the theory, which Eq.(4.25) is supposed to describe after quantization 7 .

Using however the more mundane notation of coordinates components, an infinitesimal gauge transformation, generated by a spacetime function Λ : x ∈ R 1,3 → Λ (x) ∈ R (which, at this step, should be at least continuously differentiable), reads:

δ Λ A µ (x) = ∂ µ Λ (x) , δ Λ ψ (x) = -iqΛ (x) ψ (x) , δ Λ ψ (x) = iqΛ (x) ψ (x) .
(4.27)

The basic postulate of our work with functional integrals may be so summarized. The symmetries of Eq.(4.27) are preserved after all care have been taking in properly defining our pathintegral (pseudo-)measure, so that:

δ Λ Z = ˆ dA µ [dψ] [d ψ] exp ( iS eff ) (4.28) × δ Λ i ˆd4 x - 1 2ξ ∂ µ A µ 2 + J µ (x) A µ (x) + σ (x) ψ (x) + ψ (x) σ (x) . (4.29)
Now, rearrange the order of integration in Eq.(4.29)8 , and thereafter, apply the transformations in Eq.(4.27). One thus obtain:

δ Λ Z = ˆd4 x i ˆ dA µ [dψ] [d ψ] exp ( iS eff ) (4.30) × 1 ξ x ∂ µ A µ (x) -∂ µ J µ (x) + iq [ σ (x) ψ (x) -ψ (x) σ (x)] Λ (x) , (4.31) 
where x := ∂ µ ∂ µ .

On the other hand, similarly to Eqs.(4.8, 4.9), the functional derivatives of Z [J µ , σ , σ ] according to each external current are:

δ Z δ J ν (y) = i ˆ dA µ [dψ] [d ψ] exp ( iS eff ) A ν (y) , (4.32) δ Z δ σ (y) = -i ˆ dA µ [dψ] [d ψ] exp ( iS eff ) ψ (y) , (4.33) δ Z δ σ (y) = i ˆ dA µ [dψ] [d ψ] exp ( iS eff ) ψ (y) . (4.34)
Note that the sign in Eq.(4.33) is due to the anti-commutativity of Grassmann-valued operators. In particular, by the process of functionally differentiating Eq.(4.23), the contribution to our "effective" action displayed at Eq.(4.24) due to the external sources, with respect to σ (x) is:

δ J δ σ (y) = i ˆd4 x δ δ σ (y) [ ψ (x) σ (x)] = i ˆd4 x -ψ (x) δ σ (x) δ σ (y) = -i ψ (y) . (4.35)
Therefore, applying Eqs. (4.32, 4.33, 4.34) to the variation of δ Λ Z obtained in Eq.( 4.31), one arrives at the following result:

δ Λ Z = ˆd4 x - 1 ξ x ∂ µ δ Z δ J µ (x) -∂ µ J µ (x) Z + iq σ (x) δ Z δ σ (x) - δ Z δ σ (x) σ (x) Λ (x) = 0.
(4.36) As Eq.(4.36) holds true for whatever test function Λ ∈ C ∞ 0 one chooses, the term within curly brackets within the integrand vanishes for all sources. Thence follows our "Master" equation:

1 ξ x ∂ ∂ x µ δ Z δ J µ (x) + ∂ µ J µ (x) Z + iq σ (x) δ Z δ σ (x) + σ (x) δ Z δ σ (x) = 0. (4.37)

Dictionary to Functional Quantization

In §4.2.2.2, a derivation was given of the Dirac-propagator and the 3-vertex function, using the canonical quantization familiar from an elementary course in QED.

On what follows, we simply recall, as was discussed in more details in our former lecture, the form assumed by those quantities when the pathintegral formalism in chosen as one's method of quantization.

In the case of the Dirac-propagator, the energy-momentum space representation is defined as usual:

(2π) (D) δ (D) (p 2 -p 1 ) iS (p 2 -p 1 ) := ˆdD x 1 d D x 2 e ip•(x 2 -x 1 ) S (x 2 -x 1 ) , (4.38)
in such a way one is allowed to ignore possibly inconvenient distributions along, while the imperative to the mapping between the canonical and functional methods is:

S (x 2 -x 1 ) = 1 i lim σ , σ →0 δ 2 Z δ σ (x 2 ) δ σ (x 1 ) . (4.39)
With regards to the (unrenormalized) interaction, between the Maxwell and Dirac fields,

L int = -iq γ µ A µ ψψ
tank-fully, Eq.(4.16) allows oneself to disregard any concerns about those factors of (2π) D , besides the energymomentum conservation factors arising as δ s distributions.

In spacetime representation,

Γµ (x 1 , x 2 ; y) = 1 i 3 lim J , σ , σ →0 δ 3 Z δ σ (x 2 ) δ σ (x 1 ) δ A µ (y) , (4.40) 
which, upon fourier transforming to energy-momentum coordinates, one deduces (up to the proportionality factors mentioned above): 

Γ (p 1 , p 2 ; k) := 1 i 3 lim J , σ , σ →0 ˆdD x 1 d D x 2 d D y e i(p 2 -p 1 )•(x 2 -x 1 )+ik•y δ 3 Z δ σ (x 2 ) δ σ (x 1 ) δ A µ (y) . ( 4 

Example: Ward-Takahashi Identities

As a simple application of Eq.(4.37), this section presents a derivation of a relation in the context of QED, the Ward-Takahashi identities [Takahashi(1957)].

First, one should note that, for Grassmann-valued functions, such as the external sources σ (x) and σ (x), their fundamental property of anti-commuting among themselves still holds true [DeWitt(1992)]:

δ δ σ (y) δ δ σ (z) = - δ δ σ (z) δ δ σ (y) . (4.42)
With the above remarks in mind, one applies Eq.(4.42) to Eq.(4.10) and take the usual limit, whereby external currents J , σ , σ → 0, to obtain:

lim J , σ , σ →0 1 ξ x ∂ ∂ x µ δ 3 Z δ σ (z) δ σ (y) δ J µ (x) (4.43) = lim σ , σ →0 iq δ (D) (x -z) δ 2 Z δ σ (y) δ σ (x) + δ 2 δ σ (z) δ σ (x) δ (D) (x -z) . (4.44)
Lastly, employing Eqs.(4.15, 4.16) for the Dirac-propagator and 3-vertex function, resp., at our form of the "Master" formula, displayed at Eq.(4.44), one should be able to deduce:

S (p 2 ) -S (p 1 ) = - i ξ (p 2 -p 1 ) ν S (p 2 ) η µν V µ (p 2 , p 1 ) S (p 1 ) , (4.45)
which is exactly the generalization obtained by Y. Takahashi [Takahashi(1957)] of the well-known Ward identity [START_REF] Ward | [END_REF]].

Chapter 5

Regularization Schemes: "An Entrance to Renormalization Theory"

Introduction

In our former lectures, we closed the first part of a study on "advanced" quantum field theory, whereby non-Abelian gauge theories have been quantized by means functional integration. Now, we are capable of computing the Green's functions from the generating functionals, which are needed in order to calculate physically observable quantities, the S-matrix playing a prominent rôle

In this Chapter, our aim is to review some parts from our last lectures, nevertheless at this time, with a particular attention to the theory of quantum electrodynamics (QED). Moreover, our emphasis will be devoted to those concepts that are needed to a proper appreciation, or raison d'être let's say, for the theory of renormalization "group."

For the sake of pedagogy, we choose to work on a concrete problem, both physically and historically important, the calculation of the self-energy of the electron, at order ∼ O e 2 , in spinor quantum electrodynamics (QED).

Anamnesis

Let A µ and ψ the Maxwell and Dirac fields, respectively, and denote by F µν := ∂ [µ A ν] the Faraday field-strength tensor.

The complete generating functional to QED, from which all Green's functions can be derived, is:

Z [J µ (x) , σ (x) , σ (x)] = ˆ dA µ [dψ] [d ψ] e i(S 0 +S GF +S int ) (5.1) × exp i ˆd4 x J µ (x) A µ (x) + σ (x) ψ (x) + ψ (x) σ (x) , (5.2) 
where:

S 0 = ˆd4 x - 1 4 F µν F µν + ψ (x) iγ µ ∂ µ -m ψ (x) , (5.3) 
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S GF = - 1 2ξ ˆd4 x ∂ µ A µ 2 ,
S int = -ie ˆd4 x ψ (x) γ µ A µ (x) ψ (x) , (5.5)
are, respectively, the free, gauge-fixing and interacting contributions to the total action1 . Perturbation theory consists in the power series expansion of the (imaginary) exponential within Eq.(5.1) in the "coupling constant," e acting as a proportionality constant to the interaction term, Eq.(5.5).

The free generating functional, by which is one means, the limit whereby our theory coupling constant vanishes, is defined by e → 0.

As we have shown that for QED,

Z 0 [J µ (x) , σ (x) , σ (x)] = exp i ˆd4 xd 4 y 1 2 J µ (y) ∆ µν (y -x) J ν (x) + ᾱα (y) S αβ (y -x) α β (x) ,
(5.6) Here, i∆ (F) µν (x) =: S (F) (x) and iS (x) =: S F (x) are, respectively, Feynman propagators for the Maxwell's and Dirac's electron fields.

In spacetime representation, one reads:

iS F (y -x) = ˆ dA µ [dψ] [d ψ] e i(S 0 +S GF +S int ) ψ (y) ψ (x) , (5.7) i∆ (F) µν (y -x) = ˆ dA µ [dψ] [d ψ] e i(S 0 +S GF +S int ) A µ (y) A ν (x) .
(5.8)

Thence, a representation in the form of a perturbation series for Eq.(5.1), from which observables, like the S-matrix, may be expressed as superpositions of connected Green's functions (recall Dyson's series in canonical formalism):

Z [J µ (x) , σ (x) , σ (x)] = exp -ie ˆd4 x δ δ J µ (x) δ δ σ (x) γ µ δ δ σ (x) Z 0 [J µ , σ , σ ] .
(5.9)

Lastly, we close our review by defining the generating functional for all the connected Green's functions:

W [J µ , σ , σ ] := -i log Z [Z µ (x) , σ (x) , σ (x)] ,
(5.10) as can be shown by induction in [Abers and Lee(1973)].

Self-energy

Let S (p) be the complete propagator of Dirac's field ψ, defined in the energy-momentum representation by:

S (p) := lim J , σ , σ →0 ˆd4 x 1 d 4 x 2 e -ip•(x 2 -x 1 ) δ 2 δ σ (x 2 ) δ σ (x 1 ) W [J µ (x) , σ (x) , σ (x)] .
(5.11)

Remark 5.1. From a physical viewpoint, S (p) is analogous to our familiar "free" propagator of the Dirac's field, simply denoted by S (p). Here, however, our interest relies in the fermion-propagator of the "complete" theory of quantum electrodynamics, whereby all the interactions are taken into account. In this sense, S (p) is the contribution of order ∼ O e 0 to S (p), once the elementary unit of charge is chosen as the coupling constant of QED.

Remark 5.2. Historically, the fine-structure constant α ∝ e 2 /4π played a key rôle in the development of QED. Sometimes, α was taken as the genuine coupling constant of the latter theory. For an illustration, consider M. Born remark in 1935 that [START_REF] Born | Max Born. The mysterious number 137[END_REF]]: "the explanation of this number [the fine structure-constant α] must be the central problem of natural philosophy." Even more drastically, W. Pauli told to his psychoanalyst [START_REF] Pauli | Writings on Physics and Philosophy[END_REF]Pauli, Schlapp, Enz, and Meyenn]: "When I die, my first question to the devil will be: What is the meaning of the fine structure constant."

As will be clarified later, when we study the theory of Renormalization "Semi-group," (RG, from now on) the fine-structure constant α along with other parameters figuring in the Lagrangian formulation of one's theory, flows under the action of the "semi-group" of renormalization according to the energy-scale through which the process of interest takes place.

To close this brief appetizer our study of RG, the flow under which the parameters of one's theory scales as a function of energy, is dictated by what's known as the Callan-Symanzik equations [START_REF] Collins | Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion. AN INTRODUCTION TO RENORMALIZATION[END_REF]].

In any case, my hope is to have been able to provide a convincing argument as to why the elementary unit of charge e should be taken as the order-by-order of magnitude in applying the methods of perturbative QFT, as summarized in Eq.(5.9), instead of α, better left today for the crackpots's online archives.

Applying Eqs.(5.6, 5.9, 5.10) to Eq.(5.11), we obtain the following series expansion:

S (p) = i (γ • p + m) -1 + i (γ • p + m) -1 × iΣ (2) (p) × i (γ • p + m) -1 + O e 4 .
(5.12) Therefore, iΣ (2) (p) is the one-loop correction, of order ∼ O e 2 , to the self-energy of the electron.

On the following:

1. The propagator of the Maxwell's field will be regulated by the introduction of a fictitious mass of the photon, m γ -→ 0 + .

2. The Feynman's gauge, where ξ = 1, is chosen in Eqs.(5.11, 5.12). 

iΣ (2) (p) = lim m γ ↓ 0 ˆR(1,3) d 4 k (2π) 4 (-ieγ µ ) 1 st int. vertex × i γ • (p + k) -m + iε + 1 -1 fermion-propagator's one-loop × (-ieγ ν ) 2 nd int. vertex (5.13) × - iη µν k 2 + m 2
iΣ (2) (p) = -lim m γ ↓ 0 e 2 8π 4 ˆR(1,3) d 4 k 2m -γ • (p + q) (p + k) 2 -m 2 k 2 -m 2 γ (5.15)
Employing Eqs.(A.24) from App.(A.2), shifting the integration variable by k µ → k µτ p µ and defining: (5.16) one finally arrives at the ∼ O e 2 correction to the complete Dirac propagator:

Q 2 τ m, m γ := τm 2 + (1 -τ) m 2 γ -τ (1 -τ) p 2 ,
iΣ (2) (p) = - e 2 8π 4 ˆ1 0 dτ [2m -(1 -τ) γ • p] ˆd4 k 1 k 2 + Q 2 τ m, m γ 2 .
(5.17)

Note that Eq.(5.17), which physically one would expect the order ∼ O e 2 correction to the self-energy of the electron, diverges.

"The Archetype"

Suppose we are given a QFT, written in Lagrangian form, such that the interaction-term are polynomial functions of the fields and sources. For example, see Eqs.(5.3, 5.4, 5.5) for QED, the archetypical relativistic quantum field theory of the fundamental interactions.

A general problem, both for the student or the professional phenomenologist, is to employ (or deploy, whatever) the Green's functions, obtained from the generating functional, Eq.(5.1), to arrive at physically observable results. The fundamental example being, of course, the S-matrix.

In such a task, a common exercise is to compute a "N-loop" integral, a quantum mechanical amplitude contributing to the state of the physical system at hand, at order ∼ O (N) in perturbation theory, which usually takes the form:

iM (N) (p) = κ (ig) N × ˆ N ∏ i=1 d 4 k i (2π) 4 × N ∏ j=1 P k j , p k 2 j -m 2 + iε + × δ (4) p - N ∑ k=1 k k .
(5.18)

In Eq.(5.18), the following list of parameters and functions, follows directly from an analysis of the generating functional, Eq.(5.10):

• κ is a proportionality factor, depending on the particularities of the theory.

• g 1 is a sufficiently small coupling constant, for which perturbation theory, as surmised in Eq.(5.9), may be applied with sufficient confidence 2 ,.

• P k j , p is a polynomial, also built upon the details of the Lagrangian, as in the action of Eq.(5.5), being linear in the energy-momentum variables k j , p and, when fermions are present, in the matrices γ • k j and γ • p.

2 Mathematically, the meaning of this statement is that, besides failing to be Borel summable, Dyson's series is summable in the sense of Abel [Shawyer(1969)], in such a way that physically meaningful results are still computable in the framework of perturbation theory [Dyson(1958)].
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From the general form of Eq.(5.18), no one should be surprised that "loop" integrals diverges. Indeed, applying a procedure known as Wick's rotation, briefly introduced in App.(A.3), the integrations over the N-dimensional, energy-momentum space, inside Eq.(5.18), and which inherits the Lorentz signature from spacetime representation, are converted into integrations over spaces with Euclidean signature.

Then, assuming the integrand is a function only of the square of the energy-momentum 4-vector, we can separate the integrals into solid angles, as explained in App.(A), and obtain as a proportionality constant to Eq.(5.18) terms of the form 3 :

ˆ∞ 0 dk E ˆ∞ 0 d E k 3 E 3 E 1 (k E + E ) 2 + Q 2 1 2 E + Q 2 2 , (5.19)
which are clearly logarithmically divergent.

All this being said, the first step which one should assign to oneself to appreciate the renormalization "group" theory, is to learn how to regularize integrals such as Eqs. (5.18, 5.19).

Such is the purpose of the present notes.

Switzerland: "

The Ghosts of Zürich"

Notation

On what follows, define the following family of functions: (5.20) whose parameters are :

Q (τ) E m 1 , m 2 , p 2 E = τm 2 1 + (1 -τ) m 2 2 + τ (1 -τ) p 2 E ,
1. The mass of the electron, m 1 = m.

2. The ficticious mass of the photon, m 2 = m γ , introduced only to regularize the photon-propagator.

3. The Euclideanized momenta squared p 2 E . Now, noticing that:

ˆE4 d 4 k E f k 2 E = ˆdΩ (3) × ˆ∞ 0 dk E f (k E ) = 2π 2 ˆ∞ 0 dk E f (k E ) , (5.21) and defining: Q2 τ m, m γ := Q 2 τ m, m γ , p 2 E , (5.22) 
Eq.(5.17) gives:

iΣ (2) (p) = - ie 2 8π 2 ˆ1 0 dτ [2m + (1 -τ) γ E • p E ] ˆ∞ 0 dk 2 E 1 k 2 E + Q2 τ m, m γ 2 -1 .
(5.23) 3 The rôle played by the constants Q 1 and Q 2 in Eq.( 5.19) will be clear in the development of our next sections.
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Description of the Method

Now, let B µ and χ be, respectively, the geistfelder corresponding to Maxwell's and Dirac's fields A µ and ψ. Moreover, let G µν := ∂ [µ B ν] be the pseudo-Faraday tensor.

The regularization scheme known as Pauli-Villars is the following. Defining the pseudo-covariant derivative by D µ := ∂ µie (A + B) µ , let the Lagrangian: (5.24) be added to the generating functional Z [J µ , σ , σ ].

L Zürich := 1 4 G µν G µν - 1 2 Λ 2 (B • B) -χ (iγ • D -Λ) χ + e ψ (γ • B) ψ,
Clearly, both B µ and χ violates spin-statistics, and so the reason thereby those are called geistfelder.

Nevertheless, the contribution coming from these fields, iΣ

Zürich (p) = ie 2 8π 2 ˆ1 0 dτ [2m + (1 -τ) γ E • p E ] ˆ∞ 0 dk 2 E 1 k 2 E + Q2 τ (m, Λ) 2 -1 , (5.25) (2) 
a result obtained by following the very same procedures leading to iΣ (2) (p), implies a finite contribution to the self-energy of the electron: 

iΣ (2) Regulated (p) = - ie 2 8π 2 ˆ1 0 dτ [2m + (1 -τ) γ E • p E ] log Q2 τ (m, Λ) Q2 τ m, m γ , ( 5 
Regulated (p) = ie 2 8π 2 ˆ1 0 dτ [(1 -τ) (γ • p) -2m] log Q 2 τ (m, Λ) Q 2 τ m, m γ .
(5.27)

Between Vices and Virtues

Technically, the regularization method devised by Pauli-Villars [START_REF] Pauli | On the invariant regularization in relativistic quantum theory[END_REF]] and Stückelberg-Rivier [START_REF] Carl | Elimination des constantes arbitraires dans la theorie relativiste des quanta[END_REF], Rivier(1949)] geistfelder, suffices to regularize all "fundamental" divergences in QED [Rivier(1949), [START_REF] Jauch | [END_REF]].

By "fundamental," one should understand those divergences originating from those loop integrals (whose measure is defined upon the energy-momentum space) within the connected proper vertex functions of QED, which are precisely the ones from which all other amplitudes are built upon, by the addition or removal of external lines4 .

For the sake of completeness, those divergences are:

1. The self-energy of the electron, also known as mass renormalization, whose order O e 2 is given by iΣ (2) , the result of which is displayed at Eq.(5.23).
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After carefully following the prescriptions delineated in §5.2, from which the generating functional Z J µ (x) , λ (x) for all Green's functions having been defined, a natural line of inquire is to study the complete fermionpropagator:

G (p) := ˆd4 x 1 d 4 x 2 e -ip•(x 2 -x 1 ) δ 2 W J µ (x) , λ (x) , λ (x) δ σ (x 2 ) δ σ (x 1 ) J = λ = λ =0
(5.30) (5.31) where by iS (p) we denote the "free" fermion-propagator.

= iS (p) -1 + iS (p) -1 × iΣ (2) (p) × iS (p) -1 + O g 4 ,
As we have learned in our former studies, independently of the particularities of our theory, the amplitude of order O g 2 to G (p), denoted in Eq.(5.30) by iΣ (2) (p), is of the general form:

iM (2) (α, Q) := κ × g 2 lim ε 1 ,ε 2 →0 + ˆR(1,3) d 4 k (p + k) 2 -m 2 + iε + 1 k 2 -m 2 + iε + 2 , (5.32)
where κ is a proportionality constant, depending upon the details of our theory.

The fundamental observation coming from Eq.(5.32) is that the origin of the logarithmic divergence in iM (2) (α, Q) relies on the number of spacetime dimensions.

Claim. Analytically continuing the spacetime dimensions to n = 4ε, where 0 < ε 1, the divergence of Eq.(5.32) can be:

• Regulated, if one keeps ε finite.

• Or, while one is taking the limit ε -→ 0 + , the divergence will be "absorbed" into what will be later on called a counter-term. Therefore, one is left with only physically meaningful contributions.

Mathematical Formalism

The method of dimensional regularization, as far as our present interests in QED are concerned, can be summarized in the analytical continuation of the following integral:

Definition 5.1. Let α ∈ N, Q µ an energy-momentum 4-vector and F := (0, 4) ∈ R a family of indices. Define the family of integrals {I ε (α, Q µ )} ε∈F defined upon an "analytically continued" measure (a precise meaning of which will be given in the following theorem) 6 :

I (n,ε) α, Q 2 := lim ε 0 →0 + , ˆR(1,n-1) d (n-ε) k (2π) (n-ε) 1 (k 2 -Q 2 + iε 0 ) α .
(5.33) 6 In Eq.(5.33), as one might have expected, ε 0 > 0 is the infinitesimal following Feynman's prescription, to appropriately choose the contour of integration in order to obtain the correct propagator. For the sake of brevity, from now on, Feynman's iε 0 -regularization scheme is tacitly understood.

CHAPTER 5. REGULARIZATION SCHEMES: "AN ENTRANCE TO RENORMALIZATION THEORY"51 Theorem 5.1. Letting α a positive integer and Q µ an energy-momentum 4-vector, for any index ε ∈ F, Eq.(5.33) yields:

I (n,ε) α, Q 2 = (-1) α iπ n/2 (2π) n 1 (Q 2 ) α-n/2 Γ (α -n/2) Γ (α) .
(5.34) Indeed, recalling the unit solid angle of Eq.(A.4) from App.(A), and then Eq.(A.35, A.36) from App.(A.3), we arrive at the following list of computations:

I (n,ε) α, Q 2 = ˆEn (-id n k E ) (2π) n 1 -k 2 E -Q 2 α (5.35) = (-1) α+1 i (2π) n ˆEn d n k E k n-1 E k 2 E + Q 2 α (5.36) = (-1) α+1 i (2π) n × ˆdΩ (n)
Area of n-sphere

× ˆ∞ 0 dk E 1 k 2 E + Q 2 α (5.37) = (-1) α i (2π) n × 2π n/2 Γ (n/2) × ˆ∞ 0 d k E Q × k E Q n-1 Q n Q 2α 1 1 + k 2 E /Q 2 α (5.38) = (-1) α i (2π) n × 2π n/2 Γ (n/2) × 2 (Q 2 ) α-n/2 ˆ∞ 0 dτ τ n-1 1 + τ 2 -α .
(5.39)

Finally, use Eq.(A.12, A.14) from App.(A.1) to obtain the desired result.

An exceptionally comprehensive table of integrals generalizing Eq.(5.33) for many arguments and functions in the numerator, useful into the application of dimensional regularization (either in relativistic quantum field theories as in critical phenomena of condensed-matter [Zinn-Justin(2007)]) is available at [Kleinert(2001)].

Application:

The Self-energy of the Electron Definition 5.2. Let [X] be any physical quantity, such as a classical field or a quantum distribution-valued operator, even physical constants. We will denote by [X] the unit of mass of that quantity.

Claim. From the action functional of QED given by Eqs.(5.3, 5.5), it follows by simple dimensional analysis that:

A µ = n -2 2 = 1 - ε 2 , (5.40) [ψ] = [ ψ] = n -1 2 = 3 2 - ε 2 ,
(5.41)

[e] = ε 2 .

(5.42)

It is convinient to keep the coupling constant dimensionless. This being the case, let µ be a "dummy" parameter 7 with scale of mass and apply the following replacements:

e → eµ ε/2 , (5.43)

7 By "dummy" we mean, without physical significance. As a matter of fact, such a parameter will disappear at the final result.
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D µ ψ (x) → D µ ψ (x) = ∂ µ + ieµ ε/2 A µ ψ (x) .
(5.44)

It can be shown that Clifford algebras, for which the Dirac γ's matrices are a representation, can be generalized to n-dimensional spaces [Lounesto et al.(2001)Lounesto, Cassels, Society, and Hitchin]. Thence,

γ µ γ µ = n, γ µ (γ • k) γ µ = (2 -n) (γ • k) .
(5.45)

Now, using Eq.(A.24) from App.(A.2),

iΣ (2) (p) = -µ ε e 2 × ˆdn k (2π) n (2 -n) γ • (k + p) + nm (k + p) 2 -m 2 k 2 -m 2 γ (5.46) = -µ ε e 2 ˆ∞ 0 dτ ˆdn k (2π) n (2 -n) γ • (k + p) + nm (k + p) 2 -m 2 τ + k 2 -m 2 γ (1 -τ) 2 .
(5.47)

Defining, as usual,

Q 2 := τm 2 -τ (1 -τ) p 2 ,
and performing the transformation k µ → k µ + p µ in the integration variable,

iΣ (2) (p) = -µ ε e 2 ˆ∞ 0 dτ [(2 -n) γ • (k + p) + nm] × ˆdn k (2π) n 1 (k 2 -Q 2 ) α (5.48) = -µ ε e 2 ˆ∞ 0 dτ [(2 -n) γ • (k + p) + nm] I (n,ε) α, Q 2 (5.49) = -µ ε e 2 ˆ∞ 0 dτ [(2 -n) γ • (k + p) + nm] (-1) α iπ n/2 Γ (α -n/2) (2π) n Γ (α) (Q 2 ) α-n/2 , (5.50)
Lastly 8 , applying the approximation provided by Eq.(A.22), which we obtained in App.(A.1), we have:

iΣ (2) (p) ≈ ie 2 8π 2 ˆ∞ 0 dτ [(1 -τ) (γ • p) -2m] 1 - ε 2 1 + ε 2 log (4π) 2 ε -γ Euler 1 - ε 2 log Q 2 µ 2 (5.51) ≈ ie 2 8π 2 ˆ∞ 0 dτ [(1 -τ) (γ • p) -2m] 1 - ε 2 2 ε -γ Euler + log (4π) 1 - ε 2 log Q 2 µ 2 (5.52) = ie 2 8π 2 ˆ∞ 0 dτ [(1 -τ) (γ • p) -2m] 2 ε -log τm 2 -τ (1 -τ) p 2 4π µ 2 -(γ Euler + 1) .
(5.53) Therefore, Eq.( 5.52) provides a finite contribution to the self-energy of the electron for all finite and nonnegative real ε > 0.

Whence, iΣ (2) (p) diverges only in the limit whereby ε -→ 0.

Upon such considerations, we may finally conclude that: 8 We also note that:

1 2 n π n/2 = 1 (4π) 2-ε/2 ≈ 1 16π 2 1 + ε 2 log (4π) .

Introduction: Anamnesis

In this section, our aim is to review our studies with particular attention to quantum electrodynamics (QED), preparing ourselves to renormalization theory. Let A µ and ψ the Maxwell and Dirac fields, respectively. Adopting minimal coupling's prescription, according to which interaction's gauge invariance is preserved simply upon a replacement:

∂ µ → D µ := ∂ µ -ieA µ . (6.1)
and denoting Faraday's field-strength tensor by F µν := ∂ [µ A ν] , QED's Lagrangian reads:

L QED := L QED A µ (x) , F µν (x) ; ψ (x) = - 1 4 F µν F µν + ψ (iγ • D -m) ψ. (6.2) Z [J µ (x) , σ (x) , σ (x)] = ˆ dA µ [dψ] [ ψ] e i ´d4 x L QED[ A µ (x), ψ(x), ψ(x)F µν (x)]-1 2ξ (∂ •A) 2 (6.3)
× exp i ˆd4 y J µ (y) A µ (y) + σ (y) ψ (y) + ψ (y) σ (y) (6.4)

L QED = - 1 4 F µν F µν + ψ iγ µ ∂ µ -m ψ -L int , L int := -ie ψ (γ • A) ψ (6.5) Z [S ] = exp i ˆd4 y L int 1 i δ δ S (y) ˆ[dΨ] exp i ˆd4 x L 0 (Ψ, ∂ Ψ) + S (x) , Ψ (x) Z 0 [S ] (6.6) Z [J µ (x) , σ (x) , σ (x)] = exp i ˆd4 y L int -ieγ µ δ 3 δ J µ (y) δ σ (y) δ σ (y) Z 0 [J µ (x) , σ (x) , σ (x)] Φ := {A, ψ, ψ, F} , S := {J µ (x) , σ (x) , σ (x)} (6.7) log {W [J µ (x) , σ (x) , σ (x)]} := iZ [Φ; S ] (6.8) Γ [Φ, S ] := W [Φ; S ] -ˆd4 x J µ (x) A µ (x) + σ (x) ψ (x) + ψ (x) σ (x) (6.9)
6.2 Electron (Dirac-field) Self-Energy

(2π) 4 δ (4) (p 2 -p 1 ) × iS (0) F (p 2 -p 1 ) := ˆd4 x 1 d 4 x 2 e i(p 2 -p 1 )•(x 2 -x 1 ) lim J µ →0 lim σ →0 lim σ →0 δ 2 Z 0 δ σ (x 2 ) δ σ (x 1 ) (6.10) (2π) 4 δ (4) (p 2 -p 1 ) × iS (0) F (p 2 ) incoming fermion-propagator × Σ (1) (p 2 -p 1 ) 1-loop self-energy correction × i γ • p 1 -m + iδ + 1 -1
outgoing fermion-propagator (6.11)

= ˆd4 x 1 e ∑ 4 n=1 i(p n -p n-1 )•(x n -x n-1 ) lim J µ →0 lim σ →0 lim σ →0 δ 6 W [J µ (x) , σ (x) , σ (x)] δ σ (x 6 ) δ σ (x 5 ) δ A ν (x 4 ) δ A ν (x 3 ) δ σ (x 2 ) δ σ (x 1 ) (6.12) = ˆd4 x 1 d 4 x 2 e i(p 2 -p 1 )•(x 2 -x 1 ) lim J µ →0 lim σ →0 lim σ →0 δ 2 W δ σ (x 2 ) δ σ (x 1 ) (6.13)

iS

(1)

F (p) = ˆR(1,3) d 4 k (2π) 4 (-ieγ µ ) 1 st int. vertex × i γ • (p + k) -m + iε + 1 -1 fermion-propagator's one-loop × (-ieγ ν ) 2 nd int. vertex × i k 2 + iε + 2 η µν -(1 -ξ ) k µ k ν k 2 photon-propagator's within fermionic's loop ξ = 1, i k 2 + iε + 2 η µν -(1 -ξ ) k µ k µ k 2 → lim m γ →0 i k 2 -m 2 γ iS (1) F (p) = -e 2 lim m γ ↓ 0 ˆR(1,3) d 4 k (2π) 4 (p + q) α γ µ γ α γ µ + m γ µ γ µ (p + k) 2 -m 2 + iε + k 2 -m 2 γ
At this point, there are two reasons to be careful about spatial dimensions and metric's signature. Nonetheless, first some words about notation.

In this notes, R (1,3) meant either Minkowski spacetime or energy-momentum space. Ambiguity's abscense is due to the fact that which space is at play is clear from context. Moreover, those are related by a fourier transform.

Remark. Nonetheless, at this point, where one is wise in performing anaylitic continuation in k 0 , known as Wick's rotation,

k 0 → τ = k 0 E := -ik 0 , =⇒ dk 0 = idk 0 E , d n k := dk 0 d (n-1) k = id n k E η µν γ µ k ν -m ψ (k) = 0 -γ 0 k 0 + δ i j γ i k j -m ψ (k)
aiming at analytic continuation to imaginary time, one should consider metric's signature from Clifford's algebra C R (1,3) , with usual generators γ µ 's, to C E 4 with generators γ m ()defining relations,

γ µ γ µ = n CHAPTER 6. A MATTER "SELF-REGULARIZATION" 57 γ µ γ α γ µ = (2 -n) γ α n = 4 =⇒ γ µ γ µ = 4, γ µ γ α γ µ = -2γ α Σ (p) := e 2 × lim m γ ↓ 0 ˆR(1,3) d 4 k γ • (p + q) -2m (p + k) 2 -m 2 + iε + k 2 -m 2 γ (6.14) 1 AB = ˆ1 0 dτ 1 (Aτ + B (1 -τ)) 2 iS (1) F (p) = e 2 8π 4 lim m γ ↓ 0 ˆR(1,3) d 4 k Σ (p) = e 2 ˆR(1,3) d 4 k (2π) 4 (γ • (p + q) -2m) ˆ1 0 dτ 1 (p + k) 2 -m 2 + iε + τ + k 2 -m 2 γ (1 -τ) 2 = e 2 ˆR(1,3) d 4 k (2π) 4 (γ • (p + q) -2m) ˆ1 0 dτ 1 (p + k) 2 -m 2 + iε + τ + k 2 -m 2 γ (1 -τ) 2 6.3 "A Tale of Two Cities"
On the course of our studies, many divergences appeared. So far, to a all of them, the student could, without difficult, assign either an interpretation, or if one is allowed small moment of honest1 , an "excuse." Such as, infinities arising from canonical quantization in

Switzerland: Zürich's Ghosts

Let B µ and χ be, respectively, the geistfelder corresponding to Maxwell's A µ and Dirac's ψ fields, and G µν := ∂ [µ B ν] our pseudo-Faraday tensor. Following an analogy to minimal coupling's prescription, as above, will be proven to be a useful choice. One one hand, the original gauge invariant interaction between photon and electron's fields A µ and ψ is preserved. On the other, both the coupling between geistfelder B µ and χ among themselves and their interactions with observable fields A µ and ψ, are realized simultaneously.

Thence, our replacement to our newly defined derivative operator:

∂ µ → D µ := ∂ µ -ie (A + B) µ .
(6.15) (6.16)

∆L Zürich := 1 4 G µν G µν - 1 2 Λ 2 (B • B) -χ (iγ • D -Λ) χ + e ψ (γ • B) ψ.
L Zürich = L QED + ∆L Zürich (6.17) L geist := -χ iγ µ ∂ µ -Λ χ (6.18) iγ µ ∂ µ -Λ χ = - δ L geist δ χ (x) = - ∂ ∂ x µ δ L geist δ ∂ µ χ (x) = 0 (6.19) iγ µ ∂ µ -Λ χ (x) = -iδ (4) (x) = -i ˆd4 k (2π) 4 e ik•x ˆd4 x e ik•x iγ µ ∂ µ + Λ χ (x) = ˆd4 x e ik•x iγ µ ∂ µ -Λ χ (x)
6.4 Netherlands: Utrecht's Gamble

I (n) (a, Q) := ˆdn k (2π) n 1 (k 2 -Q + iε + ) α (6.20) I (n) (a, Q) := i ˆdn k E (2π) n 1 (k 2 -Q + iε + ) α (6.21)
Chapter 7

Classification of Divergences: "Planck's Principle for the Progress of Science."

"People have developed a technique for handling the infinities in certain theories. For these theories the infinities can all be collected into certain parameters representing physical constants, which are then renormalized to their experimental values, and so the infinities get discarded. The resulting equations are welldefined and can be used to calculate results that can be compared with experiment. The agreement is often very good, and many physicists are well-satisfied with this situation." -P. A. M. [START_REF] Dirac | The Principles of Quantum Mechanics[END_REF], in "Does renormalization make sense?" [Dirac(1981a)]

"The shell game that we play [...] is called 'renormalization.' But no matter how clever the word, it is what I would call a dippy process! Having to resort to such hocus-pocus has prevented us from proving that the theory of quantum electrodynamics is mathematically self-consistent. It's surprising that the theory still hasn't been proved self-consistent one way or the other by now; I suspect that renormalization is not mathematically legitimate." -R. P. Feynman (1985), in "QED: The Strange Theory of Light and Matter." [Feynman(1985)] "A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die and a new generation grows up that is familiar with it. " -M. Planck (1950), in Scientific autobiography. [Planck(1950)] 7.1 Planck's Units Definition 7.1. Define a system of units, which will be referred to on what follows as the natural or Planck units, to be such that: (1) The universal speed of propagation, either of massless particles or the wave-front of fields obeying massless equations of motions1 , to be c ≡ 1. (2) Planck's constant, historically2 called the quantum of action, is defined so that h ≡ 1.

CHAPTER 7. CLASSIFICATION OF DIVERGENCES: "PLANCK'S PRINCIPLE FOR THE PROGRESS OF SCIEN Remark 7.1. Denoting by T and , respectively, the units of time and length in Planck's system, it follows from c ≡ 1 that T = . Moreover, letting M be the unit of Planck's mass (and therefore by E = Mc 2 also of energy), after setting the quantum of action to be such that h ≡ 1, one should have -1 = M. Consequently, in these notes, we express all the physical quantities in dimensions of Planck's mass M. Definition 7.2. Let X be any physical quantity, e.g., a classical field on a spacetime manifold, a distributionvalued operator acting on a quantum Hilbert state-space, or a cross-section X = (dσ /dΩ) from a scattering experiment. We denote by X that physical quantity when expressed in terms of the units of the scale of Planck's mass M, while: dim (X) := log M X , (7.1) will be referred to as the dimensionality of X in Planck's system.

Let φ (α)

µ α α ∈ A be a collection of fields satisfying Bose-Einstein statistics, where A is the family of indices classifying our fields. Here, µ α labels the whole set of indices which each one of the fields φ (α) µ α (x) may be attributed to according to it's mathematical nature. Now, let ψ (β ) β ∈ B denote the collection of (matter) fields satisfying Fermi-Dirac statistics, where B is the family of indices organizing these fields.

A prototypical Lagrangian density for a theory containing the collection of fields φ

(α) µ α
and ψ (β ) interacting with one another is given by:

L φ (α) µ α , ψ (β ) ≡ L 0 - n ∑ i=1 g i V i φ (α) µ α , ψ (β ) , (7.2)
where g i denotes the coupling constant of the potential β ) , responsible for the interactions between the fields φ (α) µ α and ψ (β ) .

V i φ (α) µ α , ψ ( 
7.1.1 Example: Self-Interacting Real Scalar Field [Zee(2010), Ex. III.2.1] Let φ (x) be a massive scalar field, living in a d-dimensional spacetime, and {λ i } i≥4 a family of coupling constants, governed by the action:

S = ˆdd x 1 2 (∂ φ ) 2 + 1 2 m 2 φ 2 (x) + ∑ ≥4 λ φ (x) . (7.3)
As the action should have the same units as h, then: (7.4) which implies that:

m 2 φ 2 = M 2 × φ 2 = M d ,
φ = M d-2 2 , or: dim (φ )= d -2 2 . (7.5)
As to the dimensionality of coupling constants, (7.6) and therefore, Consider a simplified model of Fermi theory for the weak interactions in d-dimensional Minkowski spacetime, whose action functional is given by:

λ φ = λ × φ = λ × M n(d-2) 2 = M d ,
dim (λ ) = d + n (2 -d) 2 . ( 7 
S F = ˆdd x L F , L F = ψ iγ µ ∂ µ -m ψ + G (d) F ( ψψ) 2 . (7.8)
Let ν be the positive integer such that either d = 2ν or else ,d-1) . The mass term in Eq.(7.8) requires that:

d = 2ν + 1. Assume ψ (x) is a 2 ν -component spinorfield on R (1
m ψψ = M × ψ 2 = M d , (7.9) thence: dim (ψ) = d -1 2 . (7.10)
Similarly, the units of the coupling constant G

F can be so determined such that: (7.11) and therefore: dim

G (d) F ( ψψ) 2 = G (d) F × M (d-1) 2 4 = G (d) F × M 2(d-1) = M d ,
G (d) F = 2 -d. (7.12) 
Remark 7.2. For the erudite reader, Eq.( 7.12) means that, for a d = 4 dimensional spacetime, Fermi theory is "non-renormalizable," which historically was one of the reasons whereby the electroweak theory was discovered [Pais(1988)]. Interestingly, as a "toy" model, G F is dimensionless when d = 2.

Example: Classical Electrodynamics

The Maxwell's potential A µ (x), a four-dimensional spacetime vectorfield whose "covariant curl," known as the Faraday tensor,

F µν := 2∂ [µ A ν] = ∂ µ A ν -∂ ν A µ , (7.13) 
defines the electromagnetic field-strength. The action for electrodynamics coupled to an external electric current J µ (x) is give by:

S EM = ˆd4 x - 1 4 F µν F µν + J µ (x) A µ (x) , (7.14) 
where J µ (x) is an external electric-current. Here, one denotes by e the elementary unity of charge, which we take as being dimensionless.

Applying Lord Rayleigh's dimensional analysis [Bridgman(1978)] to Eq.(7.14), one finds that: Let the Maxwell's potential be defined, up to a gauge transformation, by a vectorfield A µ (x), while Dirac's matter field be represented by a 2 ν -component spinorfield ψ (x), where either d = 2ν or d = 2ν + 1. The Lagrangian density for "spinor electrodynamics," is:

dim F µν = 2, dim A µ = 1, dim (J µ ) = 3. ( 7 
L (d) QED = - 1 4 F µν F µν + ψ i∇ $ -m ψ, (7.16) 
where D µ := ∂ µ -ieA µ is the covariant derivative and ∇ $ := γ µ D µ inherited by the associated spin-bundle upon which ψ (x) lives as a section.

Perturbation Theory Revisited

Recall from our previous problem sheets (or as explained at length in [Faddeev(2018), Berazin(2012), Ramond(1997), Abers and Lee(1973)]) that a theory whose Lagrangian density is given by the prototype of Eq.( 7.2), the generating functional for the Green's functions are:

Z J (α) µ α (x) , σ (β ) (x) , σ (β ) (x) = ˆD φ (α) µ α (x) , ψ (β ) (x) e i ´d4 x L φ (α) µ α ,ψ (β ) +S sources , (7.17) 
where the sources are integrated after being coupled to their respective fields:

S sources = ∑ α,β ,γ i ˆd4 x J (α)µ α (x) φ (α) µ α (x) + σ (β ) (x) ψ (β ) (x) + ψ(γ) (x) σ (γ) (x) . (7.18) 
Moreover, remember that the Green's functions for the generating functional in the "free" theory, namely, the one obtained by letting g i = 0 for all i = 1, ..., j = N, is:

Z 0 J (α) µ α (x) , σ (β ) (x) , σ (β ) (x) = ˆD φ (α) µ α (x) , ψ (β ) (x) e i ´d4 x L 0 φ (α) µ α ,ψ (β ) +S sources . (7.19)
In the canonical formalism, following [Weinberg(1995), Ch.2-5], Ω 0 denotes the vacuum state of the "free" theory, while T { } is the time-ordering operator. The Feynman propagators for φ -boson and ψ-fermion are defined, respectively, using the framework of the canonical formalism, by:

iD (α) µ α1 µ a 2 (x 2 -x 1 ) := Ω 0 , T {φ (α) µ α 2 (x 2 ) φ (α) µ α 1 † (x 1 )}Ω 0 , (7.20) 
and:

iS (β ) (x 2 -x 1 ) := Ω 0 , T {ψ (β 2 ) (x 2 ) ψ β 1 † (x 1 )}Ω 0 . (7.21)
Equivalently, since Eqs.(7.20, 7.21), being evaluated as vacuum expectation values of the "free" vacuum Ω 0 , are equivalent to the fundamental solutions:

δ L 0 δ φ (α) µ α (x) -∂ µ   δ L 0 δ ∂ µ φ (α) µ α (x)   = -iδ µ α δ (4) (x) , (7.22) 
and: (7.22, 7.23), besides the obvious Kronecker's delta δ µ α in the first, which depends on the tensorial nature of the bosonic field, resides in the imaginary unit i multiplying the Dirac's δ (4) (x) distribution. The reason for this is simply that the fields obeying the Bose-Einstein statistics3 , or at very least, their potentials (or gauge connection) satisfy 2 nd order differential equations.

δ L 0 δ ψ β (x) -∂ µ δ L 0 δ ∂ µ ψ β (x) = -δ (4) (x) . ( 7 
Nevertheless, as Dirac noticed in his revolutionary paper [START_REF] Dirac | [END_REF]], 2 nd order operators can be linearized upon the introduction of complexifed Clifford algebras 4 , say C R (1,3) C . Therefore, the imaginary unit is already included in the algebraic structure of the field equations, explaining it's absence in Eq.(7.23).

Following [Faddeev(2018)] and [Berazin(2012)], Eqs.(7.17, 7.19) implies the fundamental equation in perturbative field theory:

Z J (α) µ α (x) , σ (β ) (x) , σ (β ) (x) (7.24) = exp i ˆd4 x L I 1 i δ δ J (α) µ α (x ) , , 1 i δ δ σ (β ) (x ) , 1 i δ δ σ (β ) (x ) Z 0 J (α) µ α (x) , σ (β ) (x) , σ (β ) (x) . (7.25) Moreover, Z 0 J (α) µ α (x) , σ (β ) (x) , σ (β ) (x)
can be explicitly calculated using Eqs. (7.19, 7.23, 7.22), yielding:

Z 0 J (α) µ α (x) , σ (β ) (x) , σ (β ) (x) (7.26) = ∑ α,β ˆd4 x 1 d 4 x 2 - i 2 J µ a 2 (x 2 ) D (α) µ α2 µ a 2 J µ α 1 (x 1 ) + i σ (β ) a (x 2 ) S ab (x 2 -x 1 ) σ (β ) b (x 1 ) . (7.27) 
Lastly, with the "free" Green's functions Eqs.(7.22, 7.23), and recognizing that:

W J (α) µ α (x) , σ (β ) (x) , σ (β ) (x) = -i log Z J (α) µ α (x) , σ (β ) (x) , σ (β ) (x) , (7.28) 
is the generating functional for connected Green's functions (see [Abers and Lee(1973)] for an inductive proof), through Eqs.(7.24, 7.27, 7.28), we completed the framework of perturbative quantum field theory.

Upon the replacement of Eq.( 7.24) into Eq.(7.28), one might hope to obtain connected Green's functions from which physically observable quantities, such as the S-matrix.

Unfortunately, those functions contains divergent integrals over the energy-momentum space.

In order to understand the nature of these divergences, and therefore to introduce renormalization theory, one should first start by classifying the divergences associated to each amplitude in the perturbative series produced by Eq.(7.24).

Degrees of Divergences

In this subsection, we shall introduce the notions of superficial degree of divergences, and criterions to qualify a theory as being renormalizable, super-renormalizable and non-renormalizable.

Let Γ be an amplitude contributing to the perturbative expansion generated by Eq.( 7.24, 7.28). Since W generates connected Green's functions, Γ is a factor between off-shell propagators and a proper connected vertex, also known as one particle irreducible diagram, which we denote by 1PI.

The off-shell propagators attached to Γ are called external lines, while the propagators connecting interactions, called from now on vertices, within a 1PI diagram are called internal lines.

• E B := # external lines corresponding to propagators of fields satisfying Bose-Einstein statistics, e.g., a photon.

• E F := # external lines corresponding to propagators of fields obeying Dirac-Fermi statistics, e.g., an electron.

• β ) within the proper connected vertex of Γ.

N i := # interactions of type V i φ (α) µ α , ψ ( 
• I B := # internal lines corresponding to propagators of fields satisfying Bose-Einstein statistics, e.g., a virtual photon.

• I F := # internal lines corresponding to propagators of fields obeying Dirac-Fermi statistics, e.g., a virtual electron.

Fixing our attention to an interaction of i th type, inserted within the connected vertex of Γ, we also have: β ) , each one adding a factor of momentum into the numerator.

• d i := # derivatives in V i φ (α) µ α , ψ ( 
• N i(F) := # Fermi-Dirac fields in the i th interaction vertex.

• N i(B) := # Bose-Einstein fields in the i th interaction vertex.

Before we can define the notion of superficial degree of divergence, take notice of the following phenomena. Fields obeying Fermi-Dirac statistics, say Ψ (x), are realized as sections of the spin-bundle associated to the principal bundle where our theory lives.

In the absence of interactions, Ψ (x) is governed by a "free" Lagrangian density which is of 1 st order in the covariant derivative,

L Fermi-Dirac = Ψ (x) i∂ $ -m Ψ (x) , (7.29) 
where ∂ $ := γ µ ∂ µ is the derivative inherited by the spin-bundle associated to our trivial connection. Now, by Fourier transforming the fundamental solution to Euler-Lagrange Eq.(7.23), one obtains the following propagator for Ψ (x) in d-dimensional spacetime representation5 :

ŜFermi-Dirac (x) = ˆdd p (2π) d e ip•x γ • p + m p 2 -m 2 + iε + . (7.30)
CHAPTER 7. CLASSIFICATION OF DIVERGENCES: "PLANCK'S PRINCIPLE FOR THE PROGRESS OF SCIEN Therefore, the asymptotics of propagators for Fermi-Dirac fields are, in energy-momentum representation:

S Fermi-Dirac (k) ∼ O k µ k µ n-1 . (7.31)
On the other hand, consider Boson-Einstein fields. These are either sections on a line-bundle, e.g. a scalar field φ (x), or a connection in the associated vector bundle, say, an Abelian gauge-field A µ (x). Typically, Lagrangian densities for these fields are, respectively: (7.32) and (with covariant gauge-fixing term only for the sake of convenience)6 ,

L Scalar = 1 2 (∂ φ ) 2 + m 2 2 φ 2 ,
L Abelian-field = - 1 2 ∂ [µ A ν] - 1 2ξ ∂ µ A µ 2 . (7.33)
As above, we Fourier transform the Euler-Lagrange Eq.( 7.22) to obtain the spacetime representation of the propagators of the scalar φ (x) and gauge A µ (x) fields These are, respectively,7 (7.34) and:

i ∆Scalar (x) = ˆdd p (2π) d e ip•x i p 2 -m 2 + iε + ,
i ∆Abelian-field (x) = ˆdd p (2π) d e ip•x i p 2 -iε + η µν -(1 -ξ ) p µ p ν p 2 . ( 7.35) 
Consequently, Eqs.(7.34, 7.35) indicates the following asymptotic decay for fields obeying Bose-Einstein statistics:

∆ Bose-Einstein (k) ∼ O k µ k µ d-2 . (7.36)
Let Γ be an amplitude corresponding to a connected Green's function. The superficial degree of divergence D (Γ) of the latter is obtained by summing the units of powers of energy-momentum in the numerator, and then subtracting the units of powers of energy-momentum in the denumerator, of each propagator within the 1PI of Γ.

Under the hypothesis that the asymptotics of the propagators, as given by Eqs. (7.31, 7.36), can be reliably employed as the units of powers of energy-momentum of each propagator in the ultraviolet, then:

• Each internal propagator of a field satisfying Bose-Einstein statistics weights (d -2) I B units of mass in D (Γ) . (Cf. Eq.(7.36).)

• Each internal propagator of a field satisfying Fermi-Dirac statistics weights (d -1) I F units of mass in D (Γ) . (Cf. Eq.(7.31).)

• If the interaction V i φ (α)
µ α , ψ (β ) contains d i derivatives, then the i th vertex weights d i N i units of mass in D (Γ).
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• Each vertex contains a energy-momentum measure d d k, each of which weights -d units of mass. With a total of ∑ n i=1 N i interactions within the 1PI, one should subtract -d ∑ n i=1 N i units.

• A final Dirac's δ (4) distribution, due to total energy-momentum conservation, weights d units.

Therefore, the superficial degree of divergence is given by:

D (Γ) := (d -2) I B + (d -1) I F + n ∑ i=1 d i N i -d n ∑ i=1 N i + d. (7.37)
Nevertheless, a more useful expression to D (Γ) can be found by a simple topological consideration.

Since each interaction vertex connects two internal propagators, the totality of external propagators corresponding to fields obeying Bose-Einstein and Fermi-Dirac statistics are, respectively,

E B = n ∑ i=1 N i(E) N i -2I B , (7.38) 
and:

E F = n ∑ i=1 N i(F) N i -2I F . (7.39)
Solving Eqs.(7.38, 7.39) for the internal propagators I B and I F and replacing into Eq.( 7.37), one finds:

D (Γ) = d - 1 2 (d -2) E B - 1 2 (d -1) E F + n ∑ i=1 δ i N i , (7.40) 
where we have defined:

δ i := 1 2 (d -2) N i(B) + 1 2 (d -1) N i(F) + d i -d, (7.41) 
known as the index of the i th interaction vertex.

Relativistic quantum field theories can be classified according to the possible ultraviolet divergences of their connected Green's functions. Moreover, the latter are arranged according to the family {δ i } n i=1 of indices of their interaction vertices:

• If δ i < 0 for some i th interaction vertex, then by Eq.(7.40), even fixing the values of the number of external Bose-Einstein and Fermi-Dirac propagators, respectively, E B and E F , there will always exists an amplitude Γ, with a sufficiently large N i , such that D (Γ) < 0, yielding a divergent amplitude. Therefore, we call theories with δ i < 0 for some i = 1, ..., N non-renormalizable.

• If δ i > 0 for all interaction vertices, Eq.( 7.40) implies that, by increasing the number of interactions in the amplitudes of connected Green's functions linearly increases the superficial degree of divergences in such a way that, for fixed external boson and fermions propagators, E B and E F , respectively, there exists only a finite number of diverging amplitudes, all of which can be removed by renormalizing "bare" physical constants. Theories with this property are called super-renormalizable.

• Let a theory be such that δ i ≥ 0 for all vertices with the exception of some interactions δ j = 0, for instance. Eq.(7.40) shows that: (1) For those vertices, e.g., the j th interaction, with positive index, δ j > 0, the superficial degree of divergence will increase as one considers amplitudes with more and more insertions of V j , and therefore, there are just a finite number of diverging amplitudes; 

L Y = 1 2 (∂ ϕ) 2 - µ 2 2 ϕ 2 + ψ iγ µ ∂ µ -m ψ -λ ϕ 4 + G Y ϕ ψψ. (7.42)
There are two interaction vertices, such that: (7.43)

g 1 = λ , V 1 = ϕ 4 , N 1(F) = 0, N 1(B) = 4, d 1 = 0,
g 2 = G Y , V 2 = ϕ ψψ, N 2(F) = 2, N 2(B) = 1, d 2 = 0. (7.44)
Hence, by Eq.( 7.41), the interaction indices are: (7.45)

δ 1 = N 1(B) + 3 2 N 1(F) -4 = 0,
δ 2 = N 2(B) + 3 2 N 2(F) -4 = 0. (7.46)
Therefore, for the Yukawa theory, whose interaction term is dictated by the Lagrangian of Eq.( 7.42), the superficial degree of divergence of a connected amplitude Γ is, accordingly to Eq.(7.40), with Lagrangian density given by:

D (Γ) = 4 -E B - 3 2 E F . ( 7 
L F = ψ iγ µ ∂ µ -m ψ + G (d) F ( ψψ) 2 . (7.49)
There is only one interaction term in Eq.( 7.49) such that, in the notation of Eq.(7.2),

g 1 = G (d) F , V 1 = -( ψψ) 2 , (7.50)
which is characterized by:

N 1(B) = 0, N 1(F) = 4, d 1 = 0. (7.51)
Then, the vertex's index determined by Eq.(7.50) in d-dimensional Minkowski spacetime is:

δ (d) := δ 1 = d -2. (7.52)
Consequently, Fermi theory for weak interactions, taken as a realistic model in d = 4, is non-renormalizable since δ (4) = 2. Nonetheless, considered as a "toy" model in a d = 2 spacetime, the theory becomes renormalizable, as was expected from Eq.(7.12). (7.53) where

L QED = - 1 4 F µν F µν + ψ i∇ $ -m ψ,
F µν = 2∂ [µ A ν]
is the Faraday field-strength tensor, A µ (x) the electromagnetic four-vector potential (up to a gauge transformation), and ψ (x) the 4-component spinor of Dirac's matter field. Moreover, ∇ $ := γ µ D µ is the spin connection, acting in the associated spin-bundle on which ψ (x) lives as a section, inherited from the covariant derivative D µ = ∂ µ -ieA µ for which A µ (x) is the connection on the principal-bundle. Remark 7.4. Employing the geometric language to formulate a field theory is both elegant8 as, at the same time, ensures that "minimal coupling" principle, derived from the true number of physical degrees of freedom of the Bose-Einstein's field involved in the theory, is satisfied at the beginning. However, in order to analyze the theory from a field theoretical viewpoint, e.g., the possibility of divergences in the connected Green's functions, indices of the interaction vertices, or even the mathematical consistency of the quantum theory (e.g., unitarity), one should eventually descend from geometry to particles and fields.

Expanding the covariant derivative of the Lagrangian density in Eq.( 7.54), one obtains:

L QED = - 1 4 F µν F µν + ψ iγ µ ∂ µ -m ψ + eA µ ψγ µ ψ. (7.54)
It follows that there exists only one interaction vertex:

g 1 = e, V 1 = A µ ψγ µ ψ, (7.55) 
such that:

N 1(B) = 1, N 1(F) = 2, d 1 = 0. (7.56)
Thence, the index of QED's vertex is: (7.57) and consequently, the theory is renormalizable and the superficial degree of divergence of a connected Green's function Γ is given by:

δ := δ 1 = N 1(B) + 3 2 N 1(F) -4 = 0,
D (Γ) = 4 -E B - 3 2 E F . (7.58)

Example: Gravitation

Let M, g µν be a d = 4 dimensional spacetime without any matter fields, and therefore governed entirely by gravitation, believed to be described by General Relativity (GR). Let g -1 µν := g µν be the inverse metric tensor and R µν is the Ricci tensor derived from Levi-Civita connection uniquely determined9 by g µν . Here, the student is following the conventions collected at [Straumann(2013), App.D], with some adaptation from [Wald(2010)].

On the other hand, it was shown by [START_REF] Fierz | [END_REF]] that the only consistent action for a free, massless particle with spin s = 2 (which in Wigner's classification of the representations of Lorenz group [Weinberg(1995), Ch.2] is embedded in a symmetric, two-covariant tensor field h µν ) is given by:

S PF = 1 2 ˆd4 x -∂ ρ h µν ∂ ρ h µν + 2 ∂ ρ h µν ∂ ν h µρ -2 (∂ ν h µν ) ∂ ν h + ∂ µ h ∂ µ h (7.63)
Applying dimensional analysis, the units of mass dimensions of the graviton h µν is: (7.64) and so: dim h µν = 1. (7.65)

∂ ρ h µν ∂ λ h σ δ = ∂ 2 × h 2 = M 2 × h 2 = M 4 ,
Therefore, in order to expand the action of Eq.(7.62) in terms of h µν , one needs to introduce a new parameter, say, κ := 32πG N , (7.66) such that dim (k) = -1.

Then, under the assumption of low-curvatures within the world-volume Ω, we should study the following background expansion:

g µν = η µν + κh µν .

(7.67)

The structure of Eq.( 7.62) when expanded in orders of κ, which should be an analytic function given the nature of the inverse metric and square-root of metric's determinant, is: (7.68) where by (h∂ h∂ h • • • ∂ h) is understood the finite polynomial in h µν , obtained by all possible contractions from the tensorial indices of ∂ µ and h µν . The exact expressions for each of these polynomials can be found in [START_REF] Veltman | [END_REF]] and [Scharf(2014)]. Thence, by Eqs. (7.40, 7.41), for an amplitude Γ corresponding to a graviton's connected Green's function,

S G ∼ ˆd4 x (∂ h) 2 + κ (h∂ h∂ h) + κ 2 (h∂ h∂ h∂ h) + O κ 3 ,
D (Γ) = 4 -E B . (7.69)
Since there are infinitely many interactions, there are amplitudes with arbitrarily negative superficial degrees of divergences, and for each new order in κ, one obtains new types divergences, by attaching new external propagators. In other words, the geometric version of our theory of gravity, GR and Einstein-Hilbert action of Eq.(7.59), or the field-theoretical viewpoint developed in Eq.(7.63), shown by [Deser(1970)] to recursively imply in the GR action, is not only non-renormalizable, but produces a highly divergent perturbation series.

Self-Energy

"The perpetuum mobile missed by crackpots." -Folklore CHAPTER 7. CLASSIFICATION OF DIVERGENCES: "PLANCK'S PRINCIPLE FOR THE PROGRESS OF SCIEN In this section, we give an introductory exposition of some concepts involved in "mass renormalization," a phenomena due to the self-energy of a field satisfying Fermi-Dirac statistics when interacting with other fields, generally those satisfying Boson-Einstein statistics.

On what follows, in order to simplify our notations, let the effective action be denoted by: S = S 0 + S I + S Sources .

(7.70)

Here, S 0 is the action for the "free" fields of the theory of interest: (7.71) while S I is the interaction term, whose general form is:

S 0 := ˆd4 x L 0 ,
S I := ˆd4 x L I . (7.72)
The term S Sources is the integral over the sources coupled to the fields, as required by the definition of the generating functionals, and will be introduced according to the particularities of the theory below.

Kindergarten

Let's consider a model consisting of a scalar field φ (x) with mass µ and a Dirac's 4-component matter spinorfield ψ (x).

The free Lagrangian density for both fields is: (7.73) while the interactions are determined by:

L 0 = 1 2 ∂ µ φ 2 + 1 2 µ 2 φ 2 + ψ iγ µ ∂ µ -m ψ,
L I = λ 4! φ 4 -g φ ψψ.
(7.74)

Let J (x) be an external "classical-valued" source, and let σ (x) and σ (x) be "Grassmann-valued" currents.

Then the source term in the effective action reads:

S Sources = ˆd4 x [J (x) φ (x) + σ (x) ψ (x) + ψ (x) σ (x)] .
(7.75)

Generating Functionals

The generating functional for the Green's functions of the theory defined by Eqs. (7.73, 7.74) is defined to be 10 : (7.76) while the generating functional for the "free" Green's functions is: 10 Here and on what follows, the normalization constant of a pathintegral is taken to be absorbed into integration measure.

Z [J (x) , σ (x) , σ (x)] = ˆD [φ (x) , ψ (x) , ψ (x)] exp (iS) ,
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Z 0 [J (x) , σ (x) , σ (x)] = ˆD A µ (x) , ψ (x) , ψ (x) exp i (S 0 + S Sources ) . (7.77)
According to the prescriptions outlined at the references [Ryder(1996), Chs.6,7.] and [Bailin and Love(1993), Chs4,8.], and in our former problem sheets "Problem Sheet IV: Feynman's Motives, Schwinger's Sources," the functional generator of "free" propagators is given by:

Z 0 [J (x) , σ (x) , σ (x)] (7.78) = ˆd4 x 1 d 4 x 2 - i 2 J (x 2 ) D (x 2 -x 1 ) J (x 1 ) + i σ α (x 2 ) S αβ (x 2 -x 1 ) σ β (x 1 ) . (7.79)
In §7.2, the propagators for fields satisfying Bose-Einstein and Fermi-Dirac statistics, respectively, D(x) and S (x), have already been defined, both from the formalism of canonical quantization in Eqs. (7.20, 7.21), and also as the fundamental solutions to the Euler-Lagrange Eqs. (7.22, 7.23).

We found the explicit spacetime representation of the scalar field propagator J (x) and Dirac 4-spinor propagator S αβ (x) in Eqs.(7.34) and (7.30), respectively.

Perturbation Theory

The key formula of perturbative quantum field theory, applied our "toy" theory (described by the Lagrangian density defined at Eqs.(7.73, 7.74)) reads:

Z [J (x) , σ (x) , σ (x)] = exp i ˆd4 x L I 1 i δ δ J (x) , 1 i δ δ σ (x) , 1 i δ δ σ (x)
Z 0 [J (x) , σ (x) , σ (x)] . (7.80)

Remark 7.5. In "Problem Sheet IV," we gave motivation of Eq.(7.80) with a particular emphasis to theories involving Boson-Einstein fields and "classical-valued" external sources. The subject is also explained at numerous references on quantum gauge theories, nevertheless a particularly clear and short exposition can be found at [Ramond(1997), Ch.8] and [Ryder(1996), §6.8], where Fermi-Dirac fields and "Grassmann-valued" currents are employed. For a more precise argument, see [Berazin(2012)].

Recalling the generating functional for connected Green's functions: (7.81) the propagator for the Fermi-Dirac field S (p) in energy-momentum representation reads:

W [J (x) , σ (x) , σ (x)] = -i log {Z [J (x) , σ (x) , σ (x)]} ,
(2π) 4 δ (4) (p 2 -p 1 ) 2 ∏ n=1 1 γ • p n -m × S (p 2 -p 1 ) (7.82) := ˆd4 x 1 d 4 x 2 e i(p 1 •x 1 -p 2 •x 2 ) δ 2 W δ σ (y) σ (y) J = σ = σ =0 . (7.83)
Applying the perturbative expansion defined by Eq.(7.80) to Eq.( 7.82) at ∼ O g 2 yields:
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S F (p) = S (0) F (p) + ∞ ∑ n=1 S (0) F (p) × n ∏ m=1 iΣ (2) (p) S (0) 
F (p) + O g 4 S F (p) = i γ • p -m + 1 γ • p -m iΣ (2) (p) i γ • p -m (7.84) + i γ • p -m iΣ (2) (p) i γ • p -m × i γ • p -m iΣ (2) (p) i γ • p -m (7.85) + ∞ ∑ n>2 i γ • p -m × n ∏ m=1 iΣ (2) (p) i γ • p -m + O g 4 (7.86) = S
(2) (7.87) where: S

F (p) + O g 4 ,
(2) .88) and: .89) 7.9 Self-Energy Insertion Σ (2) (p)

F (p) = 1 γ • p -m + Σ (2) (p) , ( 7 
iΣ (2) (p) = -g 2 ˆd4 k (2π) 4 γ • (p + k) + m (k + p) 2 -m 2 (k 2 -µ 2 ) . ( 7 
Now, our objective is to compute Σ (2) (p), the self-energy insertion at ∼ O g 2 . From linear algebra and Lorentz invariance, Σ (2) (p) should be a linear combination of γ • p and I with coefficients functions of the squared energy-momentum p 2 ,

Σ (2) (p) = A p 2 γ • p + B p 2 .
(7.90)

To compute Σ (2) (p) from Eq.( 7.89), one should apply the standard ritual:

• Feynman's parameters, in such a way that the denumerator is a function depending only in the square of the energy-momentum variable upon which one is integrating. In the case of Eq.(7.89), a function only of k 2 . Hence, the integration can be separated into a solid-angle and an ordinary integral depending only in the magnitude of k, namely, |k 2 |.

• Use Wick's rotation to analytically continue k 0 into C, obtaining an integral over an Euclidean space.

• Introduce a cutoff Λ in the integral over the magnitude of energy-momentum, and finally, perform the integration.

• Apply the inverse of Wick's rotation to return the variables to Lorentz signature.
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Σ (2) (p) ∼ Λ→∞ g 2 16π 2 ˆ1 0 dτ ((1 -τ) γ • p + m) 1 + log Λ 2 Q 2 (m, µ; p 2 , τ) + O 1 Λ 2 , (7.91)
where we have defined a new function depending on the masses and the incoming (or outgoing) energymomentum, given by: Q

2 (m, µ; p, τ) := τ (τ -1) p 2 + m 2 -µ 2 τ + µ 2 . (7.92)
Hence, the coefficients are given by:

A p 2 ∼ Λ→∞ g 2 16π 2 ˆ1 0 dτ (1 -τ) 1 + log Λ 2 Q 2 (m, µ; p 2 , τ) , (7.93) B p 2 ∼ Λ→∞ m × g 2 16π 2 ˆ1 0 dτ (1 -τ) 1 + log Λ 2 Q 2 (m, µ; p 2 , τ) . (7.94) Finally, we can prove that B p 2 → 0 as m → 0 lim m→0 B p 2 ≤ Λ→∞ lim m→0 m × ˆ1 0 dτ (1 -τ) log Q 2 m, µ; p 2 , τ (7.95) = lim m→0 m × ˆ1 0 dτ (1 -τ) log τ (τ -1) p 2 + m 2 -µ 2 τ + µ 2 , ( 7.96) 
and noticing the upper-bound, Recall that the action for spinor electrodynamics, namely, the theory of Maxwell's potential A µ (x) minimally coupled to Dirac's matter fields ψ (x), with the latter being a 4-spinor representation of SL (2, C) acted upon by the covariant derivative D µ = ∂ µ -ieA µ , is given by:

lim m→0 ˆ1 0 dτ (1 -τ) log τ (τ -1) p 2 + m 2 -µ 2 τ + µ 2 (7.97) = ˆ1 0 dτ (1 -τ) log τ (τ -1) p 2 + (1 -τ) µ 2 < ∞ ( 
S QED A µ (x) , ψ (x) , ψ (x) := ˆd4 x - 1 4 F µν F µν + ψ (x) i∇ $ -m ψ (x) . (7.100)
Here, e is the elementary unit of charge, and ∇ $ := γ µ D µ is the connection inherited by the associated spin-bundle, where ψ (x) belongs to the space of sections. CHAPTER 7. CLASSIFICATION OF DIVERGENCES: "PLANCK'S PRINCIPLE FOR THE PROGRESS OF SCIEN Replacing the definition of covariant derivative D µ into the QED action, one sees that Eq.(7.100) can be written as a contribution of the "free" action:

S 0 A µ (x) , ψ (x) , ψ (x) = ˆd4 x - 1 4 F µν F µν + ψ (x) iγ µ ∂ µ -m ψ (x) , (7.101)
together with the interaction:

S I A µ (x) , ψ (x) , ψ (x) = e ˆd4 x A µ (x) ψ (x) γ µ ψ (x) . (7.102)
Now, let J µ (x) be a "classical-valued" external source, and denote by by σ (x) and σ (x) "Grassmannvalued" currents.

Recall that the coupling between the external sources S Sources to Maxwell's gauge potential A µ (x) and Dirac's matter field ψ (x) is defined by:

S Sources = ˆd4 x J µ (x) A µ (x) + σ (x) ψ (x) + ψ (x) σ (x) .
(7.103)

We finally complete our brief review of elementary QED.

Remembering the definitions of perturbative quantum field theory discussed in §7.2 and §7.8, the generating functional for all Green's functions of QED is defined by:

Z [J µ (x) , σ (x) , σ (x)] = ˆD A µ (x) , ψ (x) , ψ (x) e i(S 0 +S I +S Sources ) . (7.104)
The generating functional for the "free" Green's function is given by:

Z 0 [J µ (x) , σ (x) , σ (x)] (7.105) = ˆD A µ (x) , ψ (x) , ψ (x) e i(S 0 +S Sources ) (7.106) = ˆd4 x 1 d 4 x 2 - i 2 J µ (x 2 ) D µν J ν (x 1 ) + i σ (β ) a (x 2 ) S ab (x 2 -x 1 ) σ (β ) b (x 1 ) , (7.107) 
where the Feynman's and Dirac's propagators (in spacetime representation) have already been computed, respectively, in Eqs.(7.35) and (7.30). Lastly, the key formula for perturbation theory (cf. Eqs.(7.24, 7.27)) yields: 

Z [J µ (x) , σ (x) , σ (x)] (7.108) = exp -e ˆd4 x δ δ J µ (x) δ δ σ (x) γ µ δ δ σ (x) Z 0 [J (x) , σ (x) , σ (x)] (7.109) = exp -e ˆd4 x δ δ J µ (x) δ δ σ (x) γ µ δ δ σ (x) (7.110) × ˆd4 x 1 d 4 x 2 - i 2 J µ (x 2 ) D µν (x 2 -x 1 ) J ν (x 1 ) + i σ (β ) a (x 2 ) S ab (x 2 -x 1 ) σ (β ) b ( x 

Dressed Amplitudes

The complete11 Dirac's propagator G (p) of QED is defined by: .113) while the complete vertex function Γ µ (p 1 , p 2 ; k) of QED is:

(2π) 4 δ (4) (p 2 -p 1 ) 2 ∏ n=1 1 γ • p n -m × G (p 2 -p 1 ) (7.112) := ˆd4 x 1 d 4 x 2 e -i(p 1 •x 1 -p 2 •x 2 ) δ 2 W [J µ (x) , σ (x) , σ (x)] δ σ (x 2 ) σ (x 1 ) J µ = σ = σ =0 , ( 7 
(2π) 4 δ (4) (p 2 + k -p 1 ) 2 ∏ n=1 1 γ • p n -m -i k 2 + iε + η µν -(1 -ξ ) k µ k ν k 2 × Γ µ (p 1 , p 2 ; k) (7.114) := ˆd4 x 1 d 4 x 2 d 4 y e i(p 2 •x 2 +k•y-p 1 •x 1 ) δ 3 W [J µ (x) , σ (x) , σ (x)] δ J µ (y) δ σ (x 2 ) σ (x 1 ) J µ = σ = σ =0 . (7.115)
For onshell photon-electron vertices, we simply write Γ µ (p 1 , p 2 ) := Γ µ (p 1 , p 2 ; p 2p 1 ).

Using the perturbative expansion at Eq.( 7.108) into the definition given by Eq.( 7.112) of the complete Dirac's propagator G (p), one obtains a geometric series of the form: (7.117) where we readily recognize iS F (p) = i (γ • pm) -1 as the "free" fermion propagator, and Σ (p) is the summation of all the proper connected amplitudes (1PI) contributing to the Green's function G (p) for the complete, interacting, quantum electrodynamics. From now one, Σ (p) will be referred to as the self-energy insertion. In "Problem Sheet IX: A Problem in Self-Regularization," where we discussed the method of dimensional regularization, the radiative correction12 to Dirac's propagator was calculated as an illustration of that scheme.

iG (p) = i (γ • p -m) -1 + i (γ • p -m) -1 × ∞ ∑ n=1 n ∏ m=1 [iΣ (p)] × i (γ • p -m) -1 (7.116) = i (γ • p -m -Σ (p)) -1 ,
Recall that we obtained13 :

Σ (2) (p) = e 2 8π 2 ˆ1 0 dτ [(1 -τ) (γ • p) -2m] 2 ε -log τm 2 -τ (1 -τ) p 2 4π µ 2 -(γ Euler + 1) . (7.118)
As expected from linear algebra and Lorentz invariance, Σ (2) (p) is as a linear combination of γ • p and I whose coefficients are functions of squared energy-momentum p 2 , Σ (2) (p) = a p 2 γ • p + b p 2 I.

(7.119) Therefore, reading directly from Eq.(7.118),

a p 2 = e 2 8π 2 ˆ1 0 dτ (1 -τ) 2 ε -log τm 2 -τ (1 -τ) p 2 4π µ 2 -(γ Euler + 1) , (7.120) b p 2 = m × e 2 4π 2 ˆ1 0 dτ 2 ε -log τm 2 -τ (1 -τ) p 2 4π µ 2 -(γ Euler + 1) . (7.121)
Now, take note that: 7.12 Non-perturbative Analysis 7.12.1 Types of Divergences

lim m→0 ˆ1 0 dτ log τm 2 -τ (1 -τ) p 2 4π µ 2 = lim m→0 ˆ1 0 dτ log τ (1 -τ) p 2 4π µ 2 < ∞, ( 7 
On the following, it will prove itself useful to introduce the notion of "different types of infinities." Let Λ i > 0 denote a cutoff, which in each expression that follows, is tacitly assumed to be taken as a limit to infinity, Λ i -→ ∞.

Then we may classify different types "infinity" by asymptotics:

A i ∼ O ( f (Λ i )) , (7.123) 
and we say that the coefficient A i , of some polynomial to be defined below, "diverges as f ."

As an example, if

A i ∼ O (log Λ i ) , (7.124) 
then A i diverges logarithmically.

Generalized Ward-Takahashi Identity

In our former "Problem Sheet VIII," we deduced a generalization of Ward-Takahashi identities using gauge invariance symmetry within the generating functional for the Green's functions: lim

J µ , σ , σ →0 1 ξ x ∂ ∂ x µ δ 3 Z δ σ (z) δ σ (y) δ J µ (x) (7.125) = lim σ , σ →0 iq δ (D) (x -z) δ 2 Z δ σ (y) δ σ (x) + δ 2 δ σ (z) δ σ (x) δ (D) (x -z) . (7.126)
In many cases, we shall be interested in linear transformations involving a given vielbein. In such cases, it will prove useful to introduce the row-matrix θ := θ µ 0≤µ≤3 and the column-matrix θ T defined by the transpose of the former.

Lie Group and Associated Algebras

Letting G denote a compact and semi-simple Lie group, we denote by script letters g the associated (complexified) Lie algebra and T a ∈ g (for all 1 ≤ a ≤ dim G) a basis for g consisting in Hermite generators with normalization:

Tr T a T b = 1 2 δ ab , (8.1) and structure constants:

T a , T b = c abc T c . (8.2)
For a concise nonetheless precise exposition of the structures of group theory appurtenant to particle physics, see [O'Raifeartaigh(1986)].

In these notes, we adopt Einstein strong summation convention for the Lie algebra indices.

Minimal Coupling

On what follows, denote by ρ : G -→ V the fundamental representation of the Lie group G.

Let A := A (a) µ θ µ ⊗ T a ∈ Ω 1 (M 4 , g) be a
Lie-algebra valued one-form, and ∇ µ ∈ End Γ (M 4 ) the derivation acting on the module Γ (M 4 ), whose action is given by:

∇ µ Φ := ∂ µ Φ + igA a µ T a Φ, ∀ Φ ∈ Γ (M 4 ,V ) . (8.3)
We shall refer to A as a gauge potential and ∇ µ the covariant derivative associated to the latter. The physical meaning of those objects should become more familiar after studying the examples that follows in §(8.3.1, 8.3.2).

Let U ∈ C ∞ (M 4 , G) be a smooth mapping from Minkowski space into an element of the Lie group G.

Then U := ρ • U ∈ C ∞ (M 4 ,V
) is a smooth mapping from Minkowski space into the linear space whose fundamental representation ρ acts upon.

A change of local trivialization, also known as the gauge transformation induced by U is performed under the simultaneous application of the mappings: θ → θ = θ T U, and:

σ → σ := Uσ , (8.4)
where σ ∈ Γ (M 4 ,V ) is a cross-section over the trivial vector-bundle 1 B := (M 4 ×V, M 4 , π, G).

1 As usual, π : (x, v) ∈ M 4 ×V → v ∈ V is the projector into the first factor.

Example: N-Tuple of Fermi-Dirac Fields

Let Ψ be an N-Tuple of Fermi-Dirac fields all members of which possess the same mass m > 0.

Each each component of Ψ, say, x ∈ M 4 → Ψ (x) where 1 ≤ ≤ N, is a cross-section2 belonging to the spinor representation of3 SL (2; C) ⊕ SL (2; C), which we denote by ρ.

From the spin-statistics theorem [Fierz(1939), Pauli(1940)], fields arising from spinor representations satisfies Fermi-Dirac statistics, and thence our name attributed to Ψ.

Let the Lagrange's functional density, which underlies the dynamics of those Fermi-Dirac fields Ψ, be given by: (8.5) so that the action functional becomes:

L FD (Ψ, ∇Ψ) = Ψ (iγ • ∇ -m) Ψ,
S FD [Ψ] = ˆΩ d 4 x L FD (Ψ, ∇Ψ) (where Ω ⊂ M 4 ). (8.6)
where the world-volume Ω ⊂ M 4 is sufficiently "large," and the asymptotics of Ψ are such that the contributions coming from boundary terms4 can be safely neglected.

Following the minimal coupling principle, the action functional is required to be invariant under a local change vielbein, namely, a gauge transformation, as defined by Eq.(8.4).

A sufficient condition to satisfy the principle of minimal coupling is to assume that, under a gauge transformation, the Lagrangian is itself an invariant:

L FD (Ψ, ∇Ψ) = L FD Ψ , ∇ Ψ , (8.7) 
where the transformation law for the vielbein (see Eq.(8.4)) induces, respectively, the following transformations for the spin cross-section and the corresponding covariant derivate,

Ψ → Ψ = (ρ • U) Ψ, ∇Ψ → ∇ Ψ = (ρ • U) ∇Ψ.
(8.8)

Applying the transformation laws from Eq.(8.4) into the definition of the Lagrangian for Ψ, given by Eq.(8.48), and expanding both sides of Eq.(8.7) in their respective vielbein and the basis T a for g one finds, after canceling the binomials proportional to the masses, that:

i Ψγ µ ∂ µ Ψ -g Ψγ µ A (a) µ T a Ψ = i ΨU † γ µ ∂ µ U Ψ + i ΨU † γ µ U ∂ µ Ψ -g ΨU † γ µ A (a)
µ T a UΨ.

(8.9)

To simplify the notation, we have chosen to write U = ρ • U.

After an algebraic manipulation of Eq.(8.9), one finds the mapping A = A (8.10)

8.6.1 Euler-Lagrange Field Equation

Using "old-school" covariant formulation of variational calculus8 , our equations of motion reads: ν are considered independent field variables by the functional derivatives. From Eq.(8.47), the Lagrange's functional density for the gauge-field, one derives: 

∇ µ   δ L YM δ ∇ µ A ν (a)   = δ L YM δ A ν
δ L Gauge δ ∇ µ A (a) ν = - 1 2 ∇ α A β (a) -∇ β A α
L FD = i Ψγ µ ∂ µ Ψ -m 2 ΨΨ -gA (a)
µ Ψγ µ T a Ψ.

(8.53)

Similarly, for Bose-Einstein fields Φ belonging to the fundamental representation SU (N), one obtains: .

L BE = ∂ µ Φ † (∂ µ Φ) -m 2 Φ † Φ + ig ∂ µ Φ † A µ ( 
(8.56)

Interestingly, before one might be tempted to finally obtain our desired field equations, assembling Eq.(8.51) from the results obtained from Eqs. (8.52, 8.55, 8.56), note that the later variation can rewritten in covariant form.

Indeed, term (#1) from Eq.(8.56) is given, in covariant form, by: (8.58) Therefore, letting the sources associated to the set of quantum fields12 A (a)

ig (∇ ν Φ) † T a Φ = ig (∂ ν Φ) † -igA ν (b) Φ † T b T a Φ (8.57) = ig (∂ ν Φ) † T a Φ + g 2 A ν(b) Φ † T b T a Φ,
µ , Φ, Φ † , Ψ, Ψ and, including the geisperfeld c (a) , c(a) , be denoted, respectively, by the collection: J := (J A ) a µ , J Φ , J Φ † , J Ψ , J Ψ, (J c ) a , (J c) a , (8.79) the generating functional Z [J] is given by: where the effective Lagrangian density for the gauge potential follows from the contributions of Eqs. (8.50, 8.77, 8.78): is a cross-section on the bundle over which the gauge theory is defined, with values in a commutative field, since the product of Grassmann-numbers θ and c (a) (x) yields a commutative field. One recognizes in Eq.(8.84) a gauge transformation parametrized by ε (a) (x).

Z [J] = ˆM /G D A ( 
L E = - 1 4 F ( 
Thence, variations described by Eq.(8.83) are such that the Lagrange's functional density for Yang-Mills field, namely Eq.(??), is invariant under the infinitesimal transformation:

δ θ (L YM ) = δ ε (L YM ) = 0.
(8.86)

Moreover, taking notice of the following facts (where Jacobi's identity for the structure constants of g and the transformations of Eq.(8.83) are systematically applied): On the other hand, as our final goal is to arrive at a generalization of the Ward-Takahashi identities [START_REF] Ward | [END_REF], Takahashi(1957)] for non-Abelian gauge theories. Within the framework of the pathintegral formalism, our final result should be valid non-perturbatively.

Therefore, it will prove itself more convenient to modify the gauge-fixing term of the Lagrangian from Eq.(??) to: a) , (8.91) where F (a) is nothing except an auxiliary field. Indeed, applying the Euler-Lagrange equation to our new gauge-fixing L GF term, one sees that: (8.92) which upon replacement into Eq.(??), yields our former effective Lagrangian L Those transformations are known as BRST, after [START_REF] Becchi | Renormalization of gauge theories[END_REF] and [Tyutin(1975)].

L GF := ξ 2 F (a) F (a) + ∂ µ F (a) A µ(
ξ F (a) = δ L GF δ F (a) = ∂ µ δ L GF δ ∂ µ F (a) = ∂ µ A µ(a) ,
8.9 Slavnov-Taylor: The "Master" Formula

In the following a functional derivation of the Slavnov-Taylor identities [Slavnov(1972), Taylor(1971)] will be presented based on the BRST symmetries of gauge theories whose symmetry group is non-Abelian.

As it should be emphasized, those identities are a generalization of the Ward-Takahashi, studied in our former problem sheet, from Quantum Electrodynamics, which is an Abelian gauge theory, to theories of the Yang-Mills family. The latter are understood, at least in the language used in the present notes, as gauge theories such that the symmetry group of their principal-bundle is compact and non-Abelian.

Given the necessity of introducing the Faddeev-Popov geisperfeld [Faddeev(2018)], one is not able to derive the Slavnov-Taylor identities directly from a variation of the Legendre transform of the generating functional associated to connected Green's functions.

Instead, one should apply the invariance over BRST transformations within the functional integral defining the generating S := I J (8.98)

The Slavnov-Taylor identity is obtained, in functional form, by applying the differential operator:

δ 2 δ F (b) (p) δ c (c) (q)
, (8.99)

to Eq.(8.98), yielding:

δ 2 Γ δ Fb (p) δ Â(a) µ (q) δ 2 Γ δ ĉ(c) (q) δ J µ(a) (p) = δ 2 Γ δ ĉ(c) (q) δ c(b) (p)
.

(8.100)

Interactions

Let us recall the effective density of Lagrange functional for a Yang-Mills theory, defined on the principalbundle: P := R (1,3) × SU (N) , R (1,3) , π 1 , SU (N) , (8.101)

where the mapping onto the base space π 1 is simply the projection into the first factor, as defined by Eq.(??). The module of cross-sections over the principal-bundle P will be denoted, as usual, by Γ (P).

Let the Yang-Mills connection over P be given by the covariant derivative: ∇ : Γ (B)×Γ (B) -→ EndΓ (B), defining a connection over our principal-bundle. 

x ∈ R (1,3) → ζ (a) (x) ζ (b) (x) ∈ R,
defines a real-valued field, employed at the functional derivative to obtain the above 3-vertex Green's function.

In any case, since formalities are better left to lawyers, Eq.(8.119) yields:

Γ (abc) µ
(p 1 , p 2 , p 3 ) = gf abc (p 3 ) µ .

Figure 2

 2 Figure 2.1: "The so-called Livingston plot illustrates how history of discovery on the energy frontier has been enabled by the history of invention (red arrows) in accelerator science and technology." [Barletta(2014)]

Figure 3

 3 Figure 3.1: Graph Γ with V = 2 vertices and E = 4 external edges, representing the amplitude M (Γ).

  photon-propagator within fermionic loop

  .15) CHAPTER 7. CLASSIFICATION OF DIVERGENCES: "PLANCK'S PRINCIPLE FOR THE PROGRESS OF SCIEN 7.1.4 Example: Spinor Electrodynamics in R (1,d-1) spacetime

  .23) CHAPTER 7. CLASSIFICATION OF DIVERGENCES: "PLANCK'S PRINCIPLE FOR THE PROGRESS OF SCIEN Remark 7.3. The difference between the right-hand sides of Eqs.

CHAPTER 7 .

 7 CLASSIFICATION OF DIVERGENCES: "PLANCK'S PRINCIPLE FOR THE PROGRESS OF SCIEN 7.3.1 Example: Yukawa Let a Yukawa theory in d = 4 dimensional Minkowski spacetime be governed by the Lagrangian density:

  Let ψ (x) be a 2 ν -component spinorfield living in the d-dimensional Minkowski spacetime R(1,d-1) . The integer ν is defined such that either d = 2ν or else d = 2ν + 1.A simplified d-dimensional version of Fermi theory for the weak interactions evolves according to the action functional: S F = ˆdd x L F (ψ, ∂ ψ) , (7.48)

CHAPTER 7 .

 7 CLASSIFICATION OF DIVERGENCES: "PLANCK'S PRINCIPLE FOR THE PROGRESS OF SCIEN 7.3.3 Example: QED Recall that the Lagrangian density for quantum electrodynamics (QED) in Minkowski spacetime with d = 4 dimensions is:

  7.11.1 Radiative Correction∼ O e 2 [Zee(2010), Ex. III.3.3(ii)] 

  .122) and thereby, Eqs.(7.121, 7.122) implies the limit is well-defined: lim m→0 b p 2 = 0, as we wanted to show.

  µ θ µ T a from the connection form written in the original choice of vielbein to the one obtained after a gauge transformation:A (a) µ T a = ig -1 ∂ µ U U † +UA (a) µ U † .

  hand, the Lagrangian for matter fields in Eqs.(8.48, 8.49) are independent from ∇ µ A (a) ν .Thence, now we should aim our attention in computing the variations of L FD and L BE only accordingly to the gauge potential A (a) µ . As a first step, expand the Lagrange's functional density for the N-Tuple of Fermi-Dirac Ψ spinor fields in terms of the covariant derivative by the replacement ∇ µ → ∂ µ + igA (a) µ T a in Eq.(8.48), yielding:

=

  a) T a Φ -igA (a) µ Φ † T a (∂ µ Φ) + g 2 A (a) µ A (b)µ Φ † T a T b Φ. (8.54)Lastly, we are able to easily compute the following functional derivatives:ig (∂ ν Φ) † T a Φ + g 2 A ν(b) Φ † T b T a Φ (#1) -igΦ † T a (∂ ν Φ) + g 2 A ν (b) Φ † T a T b Φ (#2)

  a) µ , Φ, Φ † , Ψ, Ψ, c (a) , c(a) exp i ˆd4 x L E + L BE + L FD (+ J † Φ Φ + Φ † J Φ + J Ψ Ψ + ΨJ Ψ + (J c ) * a c (a) + c(a) (J c) a ,(8.81) 

+µ

  ∂ µ c(a) ∇ µ c (a) . = θ g -1 ∇ µ ζ (a) , δ θ ζ (a) = θ g -1 c abc ζ (b) ζ (c) , δ θ ζ (a) = -θ g -1 1 ξ (∂ • A) (a) . ) (x) := θ c (a) (x) ∈ R, ∀ x ∈ R (1,3) ,(8.85) 

  (b) c (c) = f abc δ θ c (b) c (c) = θ 2 f abc f bpq c (p) c (q) c (c) = θ 3! f (abc f bpq) c (p) c (q) c (c) = 0, (8.87) gξ ∂ µ ∂ ν A ν(a) D µ c (a) = -∂ µ θ gξ ∂ ν A ν(a) D µ c(a) .(8.90) 

  would be wise in defining the final form of the effective Lagrange's functional density as:F (a) + ∂ µ F (a) A µ(a) + ∂ µ c(a) D µ c (a) , (8.93)which is invariant under the set of transformations whose infinitesimal form are given by the variations:, δ θ c (a) = θ 2 f abc c (b) c (c) , δ θ c(a) = -θ g F(a) , δ F (a) = 0. (8.94)

  (a) , ζ(a) ,ζ (a) , J + J (a) F (a) + i ζ (a) c (a)c(a) ζ (a) + J µ(a) D µ c (a) + g 2 f abc J (a) c (b) c (c) . , F(a) , c (a) (x) , c(a) (x) exp i ˆd4 x (L E + I ) .

FIIΓ=

  (F ∧ F ) -1 2ξ (∂ • A) 2 + ∂ µ c(a) D µ c (a) .(8.102) In components, the effective Lagrange's functional density reads: µ ∧ dx v ) ⊗ T a ∈ Ω R(1,3) , g , (8.103) defines the components of the exterior 2-form of curvature, such that:(x 1 , x 2 , x 3 ) := gf abc ∂ µ A (a) ν (x 1 ) A µ(b) (x 3 ) A ν(c) (x 3 )gf abc A µ(a) (x 1 ) ∂ c(c) (x 2 ) (x 1 , x 2 , x 3 , x 4 ) := -2 ) A µ(c) (x 3 ) A ν(d) (x 4 ) . S I := ˆd4 x 1 d 4 x 2 d 4 x 3 δ (3) (x 1 + x 2 + x 3 ) L (3) I (x 1 , x 2 , x 3 ) , (8.108) + ˆd4 x 1 d 4 x 2 d 4 x 3 d 4 x 4 δ (3) (x 1 + x 2 + x 3 + x 4 ) L (4) I (x 1 , x 2 , x 3 , x 4 ) . (8.109) ŜI := (2π) 4 δ (3) (p 1 + p 2 + p 3 ) ˆd4 x 1 d 4 x 2 d 4 x 3 e i(p 1 •x 1 +p 2 •x 2 +p 3 •x 3 ) L (3) I (x 1 , x 2 , x 3 ) (8.110) + (2π) 4 δ (3) (p 1 + p 2 + p 3 + p 4 ) ˆd4 x 1 d 4 x 2 d 4 x 3 d 4 x 4 e i(p 1 •x 1 +p 2 •x 2 +p 3 •x 3 +p 4 •x 4 ) L (4) I (x 1 , x 2 , x 3 , x 4 ) . (8.111) ŜI = -i (p 1 ) µ Â(a) ν (p 1 ) µ(b) (p 2 ) Âν(c) (p 3 )i (p 3 ) µ Â(a) µ (p 1 ) c(c) (p 3 ) ĉ(b) (p 2 ) (p 1 ) δ Âν (b) (p 2 ) δ Âλ (c) (p 3 ) A=0 (8.114) = f abc η µν (p 1p 2 ) λ + η νλ (p 2p 3 ) µ + η λ µ (p 3p 1 ) ν . (8.115)CHAPTER 8. UNDER THE SPELL OF THE GAUGE PRINCIPLE 96 -g 2 f abp f cd p η µλ η νρη µρ η νλ + f acp f d pb η µρ η νρη µν η λ ρ (8.117)+ f 2abp f bcp η µν η λ ρη µλ η νρ . (p 1 ) δ c(c) (p 3 ) δ ĉ(b) (p 2 ) A=σ = σ =0.(8.119)Remark. It's worth to mention that the presence of a minus sign in Eq.(8.119), which taken in the sights of Eq.(8.114), deservers an explanation. Since the geisperfeld ĉ(b) (p 2 ) is Grassmann-valued, the law of multiplication between the latter and their conjugate c(c) (p 3 ), requires the Lie algebra indices b and c be exchanged from the left-hand side of Eq.(8.119) to the right-hand side. The reason being, of course, the composition law for generic Grassmann-valued fields, say ζ (a) (x), such that:

  

  

  .41) Remark 4.7. In functional quantization,Eqs.(4.38, 4.40, 4.41) are the analogous to those derived in §4.2.2.2, Eqs.(4.15, 4.16, 4.17), using the canonical formulation in the projective Hilbert state-space.

In publication, I may spell the witchery Baker-Campbell-Hausdorff to display my erudition.

There are no mistypes in the sentence you read, I hope.

There are no mistypes in the sentence you read, I hope.CHAPTER 1. QUANTUM METHODS

K D (x) will be referred to as the (iε + )-regulated kernel.

Meaning: k 

:= k µ k µ = m 2 . 2 I've no intention of offending my reader's knowledge, but I clarify what it's meant by a trace here. Let T := T µν be any tensor with two Lorentz indices. With help from Minkowski's η µν , I define the trace of T the Lorentz scalar tr T := η µν T µν .

In ambiguity's absence I omit the argument k in P µνλ σ (k).

Notwithstanding my commitment to pedantry, the contraction with k µ in left-hand side of eq. (2.8) vanishes only if P is evaluated at k µ . So I'll not omit the argument as I promised in fn.(3).

Of course, with appropriated regularizations in the integral form of fourier rep.

For details, please cf.[Zee(2010), Ex. I.6.1].

In differential geometric language, this means: covering the entire manifold M.

A nice way to understand eq. (2.32) is to consider an analogy with cylindrical coordinates.

Recall that: 1 m P ≈ 1.2 ×

19 GeV.

Maybe "Lagrangean," if you wish to publish in Phys. Rev. Lett.[Mermin(1988)].

"Selective serotonin reuptake inhibitor."[DSM-5(2013)] 

A motive which requires further investigation[Marcolli(2010)].

Recall, for Minkowski space M := R(1,3) , that the space of distributions (or generalized functions), according to L. Schwartz's formulation, is the module (over the ring of germs of smooth functions in M) containing all continuous, linear functionals, defined upon the space of test functions, denoted by C ∞ 0 (M), of all smooth, real-valued functions with compact support. (To refresh the memory, the support of a function f is the set supp ( f ) := f (M) \ f -1 (0), namely, that subset of f 's domain with non-zero values.)

This step should be taken with great care. Rigorously, one should verify that no mathematician (particularly the analysts) are in the room.

Since electrodynamics is an Abelian gauge theory, the Maxwell connection is Lie algebra-valued in u (1), trivially generated by the nilpotent identity. Hence we omit structure constants and hermetian generators, for now.

Clearly, the matter-field propagator and vertices are easily defined, and sometimes also to calculate, from functional integration. The aim however is to keep the interplay between both formulations of QFT, canonical and functional, exhibiting to the student their mutual complementarity in solving problems particularly difficult in one, nonetheless conceptually or quantitatively clear in the other..

As at this stage in our course, no discussion was delivered concerning the rôle of counter-terms Z's, neither the renormalization program, one could simply ignore this qualification in these notes. Nevertheless, this student is also taking a class on "people skills" at Coursera, and one of my home-works is to exercise humility. Therefore, I use this opportunity to humbly declare that neither of the following results takes account of the need to renormalize the "bare" parameters, examples of which that figures in Eq.(4.18) are, resp., the "bare" mass m =: m 0 and charge q =: q 0 .

Anomalies, however, may appear, a subject that should be taken seriously own it's right. Unfortunately, it's beyond the scope of our present purposes. But allow myself to say that, in QCD, chiral anomalies is a very serious technical issue.

Once again, by being very careful with the presence of any mathematician around your study.

Choosing gauge-fixing condition as in Eq.(5.4), Maxwell-field's propagator belongs to the class of covariant gauges, labelled by ξ .

Or in the terminology of graph theory, which one hopes to have learned in meantime, one calls "unpaired edges."

Where the under-script (n) is employed only for the sake of labelling the particles.

From the "spurious," that's to say, unphysical divergences, which are destined to be absorbed into a counter-term, a terminology soon to be clarified as we introduce the theory of renormalization.

Which, by Heisenberg's uncertainty principle, means that a small moment of honest implies a high precision of the position being taken upon.

Recall that in the Hamilton-Jacobi theory, curves everywhere perpendicular to surfaces of constant phases are analogous to the worldline followed by physical particles in classical limit[Landau(2013)]. That theory was developed upon considerations on the derivation of geometric optics from the undulatory theory, passing through the foundations of classical dynamical systems, and closing with it's complexification, known as the Schrödinger equation in non-relativistic quantum mechanics[Hamilton(1833),[START_REF] Rowan | Xv. on a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function[END_REF]].

In retrospect, after Feynman's insight[START_REF] Feynman | [END_REF]] of reformulating quantum theory as a sum over "paths" (field configurations, to be precise), Planck's original terminology seems quite adequate.

At very least, this is the case to the ones which are physically relevant to our present purposes, namely, the theories of Standard Model.

For a pedagogical discussion of this beautiful subject, I recommend the recent book[Vaz and da Rocha(2016)]. A more comprehensive however heavier on the part of the reader, see[Lounesto et al.(2001)Lounesto, Cassels, Society, and Hitchin] or[START_REF] Hestenes | [END_REF]].

A hat above a propagator means a Fourier transformation from energy-momentum to spacetime representation.

Recall the anti-symmetrization condition: ∂[µ A ν] := 2 -1 ∂ µ A ν -∂ ν A µ .

For Bose-Einstein fields, we indicate Fourier transform to spacetime representation by an over-bar.

Or to be precise and less philosophical, economical: the field equations are simpler to write down.

Recall that, given any metric tensor g µν on a manifold M, the Levi-Civita connection ∇ µ associated to g µν is the unique metriccompatible and torsionless covariant derivative, respectively, ∇ λ g µν = 0 andX µ ∇ µ Y ν -Y µ ∇ µ X ν = [X,Y ] ν . See[Wald(2010), Ch.3].

By which we mean, the non-perturbative definition which takes into account the contributions derived from all order in the perturbation expansion.

Namely, at order ∼ O (α) , where α = e 2 /4π was known in the old literature as the fine-structure constant. Today, after an improved understanding of quantum field theory with renormalization semi-group, the exact calculation of α is now left to crackpots.

In Eq.(7.118), µ is an unphysical mass scale introduced only to preserve the dimensionality of the elementary unit of charge e as we analytically continued spacetime's dimensions. Also, we recall that Euler's constant γ Euler was discussed in App.(B), Eq.(69) of[START_REF] Mol | Problem Sheet X: A Problem of Self-Regularization[END_REF]].

Formally, Ψ is a section living in the spin-bundle associated to B, where γ • ∇ happens to be the induced spin-covariant derivative.

3 A mathematically rigorous and readable account of spinor representations, clarifying the geometric meaning of spinors as natural objects underlying the structure of Minkowski spacetime, is available in[Naber(2003), Ch.3

].4 This assumption should be revised in a quantum theory based upon Euclidean path-integrals.

Recall that, given a generic topological bundle (E, B, π), where E is the total space being projected onto the base B by the surjection π, a cross-section σ is any mapping σ : B -→ E such that: π • σ = id.

A comprehensive discussion of those methods can be found in[Anderson and Anderson(1967)] and[START_REF] Lovelock | [END_REF]]. Nonetheless, a more mathematically sophisticated reformulation of classical field theories, using the techniques from "jet-bundles," is exposed at length at[START_REF] Binz | [END_REF] Sniatycki(2011), Olver(2012)].

We call Clifford conjugate, since each component of the N-tuple of fields Ψ belongs to a representation of the (complexified) Clifford algebra C (1, 3), being therefore the analog (indeed, the generalization) of the Hermite conjugate.

Geometrically, the action of G over each "point" of M generates the "orbit" of physically indistinguishable configurations.

Letting M be the configuration space of a Hamiltonian system, the co-tangent bundle T * (M ) defines the theory phasespace, the area over which the symplectic structure is built upon. See[Arnold(2013),[START_REF]Mathematical aspects of classical and celestial mechanics[END_REF].

Now, outside the pathintegral, those are distribution-valued operators acting on the Hilbert state-space of the theory, while within the pathintegral, those are still considered as classical-valued fields.

"A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die and a new generation grows up that is familiar with it." -MaxPlanck, Scientific autobiography, 1950, p. 33, 97. 

Miraculous, to the financially inclined reader, as far as the Clay's Institute is willing to pay a million dollar for a proof of the Riemann hypothesis.As a matter of principle, I decline any cryptocurrency method of payment.

Many textbooks call such a "constant" (we use commas for pedantry, since the convergence of the limit defined by Eq.(A.16, see however our next Claim) remains to be proven) Euler-Mascheroni. Interestingly, Lorenzo Mascheroni made a mistake in his calculations, published in his treatise "Adnotationes ad calculum integrale Euleri." It was left to Gaß's student, Friedrich Nicolai, to obtain the correct result[Gourdon and Sebah(2004)].

CHAPTER 5. REGULARIZATION SCHEMES: "AN ENTRANCE TO RENORMALIZATION THEORY"49 2. The energy due to the vacuum polarization, generically denoted by iΠ

(2) µν and computed, at order O e 2 , as in Eq.(5.23):

(5.28)

The integral in Eq.(5.28) is, as expected from dimensional analysis, divergent, however is also amenable of being regulated by the Zürich's geistfelder.

3. Loop contributions to the vertex-function Γ µ (p 1 , p 2 ), whereby an incoming fermion, say 5 e - (1) , carrying an energy-momentum p µ 1 , creates a pair of fermion e -

(2) with energy-momentum p µ 1k µ , and a photon γ (1) with energy-momentum k µ . Finally, the photon photon γ is absorbed by the fermion e -

(2) and emits a third fermion e -

(3) with energy-momentum

(5.29)

Remark 5.3. Physically, the vacuum polarization is an effect due to the self-energy of the photon, the latter of which creates and subsequently annihilates a virtual pair of electron and positrons, respectively. Such a behavior is to be expected from QED's interaction Lagrangian, L int = -ie ψ (x) (γ • A (x)) ψ (x).

Nevertheless, the applicability of Pauli-Villars regularization scheme is restricted to gauge theories whose symmetry group is Abelian. Moreover, the introduction of geistfelder violates spin-statistics theorem, a fundamental result of relativistic quantum field theories.

Therefore, even as loop integrals, such as Eq.(5.25), arising from the contribution of geistfelder, are Lorentz invariant in appearance, their very presence in the Lagrangian formulation of the theory is in itself a violation of the principles of special relativity and quantum theory.

Forasmuch as such considerations having being said, one finds necessary to search for a more satisfactory regularization method, which is the subject matter of the section that follows.

Netherlands:

The "Gangsters" of Utrecht

Motivation

To introduce the scheme of regulating our "loop"' integrals known as dimensional regularization, consider the following circumstance.

Suppose we are interested, for reasons which may be better left to students of psychoanalysis, in studying, at least perturbatively, a Yang-Mills theory interacting with matter fields, represented by Dirac's 4-spinors, with coupling constant g, similarly to the actions presented in Eqs. (5.3, 5.5).

Chapter 6

A Matter "Self-Regularization" Figure 6.1: Our modern Hercules could well be our the ambitious students of high-energy physics. As soon as the character master the art infinities under control to keep those now seemingly meaningless (the ones arising from non-ordered canonical operators, or a functional "integral" kept unnormalized), is given as soon as possible his second labour: -Killing under the help of one's modern saber, the counter-terms, Hydra's infinities: "loop" divergences in perturbative quantum field theories.

Without loss of generality, the cosmological constant Λ ≡ 0. The vacuum Einstein equations follows as Euler-Lagrange equations of Einstein-Hilbert action: (7.59) up to boundary terms, such as [York Jr(1972), [START_REF] Gibbons | Path integrals and the indefiniteness of the gravitational action[END_REF]Gibbons, Hawking, and Perry], which might be relevant to a deeper understanding of black hole thermodynamics. Here, G N is Newton's constant of universal gravitation, for which dim (G N ) = -2.

We are interested in analyzing the theory of gravitation from the point of view of a quantum field theory. As presented in last paragraph, GR is a geometric theory of spacetime. Hence, notions as renormalization of amplitudes and connected Green's functions are ill-posed.

An obvious reason is the following:

• Suppose one wishes to "quantize" the metric tensor g µν as a field theory. Then it will be necessary to take into account quantum corrections to g µν as a power series of h. Thereby, the causal structure of hypersurface in spacetime should be subjected to "uncertainty" relations. This point was raised in the first paper on quantum gravity by M. Bronstein (1936), republished at [Bronstein(2012)].

• Nevertheless, one of the foundations of relativistic quantum field theories is the principle of microcausality, which employs the Minkowski metric η µν and the structure of the isometries of Minkowski spacetime, particularly the proper orthochronos Lorentz group L ↑ + , in order to classify the possible degrees of freedom and polarizations of annihilations and creation operators from which the fields are build as polynomials [START_REF] Wichmann | [END_REF], Weinberg(1995)].

In any case, we are interested in considering the possibility of a quantum field theory for gravity, even if to understand why our framework of renormalization is not completely satisfactory to understand the ultraviolet regime of such a theory.

Following [Deser(1970)], the action in Eq.(7.59) can be rewritten as:

where K µ is the Kraichnan [Kraichnan(1955)] vector:

Suppose there exists a world-volume Ω ⊂ M such that the Ricci scalar is sufficiently small, whereby we may safely work in a "freely falling coordinate system," or Gaussian normal coordinates {x µ } : Ω -→ R 4 , in which there is an event e ∈ Ω where Γ µ νλ (e) = 0. Therefore, inside the world-volume Ω, one may ignore the boundary term obtained by Gauss theorem in Eq.(7.60), so that the gravitational action within that world-volume is equivalent to:

Fourier transforming Eqs.(7.126) from spacetime to energy-momentum representation, and applying the definitions from Eqs. (7.112, 7.114), one obtains the familiar version of Ward-Takahashi identity:

(7.127)

Now, multiplying both sides of Eq.(7.127) by [G (p 1 )] -1 from the left and by [G (p 2 )] -1 from the right, we derive:

Lastly, taking the partial derivative of Eq.(7.128) with respect to p 2 , and then letting p 1 = p 2 =: p, one arrives at the differential form of Ward-Takahashi identity:

Remark 7.6. Curiously, Eq.(7.129) posses the same form of the original identity found by J. C. Ward in [START_REF] Ward | [END_REF]]. Nevertheless, our derivation holds for all orders in perturbation theory, while Ward's original formula was a tree-level identity.

Divergence's Degrees

First, let Γ µ ( ) := Γ µ ( ) (p, p) be a connected Green's function (in energy-momentum representation) corresponding to photon-electron vertex, as defined by Eqs. (7.114, 7.115), up to order ∼ O e 2 in perturbation theory (see Eq.(7.108)).

Since Γ µ ( ) contains E B = 1 photon's propagator and E F = 2 Dirac's propagators, the superficial degree of divergence of Γ µ ( ) given by Eq.(7.58) is:

Hence, the divergence contained in Γ µ ( ) is logarithmic and independent of the incoming (or outgoing, whatever) electron or positron energy-momentum.

Thence, using Lorentz invariance and linear algebra, Γ µ ( ) can be decomposed into two terms:

where O (log Λ 1 ) represents a logarithmic divergence, as explained at §7.12.1, and Γ µ ( f ) (p, p) is the remaining finite contribution. Now, we proceed similarly to the self-energy insertion up to order ∼ O e 2 , denoted by Σ ( ) (p). This amplitude is the formal sum of all connected Green's functions with E B = 0 and E F = 2 containing powers of the elementary unit of charge up to e 2 . Hence, Eq.(7.58) yields: (7.132) which implies that Σ ( ) (p) is a linear polynomial in γ • pm: Finally, imposing the onshell constraints: (7.135) we can eliminate A 0 , and moreover, replacing Eqs. (7.131, 7.133) into the generalized Ward-Takahashi identity, see Eq.(7.129), we deduce that:

In other words, we have just shown that the self-energy shift is logarithmically divergent.

Chapter 8

Under the Spell of the Gauge Principle

In this Lecture, we discuss "gauge fields" belonging to the family Yang-Mills theories, namely, those with a compact and semi-simple symmetry group.

This classes of theories, originally conceived in the physics literature mainly due to the pioneer work of H. Weyl [Weyl(1923)], still in the earlier days of classical "unified field theories," appeared in a more familiar form in [Yang and Mills(1954)], and the unpublished manuscript [START_REF] Heisenberg | [END_REF]] (1958).

Notations

On what follows, let M 4 := R (1,3) be the Minkowski space, {x µ } Lorentz (i.e., inertial) coordinates and θ µ := dx µ our choice of (holonomic) orthonormal frames, to be called vielbein.

Example: SU (N) Theory for Bose-Einstein Fields

Now, suppose Φ ∈ Γ M 4 ,V C represents a N-tuple of massive (with m > 0 for all members of the N-tuple), non-Hermite physical fields in the SU (N) representation, whose dynamics is governed by the Lagrange's functional density:

By the principle of minimal coupling, one wishes to impose an invariance of the action functional, governing the dynamics of the Φ-field, under the transformations of Eq.(8.4).

In order to satisfy the minimal coupling principle, a sufficient condition is to impose the following law for the transformation of the covariant derivative: (8.12) such that the Lagrange's functional density given by Eq.(8.11) is an "invariant" under gauge transformations, or more precisely:

Remark 8.1. The condition stated by Eq.(8.12) is only sufficient for the invariance of the action functional:

nonetheless not necessary. One could still conceive an additional boundary term arising from a total derivative, which for the time being, will be ignored under the assumption that the asymptotic behavior of Φ is such that the contributions on ∂ Ω may be safely neglected.

A change of vielbein induces a transformation of the connection form, or in other words, a gauge transformation generates the mappings: θ → θ = θ T U, and:

As in Eq.( 8.3), the new covariant derivative ∇ associated to the connection form A acts upon crosssections as:

Now, replacing the mappings from Eq.( 8.4) into Eqs.(8.12, 8.16) yields: (8.18) which after simplification, gives: (8.19) for all cross-sections Φ ∈ Γ (M 4 ,V ).

Hence:

Moreover, note that T a being Hermite's generators for the Lie algebra su (N), it follows that a similarity transformation UT a U † belongs to another set of Hermite's matrices spanning the adjoint representation.

Since U ∈ SU (N) takes values in the fundamental representation, and recalling our adoption of the Einstein strong summation convention for indices labelling elements of the Lie algebra, the middle term of Eq.(8.20) can be expressed as: (8.21) keeping, of course, Einstein's convention. Then, by virtue of Eqs. (8.21, 8.20),

Lastly, multiplying Eq.( 8.22) on the right by U † , one arrives at the transformation law for the connection coefficients:

Cartan, Killing and Bianchi

In this subsection, for simplicity sake, let us consider only a trivial vector-bundle B, with Minkowski space M 4 as a base and whose fibers are precisely isomorphic to the linear space V on which the adjoint representation ρ of G acts upon. (8.24) the transformation law for the components of the connection forms follows the prescription provided by Eq.(8.23), namely:

(8.25) Definition 8.2. Let A ∈ Ω 1 (M 4 , g) be a connection form, as in Def.(8.2). The covariant derivative ∇ associated to A, acting on the space of cross-sections 5 Γ (B), which is a module over the ring of smooth functions C ∞ (M 4 ), is defined by: θ µ ⊗ T a ∈ Ω 1 (M 4 , g) be a connection form with covariant derivative ∇. The curvature two-form (or simply curvature form):

induced by the connection A, is defined accordingly to our chosen holonomic vielbein θ µ by:

Using the structure constants of the Lie algebra g, Eq.(8.27) can be rewritten in the following more useful form:

Remark 8.2. For the relativity connoisseur, the subscript µ in ∇ µ indeed means the derivative along the coordinate vector field

for any given cross-section σ .

Proposition 8.1. (Cartan-Killing 1 st Structure Equation .) Let A ∈ Ω 1 (M 4 , g) be a connection form with covariant derivative ∇, as stated in Defs.(8.3, 8.3), and

In fact, for any cross-section σ ∈ Γ (B),

Now, replacing the components of the curvature form, see Eq.(8.29), into Eq.(8.35) yields:

proving the Cartan-Killing first structure Eq.(8.31).

Corollary 8.1. (Curvature Form Tranformation Law.) Following the notations of Prop.(8.1), let A be a curvature form with associated covariant derivative ∇ and curvature form F. Then under a gauge transformation, as in Eq.(8.4), the curvature form changes by a similarity transformation: 

On the other hand, by a gauge transformation, or a change of vielbein, the covariant derivative ∇ transforms as described by Eq.(8.12), namely:

Thence, Eqs.(8.37, 8.38) implies the following transformation law F µν → F µν for the curvature form: (8.39) and by Eq.( 8.4), we arrive at:

implying that:

Lastly, multiplying both sides of Eq.(8.41) by U † on the right, we deduce the change of curvature form under our gauge transformation,

therefore proving our assertion.

Corollary 8.2. (Bianchi's Identity). Following the notations of Prop.(8.1), let A be a curvature form with associated covariant derivative ∇ and curvature form F. Then the following algebraic identity holds good 6 :

For, denoting by ε µνλ ρ the Levi-Civita's totally anti-symmetric symbol, let the vector field X = X µ (∂ /∂ x µ ) be given by:

Employing the Cartan-Killing first structure form, recalling Eq.(8.31) from Prop.(8.1), one can rewrite Eq.(8.44) as an operator equation:

and lastly, applying Jacobi's identity to Eq.(8.45), we deduce: (8.46) as required.

6 Here and from now on, the symmetrizing notation for indices are adopted, so that: The dynamics of the gauge potential A is governed by the following density of Lagrange's functional:

(8.47)

2. An N-Tuple of Fermi-Dirac fields Ψ (recall §(8.3.1)), with Lagrange's functional density:

(8.48)

3. An N-Tuple of Bose-Einstein fields Φ (recall §(8.3.2)), whose dynamics is given by the Lagrange's functional density:

If the Lie group G is compact, then the non-Abelian theory, whose complete Lagrangian is defined by:

will be called a Yang-Mills theory with gauge group G, after C.-N. Yang and R. L. Mills [Yang and Mills(1954)].

The fundamental importance of Yang-Mills theories relies in the following deep result due to S. Lie and W. Killing:

stating that: we state and defer the prove to [O'Raifeartaigh(1986), §(3.5)].

Classical Theory

In this subsection, we are interested in computing the classical field equations and (covariant) conserved currents applying the Euler-Lagrange method. At this stage, the reader is assumed to be familiar with relativistic wave equations for fields with arbitrary spin minimally coupled to background fields. If otherwise, as nothing is better than to learn form the masters themselves, see [START_REF] Dyson | [END_REF]

Therefore, the most interesting field equations for us are the ones governing the gauge field-strength.

7 Other well-known presentations are [START_REF] Bjorken | [END_REF], Greiner(2012)].

while the analogous result also holds for term (#2),

Henceforth, upon the substitution of Eqs.(8.58, 8.60) within the functional derivative obtained at Eq.( 8.56), one arrives at:

Consequently, upon the replacement of Eqs.(8.52, 8.55, 8.56) into the Euler-Lagrange form, as in Eq.( 8.51), one deduces the equations of motion for the gauge field-strength,

(8.62)

Remark 8.3. The equation of motion for the gauge field obtained above, namely, Eq.(8.62), is the generalization of the inhomogeneous Maxwell's equations for gauge theories whose symmetry group G is non-Abelian and semi-simple. Indeed, if one chooses the symmetry group to be G = U (1), and only takes into account the contributions coming Fermi-Dirac fields are taken into account, our developments above reduces to the Maxwell-Lorentz electrodynamics, which upon quantization, yields QED. We close by taking notice that, with help from Bianchi's identity (recall Eq.(8.43)) proved in Cor.(8.2), and Jacobi's identity satisfied by Lie algebra-valued differential operators, one easily derives that:

which upon contraction with the Hermite generators T a of our Lie algebra g, denote:

µ T a . To obtain our conservation law for the covariant current density, first multiply both sides of Eq.(8.63) by η µρ η νσ to obtain: (8.65) and then note :

Finally, applying Eq.( 8.66) into the field equation (recall Eq.(8.62)), one derives: (8.67) as desired.

Remark 8.4. The reason as to why the current J µ = J µ (a) T a defined in Eq.(8.64) is called covariant is simply it's written in a covariant fashion relatively to the connection A. Nevertheless, in order to integrate Eq.(8.67) and obtain a conserved charge, from the divergence theorem, one needs to take into account the contributions from the non-Abelian gauge field itself. Indeed, since: (8.68) the spacetime conserved current density is:

Nöther's Canonical Current Density

The action functional of the Yang-Mills theory discussed above (cf. Eq.(8.50)), with each contribution explicitly expressing their functional dependence, is given by:

Assuming that the Euler-Lagrange equations are satisfied (namely, the fields are onshell), a variation of Eq.(8.69), parametrized by some Lie algebra-valued spacetime function x ∈ M 4 → β (a) (x) T a , can be written as: (8.70) where dΣ is the area element of the hypersurface ∂ Ω, n µ the outward-pointing unit normal, and the canonical current density is given by:

Remark 8.5. Note that, in Eq.( 8.71) for the total covariant current density, there is no term involving directly the Clifford 9 conjugate associated to the N-tuple of fields Ψ, differently from the N-tuple of fields Φ. The reason lies simply in the fact that, for spinor fields, the Lagrangian (and obviously, the field equations themselves) contains only first order differential operators.

Let x ∈ M 4 → β (a) (x) ∈ R be the family of spacetime functions parametrizing the "local" gauge transformation:

x

Thence, the corresponding infinitesimal transformations for the N-tuple of fields Φ and Ψ (and their conjugates) are, respectively:

On the other hand, recalling Eq.(8.23) for the transformation law of the connection forms, one deduces that:

Replacing the variations, from Eqs.(8.73, 8.74), into the Nöther's formula obtained from the variational calculus at Eq.(8.71), yields:

the canonical current density.

Quantum Yang-Mills Theories

Let M be the configuration space of the set of fields A (a)

µ , Φ, Ψ for the classical Yang-Mills theory, with structural group G, discussed at §(8.5).

Recall that, from Hamilton's stationary action principle [Hamilton(1833)], the classical dynamics of those fields is governed by the Lagrange's functional densities of Eqs. (8.47, 8.48, 8.49). The classical field equations, following the Euler-Lagrange method, are: (8.76) where the gauge field-strength, generalizing Faraday electromagnetic tensor, is the curvature form

From the perspective of the quantum action principle, further developed by Feynman [START_REF] Feynman | [END_REF]] after [START_REF] Dirac | [END_REF]], the existence of a symmetry group G, acting over M according to the transformation laws of Eqs. (8.4, 8.15), requires the introduction of a gauge-fixing procedure, so as one might define a well-posed pathintegral over the quotient space M /G 10 . Remark 8.6. Classical field theories with phasespace 11 T * (M ), exhibiting symmetries under the action of the structure group G (called by physicists the gauge group) accordingly to the infinitesimal transformations of Eqs. (8.4, 8.15), from the Hamiltonian viewpoint of constrained dynamics [Dirac(2001)], should be quantized rigorously by the methods of BRST geometric quantization [START_REF] Henneaux | [END_REF]]. The generalization of those methods for more sophisticated theories, whose symmetry group is replaced only by the infinitesimal transformations laws, generated by Hermite operators whose graded Lie algebra is not closed, requires the more formal methods of Batalin-Vilkovisky, also known as the BV-BRST geometric quantization [START_REF] Barnich | Local brst cohomology in gauge theories[END_REF] Barnich, Brandt, and Henneaux].

In order to do so, following [Berazin(2012), Faddeev(2018)],

1. Let the Lagrangian density L YM of Yang-Mills theory (see Eq.(8.50)) be supplemented by a gaugefixing term, for given arbitrary real ξ > 0:

(8.77)

2. In addition, let the Faddeev-Popov [START_REF] Faddeev | [END_REF]] and de Witt [DeWitt(1967)] geisperfeld c (a) (x) and c(a) (x) play the role of the gauge-fixing functional determinant, the effect of which reduces to the introduction of an auxiliary Lagrangian density, only within the pathintegral, for those fields: a) . (8.78)

Appendix A ´dΩ (n) : The Angle Who Wished to Be Solid

Recall that, in these notes, we are denoting by E N := R N , , the N-dimensional Euclidean space, whose canonical inner product is defined by:

x i y i , (A.1)

where: x = (x 1 , ..., x N ) T and y = (y 1 , ..., y N ) T are, respectively, the matrix representations of x and y.

Letting the norm of an element x ∈ E N as x := x, y , the space E N , • acquires the structure of a Banach space. Now, let the area of an n-dimensional hypersphere S n , immersed into E n+1 by:

be called the n-dimensional unit solid-angle, defined by: ˆdΩ

Remark A.1. The above nomenclature is outdated at an archeological scale. Nonetheless, it's still alive in the common language of the ordinary physicists [Whittaker(1988)]. Under the assumption that Planck's principle 1 holds true, I afford to pay my due respect to tradition.

Applying gaussian integration in n-dimensions, we shall prove that: 

On the other hand, using polar-coordinates in E n , one obtains:

and thence Eq.(A.4) follows upon equating the left-hand sides of Eqs.(A.5, A.9).

This Appendix is a brief tour in the wonderland of holomorphic functions. Our rides will cover some definitions and well-known theorems about the beta B (ζ 1 , ζ 2 ) and gamma Γ ζ j functions.

As we shall see, these functions are related to each other in a non-trivial way. Even more surprisingly, they are holomorphic for all Re ζ j > 0 ( j = 1, 2), belonging, therefore, to the "miraculous" half-plane of the complex numbers For an elementary proof of the latter statement, we refer the reader to [START_REF] Stein | [END_REF], §6.1].

Definition A.2. The beta-function is the mapping α, β ∈ H → B (α, β ) functionally defined by: (α+β ) . (A.12)

Lemma A.2. The beta-function is holomorphic in H.

99

The simplest proof that the mapping (α, β ) ∈ H → B (α, β ) is holomorphic can still be found in the classic [Narayan(1966)].

Theorem A.1. The analytically continued holomorphic ζ ∈ H → Γ (ζ ) mapping can be further generalized to a meromorphic function on the entire complex plane, with singularities the simple poles at the non-positive integers s ∈ {0, -1, -2, ...}. Moreover, the residues are simply given by: Res

Once again, a straightforward argument to a relatively non-trivial statement as the latter result, is available in [Narayan(1966)]. For a heuristic argument, we refer the reader to [Stein and Shakarchi(2010), p.163].

Theorem A.2. The beta and gamma-functions satisfies the following identity:

for all α and β belonging to the miraculous half-plane H.

In fact, from definition, namely, Eqs.(A.11, A.12), it follows immediately that:

whereby the desired result follows simply by a change of variables:

Definition A.3. Let γ Euler be formally given by the limit: A.16) known as the Euler's constant 3 .

Claim. The limit of Eq.(A.16) is well-defined.

Indeed, take notice of the following identity:

Nonetheless, for all n ≤ s ≤ n + 1, an elementary application of the mean-value theorem to the function s ∈ R >0 → f (s) := 1/s, implies that: 

For a quite transparent proof of such a result as ponderous as an equation could be, in the present case, Eq.(A.21), the reader is referred to [START_REF] Stein | [END_REF], §6.1, p.166].

Finally, from Eq.(A.21), one can easily derive the asymptotic behavior for the gamma-function required by the method of dimensional regularization:

Corollary A.1. Let ε > 0 be a positive real number. Then:

A.2 Feynman's Parameters

Let A 1 , ..., A N be any sequence of numbers or non-singular functions. The Feynman's parameters states that the denominator: .23) can be written as a product of the N-dimensional integral:

To prove the above identity, we apply induction in N ≥ 2.

For N = 2, the result is simply an elementary integral:

Now, assume that Eq.(A.24) holds good for all 2 ≤ N -1 < N and apply our hypothesis to the following product:

Consequently, upon the replacement of Eq.(A.25) into the factor of the last line of Eq.(A.27), marked by curly brackets, it follows that:

(A.29)

Finally, integrating over ´1 0 dτ N+1 δ (1τ Nτ N+1 ) and replacing τ N+1 = 1τ N , Eq.(A.29) yields: (A.31) completing our proof.

A.3 Wick's Gymnastics

Let us consider a perturbative quantum field theory, with coupling constant g 1. The Green's functions of order ∼ O g N are N-dimensional "loop" integrals in energy-momentum space.

The loop integrals associated to the Green's functions of higher order in perturbation theory are easier to perform in Euclidean spaces than in the original energy-momentum space, carrying with itself the Lorentz signature, a consequence of the fact that their conjugate variables are in the space-time representation.

The reason is simple: once space and time are treated in equal footing, as variables in the 4-dimensional Euclidean space E 4 , an integral of a function depending exclusively upon the squared energy-momentum 4vector can be separated into an integral over a solid angle, as discussed in App.(A), and a simple 1-dimensional integral over the magnitude of the "Wick-rotated" momenta.

Conjecture A.1. Let {x µ } be an inertial coordinate system in Minkowski space.

Assume all classical fields configurations (regarded as sections on the associated vector or spin bundles) and field operators (defined as distribution-valued operators acting upon the rays of Hilbert state space), are defined so that:

1. The Dyson-Schwinger equations, and in particular, the classical equations of motion without contactterms, and:

2. The quantum corrections to the Green's functions, allows analytical continuation for the timelike coordinate:

x 0 E := -ix 0 , x E := x, (A.32)

k 0 E := ik 0 , k E := k, (A.33)

γ 0 E := iγ 4 . (A.34)

Definition A.4. The simultaneous application of the mappings given by Eqs. (A.32, A.33, A.34) are called a Wick's rotation.

Claim A.1. Under the assumptions of Conjecture (A.1), the effect upon the employment of a Wick's rotation on the measure of integration, squared energy-momentum 4-vector and, finally, either the contraction between 4-vectors and the generators {γ µ } 0≤µ≤3 are, respectively: .37)