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Abstract. Digital technologies are becoming ubiquitous while their im-
pact increases. A growing part of this impact happens far away from the
end users, in networks or data centers, contributing to a rebound effect.
A solution for a more responsible use is therefore to involve the user. As
a first step in this quest, this work considers the users of a data center
and characterizes their contribution to curtail the computing load for a
short period of time by solely changing their job submission behavior.
The contributions are: (i) an open-source plugin for the simulator Batsim
to simulate users based on real data; (ii) the exploration of four types
of user behaviors to curtail the load during a time window, namely de-
laying, degrading, reconfiguring or renouncing their job submissions. We
study the impact of these behaviors on four different metrics: the energy
consumed during and after the time window, the mean waiting time and
the mean slowdown. We also characterize the conditions under which the
involvement of users is the most beneficial.

Keywords: Demand response - User involvement - User-aware - Repro-
ducible research - Parallel workload - Data center

1 Introduction

Digital technologies are increasingly contributing to global warming, for instance
through mining of their components, transport along their supply chains or elec-
tricity consumed during their use phase. A recent review of estimates [6] puts
this impact at 1.0-1.7 GtCOaqe in 2020, i.e., 1.8%-2.8% of global greenhouse gas
emissions. The authors also argue that although progress in energy efliciency of
these technologies will probably continue, it will likely be outbalanced by growth
in usage, leading to an overall increase of the carbon footprint. This so-called
“rebound effect” seems difficult to fight within our research area (scheduling and
distributed computing) where the focus is on energy optimization that must
be effortless to end-users. On the contrary, we argue that users of digital tech-
nologies must be brought back into the loop, made aware of their impact and
empowered to mitigate it.

Involving the user for environmental-aware scheduling in data centers has
two aspects. One is to consider user requests for more environment-friendly ser-
vices (e.g., guarantees, green labels) and try to achieve them. The other is to
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consider the users as a lever for flexibility in the scheduling, i.e., they accept to
compromise occasionally on their quality of service to allow some optimizations.
The degradation can be spatial [9] (reducing the amount of resources allocated
for the jobs), temporal [16] (delaying their execution) or both [§].

This paper proposes an experimental analysis of such user levers in a context
of demand response management by investigating the following question: from
the users’ perspective, what is the room for maneuver to curtail the load on the
data center for a short period of time?

The rest of the article is organized as follows. We start by giving some back-
ground and discuss related works in Section 2] Section [ presents our data center
model and lists the user behaviors studied for demand response. Section [] de-
scribes the experimental setup for characterizing these behaviors. The results
are presented in Section [5] while Section [6] provides a discussion on the results
and the limitations of the study. Finally, we conclude in Section [7] and provide
perspectives for future works.

2 Background and related works

Context: demand response Data centers are viewed as good candidates to par-
ticipate in demand response programs [I7]. Large consumers of electricity, they
also have a more flexible load than other industrial facilities. Demand response
consists of adapting the electricity consumption in response to the availability of
production. For example, some electricity markets have Coincident Peak Pricing
programs, where industrial consumers are charged a very high price during the
time window when the most electricity is requested overall in the grid. These
peak pricing events last typically 15 minutes [I8] or one hour [I4] but are only
known afterwards, e.g., at the end of the month. The electricity supplier would
only send warnings to the consumer that a peak load event may happen in the
next few hours.

Involving the users Among the large body of work on energy-aware schedul-
ing in data centers, some authors have studied strategies involving the users.
Some works aim at providing guarantees to their users (“green offers” [7], “green
SLA” [I0/1]) and commit to fulfilling them by classical methods (self-supply of
renewable energy [10], geo-distributed data centers with variable PUE and en-
ergy mix [7II]). More related to this paper, some works study user flexibility
as a lever for energy efficiency. For example, Guyon et al. [9] give to the users
the choice between three execution modes (big, medium, little) for their jobs.
Small execution modes request fewer resources but take longer to complete. They
achieve gains through spatial consolidation with a bin-packing algorithm. Org-
erie et al. [I6] save energy through thermal-aware scheduling and smart resource
switch off by letting the users choose between different submission times on the
basis of energy consumption estimations for each of the alternatives. A combi-
nation of both spatial and thermal consolidation is proposed in another work
by Guyon et al. [8] or in the All4Green project [2], where user involvement is
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leveraged through contracts between the energy supplier, the data center and
the user. The latter work, also in a context of demand response, is the closest
to our approach. However, it integrates demand response mechanisms affecting
the user with mechanisms transparent to them (use of batteries, precooling, ge-
ographical workload migration) so much so that the contribution of each user
behavior to the final results is difficult to identify.

The originality of our work is to focus on the user behaviors, which allows
providing a characterization of them. To the best of our knowledge, we are also
the only ones to consider the behavior of simply renouncing job submissions. It
is a radical behavior, but to be considered in a sufficiency approach.

3 Model

In our model, a demand response event will be represented by a time window of
few hours (called “demand response window”) during which the objective is to
reduce electricity consumption. The event is supposed unknown in advance. In
order to characterize the efficiency of different user behaviors to react to such
demand response event, we consider a data center to which users can submit
their jobs. At the interface between the two is the RJMS (Resource and Job
Management System), the scheduler in charge of job placement and resource
management. In this section, we describe the different components of our system.

3.1 Data center

In the data center, we only take into account the energy consumption of the
multicore homogeneous machines. The power of a machine is Pyt ¢, Pson or Psoyy
if the machine is switched off, switching on or switching off, respectively. When
a machine is switched on, its power is equal to Pjge + N * P.ore with Pjg. the
power drawn by an idle machine, N the number of cores in use (i.e., with a job
running on it) and Pe,.. the power drawn by each core.

A job is completely defined by its submission time, execution time and num-
ber of requested cores that we denote by size in the rest of this paper. The
scheduler decides the starting time for the job and the machine it will be ex-
ecuted on. Note that the scheduler in our model only execute jobs on single
machines. We suppose perfect communication without latency.

3.2 Scheduler

The scheduler is a bin-packing scheduler with shutdown (same as Guyon et
al. [89]). It is a greedy algorithm trying to schedule (“pack”) all the jobs in the
least possible machines and shut down idle machines. To do so, it maintains and
updates two data structures: a queue of waiting jobs and a list of switched-on
machines. The queue of jobs is sorted by decreasing size order — and by increasing
submission time (first come, first served) in case of a tie. The list of machines
is sorted by increasing order of available cores. Every time one (or more) job
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is submitted or finishes, the scheduler goes through the job queue in order and
tries to find for each job the smallest machine where it fits. If no machine is
found that way, a new machine (if any) is powered on and the job is scheduled
on this machine. After that, we immediately shut down all idle machines.

3.3 Users

During the demand response window, users are asked to make an effort to curtail
the load in the data center. They do so by adopting different behaviors described
below and illustrated in Fig. [T}

demand response window " '
>

job i [T

N [

Fig. 1. The five user behaviors studied

— rigid: replay jobs as in the original workload; Baseline for comparison.

— renounce: do not submit jobs originally submitted during the window.

— delay: delay all job submissions to the end of the window.

— degrad: divide the size of the jobs by two, rounded up. The execution time
stays the same. Note that the rounding implies that when only one core is
requested for a job, the job remains unchanged.

— reconfig: also divide the size by two, rounded up, but increase the execution
time to match the original computing mass. We make the hypothesis of
perfect speedup, i.e., a job executing on one core completes in exactly twice
the time than on two cores.

4 Experimental setup

4.1 Software used for simulation

To simulate our system, we use Batsim [4], an open-source infrastructure and
resource management system simulator]] based on SimGrid?] We implemented

! Batsim: https://batsim.org/
2 8imGrid: |https://simgrid.org) with the energy plugin https://simgrid.org/doc/
latest /Plugins.html?highlight=energy#host-energy


https://batsim.org/
https://simgrid.org
https://simgrid.org/doc/latest/Plugins.html?highlight=energy#host-energy
https://simgrid.org/doc/latest/Plugins.html?highlight=energy#host-energy
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the bin-packing scheduler for Batsim in C++-. We also developed a plugin called
“batmen” to interact with simulated users and receive their job submissions.
For the purpose of this study, users replay an input workload trace except in
the demand response window, where they act according to their behavior. We
therefore implemented five user classes corresponding to the five behaviors of
Fig. |l} Our code is open sourceﬂ With this simulation tool, we designed and
conducted an experimental campaign, whose main details are given below. All
scripts are available to reproduce and analyze our results, either in our gitlalﬂ
or in the Figshare repository [I5].

4.2 Workload

We replay a real public workload trace containing the information about the
submitting user for each recorded job. We chose the 2-year trace from MetaCen-
trum (national grid of the Czech Republic), available in the Parallel Workload
Archivdﬂ The platform is very heterogeneous and underwent majors changes
during the logging period [12]. For the purpose of our study, we perform the
following selection:

1. We truncate the workload to keep only 6 months (June to November 2014)
where no major change was performed in the infrastructure, and we remove
all the clusters whose nodes have more than 16 cores;

2. From this truncated workload, we remove all jobs with an execution time
greater than one day and all jobs with a size greater than 16. It leaves us
with a workload manageable with machines of a usual size, and without more
than one day of inertia.

4.3 Platform

The first selection step keeps a total of 6304 cores. The second selection step
excludes 2.7% of jobs from the truncated workload, representing 73.7% of the
mass (in core-hour). Consequently, we create a simulated platform adapted to
this load with 6304 x (1 —0.737)/16 = 104 homogeneous 16-core machines.
Power constants (Pige = 100W, P.ore = 7.3125W, P,s; = 9.75, Pson, = 100W
and Pspr = 125W) for the servers and time to switch on (Tso, = 150s) and
switch off (Tson, = 6s) are measurements in Taurus Grid’5000 cluster from ex-
isting work [9].

4.4 Experimental campaign

For the evaluation, we consider the following scenario. We imagine a data center
functioning at nominal load: some jobs are currently running and users can

3 batmen repository: https://gitlab.irit.fr/sepia-pub/mael /batmen

% experiments repository: https://gitlab.irit.fr/sepia-pub/open-science/
demand-response-user/- /tree/europar2022

° METACENTRUM-2013-3.swf available at |https://www.cs.huji.ac.il/labs/parallel /
workload/l metacentrum?2/index.html


https://gitlab.irit.fr/sepia-pub/mael/batmen
https://gitlab.irit.fr/sepia-pub/open-science/demand-response-user/-/tree/europar2022
https://gitlab.irit.fr/sepia-pub/open-science/demand-response-user/-/tree/europar2022
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
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Fig. 2. Descriptive statistics for the 105 experiments. Red lines corresponds to the
infrastructure (1664 cores). (a) number of jobs submitted in window; (b) computing
mass (in core-hour) in window; (¢) computing mass in window by number of submitted
jobs (1-hour window); (d) computing mass in window by weekday (1-hour window)

submit new jobs to the scheduler. Suddenly, the electrical grid sends an alert
to warn the data center manager that a consumption peak is detected in the
grid. The manager forwards this alert to his users who adapt their submission
behavior. At the end of the alert, the users return to a normal behavior (after
submitting all their delayed jobs, if any).

We conduct an experimental campaign on 105 different input data (the num-
ber of weekdays between Jun 1, 2014 and Oct 23, 2014). For each input data, we
simulate the aforementioned scenario, assuming that all users adopt the same
behavior during the demand response window. On three days of data center op-
eration, we make the demand response event arise at 16:00 on day 2, chosen to
be a weekday. This choice is justified by a characterization of 26 years’ coincident
peak pricing data [14], given that the MetaCentrum trace also displays diurnal
and weekday /weekend patterns. We study two lengths for the demand response
window: one and four hours. We also tried other starting times (drawn at ran-
dom) and other window lengths (0.5 and 2 hours) but decided not to report their
results here as they are not leading to different conclusions.

The simulation starts one day before the event and stops one day after, to
ensure that the infrastructure runs at nominal load on day 2 and has absorbed the
event by the end of day 3 (the selected jobs in the workload having an execution
time lower than one day). In total, we launch nine simulations per experiment
(= input data): the baseline simulation with all users having a “rigid” behavior,
and the four other behaviors on the two window lengths. Descriptive statistics
on the experiments are displayed in Fig.

The campaign launched in parallel on a 2 x 8-core Intel Xeon E5-2630 v3
machine finished in less than two hours. Launched in France, and ran 2 times
in total, this has a carbon footprint of around 50 g CO2e (calculated using
https://green-algorithms.org v2.1 [13]).


https://green-algorithms.org
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5 Results

5.1 Energy metrics
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Fig. 3. Energy consumed in each simulation. Y-axis: energy consumed (in kWh) dur-
ing the demand response window. X-axis: computing mass (in core-hour) during the
demand response window for the baseline behavior.

We recall our research question: by intervening only on the user’s side, what
energy gains can be expected by adapting one’s behavior for a few hours? Fig. [3]
displays the energy consumed during the demand response window for
every experiment and every behavior. Values are scattered by the total load of the
infrastructure during the window for the baseline behavior. For that behavior,
we note an almost linear relationship between infrastructure load and consumed
energy. Deviations from the linear line are due to situations favoring a more
or less good packing from the scheduler inside the 16-core machines. Behaviors
“renounce” and “delay” perform identically for this metric: users of both behaviors
stop submitting inside the demand response window, resulting in a lower energy
consumption compared to the baseline. This gain is the best we can expect.
Behaviors “degrad” and “reconfig” display similar results. In addition, one would
expect a positive correlation between the load of the platform and the relative
energy gains of the four behaviors compared to the baseline. It would translate
into an increasing distance between the colored dots and the blue dots in the
graphs, as the load increases. Counter-intuitively, this does not seem to happen.

The experimental campaign showing very scattered results, Fig. [4] displays
the relative energy gains for each experiment as box plots. We can read for
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Fig. 4. Energy metrics per behavior relatively to the baseline behavior. The green
triangle in the box plots indicates the mean.

example that “renounce”, the most radical behavior, allows energy savings of up
to 33% in the window for a one-hour window, and 53% for a four-hour window.
The savings do not go up to 100% because jobs that were already there before
the window are still running in the infrastructure, which consumes energy.

In addition to the energy consumed within the window, Fig. 4| shows the
impact of the different behaviors on the energy consumed after the demand
response event, i.e., from 17:00 or 20:00 on day2 (depending on the window
length) to 24:00 on day3. For this second metric, “delay” performs very differently
compared to “renounce”. All the jobs within the window get postponed, resulting
in an extra power consumption at the end of the window: +0.3% (resp. +3.4%) on
average for a 1-hour (resp. 4-hour) window. This behavior remains neutral with
respect to overall energy consumption (within + after the window).The behavior
“reconfig”, which also keeps a constant mass of jobs compared to the baseline,
allows some optimizations. Up to 10% overall energy consumption could be saved
because the reconfigured jobs “fit better in the holes” left by the available cores
in the switched on machines. “Degrad” performs unsurprisingly better in all
respects, the users having accepted to reduce the mass of job submitted.

Finally, we notice that the bigger the window, the better the energy
gains. This is due to inertia of the system: with a longer window, a behavior on
the submitted jobs has more time to make a difference compared to the residual
jobs that are still running in the infrastructure.
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5.2 Perceived impact on the scheduling

We use two usual metrics: mean waiting time and mean slowdown. Waiting time
is the time a user has to wait until her job starts running:

WaAitinGsime = Startinggime — SUbMISSIONLime
Slowdown divides this extended completion time by the execution time:

slowdown = (finishyime — submissionyime)/executiongime.

For each experiment, we take the average waiting time (resp. slowdown) on
all jobs submitted between the beginning of the demand response window and
the end of the experiment (same period as metric energy in + energy_ after).
Fig. [f] shows these results for the “rigid” behavior. We observe that for half of
the experiments, the mean waiting time is below one hour (3600s) and the mean
slowdown below 25. These are experiments with an unsaturated infrastructure
and an often empty queue of waiting job. On the other hand, there are also cases
of high congestion (e.g., the seven outliers at more than 6h mean waiting time).

W °° ° e ° °

0 10000 20000 30000 40000 50000 60000

(a) Mean waiting time (in seconds)

El:l—4 ° ° ° ° ° ° °

0 100 200 300 400

(b) Mean slowdown (dimensionless)

Fig. 5. Scheduling metric distribution for the 105 experiments, baseline behavior.

The results for the other behaviors are plotted in Fig. [f] as a percentage
of gain/loss compared to the baseline. Specifically for the behavior “delay”, we
provide both corrected and uncorrected metrics. The uncorrected slowdown and
waiting time are calculated in relation to the new (delayed) submission times,
while the corrected ones use the original submission times (from the baseline).
Note also that for the behavior “renounce” some jobs have been canceled, thus
the mean waiting time and slowdown is calculated on a subset of the jobs com-
pared to the other behaviors. From Fig. [f] it can be observed that the behaviors
“renounce”, “degrad” and “reconfig” (in this order) affect the scheduling positively
on average. This is not surprising, as the first two behaviors reduce the total mass
of jobs to compute, and the third allows a better packing. Yet, the scheduling
gets worsened in a significant number of cases (around 50% for “reconfig” and
25% for “degrad” and “renounce”), due to bad choices of the scheduler.

The behavior “delay” stands out from the others as it affects the scheduling
negatively in most cases, even for the uncorrected metrics. It gets even worse
when including the extra waiting time from the delayed job in the calculation
of the corrected metrics. In fact, it is preferable in terms of waiting time and
slowdown that the job submissions are spread out throughout the time.
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Fig. 6. Scheduling metrics per behavior relatively to the baseline behavior
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Fig. 7. Example of fluid and residual mass. (Thursday Jun 26 2014)
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6 Discussion

6.1 The fluid-residual ratio: an explanation of the results

11

As seen previously in Fig. [3] the achievable energy savings in the demand re-
sponse window cannot be explained by the infrastructure load during that win-
dow. In fact, it is possible that the load is very high because of a large mass
of job submitted before the window, although the load on which the users have
an influence is the mass submitted during the window. We call these two quan-
tities the residual mass, submitted outside the window, and the fluid mass,

submitted inside the window (Fig. |7).

Users, by accepting to ‘“renounce” or “delay” their jobs, allow cutting the
energy consumption due to the fluid mass, which is roughly proportional to the
mass itself, as we saw before. In other terms, the gains during the window
are at most equal to the proportion of fluid mass in that window.
This is exactly what we see in Fig. [§] displaying the energy gains as a function
of the fluid-residual ratio. The red line indicates the best possible gains, which
are almost achieved by “renounce” and “delay” behavior (the non-linearity of the

energy model explaining the gap).
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In some cases, however, these behaviors don’t realize that gain: they are cases
of saturation, when many jobs are waiting in the queue. The removal of the
fluid mass is compensated by the execution of the awaiting residual mass.

For the “degrad” behavior, gains are expected to be of half the fluid mass at
most, as users divide their submitted mass by two. In practice, the results are
even more scattered and further away from their optimal (magenta line). This
is partially due to the saturation effect, but also to rounding (e.g., a job with
an original size of 3 will be submitted with size 2 and a job with size 1 remains
unchanged) and imperfect packing. The analysis for the behavior “reconfig” is
similar, with even less expected gains. Some experiments even make negative
gains: they are due to the greedy and non-clairvoyant scheduler taking bad de-
cisions for the future, like switching off a machine just before the submission of
new jobs.

6.2 Pros and cons of each behavior

behavior‘energy in‘energy overall‘scheduling metrics|acceptability

renounce 1st 1st 1st 4th
delay 1st 4th 4th 2nd
degrad 3rd 2nd 2nd 3rd
reconfig 4th 3rd 3rd 1st

Table 1. Summary ranking of the four behaviors according to their impact on energy
consumption and scheduling metrics. The column “acceptability” is opinion-based, it
reflects the size of the effort asked from the user.

Building upon what we learned from the results, we provide a summary
discussion on the characteristics of each behavior (see Table . To begin with,
the behavior renounce performs the best for all the metrics studied. We saw that
it actually reaches the optimal energy gains during the window for unsaturated
cases. This rank is not surprising considering the sacrifice required from the
user. Yet, we think that such a behavior is often overlooked in similar studies
and argue that environmentally aware users or users provided with a proper
incentive would do it. Moreover, some jobs running in data centers today might
not be indispensable.

On the other end of the spectrum, the behavior reconfig seems to be the
most acceptable to the users, as it does not decrease the mass initially submitted
and provides better waiting time and slowdown than “delay” for both the jobs
within and after the window. “Reconfig” is a good trade-off to achieve some
optimizations with a low effort from the user, especially in combination with
bin-packing schedulers and on/off policies (see [9]).

Delay also keeps the mass constant, which ranks it second behind “reconfig”
in terms of acceptability. Same as ‘“renounce”, it reaches the optimal energy
gains during the window. However, it introduces an overhead in overall energy
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consumption and slowdown compared to the baseline behavior. Note that this
overhead would probably be less important in real life due to users adapting their
behavior if they experience congestion in the infrastructure. This is the limit of
blindly replaying past workload traces in simulations, as pointed by Feitelson [5].

Finally, the behavior degrad ranks second or third in all the categories of
Table [I} It remains an interesting trade-off between simply renouncing a job
and reconfiguring it at constant mass. Practical applications of this behavior are
optional features in an application that can be cut off if needed (e.g., recommen-
dations for e-commerce, alternative paths for mapping apps).

6.3 Interactions with scheduling systems

The work presented in this paper is rather theoretical and abstracts part of
the reality of production systems. For example, in real-world schedulers, it is
commun to have job priorities. In that case, the degradation of a low-priority
job would be less costly to the user compared to a high-priority job. The priority
of a job could be considered along with other criterias (e.g., magnitude of the
delay, size of the degradation) to define a utility metric in an attempt to quantify
the acceptability of a given behavior.

All in all, user submission behaviors remain one lever for energy saving among
others. It has the particularity of having some latency, which makes it not opti-
mal in a context of demand response without prediction. Therefore, taking into
account these behaviors inside the scheduler seems essential to make the
best of their potential and go beyond the fluid-residual limit. For example, by
allowing the scheduler to kill jobs, checkpoint them [3], or to suspend the wait-
ing queue. Decisions could be taken on behalf of the users, with a mecanism of
contract with the data center operator specifying the degradation the user is
willing to accept [2]. Nevertheless, it seems crucial for us to make these decisions
transparent to the user and involve them as much as possible, as this appears as
the main path towards a sufficient [II] use of our technologies.

6.4 Limitations

Model simplifications In our data center simulations, we do not take into account
the latency and bottleneck effects in the communications. Also, we suppose per-
fect speedup in the model, i.e., a job executed on two cores will take exactly
twice longer than the same job executed on four cores. Finally, we accounted
only for the energy consumption of the CPUs, and neglected others like mem-
ory, network or cooling. Hopefully, the powerful simulation tools that we use
(Batsim and SimGrid) will help us to overcome these simplifications in future
works.

Methodological limitations We see three major threats to the validity of our
method to answer the research question. First, we study only one scheduler (bin-
packing) while results with other common schedulers (FCFS, easy-backfilling...)
would have been of interest. Second, we use only one input trace (MetaCentrum)
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which comes from a research infrastructure and not a production cloud, and we
perform a selection from it (see that might make us miss the big picture.
Finally, our study includes all the limitations related to the use of a simulation,
especially when dealing with human behaviors which are unpredictable.

7 Conclusion and future works

In this paper, we study four different ways for a user of a data center to curtail
her load for a certain period of time by changing submission behavior. These
behaviors are delaying, degrading, reconfiguring or renouncing the jobs during
the time period. We show experimentally through simulation on real world data
that these behaviors have a certain latency for decreasing the load on the in-
frastructure. Indeed, they cannot decrease the load due to jobs that are already
running on the infrastructure. Therefore, we define two quantities, the fluid and
residual mass, and discuss the experimental results according to the ratio of
these two quantities. We also discuss the pros and the cons of each behavior in
the light of their energy saving potential, impact on scheduling and acceptability
to the user. We hope that this work will pave the way for studies involving the
user more intensely.

Future work will focus on (i) improving the data center model to deal with
the model simplifications listed in Subsection (ii) proposing schedulers ca-
pable of leveraging the efforts made by the user (e.g., through “green SLA”),
(iii) elaborating on the user model to more realistically account for submission
patterns and response to feedback from the infrastructure (as proposed by Feit-
elson [5]) and (iv) going beyond the limited scope of demand response to reason
on the sustainability of the infrastructure as a whole.
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