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Abstract

The power output of Photovoltaic (PV) plants being weather-dependent re-
sults to inherent uncertainties about future production. This induces tech-
nical challenges for grid operators especially in power systems with high PV
penetration, and also financial losses when PV generation is traded on elec-
tricity markets. Accurate forecasts for the next hours or days contribute to
alleviating these impacts. The literature provides a plethora of forecasting
models, among which outstanding approaches combine heterogeneous sources
of inputs like measurements, weather forecasts or satellite images. The inte-
gration of such inputs into the forecast models may take two forms: either as
explanatory features or as state features that condition the model training
through a local regression approach. The latter permits to include physics-
based information within statistical regression tools and to derive optimised
models w.r.t. weather input. Then, these models are extended to integrate
spatio-temporal information from satellite observations. We investigate these
approaches with the objective to derive the mathematical foundations of a
generic methodology to integrate weather information into PV forecasting
models. The paper assesses the influence of weather information integra-
tion strategies over forecasting performances for two short-term forecasting
state-of-the-art models, belonging respectively to linear and non-linear fam-
ilies. Finally general guidelines for forecasters are derived on the procedure
to follow when dealing with several sources of information. Evaluations are
performed on real-world datasets composed of nine PV plants.
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Acronyms

AM Analog Methods

ANN Artificial Neural Networks

AR Auto-Regressive

ARIMA Auto Regressive Integrated
Moving Average

ARX Auto-Regressive with eXternal
inputs

CNN Convolutional
works

DNN Deep Neural Network

ECMWEF Europeran Center for
Medium-Range Weather
Forecasts

GHI Global Horizontal Irradiance

IF'S Integrated Forecast System

kNN k-Nearest Neighbours

LASSO Least Absolute Shrinkage
and Selection Operator

mRMR minimal Redundancy Maxi-
mal Relevance

nMAE normalised Mean Absolute

Neural Net-

Error

nRMSE normalised Root
Square Error

NWPs Numerical Weather Predic-
tions

PV Photovoltaic

PVPF Photovoltaic
Forecasting

QRF Quantile Random Forest

RES Renewable Energy Sources

RF Random Forest

SDSI Sattelite Derived Surface Irra-
diance

SSRD Surface
Downwards

Mean

Production

Solar Radiation
ST Spatio-temporal

SVM Support Vector Machine
T2M 2-m Temperature

TCC Total Cloud Cover

WHCO weather-conditioned

Nomenclature

Indices

t Time when the forecast is generated

t’ Temporal observations from the learning set

h Number of time steps of the forecast (i.e. forecast horizon)
i Index referring to analog predictors

Operator




~

Expected quantity
Stationarized quantity

T Transpose operator

Parameters

N Number of analog situations

e{lv Bandwidth of the state variable neighbourhood
N4 Number of analog predictors

t Half-width of the time window over which the distance is computed
sz Weight of analog predictors

L Order of the AR model

NSPSIE - Number of features selected from satellite maps
Pc Installed capacity

B(Zy1n) Vector of parameters to be estimated
Variables

Yith Response variable at time t 4+ h

Xy Vector of explanatory features at time ¢

Zith, Vector of state features at time ¢t + h

o Standard deviation

SSRD;yp Solar radiation downwards
T2M;p, Temperature
TCCyyp, Total cloud cover

Gy Solar azimuth angle
i Solar elevation angle
P, PV production
SDSI;  Satellite-derived surface irradiance
I Observed irradiance
Ies Irradiance under clear-sky conditions
A Measure of accuracy (e.g. nRMSE or nMAE)
Anr(h Accuracy score obtained with the model, M, for the horizon h

)
Apgef(h) Accuracy score of the Persistence model
Ap(h)  Accuracy score of a perfect forecast (for the nRMSE and nMAE
metrics, a perfect forecast implies Ap(h) = 0)

Functions

D Distance function

Jroot Root regression model employed for the mapping of X; to ys1p
fi j*™® regression tree




1. Introduction

1.1. Context

Due to environmental concerns and energy resources depletion, societies
are taking action to reduce greenhouse gas emissions. Among these low-
carbon strategies, Renewable Energy Sources (RES) appear to be a promising
alternative to carbon-based energies. RES penetration is growing continu-
ously thanks to reduced technology costs [1] and supportive mechanisms.

Since Photovoltaic (PV) generation is weather-dependent, it is charac-
terised by high variability and limited predictability. When PV constitutes a
significant share in power systems, these features raise challenges for power
system operators, which have to ensure a high level of power quality and
strike a balance between production and demand. In addition, in a market
environment, this weather-induced uncertainty can jeopardise the profitabil-
ity of PV units.

To deal with the issue of intermittency, several solutions are investigated
throughout the literature [2] (e.g. storage systems [3], demand response
[4]). RES forecasting appears as a cost-effective option that can anticipate
power imbalances and lead to optimal use of flexibility solutions or tradi-
tional adjustment means. In the present paper, we investigate Photovoltaic
Production Forecasting (PVPF) for short-term horizons: from 15 minutes
up to 6 hours ahead.

1.2. PV Power Generation Forecasting

Over the last decade, PVPF has been a very active field of research; in
this regard, [5, 6, 7, 8] provide fairly complete literature reviews. Within the
literature, two main trends are investigated to improve forecasts accuracy:
(1) reducing model uncertainty by employing complex non-linear structures
(e.g. Deep Neural Network (DNN)), and (2) combining heterogeneous sources
of input information.

For short-term PVPF up to 6 hours ahead, endogenous inputs (i.e. past
PV production measurements) are typically the main drivers. For a few
years, we observe a paradigm shift from models based on information at
the PV plant location to models integrating Spatio-temporal (ST) infor-
mation such as production measurements from nearby PV plants, obser-
vations from nearby weather stations, and satellite-derived data, and turns
out to be more accurate than forecasts based solely on temporal informa-
tion [9, 10, 11, 12, 13]. Satellite-derived data come from space-borne pho-
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tographs of Earth that provide observations of the cloud cover, these images
are usually post-processed to obtain Global Horizontal Irradiance (GHI) es-
timations. The increasing use of satellite-derived data in the literature in the
last years may be explained by the large spatial coverage of the images that
permits to counterbalance lack of spatially distributed measurements due to
a low density distribution of PV plants or weather stations. Moreover, this
data is suited to operational use thanks to its regular updates (e.g. every
15-minutes). For higher forecasting horizons, such as day-ahead, Numeri-
cal Weather Predictions (NWPs) model outputs become the main source of
information. They are issued by physics-based models which integrate the
complex dynamics of the atmosphere. In the short horizons, NWPs are of-
ten neglected to the advantage of ST data. Still several results (e.g. [10])
indicate that they contribute to forecast accuracy improvement by providing
the PVPF model with information about future weather trends.

1.8. Integration of Weather Information

PV generation depends on a number of meteorological variables such as
irradiance, cloud cover, and ambient temperature. The combinations and in-
teractions of these variables lead to a large range of weather states associated
with significant varied dynamics. For this reason, NWPs provide valuable
information to PVPF models on the expected atmosphere state and how it
will influence production. The predicted weather information can be inte-
grated in the PVPF modelling chain in two different ways: either explicitly
or implicitly.

1.3.1. Ezxplicit Integration

The most straightforward method considers NWPs as additional explana-
tory features within the PVPF model (i.e. data is added linearly to the
model). Only one model is fitted for a large range of weather situations
thanks to the atmosphere dynamics being explicitly carried by NWPs. This
is a computationally inexpensive and easy way to include new information. In
comparison with models fitted only with production observations, the use of
NWPs as additional regressors improves short-term forecasting performances
[14, 10]. Former works by the authors in wind power forecasting showed that
integrating NWPs as input is beneficial as they inform on the tendency of
weather conditions and this results to an almost double improvement w.r.t.
persistence compared to models non considering NWPs.



1.3.2. Implicit Integration

The alternative paradigm is to consider the weather information as state
variables. Then, they act as a kind of classification tool that associates PV
production data observed under similar atmospheric states. This approach
provides a set of expert models dedicated to specific atmospheric states and
is adaptive in the sense that the training of the model is conditioned to the
weather situation. It can be implemented in two ways: 1) either through a
regime-switching model approach, where each model is dedicated to a specific
weather type (e.g. sunny, cloudy) [15, 16, 17, 18] or through binning of
weather variables [19], and 2) by taking a dynamic approach, where the
model’s parameters are updated regularly [14, 20, 21].

The second option, which is investigated throughout this paper, consists
in training a model for each new situation based on the N most similar
past situations. In a space composed by the history of weather features,
this approach searches the past situations that are closest to the situation
defined by the predicted features. In that sense, this approach presents
similarities to a k-Nearest Neighbours (kNN) algorithm. The main drawback
of this approach is the need to re-train the model each time a new forecast
is generated.

The literature proposes various terminologies to name these approaches
(e.g. regime-based models [19], weather status pattern recognition models
[16]). In an effort to unify these different approaches, we introduce the termi-
nology weather-conditioned (WHCO) to refer to an approach, that operates
a weather-based selection or classification in its learning dataset.

The WHCO strategy offers the possibility to condition several types of
forecasting models, such as Auto-Regressive with eXternal inputs (ARX)
models [19], Artificial Neural Networks (ANN) [22, 17], Convolutional Neural
Networks (CNN) [18], and Support Vector Machine (SVM)[15, 16]. From a
performance perspective, WHCO models exhibit greater forecasting skills
than their counterparts trained on all past production observations.

1.4. Integration of Spatio-temporal Information

In a similar way, ST information can be integrated within a PVPF model
as either explanatory or state features.

The first option is the most common approach and considers several
sources of ST information: [9, 11] use production measurements of spatially
distributed PV units, [10, 21] consider a selection of pixels derived from satel-
lite imagery, while [23] fits solar forecasting models with observations from
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nearby irradiance sensors. In [19], the authors combine the idea of WHCO
with the use of ST data as explanatory features for 10-second ahead solar
forecasts. This study highlights that ST forecasting models benefit from
WHCO approaches based on features related to cloud motion. Indeed, wind-
conditioned forecasting models are able to select geographically distributed
sensors in line with cloud displacement direction, while un-conditioned mod-
els select sensors in the direction of the most dominant winds.

To the authors’ knowledge, only [24] consider ST information as state
variables with the aim of improving the degree of similarity between analog
situations.

1.5. Key Contributions

The present paper improves the current state of the art with several key
contributions:

e Asshown above, the WHCO concept is already present in the literature
and is applied using a wide range of forecasting models. As the WHCO
strategy can be viewed as a means to include non-linear capabilities,
we analyse what is its influence over linear and non-linear models. As

an illustration, we focus on two state-of-the-art short-term forecasting
models: the ARX and the Random Forest (RF) models.

e The literature highlights that the WHCO strategy outperforms fore-
casting models trained on all past production observations. Similar
conclusions are drawn when NWPs are considered as explanatory fea-
tures. However, to the best of the authors’ knowledge, no comparison
has been performed to determine which approach provides the best
forecasting performances.

e To answer these two questions, we lay the mathematical foundations of
a standardised methodology to weather-condition any regression model.
Such approach can be viewed as a means to include physics-based in-
formation within statistical models, and thereby to enhance model in-
terpretability. It provides a framework for homogeneous comparisons
between models’ performances.

e We provide general guidelines for forecasters regarding the best weather
information integration strategy to use according to the types of input
and forecasting model they have at their disposal.
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The paper is organised as follows. First, Section 2 describes the methodol-
ogy of this study and the approaches implemented, while Section 3 introduces
the data sets. Validation results are discussed in Section 4. Finally, Section 5
draws the conclusions and presents research opportunities that could develop
the present work.

2. Proposed Methodology

To fulfil the above-mentioned objectives, we need to characterise the in-
teractions that exist between (i) the different ways of integrating weather
information, (ii) the nature of explanatory features (i.e. local or ST), and
(iii) the model family considered (i.e. linear or non-linear regression models).

To do so, a modular architecture allowing the inhibition or the activa-
tion of some specific mechanisms occurring in the forecasting chain is pro-
posed. It is composed of four main building elements (Figure 1): (1) the
WHCO block, (2) the forecasting block, (3) the state variables block, and
(4) the explanatory features block. This architecture may be seen as a generic
data-driven forecasting model enhanced by a physical-based conditioning ap-
proach, which enables the model to perform local regression with respect to
the atmospheric state.

\
(1 Weather state conditioning
2) Forecasting model é
A - Output - § ]
@ Explanatory features - X, N T
Endogenous variables =N Predlcjlon * PVproduction
* PV production da Veenjt = froot (thﬁ(zt+h)) + €t+h\t/ L forecasts
Exogenous variables < f
. SDSI )
. NWPs | Model training’
o fruat(xtnﬂ(ztf+h)) Ve eTy
J
N \ t /
3 ) state features- Z,., [ .
l . NWPs Analog research

Ty ={t €T|D(Zyin Zysp) < eﬁ}/
J/

Figure 1: Modular structure used to investigate the interaction between input
integration strategies, input types, and model families.




2.1. Weather State Conditioning

2.1.1. The Meteorologist’s Perspective

In the meteorology field, the analogy principle stipulates that similar
weather states can be observed throughout time. Perfect similarity is hardly
attainable due to the atmospheric variability, but similar situations can be
found when considering deep datasets, or few weather parameters. This has
led to the development of forecasting approaches based on Analog Methods
(AM). For instance, such methods can be used as a downscaling approach
by supposing that similar large-scale phenomena induce similar local-scale
phenomena. In the precipitation forecasting field, AM are used to derive
probabilistic relations between large-scale variables (e.g. geopotential fields),
named predictors, and local-scale features (e.g. precipitation) denoted as
predictands [25].

In the present study, we assume that similar forecasts of the atmospheric
states at the PV site position (i.e. predictor) lead to similar PV production
measurements (i.e. predictand). Thanks to the analogy principle, we can
select a subset of past weather states forecasts which are analog to the ex-
pected future atmospheric situation. Then, instead of deriving an estimation
of the future production from production observations associated with these
analogs (like what is performed in [26, 24]), a dedicated forecasting model
deals with the establishment of the statistical law between this production
measurements subset and the associated explanatory features. This approach
makes it possible to obtain weather-based expert models that dynamically
update their coefficients according to the weather situation. Figure 2 illus-
trates how the AM is used throughout this study. The modelling steps shown
in the figure are as follows:

0. First, we build three datasets:

(a) The candidate archive which contains weather forecasts,
(b) The response archive which gathers PV production observations,

(¢) The explanatory archive which represents the explanatory features
dataset.

1. A score of analogy, D (defined by Equation 2), measures the similarity
between the target meteorological situation at time t + A with past
forecasts at lead time +h from the candidate situations archive, and



ranks them. The N most similar meteorological situations form the
analog situations subset.

2. The N associated PV production observations at lead-time +h are
selected as well as the corresponding observations from the explanatory
archive.

3. The selected elements from the response and explanatory archives are
used to train a forecasting model, while last observations of the ex-
planatory features at time ¢ permit the generation of PV production
forecast at time t + h.

Step 1: Identify N past weather
yNp Predictor: (Z;,5)

Weather forecasts

forecasts similar with weather
forecast at time ¢ + h.

Predictand /Response

feature: (y.,)
PV production

Step 2: Match -candidate
meteorological forecasts with
PV production observations and

associated observations of

Step3.1: Step 3.2:

explanatory features. Modelfitting. Prediction.
Explanatory features: (X,)
e.g. past production and
satellite-hased observations
||
! o ! ] Time
ty tgty ty t t+h
| Target meteorological situation i Candidate meteorological situations
| Target PV production to forecast i PVproductionobservations used to fit model
| Explanatory features observations used for prediction ! Explanatory features observations used for training

Figure 2: Schematic representation of the training of the analog-based approach, inspired
from [27, 28].
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2.1.2. Local Regression

From a mathematical point of view, WHCO may be assimilated to a local
regression approach [29]. Instead of fitting a regression model (Equation (1)),
denoted as root model, globally on the whole dataset of available observations
T, the fitting is performed locally on a subset Ty. This subset gathers N
observations associated with the neighbourhood of the focal point, Z;,
namely the forecast of weather parameters. Attention is drawn to the fact
that the fitting neighbourhood is defined within the state space (i.e. space
containing state features, Z;,;), while the model fitting is performed with
explanatory features, X;. This operation is repeated for all the fitting points
of the testing set in a rolling manner.

Z?t+h|t = froot (an B(ZtJrh)) + €ttt (1)

Equation (2) presents the distance metric, D, proposed by [26], used here
to measure the degree of similarity between the different observations of the
state space, and to rank past situations according to their degree of likeness
with the focal point. This score outperforms the traditional Euclidean dis-
tance thanks to the term under the square root, which takes into account
the temporal evolution of the features. In [26], the authors propose a grid
search optimisation procedure to determine the optimal set of weights, w*,
leading to the best forecasting performances. In the present configuration,
this approach is hardly conceivable due to the high computation cost induced
by the RF model fitting. Thus, we presume that the weights are uniform.

Eventually, only the N closest elements are kept (Equation (3)).

NA A t
Wi
D(Ziyns Zon) = ) - D Gitrhts = Ziines)® (2)
i=1 "\ j=—F
TN - {t/ S T| D(Zt+h7 Zt’+h) S GhN} (3)

2.2. Forecasting Models

The root model is employed to infer statistical relationships between ob-
servations of the response variable and explanatory features belonging to the
subset Ty.

Auto Regressive Integrated Moving Average (ARIMA) models [30] con-
stitute a family of models well-suited to short-term PVPF [14, 9, 11]. Here,
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the ARX model is considered as the linear root model of our modelling strat-
egy (Equation 4). The high number of available explanatory variables makes
the model more complex and may undermine its accuracy. To tackle this
issue, the Least Absolute Shrinkage and Selection Operator (LASSO) pro-
cedure [31] is implemented to perform feature selection and regularisation
(Equation 5).

froot (Xtvﬁ) :504‘5/)(; (4>

N p
(Bo, ') = arg min (% > = Bo—BX+AY |B;-\) (5)
Bo.B’ t=1 j=1

The second model considered is the RF [32], which is a data-driven model
able to perform non-linear mapping between a set of input and output fea-
tures. It is an ensemble learning method composed of several decision or
regression trees grown in parallel, whose the outputs are averaged (Equa-
tion 6). Today, RF is one of the mainstream models employed in the field of
RES forecasting: as an example, a recent forecasting competition was won
by an architecture based on a Quantile Random Forest (QRF) model [33].

N g
Vo= jZIfJ»(Xt) (6)

2.3. State Variables

To select PV production data observed under similar weather patterns,
it is necessary to work with weather parameters that accurately account for
the PV generation process. The features considered are the following vari-
ables of the NWPs model:Surface Solar Radiation Downwards (SSRD), 2-m
Temperature (T2M), and Total Cloud Cover (TCC) at the site position. In
addition, the solar azimuth, and elevation angles (a® and 6° respectively)
are added for two reasons: (1) despite irradiance-based explanatory features
being normalised by clear-sky model output (this process is detailed in Sec-
tion 3.1), [23] highlights that some periodical effects are still present in the
normalised outputs; and (2) in a context of WHCO, these inputs enable us
to implicitly take into account effects due to dawn (e.g. shading). The vector
of state features is built as:
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SSRDys
T2M; i
Z., = | TCC (7)

S
Qiin

s
t+h (5,1)

2.4. Fxplanatory Variables

The root models in Equation (1) are fed with two kinds of explanatory
variables: either endogenous inputs (i.e. PV production) and/or exogenous
inputs (i.e. spot NWPs and Sattelite Derived Surface Irradiance (SDSI)).
Within the scope of short-term PVPF, endogenous inputs are essential, and
consequently they are systematically integrated. In a next step, NWPs and
SDSI features are considered individually or jointly to assess their influence
on forecasting skills. Equation (8) represents the regressor vector containing
all available inputs.

g
SDSI 1y
SSRD;

X = T2M, (8)
TCC
a;

0;

L d ((L4+1)*(NSPST41)45,1)

3. Observational and Meteorological Datasets

The models are trained over the year 2015 and evaluated on the period
covering 2016. The input explanatory variables and the PV power forecast
outputs have a 15-minute granularity, while the state variables consist of
hourly predictions. Instead of performing expensive temporal interpolations
of the state variables at a 15-minute time step, we assume that the atmo-
spheric state remains constant from time ¢ — 00A15 to time ¢ + 00A30.

3.1. Data Normalisation

Solar-related features (i.e. PV power, SDSI, SSRD) are non-stationary
by nature, which makes them more complex to investigate, while reducing
the set of practical tools [5]. In simple terms, stationarity means that the
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properties of a time series (e.g. mean, variance) do not change over time. In
the case of PV production, non-stationarities result mainly from astronomical
phenomena: the sun path induces daily (i.e. day/night cycle) and monthly
(seasonal cycle) variability.

Using traditional stationarisation techniques, such as differentiation of
the time series, is not enough to remove non-stationarities [11]. In general
it is difficult to fully stationarise solar production timeseries. Methods in
the literature rather attempt some "normalisation” to attenuate the deter-
ministic components. A common option consists in normalising observed
irradiance time series I; with the output of a clear-sky model I¢* (Equa-
tion (9)), which estimates the part of solar irradiance reaching the ground
assuming a cloudless sky. This normalisation permits to exhibit the stochas-
tic component linked to cloud motion. The clear-sky time series are derived
from the McClear model [34], while [35] provides the diffuse model to project
irradiance on tilted planes. Moreover, observations associated with low-sun
situations (i.e. 6% < 5°) are excluded because irradiance levels are too low
to be of significance in solar power applications [36].

Y

t

3.2. PV Production Observations

We consider production records from nine fixed-tilt PV grid-connected
systems located in the Rhone valley in France, mainly along the Rhone
River (Figure 3) and operated by the Compagnie Nationale du Rhone. The
installed power capacity ranges from 1.2 to 12 MWp. Pre-processing is em-
ployed to remove obvious outliers from both the training and testing sets.

3.83. Numerical Weather Predictions

The NWPs used in this work are obtained from the highest resolution
(HRES) configuration of the Integrated Forecast System (IFS) run by the
Europeran Center for Medium-Range Weather Forecasts (ECMWF). This
model is run twice a day, at 00:00:00 UTC, and 12:00:00 UTC providing
parameters with a 1-hour temporal resolution and a 0.1° x 0.1° spatial res-
olution. NWPs model outputs are considered at the PV farm’s location by
performing a bi-linear interpolation of the nearest grid points.

Depending on the lead time, several predictions can be issued for the
same time (e.g. predictions for time 13:00:00 are provided by the runs of
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Figure 3: Spatial distribution of PV sites located in southeast France. The blue spots
indicate the nine PV plants.

00:00:00 and 12:00:00 on the same day). Thus, two approaches are considered
according to the weather information integration strategy. First, one may
consider that each run has distinctive features: the number and position of
initial observations used to initialise the numerical model vary according to
its launching time, which impact the quality of the forecasts. Therefore, when
NWPs are considered as state features, it is relevant to compare predictions
with similar errors, and thereby, runs delivered at the same time of the day.
Alternatively, one may focus on the fact that forecasting precision tends to
decrease as the lead time increases. Thus, when NWPs are considered as
explanatory variables, predictions from the most recent run are considered.

3.4. Satellite-derived Surface Irradiance

The SDSI data are extracted from the Helioclim-3 database, which stores
15-minute GHI maps with around a 5-km spatial resolution in Europe. This
database is generated by the Heliosat-2 method [37], which processes images
collected by meteorological geostationary satellites into maps of solar radia-
tion. For the purpose of this study, time series of estimated GHI are derived
for each pixel of these spatial maps. A feature selection based on the minimal
Redundancy Maximal Relevance (mRMR) framework [38] is implemented
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to reduce the computational burden induced by the high dimensionality of
SDSI. This selection step, performed on the training set, provides a subspace
composed of N°P5T satellite pixels for each forecast horizon.

4. Results

This section investigates the possible interactions between weather infor-
mation integration strategies with ST inputs and two types of forecasting
models. To assess the specific contribution of each data source, we draw on
the modular modelling structure introduced in Section 2. All developments
are performed using R language [39].

4.1. Benchmark Model and Evaluation

4.1.1. Clearness Index-based Persistence Model

In the literature of RES forecasting, the clearness index-based persistence
model, provided by Equation (10), is often used as a reference. This model
only uses past measurements and does not involve any modelling process.
The main assumption is that the weather situation, and so the related PV
generation, remains unchanged for a certain amount of time. Despite being
a naive approach, it performs well for very short-term horizons for which
the persistence in cloud structures and distribution can be observed and
for situations with low weather variability. Thereafter, this model is simply
denoted as persistence.

Pr +CS, . . .
. —gcts,z I if P* 0 (i.e. daytime) 0)
vehlt ™ ) Hgano jCSw i po — ) (je. nighttime)

It+hj*24h00

4.1.2. Forecast Performance Criteria

A large range of performance metrics has been defined by the scientific
community, each of which highlights a specific aspect of the forecasting error
[40]. In the present study, we use a set of well-established metrics to charac-
terise the quality and accuracy of the models and to enable comparison with
other studies.

We consider the normalised Root Mean Square Error (nRMSE) and the
normalised Mean Absolute Error (nMAE), defined hereinbelow, where N is
the number of paired data. Nighttime data are discarded because they do not
offer relevant information. Normalisation is done with the nominal capacity
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of the PV plants. Scores are computed individually for the nine PV farms
but for a more compact presentation we average them.

N ~ 2
1 P, — P7*
nRMSEx(h): NZ ( t+h|tpx t+h) ‘

(11)

t=1 ¢
N D T
1 Pt+h|t - Pt—|—h
nMAE*(h) = =) . . (12)
N — P

To quantify the relative improvement of the considered forecasting models
over persistence, the following comparison skill score is used:

_ Au(h) = Ager(h)
Ap(h) = Ages(h)
A positive (negative) skill score implies that the forecasting model per-
forms better (worse) than the reference model. A skill score equal to zero
means that the performances of both models are equal, while a perfect fore-
cast is obtained for a skill score of one.

SSu(h)

x 100%. (13)

4.2. Considered Architectures and Terminology

To assist the reader in understanding the configurations assessed, Figure 4
features model denominations and block diagrams representing the model’s
architecture:

e Model € {AR, RF}: the AR and RF models are investigated.

o X1, Xy € {0, NWP,SDSI}: forecasting models are fed with PV pro-
duction observations and/or NWPs and/or SDSI.

e 7 € {NW P}: forecasts are conditioned with NWPs.

4.8. Weather Information Integration within a Linear Model
4.3.1. Non-linear Dependent Feature

The WHCO approach is a straightforward and efficient way to integrate
explanatory features that have a non-linear relationship with the response
variable in a linear model. To illustrate this statement, we consider the inte-
gration of the azimuth angle, a,, within the ARX model. Figure 5 shows that
performances achieved by considering the azimuth angle as an explanatory
feature (i.e. AR + Azimuth model) are outperformed by the state feature
integration mode (i.e. CAR(Azimuth) model).

17



I— WHC0 I — WHCO

X1t —| Root Mode! Vo, '

XZ — X
PV — Root Model 1 — Root Model

PV —

PV — Persistence

X, —

Persistence Model + X1+ X, CModel(2) CModel(Z) + X1+ X5

Extra features mode  Conditioning mode ~ Combined mode

Figure 4: Model designation and corresponding structure.

4.8.2. Two Complementary Approaches

Figure 6 represents forecasting performances achieved by the ARX model
fed with SSRD feature. The WHCO approach (i.e. CAR(SSRD) model) per-
forms poorly compared to its counterpart (i.e. AR+SSRD model). When the
two integration modes are employed simultaneously (i.e. CAR(SSRD)+SSRD
model), resulting performances are the highest for both metrics considered.
Therefore, the extra-feature mode should be preferred for features having a
linear dependence with the response variable. Yet, far from being two op-
posed integration modes, the WHCO and the extra-features strategies assess
different kinds of information which can complement each another.

4.4. Interaction Between Forecasting Model Families, Sources of Information
and Integration Strategy of Weather Data

In this section, we compare the different forecasting architectures to de-
termine the best way of integrating data to obtain optimal forecasting perfor-
mances. Figure 7 and Figure 8 gather the forecasting skill scores of AR and
RF models fed with past PV production observations, and/or NWPs and/or
SDSI observations. The WHCO version of these models is also evaluated.

4.4.1. Production Observations

In cases where only PV production observations are available, the non-
linear model turns out to be more efficient than the linear model both in
term of nRMSE and nMAE. This statement is observed for all forecasting
horizons under study.
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Figure 5: Integration of solar azimuth angle either as an additional explanatory feature or
as a state feature in an Auto-Regressive (AR)-based forecasting model.

4.4.2. Production Observations + SDSI

In a ST context, the RF+SDSI model outperforms the AR+SDSI model
for all considered horizons and metrics. A comparison of the skill scores be-
tween temporal-based forecasts (i.e. AR and RF') and ST-based predictions
(i.e. AR+SDSI and RF+SDSI) highlights that the non-linear model is able
to extract more information from ST data sources than the linear model
(e.g. for a 1-hour lead-time the nRMSE improvement due to ST information

is 18.1 — 8.7 = 8.0 with the RF model, while it is of 10.1 — 5.0 = 3.7 with
the ARX model).

4.4.3. Production Observations + NWPs

Ezplanatory Features. This approach explicitly considers the information
carried by the NWPs data. The AR+NWP model manages to extract rele-
vant information in such a way that it can improve nRMSE scores by up to
22.2% in comparison with the AR model for a 6-hours lead time. Accuracy
improvement due to weather information increases with lead time. Simi-
lar conclusions are drawn when comparing the RF+NWP model with the
RF model. Nevertheless, for all considered horizons, the RF+NWP model
outperforms its linear counterpart.
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Figure 6: Influence of the feature integration approach of SSRD (i.e. as explanatory
feature, state feature or both) on forecasting performances.

State Features. This approach considers the NWPs information as a way to
gather PV production measured under similar weather states. As a result, the
dynamics are directly carried by production observations. The CAR(NWP)
model slightly performs better than the CRF(NWP) model: on average, a
performance increase of +1.64% and +0.68% (in term of nRMSE and nMAE)
is observed in favour of the CAR(NWP) model.

Figure 9 represents the error distribution of the Persistence, AR, CAR,
RF and CRF models. At first glance, for all models, the error distribution
tends to get wider as the look-ahead time gets longer. For short look-ahead
times (i.e. h < 30 minutes), all of the models (except ARX model) have
almost perfectly symmetrical, centred distributions around 0. On the con-
trary, for higher forecasting horizons (i.e. h > 180 minutes), we observe
skewed distributions for the Persistence, AR and RF models. These asym-
metrical distributions are corrected with the WHCO process. In addition,
the distribution curves of conditioned models tend to be sharper (e.g. the
CAR(NWP) model never experiences errors greater than 32.5% of the in-

stalled capacity while the AR model reaches errors representing 40.0% of
P.).

Ezplanatory and/or State Features. In a next step, we focus on the best way
to integrate NWPs in a forecasting model. In the case of the linear model,
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Figure 7: nRMSE skill scores with regard to the persistence model. Dark colours symbolise
forecasting models trained on the whole dataset, while light colours stand for WHCO
models. Columns represent the explanatory features, while rows indicate the lead time of
the forecasts. The number above the bars indicates the exact value of the improvement
metric.

the conditioning approach exhibits higher forecasting performances (i.e. the
CAR(NWP) model is better than AR + NWP for both metrics). Based on
observations from Section 4.3, this is supposed to result from a better inte-
gration of features having a non-linear correlation with the production. On

the contrary, when dealing with non-linear forecasting models, it is better to
include NWPs as explanatory features. Despite the improved performances

due to the conditioning approach, the CAR(NWP) model is outperformed

by the RF+NWP model.

It is possible to further improve the forecasting performance of the CAR(NWP))

model by adding NWPs as extra features (which leads to the CAR(NWP)+NWP
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Figure 8: nMAE skill scores with regard to the persistence model. Dark colours symbolise
forecasting models trained on the whole dataset, while light colours stand for WHCO
models. Columns represent the explanatory features, while rows indicate the lead time of
the forecasts. The number above the bars indicates the exact value of the improvement
metric.

model). This configuration leads to similar performances as those reached
by the RF+NWP model (i.e. in average, a 0.06% and —0.46% difference
is observed between CAR(NWP)+NWP and RF+NWP models in term of
nRMSE and nMAE). In this respect, feeding the CRF(NWP) model with
NWPs slightly decrease its forecasting skills, possibly due to overfitting is-
sues.

As a result, when dealing with production observations and NWPs, it is
more profitable to consider non-linear models fed with explanatory features
or WHCO linear models with weather-based explanatory features. At this
point, the choice of the model results mainly from a computational cost and
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to the look-ahead times.

interpretability compromise.

4.4.4. Production Observations + NWPs + SDSI

When dealing with production, NWPs and SDSI inputs, it is obvious
that including these data as explanatory features in an AR model leads to
the worst performances both in term of nRMSE and nMAE. Once again,
the WHCO approach improves significantly the forecasting performances of
the linear model. In addition, we observe that the nRMSE score of the
CAR(NWP)+SDSI+NWP is slightly better than the one of CAR(NWP)+SDSI.

Conditioning non-linear models results in a performance drop compared
to the REF+NWPs+SDSI model for both metrics.

To conclude, the CAR(local)+NWPs+SDSI model appears to be a good
option inasmuch as it performs better on very short-term horizons and ex-
hibits similar skill scores to the RF+NWPs+SDSI model for higher forecast-
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ing horizons.

Table 1 summarises the different findings regarding the optimal model
choice considering the inputs taken into account.

Table 1: Summary of the best model configuration depending on the type of inputs.

Inputs Best configuration
PV production RF
PV production+NWP CAR(NWP)+NWP / RF+NWP
PV production+SDSI RF+SDSI

PV production+NWP+SDSI  CAR(NWP)+NWP-+SDSI / RF+NWP-+SDSI

5. Conclusions

We investigated the influence of NWPs integration within the forecast-
ing chain of PV generation through two strategies: either as explanatory
features or as state variables to condition the statistical model to the atmo-
spheric states. To improve forecasting performances for short lead times, ST
information is considered in the form of SDSI, from which, geographically
dispersed pixels are extracted via a selection procedure newly applied to the
PVPF domain. To assess the coupling between inputs integration and type of
information, we developed a modular architecture which conditions off-the-
shelf regression models to weather parameters. This conditioning approach
is a way to include physics-based information within statistical tools and to
dynamically update their parameters according to the weather state.

This conditioning procedure appears to be an appealing approach to ex-
tend the forecasting performances of linear models such as the AR model (i.e.
CAR(NWP)). On the contrary, non-linear models such as the RF model per-
form better when fed with explanatory features (i.e. REF+NWP). This finding
tends to support that weather conditioning is not adapted with non-linear
models, therefore, it should be used carefully in the literature. The WHCO
approach reveals interesting performances when it comes to consider ST ob-
servations as additional inputs. In that case, the CAR(NWP)+SDSI+NWPs
model turns out to be more efficient than non-linear approaches such as
RF+SDSI+NWPs for short lead times. This may be explained by the abil-
ity of the model to select SDSI-based features in line with wind propagation
[19].
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Further works could extend the present investigations by applying the
proposed methodology with probabilistic forecasting models or for higher
forecast horizons.
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