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When it comes to improving cancer therapies, one challenge is to identify key biological
parameters that prevent immune escape and maintain an equilibrium state characterized
by a stable subclinical tumor mass, controlled by the immune cells. Based on a space and
size structured partial differential equation model, we developed numerical methods that
allow us to predict the shape of the equilibrium at low cost, without running simulations of
the initial-boundary value problem. In turn, the computation of the equilibrium state
allowed us to apply global sensitivity analysis methods that assess which and how
parameters influence the residual tumor mass. This analysis reveals that the elimination
rate of tumor cells by immune cells far exceeds the influence of the other parameters on
the equilibrium size of the tumor. Moreover, combining parameters that sustain and
strengthen the antitumor immune response also proves more efficient at maintaining the
tumor in a long-lasting equilibrium state. Applied to the biological parameters that define
each type of cancer, such numerical investigations can provide hints for the design and
optimization of cancer treatments.
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GRAPHICAL ABSTRACT |

Atsou et al. Equilibrium Phase in Immune-Controlled Tumors
1 INTRODUCTION

The immune system plays a major role in the control of tumor
growth. This has led to the concept of immune surveillance and
cancer immunoediting composed of three phases (1–3): the
elimination, when tumors are rapidly eradicated by the
immune system, the equilibrium, a latency period when
tumors can survive but remain on a controlled state, and the
escape, the final outgrowth of tumors that have outstripped
immunological restraints. In this later phase, immune
suppression is prevailing and immune cells are also subverted
to promote tumor growth. Numerous cancer immunotherapy
strategies have been designed and assessed to counteract immune
suppression and restore effective and durable elimination of
tumors (4–8). They show improved efficacy over conventional
anticancer treatments but only a minority of patients respond.
The challenge to face now is to identify key biological parameters
which will convert a fatal outcome into a chronic, manageable
state, the durable maintenance of cancer in a viable equilibrium
phase controlled by immunity. Reaching such immune-mediated
tumor mass dormancy is indeed the first key step for successful
control of tumor growth and a goal for immunotherapy (9). The
equilibrium state is however difficult to apprehend
experimentally because the tumor mass at equilibrium is below
detectable limits (3). Mathematical modeling of the tumor-
immune system interactions offers useful information about
the features of the equilibrium phase during primary tumor
development, and such tools could be used to guide the design of
optimal anticancer therapies (10–13).
Frontiers in Oncology | www.frontiersin.org 2
We previously (10) introduced a specific multiscale
mathematical model based on partial differential equations
(PDE), intended to describe the earliest stages of tumor-
immune system interactions. We conjecture that the space
heterogeneities of the distribution of active and resting
immune cells, which are subjected to several interaction
mechanisms with the tumor cells, plays a critical role in the
efficiency of the immune response, and the ability in reaching the
equilibrium phase. This, in turn, motivates the appeal to PDEs
descriptions and can complete the already established modeling
based on ordinary differential systems, on which there exists a
wide literature, see for instance (11, 14–19) Extension to the PDE
framework has permitted to bring out the role of space
organisation (20–23). The reader can find further details and
references about the mathematical modeling of tumor-immune
system interactions, based on different viewpoints and
addressing several issues of the efficacy of the immune
response, in the reviews (24–29). The original model developed
in (10) thus accounts for both the growth of the tumor, by
natural cell growth and cell divisions, and the displacement of the
immune cells towards the tumor, by means of activation
processes and chemotaxis effects. The most notable finding
from (10) was that an equilibrium state, with residual tumor
and active immune cells, can be observed. Moreover,
mathematical analysis provides a basis for the explanation of
the formation of the equilibrium. How the biological parameters
shape this equilibrium is the main question investigated in the
present article. Indeed, the equilibrium can be mathematically
interpreted by means of an eigenproblem coupled to a stationary
June 2022 | Volume 12 | Article 878827
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diffusion equation with constraint. This observation permits us
to develop an efficient numerical strategy to determine a priori
the shape of the equilibrium — namely, the size distribution of
the tumor cells and the residual tumor mass — for a given set of
biological tumor and immune cell parameters. Consequently, the
equilibrium state can be computed at low numerical cost since
we can avoid the resolution of the evolution problem on a long
time range. The use of this simple and fast algorithm allows us to
address the question of the sensitivity of the residual mass to the
parameters and to discuss the impact of treatments. This
information can be decisive to design clinical studies and
choose therapeutic strategies that will revert to an equilibrium
phase. Our work therefore provides hints for cancer
treatment management.

1.1 Quick Guide to Equations: A Coupled
PDE Model for Tumor-Immune System
Interactions
The modeling approach imposes to select a few phenomena,
considered as the leading effects for the situation under
consideration; other effects are just roughly described by
tuning some parameters or are simply disregarded. Choices for
designing the mathematical model are also dictated by the
difficulty in attributing numerical values to the parameters of
the equations, due to a lack of experimental measurements: the
poor knowledge of driving quantities leads to keep a description
as simple as possible, with a reduced number of unknown
parameters. The principles of the modeling adopted in (10),
summarized by Figure 1, led to couple an evolution equation for
the size-distribution of the tumor cells, and a convection-
diffusion equation for the activated immune cells. The two-way
coupling arises from the death term induced by the action of the
immune cells on the tumor cells, and by the activation and the
attraction of immune cells towards the tumor, which are
determined by the total mass of the tumor. The model is
intended to describe the earliest stages of the tumor formation,
when the size of the tumor is relatively small. The tumor is
located at the center of a domain W (there is no displacement of
the tumor). The model distinguishes two distinct and
independent length scales: the size of the tumor cells, described
by the variable z≥0 , is considered as “infinitely small” compared
to the scale of displacement of the immune cells, described by the
space variable x∈W .

The unknowns are

• The size density of tumor cells ( t, z )↦n( t, z ) so that the integralZ b

a
z n(t,  z) dz gives the volume of the tumor occupied at

time t by cells having their size z in the interval (a, b);
• The concentration of activated immune cells which are

fighting against the tumor ( t, x )↦c( t, x ) ;
• The concentration of chemical signal that attracts the

immune cells towards the tumor microenvironment ( t, x )
↦f( t, x ).

The specific biological assumptions made to construct the
model are fully described in (10). Figure 2 offers an overview of
Frontiers in Oncology | www.frontiersin.org 3
the interaction mechanisms embodied in the equations and of
the role of the parameters of the model.

Immune cells, once activated from a bath of resting cells, are
subjected to natural diffusion and to a chemotactic drift, induced
by the presence of the tumor. The strength of this drift, as well as
the activation of immune cells, directly depends on the total mass
of the tumor, proportional to the quantity

m1 tð Þ =
Z ∞

0
zn t, zð Þ dz :

The immune system-tumor competition is described by the
following system of PDEs

∂t n + ∂z Vnð Þ = Q nð Þ −m n, cð Þ, (1a)

∂t c +∇x · cc∇x f − D∇x cð Þ = m1R − g c, (1b)

−KDxf = m1 s xð Þ − 1
Wj j
Z
W
s yð Þ dy

� �
, (1c)

n t, 0ð Þ = 0,   c ∣∂W = 0,  K∇x f · n ∣∂W = 0, (1d)

n t = 0, zð Þ = n0 zð Þ,   c t = 0, xð Þ = c0 xð Þ : (1e)

The features of the growth-division dynamics for the tumor
cells (1a) are embodied into the (possibly size-dependent)
FIGURE 1 | Schematic view of the geometry of the mathematical model. The
tumor cells are located at the center of the domain where they are subjected
to growth and division mechanisms. Immune cells are activated from baths of
resting cells; their motion is driven by diffusion combined to a convection field,
due to chemotactic mechanisms and directed towards the tumor.
June 2022 | Volume 12 | Article 878827
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growth rate z↦V( z )≥0 and the cell division operator Q(n). We
refer the reader to (30–37) for further details on this evolution
equation (with m (n, c) =0) for cell growth and division, and its
application to cancer modeling. What is crucial for modeling
purposes is the principle that cell-division does not change the

total mass: the operator Q satisfies
Z ∞

0
zQ(n) dz = 0. However,

the total number of cells in the tumor increases sinceZ ∞

0
Q(n) dz ≥ 0 (we re f e r the reader to (10) and

Appendix A for further details). In what follows, we restrict to
the mere symmetric binary division operator

Q nð Þ t, zð Þ = a zð Þ 4n t, 2zð Þ − n t, zð Þð Þ, (2)

with z↦a(z )≥0 the division rate. It simply describes the situation
where cells are cut into two cells having half the size of the
original cell. Further relevant examples of division operators can
be found in (32) (see Appendix A). The specific case where the
division rate a in (2) is a positive constant makes the model
simpler, and is often used. It is however likely relevant to
incorporate more complex behaviors through the size-
dependence; for instance divisions can be prohibited below a
certain size threshold. Similarly, it can be convenient to assume
that the growth rate V is a positive constant, but more intricate
laws can take into account some important phenomena. For
instance, logistic or Gompertz law can incorporate size limitation
effects, and roughly describe difficulties in accessing nutrients or
necrotic effects (38–40); a detailed study of growth laws can be
found in (41). As mentioned above, though, using such complex
laws, also raises the issue of determining more parameters. The
boundary condition for n in (1d) means that no tumor cells are
created with size 0.

Despite the fact that there exists several types of immune cells –
at least T-cells and NK cells – fighting against the tumor, they are
all described here through the single concentration c. It also means
that coefficients of the equation – the death rate g>0, the
Frontiers in Oncology | www.frontiersin.org 4
chemotactic strength c>0 , and the diffusion coefficient D –
correspond to an averaged behavior of all these cells. By the
way, working with a constant diffusion coefficient D > 0 is again a
simplification, neglecting the architecture of the tumor
environment, which might induce directional effects. The
effector immune cells that effectively fight against the tumor, are
activated from a “reservoir” of resting cells, described in the right
hand side of (1b) by ( t,x )↦R( t,x ) . This given function, possibly
time and space dependent, stands for the space distribution of the
influx rate of activated effector immune cells. It takes into account
the sources of resting immune cells that can be activated in the
tumor microenvironment or in the draining lymph nodes into
cells fighting the tumor. At early stages of tumor growth, the rate
of the activation process is supposed to be directly proportional to
the tumor mass m1. Again, more complex activation law, for
instance based on Michaelis-Menten kinetics can incorporate
relevant limitation mechanisms. The Dirichlet boundary
condition for c in (1d) means that the immune cells far from
the tumor are non-activated. Immune cells are directed towards
the tumor by a chemo-attractive potential f, induced by the
presence of the tumor cells. Through (1c), the strength of the
signal is proportional to the total mass of the tumor, and it is
shaped by a form function x↦s( x ) which will be a function
peaked at the tumor location. The potential is thus defined by the
diffusion equation (1c), that involves a positive coefficient K>0
(that could be matrix valued), and the Neumann boundary
condition in (1d), where v stands for the unit outward normal
vector on ∂W. Finally, the activated immune cells are able to
destroy tumor cells, as described by the death term in (1a)

m c, nð Þ t, zð Þ =
Z
W
d yð Þc t, yð Þdy
|{z}
:=mc tð Þ

� n t, zð Þ, (3)

where d≥0 is another form function, also peaked in the vicinity of
the tumor. For the numerical experiments, we shall work with
the Gaussian profiles
FIGURE 2 | Schematic view of the interaction mechanisms described by the system (1a)-(1e).
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d xð Þ = A
q
ffiffiffiffi
2p

p exp  − ∣ x ∣2
2q2

� �
, s xð Þ = As

qs
ffiffiffiffi
2p

p exp  − ∣ x ∣2
2q2

s

� �
, (4)

where the positive parameters A,As and q,qs can be used to tune
the amplitude and spreading of these functions, and thus the
strength and radius of influence of the related phenomena. We
refer the reader to (10) for further details and comments about
the model. Note that this model neglects the possible additional
protumoral effects that can take place and are crucial to swing to
the escape phase. Such protumor effects can have different forms:
they can directly enhance the tumor growth, and make
antitumor immune cells exhausted, a state where they are
hyporesponsive and cannot kill the tumor, see (42) on these
issues. Remarkably, the model (1a)-(1e) is able to reproduce
equilibrium phases where the tumor growth is controlled by the
immune response.
2 MATERIALS AND METHODS

2.1 Development of Numerical Methods
Predicting Parameters of the Equilibrium
in Immune-Controlled Tumors
According to (2, 3, 9), the equilibrium phase corresponds to a
long-lasting period of immune-mediated latency, also known as
tumor mass dormancy, prior to the emergence of clinically
detectable malignant disease, with a residual tumor which has
not be fully destroyed by the immune system, maintained under
the control of immunity. The simulations of the initial-boundary
value problem (1a)-(1e) performed in (10) revealed that such a
behavior can be reproduced by the model. Here, we wish to study
the features of the equilibrium phase in immune-controlled
tumors and, in particular, we want to predict, for given
biological parameters (see Section 2.2 below), the total mass of
the residual tumor and its size distribution. To this end, we
developed specific numerical procedures based on the
mathematical interpretation of the equilibrium.

2.1.1 Equilibrium States
The definition of the equilibrium relies on the following
arguments. When disregarding the immune response, the cell-
division equation

∂t n + ∂z Vnð Þ = Q nð Þ : (5)

admits a positive eigenstate, which drives the large time behavior
of the solution. To be more specific, there exists l>0 and a non
negative function z ≥ 0↦ �N(z) satisfying

∂z V �Nð Þ − Q �Nð Þ + l �N = 0 for z ≥ 0

�N 0ð Þ = 0, �N zð Þ > 0 for z >  0,
Z +∞

0

�N zð Þ dz = 1:

8><>: (6)

The existence-uniqueness of the eigenpair (l, �N) can be
found in (32, 34). Furthermore, when the tumor does not
interact with the immune system, the large time behavior is
precisely driven by the eigenpair: the solution of (5) behaves like
Frontiers in Oncology | www.frontiersin.org 5
n t, zð Þ ∼
t!∞

m0e
lt �N zð Þ

where m0 >0 is a constant determined by the initial condition, see
(33, 34). Consequently, in the immune-free case, the tumor
population grows exponentially fast, with a rate l>0 , and, as
time becomes large, its size repartition obeys a certain profile �N .
In the specific case where V is constant and Q is the binary
division operator (2), with a constant division rate a, we simply
have l=a and the profile �N is explicitly known (43, 44). However,
for general growth rates and division kernels the solution
should be determined by numerical approximations; we are
going to detail a numerical procedure to effectively compute the
pair (l, �N).

Coming back to the coupled model (1a)-(1e), we infer that the
equilibrium phase corresponds to the situation where the death
rate – the integral of the immune cells concentration with weight
d, denoted as �mc in (3) – precisely counterbalances the natural
exponential growth of the tumor cell population. In other words,
at equilibrium we expect that

• The size distribution of tumor cells is proportional to the
eigenstate m0

�N(z). The proportionnality factor is related to the

total mass by the relation m1 = m0

Z ∞

0
z �N(z) dz.

• The concentration of immune cells is defined by the
stationary equation

gC −∇x · D∇x Cð Þ + m1 ∇x · cC ∇x Fð Þ = m1R, C ∣∂W=0 = 0,

(7)

• Where Ф is the solution of

−KDxF = s −
1
Wj j
Z
W
s yð Þ dy,

• Endowed with the homogeneous Neumann boundary
condition, together with the constraintZ

W
d xð ÞC xð Þ dx = l : (12)

This can be interpreted as an implicit definition of the total
mass m1 to be the value such that the solution of the boundary
value problem (7) satisfies (8): in other words, it defines
implicitly the mass of the residual tumor m1 to be the value
such that the solution of the stationary boundary value problem
for C defines a death rate that exactly compensates the
exponential growth rate of the growth division equation. The
existence of an equilibrium state defined in this way is rigorously
justified in (10, Theorem 2).

Theorem 2.1. Let x↦R( x )∈L2 ( W ) be a non negative
function. If l>0 is small enough, there exists a unique m1 ( l )>0
such that the solution C m1

( l ) of the stationary equation (7)
satisfies (8).

Theorem 2.1 requires a smallness assumption; for (2) with
constant growth rate V and division rate a, this is a smallness
assumption on a. Numerical experiments have shown different
large time behaviors for the initial-boundary value problem (1a)-
(1e) (an example will be presented later on):
June 2022 | Volume 12 | Article 878827
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• When the source term R is space-homogeneous, the expected
behavior seems to be very robust. The immune cell
concentration tends to fulfill the constraint �mc(t) ∼ l as time
becomes large, and the size repartition of tumor cells tends to
the eigenfunction �N . The total mass m1 tends to a constant;
however the asymptotic value cannot be predicted easily.

• When R has space variations, the asymptotic behavior seems
to be much more sensitive to the parameters of the model, in
particular to the aggressiveness of the tumor (characterized by
the cell division rate a). On short time scale of simulations, we
observe alternance of growth and remission phases, and the
damping to the equilibrium could be very slow.

These observations bring out the complementary roles of
different type of cytotoxic cells (45). The NK cells could be seen
as a space-homogenous source of immune cells, immediately
available to fight against the tumor, at the early stage of tumor
growth. In contrast, T-cells need an efficient priming which
occurs in the draining lymph nodes, and their sources is
therefore non-homogeneously distributed. Eventually, NK and
CD8+ T-cells cooperate to the anti-tumor immune response.

Numerical experiments thus show that the model (1a)–(1e) is
able to reproduce, in the long-time range, cancer-persistent
Frontiers in Oncology | www.frontiersin.org 6
equilibrium, but the features of the equilibrium, and its ability
to establish, are highly sensitive to the parameters. To discuss this
issue further, we focus here on the mass at equilibrium
considered as a critical quantity that evaluates the efficacy of
the immune response. Indeed, it is known that a tumor gains in
malignancy when its mass reaches certain thresholds (45, 46).
The smaller the tumor mass at equilibrium, the better the vital
prognosis of the patient. In doing so, we do not consider
transient states and time necessary for the equilibrium to
establish. The interest of the interpretation of the equilibrium
by means of an eigenproblem relies on the fact that the
equilibrium state can be determined a priori, at least through
numerical simulations, without running the initial boundary
value problem over long time ranges: given a set of biological
parameters it can be obtained by solving the eigenvalue problem
for (l, �N) and the constrained stationary drift-diffusion equation
for C, see Figure 3. In turn, since the equilibrium state can be
computed at low numerical cost, a wide range of parameters can
be considered and the role of the parameters can be investigated
in details. The determination, on numerical grounds, of the
equilibrium state relies on a two-step process, as schematised
in Figure 3. First, we compute the normalized eigenstate of the
tumor cell equation, second, we find the tumor mass which
FIGURE 3 | Connection of the equilibrium state with the eigenstate of the growth-division equation, and interpretation of the residual tumor mass.
June 2022 | Volume 12 | Article 878827
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makes the coupled death rate fit with the eigenvalue. To this end,
we have developed a specific numerical approach.

2.1.2 The Eigen-Elements of the Growth-Division
Equation
The numerical procedure is fully detailed and analyzed in
Appendix A; it is inspired from the spectral analysis of the
equation: l is found as the leading eigenvalue of a conveniently
shifted version of the growth-division operator. In practice, we work
with a problem where the size variable is both truncated and
discretized. Hence, the problem recasts as finding the leading
eigenvalue of a shifted version of the underlying matrix, which
can be addressed by using the inverse power method [(47), Section
1.2.5]. We refer the reader to (48, 49) for a thorough analysis of the
approximation of eigenproblems for differential and integral
operators, which provides a rigorous basis to this approach. It is
also important to check a priori, based on the analysis of the
equation (32), how large the shift should be, and that it remains
independent on the numerical parameters. As already mentioned,
for some specific division and growth rates, the eigenpair (l, �N) is
explicitly known, see (32). We used these formula to validate the
ability of the algorithm to find the expected values and profiles.

2.1.3 Computation of the Equilibrium Mass
Having at hand the eigenvalue l, we go back to the convection-
diffusion equation (7) and the constraint (8) that determine
implicitly the total mass m1 of the residual tumor. For a given
value of m1, we numerically solve (7) by using a finite volume
scheme, see (10, Appendix C). Then, we use the dichotomy
algorithm to fit the constraint:

• The chemo-attractive potential Ф is computed once for all.
• Pick two reference values 0 < ma < mb; the mass we are

searching for is expected to belong to the interval (ma, mb).
• Set m1 =

ma+mb
2 and compute the associated solution C m 1

of (7)
(the subscript emphasizes the dependence with respect to m1).
Evaluate the discrete version of the quantity I=∫ dC m1

dx−l
• If I < 0, then replace ma by m1, otherwise replace mb by m1.
• We stop the algorithm when the relative error mb−ma

ma
< e is

small enough.

It is also possible to design an algorithm based on the Newton
method. However, this approach is much more numerically
Frontiers in Oncology | www.frontiersin.org 7
demanding (it requires to solve more convection-diffusion
equations) and does not provide better results.

2.2 Identification of Biological Parameters
In order to go beyond the qualitative discussion of (10), the
model should be challenged with biological data. The PDE
system (1a)-(1e) is governed by the set of parameters collected
in Table 1. Most parameter values were retrieved from
previously published experimental results and we propose an
estimation of the remaining parameters R, a, V based on the
experimental study performed in (59) where the development of
chemically-induced cutaneous squamous cell carcinoma (cSCC)
is investigated.

Calibrating the parameters of the equations is an issue due to
the lack of direct measurements, and the fact that experimental
data are obtained at the price of the sacrifice of mice.
Consequently, beyond the cost of the experiments, it also
means that a time evolution of the quantities of interest is
usually not affordable. Therefore, a specific procedure should
be developed in order to estimate the parameters from the
experimental data points. Since the informations on the
parameters are quite poor, we restrict to the case where
the coefficients a, V, R are constant, which is also a reasonable
assumption when dealing with the earliest stages of the tumor
development. In order to identify the parameters, we shall use a
degraded version of the equations.

Neglecting the immune response, the tumor growth is driven
by (5). As explained above, this leads to an exponential growth of

the tumor mass, see (32–34, 44). Let t↦m0(t) =
Z ∞

0
n(t, z) dz,

the total number of tumor cells, and t↦m1(t) =
Z ∞

0
zn(t, z) dz:

Integrating (9) with respect to size variable, with integration
by parts, and bearing in mind that the cell division operator is
mass preserving, we thus get

  

d
dt m0 = am0,

d
dt m1 = Vm0 :

(9)

Next, assuming space homogeneity of the immune cells
concentration and neglecting the displacement and the natural
death rate of the immune cells, the immune cells concentration is
driven by
TABLE 1 | Key model parameters and their biophysical meaning.

Symbol Description Value and unit References

X chemotactic coefficient 8.64×101−8.64×106mm2·mmol−1·day−1 (Macrophages) (50)
D natural space diffusion coef. of the cytotoxic effector cells population 8.64×10−5−10−3mm2·day−1 (CD8+ T-cells) (23, 51)
R the normal rate of influx of effector immune cells

log(R) ∼ N (log(2:2� 10−6), 0:84)(
celln · mm−3

celln · mm3 · day−1)
estimated

g natural death rate of the tumor antigen-specific cytotoxic effector cells 2×10−2−1 day−1 (14, 20, 22, 52)
A strength of the immune response 2 − 57:6 cell−1n · day−1 (53–56)

K diffusion coefficient for the attractive potential f 10−2−1mm2·day−1 (23, 57)
As strength of the chemical signal induced by each tumor cell 5·10−17−0.625×10−16mmol·−1mm3·day−1 (58)
a division rate of the tumor cells log(a)∼N(log(0.12),0.2)(a in day−1) estimated
V growth rate of the tumor cells log(V)∼N(log(816.33),0.51)(V in mm3·day−1) estimated
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d
dt

c = Rm1 (10)

Based on this simplified dynamics, reduced to (9)-(10), we
used the Nonlinear Mixed Effects Modeling (NMEM) in order to
estimate the parameters a, V, R from the experimental data. Let

N denote the number of mice within the population and Y (k)
i =

fy(k)i1 ,⋯, y(k)ini g the vector of longitudinal measurements for the ith

mouse: y(k)ij is a typical observation of the mouse i for a given

measurement type k∈ { 0,1,2} (with (0, 1, 2) referring to ( m0 ,m1 ,
c ) respectively) at time tkij for i∈ { 1,… ,N } and i∈ { 1,… ,N } .
We suppose that the statistics of the measurements obeys, for
k  ∈  f0,  1,  2g,  j  ∈  f1,  …  nki g,  i  ∈  f1,  …  ,Ng

y kð Þ
ij = f kð Þ tkij; q

k
i

� �
+ e kð Þ

ij , (11)

where f (k)(tkij; q ki ) is the evaluation of the model at time tkij,
qk
i ∈ Rp is the vector of the parameters describing the individual

i and e(k)ij the residual error model. The inter-individual
variability is described by the combination of fixed effects ,
which, by definition, are constant within the population and
along time, and random effects hk

i which explain the inter-
individual variability among the mice. The positivity of the
parameters is ensured by assuming that the individual
parameters follow a log-normal distribution. In other words,
the random effects are normally distributed with mean zero and a
variance-covariance matrixW. For instanceW=diag(w0 ,w1 ,w2 )
where the wk’s stand for the variance of the parameters a, V, R.
Therefore, we have

log  qk
i = log  (qk

pop) + hk
i , hk

i ∼ N 0,wk
� �

(12)

for k∈{ 0,1,2 } . The error model is assumed to be
proportional to the model evaluation and is defined as follows:

e kð Þ
ij = b kð Þf kð Þ tkij; q

k
i

� �� �
ϵij (13)

Where ϵ ij ∼N( 0,1 ) represents the statistical model residual
errors and b (k) is the proportionality factor measuring the
relative amplitude of the errors.

2.2.1 Estimation of the Model Parameters
According to the experimental procedure in (59), 5× 105

mSCC38 were injected to each mouse at time t0 = 0. Therefore
we fixed the initial number of tumor cells to m0 ( 0 )=5× 105 cells.
Assuming that each tumor cell is spherically shaped with a radius
15 m m, we set m1 ( 0 )=7.1mm3. The initial concentration of
immune cells is fixed to c0 = 0: we suppose that initially there is
no effector immune cells (or at least it means that the initial
concentration of activated immune cells is negligible compared
to the concentration of resting cells). Some data points were
censored due to the sacrifice of the individual for flow cytometry
cell counting. The censored data points have been handled by
Limit Of Quantification (LOQ) censoring (60). Let Ikij be the finite
or infinite censoring interval for mouse i, measurement k and
Frontiers in Oncology | www.frontiersin.org 8
time tkij and

P(y kð Þ
ij ∈ Ikij ∣ q

k
i ) =

Z
Ikij

p
y kð Þ
ij ∣ qk

i
(x ∣ qk

i ) dx,

where py(k)ij ∣ qk
i
is the conditional distribution of y(k)ij given qk

i . Let
us collect in a vector a=( apop,Vpop, Rpop, wa, wV, wR, ba, bV, bR)
the parameters of the model; they are estimated by maximizing
the observed likelihood function

L a , yð Þ =
Y2
k=0

YN
i=1

Ynki
j=1

Z
p y kð Þ

ij ∣ qk
i

� �1
y
kð Þ
ij

∉Ik
ij

n o

�P y kð Þ
ij ∈ Ikij ∣ qk

i

� �1
y
kð Þ
ij

∈Ik
ij

n o
p qk

i ;a
� �

 dqk
i :

(14)

To this end, we used the Stochastic Approximation of the
Expectation Maximization algorithm (SAEM) implemented in
the MONOLIX R API (61). Furthermore, the individual
parameter estimators q̂k

i are computed in MONOLIX (61) by
means of the Empirical Bayes Estimate (EBE) of qk

i which
corresponds to the mode of the conditional distribution p(qk

i ∣
yki ; â ) (where â corresponds to estimated parameters).

A preliminary estimation procedure indicates a significant
correlation between the parameters a and R ( t-test p-value 2.6×
10 −6) . Hence, introducing this correlation into the variance
covariance matrix of the random effects by setting covar ( a,R )=r
aR wa wR , where r aR represents the correlation coefficient
between a and R, enhances the goodness of fit. The estimated
value of r aR is 0.8 with a relative standard error of 13%. The
parameters in a were estimated with reasonable standard errors
(computed using the stochastic approximation) and relative
standard errors (max (R.S.E) = 30.6 and min (R.S.E.) = 3)
which indicate that the model parameters are identifiable. The
ShapiroWilk test reinforces the normality hypotheses on the
random effects h(k)

i (the p-values for ha ,hV and hR

are respectively 0.83, 0.61, 0.2). Pictures indicating the fits are
provided in Figure 4, and detailed parameter estimates are given
in Table 2.

2.3 Materials
2.3.1 Mice
FVB/N wild-type (WT) mice (Charles River Laboratories, St
Germain Nuelles, France) were bred and housed in specific-
pathogen-free conditions. Experiments were performed using 6-
7 week-old female FVB/N, in compliance with institutional
guidelines and have been approved by the regional committee
for animal experimentation (reference MESR 2016112515599520;
CIEPAL, Nice Côte d’Azur, France).

2.3.2 In Vivo Tumor Growth
mSCC38 tumor cell line was established from DMBA/PMA
induced sSCCs and maintained in DMEM (Gibco-
ThermoFisher Scientific, Courtaboeuf, France) supplemented
with 10% heat-inactivated fetal bovine serum (FBS) (GE
Healthcare, Chicago, Illinois, USA) penicillin (100 U/ml) and
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streptomycin (100 mg/ml) (Gibco-ThermoFisher Scientific,
Courtaboeuf, France). 5× 105 mSCC38 were intradermally
injected in anesthetized mice after dorsal skin shaving. Tumor
volume was measured manually using a ruler and calculated
according to the ellipsoid formula: Volume=Length(mm
)×Width( mm )×Height( mm )×p/6.
Frontiers in Oncology | www.frontiersin.org 9
2.3.3 Tissue Preparation and Cell Count
mSCC38 were excised and enzymatically treated twice with
collagenase IV (1mg/ml) (Sigma-Aldrich, St Quentin Fallavier,
France), and DNase I (0.2 mg/ml) (Roche Diagnostic, Meylan,
France) for 20 minutes at 37°C . Total cell count was obtained on
a Casy cell counter (Ovni Life Science, Bremen, Germany).
A B

C

FIGURE 4 | Model fitting to the in vivo experimental cSCC tumor growth data. Here, we are using 34 data points from an in vivo experimental cutaneous
squamous cell carcinoma (cSCC) tumor growth mouse model (59). (A) Number of tumor cells kinetics; (B) Tumor volume kinetics (mm3); (C) Concentration
of immune cells kinetics. The solid lines represent the model prediction using the mean estimated parameters, the dashed lines represent the model
predictions using the 5th and 95th percentiles of the parameters distribution.
TABLE 2 | Estimated value of the parameters with their Standard Error (S.E.) and Relative Standard Error (R.S.E).

parameters value S.E R.S.E
(%)

apop 0.12 0.0041 3
Vpop 816.33 92.59 11
Rpop 2.2×10−6 3.6×10−7 16
wa 0.20 0.027 13.5
wV 0.51 0.075 15
wR 0.84 0.11 13
ba 0.37 0.041 11
bV 0.17 0.052 31
bR 0.18 0.056 30
raR 0.8 0.1 13
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Immune cell count was determined from flow cytometry
analysis. Briefly, cell suspensions were incubated with anti-
CD16/32 (2.4G2) to block Fc receptors and stained with anti-
CD45 (30-F11)-BV510 antibody and the 7-Aminoactinomycin
D (7-AAD) to identify live immune cells (BD Biosciences, Le
Pont de Claix, France). Samples were acquired on a BD LSR
Fortessa and analyzed with DIVA V8 and FlowJo V10 software
(BD Biosciences, Le Pont de Claix, France).

2.3.4 Mathematical and Statistical Analysis
Computations were realized in Python and we made use of
dedicated libraries, in particular the gmsh library for the
computational domain mesh generation, the packages optimize
(for the optimization methods using the Levenberg-Marquard
mean square algorithm; similar results have been obtained with
the CMA-ES algorithm of the library cma) from the library scipy,
the MONOLIX R API and application for the model calibration
to the experimental data (61), the library Pygpc for the
generalized Polynomial Chaos approximation (62) and the
library Salib for the sensitivity analysis (63).
3 RESULTS

3.1 Validation of the Method
For all the simulations discussed here, we adopt the same
framework as in (10): the tumor is located at the origin of the
computational domain W, which is the two-dimensional unit
disk. Otherwise explicitly stated, we work with the lower bound
of the parameters collected in Table 1. When necessary, the
initial values of the unknowns are respectively m0 (0) = 1 celln, ue
m1 (0) = 14137.2 mm3, c(0,x) = 0.

To start with, we perform a simulation of the initial-boundary
value problem (1a)-(1e). Figure 5 illustrates how the equilibrium
establishes in time: as time becomes large, the effective
concentration of active immune cells, that is denoted

mc tð Þ =
Z
W
d xð Þc t, xð Þ dx
Frontiers in Oncology | www.frontiersin.org 10
tends to the eigenvalue of the cell-division equation, the total mass
m1(t) tends to a constant and the size distribution of tumor cells
takes the profile of the corresponding eigenstate. This result has
been obtained by setting ( a,V,R )=( 0.072, 713.61, 1.74× 10 −7 ) .
We observe a non symmetric shape of the size distribution of
tumor cells, peaked about a diameter of 23 mm, which is consistent
with observational data reporting the mean size distribution of
cancer cells (64, 65).

For the simplest model of growth-division with a and V
constant, we know an expression of the eigenstate (l, �N);
however, we do not know an explicit evaluation of the residual
mass. Nevertheless, we can compare the results of the inverse
power-dichotomy procedure that predicts the residual mass, to
the large time simulations as performed in (10). Let mf

1 be the
asymptotic value of the total mass given by the large time
simulation of the initial-boundary value problem (and
checking that the variation of the total mass has become
negligible) and let mpd

1 be the mass predicted by the power-
dichotomy procedure. We set

Em1 =
mf
1 − mpd

1

			 			
mf
1

:

The results for several cell division rates a are collected in
Table 3: the numerical procedures finds the same equilibrium
mass as the resolution of the evolution problem, which is a
further validation of the method.

Further validation concerning the ability in finding the
leading eigenstate are presented in Appendix A. The method
has been successfully employed to predict equilibrium state when
dealing with complex growth rate and division operator in (42).
3.2 Numerical Simulations Show How
Parameters Influence Equilibrium
The numerical methods were next used to assess how the
parameters influence the equilibrium. In particular, we wish to
assess the evolution of the tumor mass at equilibrium according
to immune response and tumor growth parameters.
A B

FIGURE 5 | (A) Time evolution of the diameter of the tumor (bold black line) and concentration of active immune cells (dotted gray line). The predicted asymptotic
value for the latter is represented by the horizontal dotted line. (B) Comparison of the tumor cell-size distribution at t = 1000 days with the positive eigenstate of the
cell division equation (x-axis: size of the tumor cells, y-axis: number of tumor cells at the final time). For this simulation W={ ∥ x ∥≤1 } , the data are given by the lower
bound of the parameters collected in Table 1 and ( a,V,R )=( 0.072, 713.61, 1.74× 10 −7 ).
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For the numerical simulations presented here, we thus work
on the eigenproblem (6) and on the constrained system (7)-(8).
Unless precisely stated, the immune response parameters are
fixed to the lower bounds in Table 1. The tumor growth
parameters are set to = 0.1 day-1, V = 713.61 mm3 day-1 and R =
1:74� 10−7 celln·mm−3

celln·mm3 · day−1.
The main features of the solutions follow the observations

made in (10), which were performed with arbitrarily chosen values

for the parameters. We observe that �mc(t) =
Z
W
d(y)c(t, y) dy

tends to the division rate a, which in this case corresponds to
the leading eigenvalue of the cell-division equation. It is important
to note that the predicted diameter of the tumor at equilibrium—
see Figure 5 — is significantly below modern clinical PET
scanners resolution limit, which could detect tumors with a
diameter larger than 7mm (66). This is consistent with the
standard expectations about the equilibrium phase (3), but, of
course, it makes difficult further comparison of the prediction
with data.
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The aggressiveness of the tumor is characterized by the
division rate, the variations of which impact the size of the
tumor at equilibrium: the larger a, the larger the residual tumor,
see Figure 6A. Increasing the immune strength A increases the
efficacy of the immune response, reducing the size of the residual
tumor see Figure 6B. Similarly, increasing the mean rate of
influx of effector immune cells in the tumor microenvironment
R, decreases the tumor size at equilibrium, see Figure 6C. On the
contrary, increasing the death rate of the immune cells g reduces
the efficacy of the immune response and increases the
equilibrium tumor size see Figure 6D.

Moreover, as mentioned above, not only the parameters
determine the equilibrium mass, but they also impact how the
equilibrium establishes. Figures 7A–C shows what happens by
making the tumor cell division rate a vary. There are more
oscillations along time, with larger amplitude, as a increases.
Similar observations can be made when reducing the strength of
the immune system A (likely out of its realistic range), see
Figures 7D–F. The smaller A, the weaker the damping of the
A B

DC

FIGURE 6 | Evolution of the tumor diameter at equilibrium, with respect to (A) the division rate of tumor cells a, (B) the strength of the effector immune cells A, (C)
the influx rate of effector immune cells R, (D) the natural death rate g of the effector cells.
TABLE 3 | Comparison of the large time tumor mass and the predicted tumor mass for several values of a.

a mf
1 (mm3) at final time T = 500 mpd

1 (mm3) Em 1

0.103 7.67271875 × 10-5 7.67271872 × 10-5 4.10 × 10-9

0.15 1.11701535 × 10-4 1.11701543 × 10-4 7.97 × 10-8

0.20 1.48924575 × 10-4 1.48924641 × 10-4 4.40 × 10-7

0.3 2.23420663 × 10-4 2.23420562 × 10-4 4.53 × 10-7

0.351 2.61368442 × 10-4 2.61367974 × 10-4 1.80 × 10-6
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oscillations and the longer the periods. We notice that the decay
of the maximal tumor radius holds at a polynomial rate. In
extreme situations, either the damping is very strong and the
equilibrium establishes oscillation-free or the equilibrium does
not establish on reasonable observation times, and the evolution
can be confounded with a periodic alternance of growing and
remission phases. Such scenario illustrates that the relevance of
the equilibrium can be questionable depending on the value of
the parameters. In what follows, we focus on the details of the
equilibrium itself, rather than on the transient states.

3.3 Global Sensitivity Analysis on the
Equilibrium Mass Identifies the Key
Parameters to Target in Cancer Therapy
Since the equilibrium state can be computed for a reduced
numerical cost (it takes about 1/4 of a second on a standard
laptop), we can perform a large number of simulations, sampling
the range of the parameters. This allows us to discuss in further
details the influence of the parameters on the residual mass and,
by means of a global sensitivity analysis, to make a hierarchy
appear according to the influence of the parameters on this
criterion. Ultimately, this study can help in proposing treatments
that target the most influential parameters.

Details on the applied methods for the sensitivity analysis can
be found in Appendix B. Among the parameters, we distinguish:

• The tumor cell division rate a which drives the tumor
aggressiveness,
Frontiers in Oncology | www.frontiersin.org 12
• The efficacy of the immune system, governed by the mean
influx rate of activated effector immune cells R, the strength of
the immune response A, the chemotactic sensitivity c, the
death rate g of the immune cells, and the strength of the
chemical signal induced by each tumor cell As

• Environmental parameters such as the diffusion coefficients D
(for the immune cells) and K (for the chemokine concentration).

We assume that the input parameters except a and R are
independent random variables. Due to the lack of knowledge on
the specific distribution of most of the parameters, the most
suitable probability distribution is the one which maximizes the
continuous entropy (67), more precisely, the uniform
distribution over the ranges defined in Table 1. Therefore, the
uncertainty in the parameter values is represented by uniform
distributions for the parameters ( A,c,D,As ,g,K ) and by log-
normal distributions for the parameters a and R. In what follows,
the total mass at equilibrium, m1, given by the power-dichotomy
algorithm, is seen as a function of the uncertain parameters:

m1 = f a,A,R, c ,D,As , g ,Kð Þ (15)

To measure how the total variance of the output m1 of the
algorithm is influenced by some subsets i1 ⋯ip of the input
parameters i1 ⋯ip ( k≥p being the number of uncertain input
parameters), we compute the so-called Sobol’s sensitivity indices.
The total effect of a specific input parameter i is evaluated by the
total sensitivity index S(i)T , the sum of the sensitivity indices which
contain the parameter i. (Details on the computed Sobol indices
A B

D E F

C

FIGURE 7 | Large-time simulation of the PDE system: evolution of the tumor diameter (bold black line, left axis), and of the concentration of immune cells �mc (dotted
grey line, right axis), for several values of the division rate a: (A) a = 0.1 day-1, (B) a = 0.3 day-1, (C) a = 0.4 day-1 and for several values of the immune strength A:

(D) A = 1 cell−1c · day−1, (E) A = 1 · 10−3 cell−1c · day−1, (F) A = 1 · 10−5cell−1c · day−1. The horizontal dotted line represents the predicted asymptotic value for �mc.
The solid line gives the envelope of the oscillations, indicating a polynomial damping rate. The equilibrium needs more time to establish as the strength of the immune
system decreases.
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can be found in Appendix B). The computation of these indices
is usually based on a Monte Carlo (MC) method [see (68, 69)]
which requires a large number of evaluations of the model due to
its slow convergence rate (O(1=

ffiffiffiffi
N

p
) where N is the size of the

experimental sample). To reduce the number of model
evaluations, we use instead the so-called generalized
Polynomial Chaos (gPC) method [see (70)]. The backbone of
the method is based on building a surrogate of the original model
by decomposing the quantity of interest on a basis of
orthonormal polynomials depending on the distribution of the
uncertain input parameters q( w )=( a,A,R,c,D,As ,g,K ), where w
represents an element of the set of possible outcomes. Further
details on the method can be found in (71). For uniform
distributions, the most suitable orthonomal polynomial basis is
the Legendre polynomials. The analysis of the distribution of m1
after a suitable sampling of the parameters space indicates that m1
follows a log-normal distribution. This distribution is not
uniquely determined by its moments (the Hamburger moment
problem) and consequently cannot be expanded in a gPC [see
(72)]. Based on this observation, to obtain a better convergence
in the mean square sense, we apply the gPC algorithm on the
natural logarithm of the output m1. Typically, ln(m1) is
decomposed as follows:

ln  m1 wð Þð Þ = o
a∈Jk,p

qaLa q wð Þð Þ + ϵ, (16)
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where ϵ corresponds to the approximation error, J k,p = fa ∈
Nk :ok

i=1ai ≤ pg and p represents the highest degree of the
expansion. Hence, the dimension of the polynomial basis is
given by (k+p) !

k ! p ! . We reduce the number of model evaluations to
642 runs by constraining also the parameters interaction order to
2. For our purpose, a degree p = 5 gives a better fit (see
Figures 8A, B to the original model and the goodness of fit of
the gPC algorithm is measured by a Leave One Out Cross
Validation (LOOCV) technique (73). The resulting LOO error
indicates 0.4% prediction error. The Sobol’s sensitivity indices
are then computed from the exponential of the surrogate model
(16) by using Monte Carlo simulations combined with a careful
space-filling sampling of the parameters space [see (68, 74)]. For
the computations, a sample with N=1.8× 106 points has been
used in order to get stable second order Sobol indices. Indeed, the
sensitivity indices that are needed to discriminate the impact of
the input parameters are the first and total Sobol’ sensitivity
indices. Here, the analysis revealed a significant difference
between some first order Sobol ’ indices and their
corresponding total Sobol indices, which indicated the
importance of computing also the second order Sobol’ indices.

It is important to stress that the obtained results, and the
associated conclusions, could be highly dependent on the range
of the parameter values. This observation makes the
measurement/estimation of the parameters a crucial issue
which can be dependent on the type of cancer analyzed.
A B

DC

FIGURE 8 | (A) comparison between the pdf of In (m1) from the gPC approximation and the pdf from the original model. (B) Comparison between the value of m1
generated by the power-dichotomy algorithm and the gPC approximation. (C) First (empty, left scale) and total (dashed, right scale) order Sobol indices for m1.
(D) Second order Sobol indices for m1.
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3.3.1 Efficacy of the Immune Response
The first order Sobol indices represented in Figure 8C indicate
that the parameters which impact the most the variability of the
immune-controlled tumor mass at equilibrium are:

• The strength of the lethal action of the immune cells on the
tumor cells A, by far the most influential, and three additional
parameters

• The influx rate of activated effector immune cells into the
tumor microenvironment R.

• The natural death rate g of the effector immune cells,
• And the division rate a of the tumor cells.

This result is consistent with the observations made from the
numerical experiments above and in (10), showing a prominent
role of the immune response which can be enhanced by
increasing either A or R, and decreasing g. That A is the most
influential parameter is not that surprising but it is remarkable
how far its importance exceeds that of the other parameters. It is
also puzzling to see that the chemotactic sensitivity c, like the
strength of the chemical signal induced by each tumor cell As,
the space diffusion coefficient of the effector immune cells D and
the diffusion coefficient of the chemokines K , have a negligible
influence on the immune-controlled tumor mass, see Figure 8C,
whether individually or in combination with other parameters.
This result is consistent with the necessity for immune cells to be
able to effectively kill the tumor cells once they reach the tumor
site. The second order Sobol’ indices indicate that the leading
interactions are the pairs (A, R), (A,g), (R, g), (a,A), (a, R) and (a,
g). Accordingly, in order to enhance the immune response, an
Frontiers in Oncology | www.frontiersin.org 14
efficient strategy can be to act simultaneously on the immune
strength A together with the influx rate of activated immune
effector cells R. Increasing such influx into the tumor
microenvironment by enhancing the activation/recruitment
processes leading to the conversion of naive immune cells into
activated immune cells potentiate anti-tumor immune responses.
Besides, the natural death rate g of the effector immune cells
combined to A and R have an impact, as well as A combined with
the division rate of the tumor cells, a.

3.3.2 The Tumor Aggressiveness
The tumor aggressiveness is mainly described by the cell division
rate a. The first order Sobol indice indicates that a influences
significantly the tumor mass at equilibrium, and we observe that
the total Sobol index of a is higher than the individual one. This
indicates that this parameter has strong interactions with the
others. By taking a look at Figure 8D we remark that a interacts
significantly with the parameters A, R, g. However, the most
significant interaction is the one with A. This suggests that
combining therapies targeting tumor and immune cells should
be more efficient at maintaining immune-mediated tumor mass
dormancy (75).

3.3.3 Towards Optimized Treatments
Because equilibrium state can be computed for a reduced
numerical cost, it allows a large number of simulation to be
performed in a minimal time, so that an extensive sampling of
the range of the parameters can be tested. The flexibility of the
numerical simulations provides valuable tools to assess the
A B

DC

FIGURE 9 | Evolution of the tumor diameter at equilibrium, (A) with respect to the division rate a for several values of the immune strength A, (B) with respect to the
immune strength A for several values of the death rate g, (C) with respect to the immune strength A for several values of the influx rate of effector immune cells R+,
and (D) with respect to the division rate a for several values of the death rate g.
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efficiency of a variety of therapeutic strategies and select those that
sustain a viable equilibrium and prevent cancer relapses after a
surgery or a treatment. Figure 9 illustrates how the equilibrium
mass is impacted when combining variations of two parameters,
namely the immune strength A combined to the tumor cell
division rate a, the mean rate of influx of effector immune
cells R or the death rate of effector immune cells g; and the
tumor cell division rate a with the death rate g. Interestingly, a
reduction of the tumor mass at equilibrium can be obtained
significantly more easily by acting on two parameters than on a
single one. For instance, reducing the tumor cell division rate a
from 0.35 to 0.1 cannot reduce the diameter of the tumor
below.025 mm, with A = 1; while the final size is always smaller
when A = 3.95. This observation highlights the interest of
combined treatments having such complementary actions. The
interest is two-fold: either smaller residual tumors can be obtained
by pairing two actions, or the same final tumor size can be
obtained with a combined treatment having less toxicity than a
mono-therapy.
4 DISCUSSION

Controlling parameters that maintain immune-mediated tumor
mass dormancy is key to the successful development of future
cancer therapies. To understand how equilibrium establishes and
how it is influenced by immune, environmental and tumor-
related parameters, we evaluate the tumor mass which tends to a
constant at equilibrium. In this study, we make use of the space
and size structured mathematical model developed in (10) to
provide innovative, efficient methods to predict, at low numerical
cost, the residual tumor mass at equilibrium. By means of
numerical simulations and global sensitivity analysis, we
identify the elimination rate A of tumor cells by immune cells
as the most influential factor. Therefore, the most efficient
therapeutic strategy is to act primarily on the immune
system rather than on the tumor itself. We also demonstrate
the need to develop combined cancer treatments, boosting
the immune capacity to kill tumor cells (increase A), the
conversion into efficient immune cells (increase R), reducing
natural death rate of effector immune cells (decrease g) and
reducing the ability of tumor cells to divide (decrease a). The
combination of such approaches definitely outperforms
the performances of a single action; it permits to maintain
the tumor in a long-lasting equilibrium state, far below
measurement capabilities.

Generally, therapeutic strategies are designed to target
preformed, macroscopic cancers. Indeed, patients are
diagnosed once their tumor is established and measurable,
thus at the escape phase of the cancer immunoediting
process (1). The goal of successful treatments is to revert to
the equilibrium phase and ultimately to tumor elimination.
Experimental evidence and clinical observations indicate that
such equilibrium exists but it is difficult to study and measure,
the residual tumor mass being below detection limits (1, 2, 3). It
is regarded as “a immune-mediated tumor mass dormancy”
Frontiers in Oncology | www.frontiersin.org 15
when the rate of cancer cell proliferation matches their rate of
elimination by immune cells. In human, cancer recurrence after
therapy and long periods of remission or detection of low
number of tumor cells in remission phases are suggestive of
such equilibrium phase. Mathematical models can also be
used to provide evidence of such state. The system of partial
differential equations proposed in (10) is precisely intended to
describe the earliest stages of immune control of tumor growth.
Remarkably, while being in the most favorable condition, only
taking into account the cytotoxic effector immune cells and no
immunosuppressive mechanisms, the model reproduces the
formation of an equilibrium phase with maintenance of
residual tumor cells rather than their complete elimination.
Besides suggesting that elimination may be difficult to reach,
this finding also brings out the role of leading parameters that
shape the equilibrium features and opens new perspectives
to elaborate cancer therapy strategies that reach this state
of equilibrium.

To decipher tumor-immune system dynamics leading to
equilibrium state, we have developed here computational
tools. The total mass of the tumor is a critical criterion of the
equilibrium and was used to predict parameters that contribute
the most to the establishment of the equilibrium. By means of
global sensitivity analysis, we identified one leading parameter,
A, and three others, R, g and a that affect the most the variability
of the immune-controlled tumor mass; A, R and g are related to
immune cells, and a to tumor cells. Moreover, the influence of
the leading parameters is significantly increased when they are
paired. This observation supports the development of combined
therapeutic treatments which would be more efficient at
reducing tumor growth and toxicity. Because the pairs (A, R),
(A, g), (R, g), (A, a), (a, R) and (a, g) are the most influential,
we predict that a combination of drugs enhancing antitumor
immune responses wi th drugs diminish ing tumor
aggressiveness will be the most efficient. This is consistent
with the clinical benefit obtained when chemotherapies
reducing the tumor cell division rate a are combined with
immunotherapies increasing A and R (75), The parameter A
which governs the efficacy of the immune system to eliminate
tumor cells, is the most influential. This finding is consistent
with the observation that “hot” tumors infiltrated with immune
cells have better prognostic than “cold” tumors (76) and that the
immune cells with the strongest positive impact on patient’s
survival are the cytotoxic CD8+ T cells (77). It is also in line with
the success of ICP which revert immune tolerance triggered by
chronic activation and upregulation of exhaustion markers on
effector T and NK cells, thus not only increasing the parameter
A but also R (78). The leading role of the parameter A is also
demonstrated by experimental studies and clinical trials, such as
adoptive transfer of CAR-T and CAR-NK cells engineered to
attack cancer cells, immunomodulating antibody therapies or
cancer vaccines which boost the antitumor immune response
(75, 79–81). Finally, our finding that the parameter g is highly
influential is confirmed by the administration of cytokines
that stimulate and increase effector T and NK cell survival
which are efficient at controlling tumor growth (81). Thus,
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altogether, these experimental and clinical data validate
the numerical method.

Interestingly, besides the dominant role of the parameter A,
only two additional parameters related to immune cells R, g seem
to have an influence on the tumor mass at equilibrium. These
data predict that to enhance the immune response, it is more
efficient to increase the rate of influx and conversion of naive
immune cells into effector cells (parameter R) or to increase the
lifespan of immune effectors (parameter g) than to increase
chemotaxis as a whole (parameters c, Aa, K ). The lack of
influence of chemotaxis emphasizes that the localization of
immune cells within tumors is necessary but not sufficient.
Indeed, the leading influence of the parameters A, R, g stresses
the importance of having functional immune cells infiltrating
tumors. Overcoming immune suppression is therefore highly
relevant in therapeutic strategies.

Targeting Immune-mediated tumor mass dormancy is
gaining more and more attention, having been linked to
recurrence and metastasis (9, 82). The persistence of
undetectable tumor cells after primary tumor resection at the
primary site but also their spreading to metastatic niches are
major causes of treatment failure. Thus, developing strategies to
maintain an equilibrium between these tumor cells and the
immune response is crucial. Interestingly, a recent study
demonstrated a role of the NK cell reservoir in blocking the
reawakening of dormant tumor cells (83). The mechanisms
involve IL-15 that drives NK cell proliferation and IFN- g
secreted by NK. Therapies boosting NK cell activity like IL-15
superagonists, or engineered NK cell engagers are therefore
promising strategies to sustain NK cell-mediated maintenance
of tumor dormancy (83, 84).

It is appropriate to finally comment on the limitations of
this work and provide new avenues for future research. Firstly,
the analysis focuses on the asymptotic state, taking full
advantage of its mathematical interpretation which makes it
easily computable. However, the transient states and the rate
at which the equilibrium becomes observable are simply
disregarded, while they are certainly essential for assessing
the biological relevance of the equilibrium state. Further
analysis is therefore needed in order to understand how the
parameters of the model influence the trend to equilibrium.
Secondly, the modeling approach is facing contradictory
requests: on the one hand, the lack of knowledge on the
parameters motivates working with a reduced set of
equations, at the cost of considering an “averaged” behavior
(say for instance between different types of immune cells); on
the other hand, it might be important to keep under
consideration many relevant and competing effects of
cellular interactions. These issues can be addressed with a
better access to biological data and through the development
of dedicated methods of parameter identification. This is of
course even more important when describing the effects of
treatments. Thirdly, the present analysis is limited to an
idealized situation in which many important effects have
been overlooked. In particular, the immune response can
also promote the tumor growth. Considering such immune
Frontiers in Oncology | www.frontiersin.org 16
actions leads to a much more complex dynamical behavior
and the possible establishment of an escape phase, as shown in
(42). Finally geometrical aspects and heterogeneity are poorly
addressed and restrict the relevance of the description to
the earliest stages of the tumor development. More
complex models, with a full space structuration, should be
elaborated in order to obtain a more accurate description of
the tumor microenvironment.
5 CONCLUSION

In conclusion, clinical trials have been undertaken quite often on
assumptions from acquired knowledge on tumor development
and immune responses to cancer cells, but without tools to help
the decision-making. The numerical methods developed here
provide valuable hints for the design and the optimization of
antitumor therapies. The approach is in agreement with
published experimental findings and clinical evidence. By
adapting the range of the parameters to the biological values,
one can more precisely adapt the therapeutic strategies to
specific types of tumors. We thus conclude that mathematical
modelling combined with numerical validation provide
valuable information that could contribute to better stratify the
patients eligible for treatments and consequently save time
and lives. In addition, it could also help to decrease the
burden of treatment cost providing hints on optimized
therapeutic strategies.
6 COMPUTATION OF THE EIGEN-
ELEMENTS OF THE GROWTH-DIVISION
EQUATION

The binary division operator (2) is a very specific case, and for
applications it is relevant to deal with more general expressions.
Namely, we have

Q nð Þ t, zð Þ = −a zð Þn t, zð Þ +
Z ∞

z
a z0
� �

k(z ∣ z0)n t, z0
� �

 dz0 : (17)

In (21), a( z′ ) is the frequency of division of cells having size z′ ,
and k( z∣z′ ) gives the size-distribution that results from the
division of a tumor cell with size z′. What is crucial for
modeling purposes is the requirementZ z

0
z0k(z0 ∣ z) dz0 = z,

which is related to the principle that cell-division does not
change the total mass Z ∞

0
zQ nð Þ dz = 0:

We refer the reader to (32) for examples of such cell-division
operators and the analysis of the eigenvalue problem (6) under
June 2022 | Volume 12 | Article 878827

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Atsou et al. Equilibrium Phase in Immune-Controlled Tumors
quite general assumptions of the growth rate V, the frequency a
and the kernel k. Our numerical method can handle such
general coefficients.

It is important to bear in mind the main arguments of the
proof of the existence-uniqueness of the eigenpair (l, �N) for the
growth-division equation. Namely, for L large enough we
consider the shifted operator

TLN = LN + ∂z VNð Þ + aN −

Z ∞

z
a z0
� �

k(z ∣ z0)N z0
� �

 dz0 :

Then, we check that the operator SL which associates to a
function f the solution n of TLn = f fulfills the requirements of
the Krein-Rutman theorem (roughly speaking, positivity and
compactness), see (85). Accordingly, the quantity of interest l
is related to the leading eigenvalue of SL. In fact, this
reasoning should be applied to a somehow truncated and
regularized version of the operator, and the conclusion needs
further compactness arguments; nevertheless this is the
essence of the proof. In terms of numerical method, this
suggests to appeal to the inverse power algorithm, applied to
a discretized version of the equation. However, we need to
define appropriately the shift parameter L. As far as the
continuous problem is considered, L can be estimated by
the parameters of the model (32), but it is critical for practical
issues to check whether or not this condition is impacted by
the discretization procedure. This information will be used to
apply the inverse power method to the discretized and shifted
version of the problem.

6.1 Analysis of the Discrete Problem
The computational domain for the size variable is the interval [0,
R] where R is chosen large enough: due to the division processes,
we expect that the support of the solution remains essentially on
a bounded interval, and the cut-off should not perturb too much
the solution. In what follows, the size step h = zi+1 -zi is assumed
to be constant. The discrete unknowns Ni, with i∈ { 1,… ,I } and
h = R/I, are intended to approximate N( zi ) where zi = ih. The
integral that defines the gain term of the division operator is
approximated by a simple quadrature rule. For the operator (2)
the kernel involves Dirac masses which can be approached by
peaked Gaussian. We introduce the operator Th

L :RI ! RI

defined by

(Th
LN)i = Fi − Fi−1 + h L + aið ÞNi

−h2o
I

j=i
a zj
� �

k(zi ∣ zj)Nj,

N1 = 0

8>>>><>>>>: (18)

where Fi =V i+1/2 Ni represents the convective numerical flux on
the grid point z i+1/2 =( i+1/2 )h , i∈ { 1,… ,I } . This definition
takes into account that the growth rate is non negative, and
applies the upwinding principles. Note that the step size h should
be small enough to capture the division of small cells, if any. The
following statement provides the a priori estimate which allows
us to determine the shift for the discrete problem.
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Theorem 1.1. We suppose that

i. z↦V( z ) is a continuous function which lies in L∞ and it is
bounded from below by a positive constant,

ii. hoI
j=1a(zj)k(zi ∣ zj) remains bounded uniformly with respect

to h,
iii. for any i∈{ 1,...,I−1 } , there exists j∈{ 1,...,I−1 } such that

a(zj)k( zi ∣zj )>0,
iv. there exists Z0 ∈( 0,∞ ) such that, setting �N (z) =

hoI
j=2k(zj ∣ z), we have a(z)( �N (z) − 1) ≥ n0 > 0 for any z

≥ Z0.

Let

L > ∥V ∥L∞
min

j∈ 1,:::,If g
∣Vj+1=2 ∣

max
k∈ 1,:::,If g

(ho
I

j=k

ajk(zk ∣ zj))

− min
j∈ 1,:::,If g

∣ aj ∣,
(23)

and we suppose that R > Z0 is large enough. Then, T
h
L is invertible

and there exists a pair m>0,N∈RI with positive components, such
thatKer((Th

L)
−1 − m) = SpanfNg. Moreover l = L − 1

m > 0.
Note that the sum that defines �N (z) is actually reduced over

the indices such that jh≤z ; this quantity is interpreted as the
expected number of cells produced from the division of a cell
with size z so that the forth assumption is quite natural.

Proof. Let f∈RI. We consider the equation

Th
LN = f :

We denote N = ShLf the solution. We are going to show that
ShL is well defined and satisfies the assumptions of the Perron-
Frobenius theorem, see e. g. (47, Theorem 1.37 & Corollary 1.39)
or (86, Chapter 5).

It is convenient to introduce the change of unknown Ui =Ni

V i+1/2 , ∀i∈{ 1,⋯,I } . The problem recasts as

(~Th
LU)i = h fi

Vi+1=2
, with

(~Th
LU)i = Ui − Ui−1 + h L+ai

Vi+1=2
Ui

 −h2o
I

j=i

aj
Vj+1=2

k(zi ∣ zj)Uj,

U1 = 0:

8>>>>>>>>><>>>>>>>>>:
(20)

The solution is interpreted as the fixed point of the mapping

x↦U = Ahx

where U is given by U1 = 0 and

Ui = Ui−1 + h2o
I

j=i

aj
Vj+1=2

k zi ∣ zj
� �

xj + h
fi

Vi+1=2
:

We are going to show that Ah is a contraction: ∥Ah x∥ ℓ∞

≤k∥x∥ ℓ∞ for some k < 1. Multiplying (20) by sign (Ui), we obtain
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1 + h L+ai
Vi

� �
sign Uið ÞUi = 1 + h L+ai

Vi

� �
Uij j

= sign Uið ÞUi−1 + h2o
I

j=1

aj
Vj+1=2

k zi ∣ zj
� �

sign Uið Þxj

≤ Ui−1j j + h2o
I

j=i

aj
Vj+1=2

k(zi ∣ zj) xj
		 		 :

We multiply this by the weight
Yi−1

l=1½1 + h
L + al
Vl+1=2

�, where all
factors are ≥1 . We get

Uij j
Yi
l=1

1 + h
L + al
Vl+1=2

" #

   ≤ Ui−1j j
Yi−1
l=1

1 + h
L + al
Vl+1=2

" #

     + h2
Yi
l=1

1 + h
L + al
Vl+1=2

" #
o
I

j=i

aj
Vj+1=2

k(zi ∣ zj) xj
		 		 :

Then, summing over i∈{ 2, ... ,m } yields

Umj j
Ym
l=1

1 + h
L + al
Vl+1=2

" #

   ≤ U1j j 1 + h L+a1
V3=2

h i
     +h2o

m

i=2

Yi
l=1

1 + h
L + al
Vl+1=2

" #
o
I

j=i

aj
Vj+1=2

k(zi ∣ zj) xj
		 		

where actually U1 = 0. It follows that

Umj j ≤ h2o
m

i=2

Ym
l=i

1 + h
L + al
Vl+1=2

" #−1
o
I

j=i

aj
Vj+1=2

k zi ∣ zj
� �

xj
		 		

≤ h2 ∥ x ∥‘∞
min

j∈ 1,:::,If g
Vj+1=2o

m

i=2

Ym
l=i

1 + h
L + al
Vl+1=2

" #−1
o
I

j=i
ajk zi ∣ zj
� �

≤ h2 ∥ x ∥‘∞
min

j∈ 1,:::,If g
Vj+1=2

∥o
I

j=i
ajk zi ∣ zj
� �

∥‘∞

o
m

i=2
1 + h

L + min
l∈ 1,:::,If g

al

∥V ∥L∞

24 35i−m+1

≤ h ∥ x ∥‘∞
min

j∈ 1,:::,If g
Vj+1=2

∥o
I

j=i
ajk zi ∣ zj
� �

∥‘∞

L+ min
l∈ 1,:::,If g

al

∥V ∥L∞

" #−1

Therefore, Ah is a contraction provided (19) holds. This
estimate is similar to the condition obtained for the continuous
problem, see (32, Proof of Theorem 2, Appendix B); the
discretization does not introduce further constraints.
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We are now going to show that Th
L is a M-matrix when (19)

holds. Let f∈RI ∖{ 0 } with non negative components. Let U∈RI

satisfy (~Th
LU)i = h fi

Vi+1=2
. Let i0 be the index such that U i0

=min { Ui , i∈{ 2, ..., I } }. We have

Ui0 1 + h
L+ai0
Vi0+1=2

� �
= Ui0−1 + h2o

I

j=i0

aj
Vj+1=2

k zi0 ∣ zj
� �

Uj + h
fi0

Vi0+1=2

≥ Ui0 1 + h2o
I

j=i0

aj
Vj+1=2

k zi0 ∣ zj
� � !

+ h
fi0

Vi0+1=2

(21)

Since f i0 ≥0 , we get

Ui0

L + ai0
Vi0+1=2

− ho
I

j=i0

aj
Vj+1=2

k zi0 ∣ zj
� � !|{z}

>0by 19ð Þ

≥ 0

which tells us that U i0 ≥0. Suppose U i0 =0 for some i0 >1.
Coming back to (21), we deduce that U i0 −1 vanishes too, and so
on and so forth, we obtain U1 =⋯U i0 =0 . Finally, we use the
irreductibility assumption iii): we can find j0 > i0 such that

aj0
Vj0+1=2

k(zi0 ∣ zj0 ) > 0 and (21) implies
aj0

Vj0+1=2
k(zi0 ∣ zj0 )Uj0 = 0, so that U j0

=0. We deduce that U = 0, which contradicts f≠0 . Therefore the
components of U are positive, but U1.

We conclude by applying the Perron-Froebenius theorem to
(Th

L)
−1, (86). It remains to prove that l = L − 1

m is positive, with m
the spectral radius of (Th

L)
−1. To this end, we make use of

assumption iv). We set Z0 = i0h. We argue by contradiction,
supposing that l=L−1/m<0. We consider the eigenvector with

positive components and normalized by the condition ho
I

i=1
Ui = 1.

We have

(~Th
0U)i = Ui − Ui−1 +

ai
Vi+1=2

hUi

−h2o
I

j=i

aj
Vj+1=2

k zi ∣ zj
� �

Uj = −lUi ≥ 0

It follows that, for m≥i0 ,

Um ≥ −ho
m

i=2

ai
Vi+1=2

Ui +�h2o
m

i=2
o
I

j=i

aj
Vj+1=2

k(zi ∣ zj)Uj

≥ −ho
m

i=2

ai
Vi+1=2

Ui + ho
m

j=2
ho

j

i=2
k(zi ∣ zj)

� �
aj

Vj+1=2
Uj

≥ −ho
m

i=2

ai
Vi+1=2

Ui + ho
m

j=2

�N zj
� � aj

Vj+1=2
Uj

≥ ho
m

i=2

�N zið Þ − 1
� � ai

Vi+1=2
Ui

≥ ho
m

i=i0

�N zið Þ − 1
� � ai

Vi+1=2
Ui ≥

n0
∥V ∥L∞

ho
m

i=i0

Ui :
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It implies

1 = ho
I

m=1
Um ≥ ho

I

m=i0

Um ≥ h I − i0ð Þ n0
∥V ∥L∞

ho
m

i=i0

Ui :

We arrive at

1 ≥ R − Z0ð Þ n0
∥V ∥L∞

,

a contradiction when R is chosen large enough (but how large R
should be does not depend on h). Therefore, we conclude that l > 0.

6.2 Numerical Approximation of (l, N)
We compute (an approximation of) the eigenpair (l, N) by using
the inverse power method which finds the eigenvalue of (Th

L)
−1

with largest modulus:
• We pick L verifying (19).
• We compute once for all the LU decomposition of the

matrix Th
L.

• We choose a threshold 0 < e ≪ 1.
• We start from a random vector N(0) and we construct the

iterations

LUq k+1ð Þ = N kð Þ

N k+1ð Þ =
q k+1ð Þ

∥ q k+1ð Þ ∥

unt i l th e re l a t i v e e r ro r ∥N(k+1)−N (k) ∥
∥N(k) ∥ ≤ e i s sma l l

enough . Then , g i v en th e l a s t i t e r a t e N (K ) , w e

set LUq = N (K), ~m = q·N(K)

N(K) ·N(K) , and ~l = L − 1=~m :
This approach relies on the ability to approximate correctly the

eigenpair of the growth-fragmentation operator. In particular, it is
important to preserve the algebraic multiplicity. This issue is quite
subtle and it is known that the pointwise convergence of the
operator is not enough to guarantee the convergence of the
eigenelements and the consistency of the invariant subspaces, see
(48) for relevant examples. This question has been thoroughly
investigated in (48, 49) which introduced a suitable notion of
stability. It turns out that one needs a uniform convergence of the
operators. Namely, here, we should check that ∥ (TI

L)
−1 − (TL)

−1 ∥
! 0 as I!∞. In the present framework, a difficulty relies on the fact
that the size variable lies in an unbounded domain, which prevents
for using usual compactness arguments. For this reason, we
introduce a truncated version of the problem, which has also to
be suitably regularized. Let us denote by TR,e

L the corresponding
operator, where e represents the regularization parameter. This
truncated and regularized perator appeared already in (32). Indeed,
we know from (32) that ∥TR,e

L − TL ∥ ! 0 as R!∞ and e!0,
hence, this implies that ∥ (TR,e

L )−1 − (TL)
−1 ∥ ! 0 as R!∞

and e!0 by continuity of the map P:TL ↦ ( TL ) −1 . Moreover,
(TR,e

L )−1 is well-defined, continuous and compact, see (32,
Appendix. B). The discrete operators (TI

L)
−1 converge pointwise

to (TR,e
L )−1, and the compactness of (TR,e

L )−1 ensures that the
discrete operator converges uniformly to (TR,e

L )−1, for 0<R<e and
0<e<1 fixed (see (49) for more details on this fact). Following (49),
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we deduce that the numerical eigenelements (lI,NI) converges to ( l
R,e , N R,e ), the eigenelements of (TR,e

L )−1, while preserving their
algebraic multiplicity. Finally the uniform convergence ∥ (TR,e

L )−1 −
(TL)

−1 ∥ ! 0 as R!∞ and ∈!0 ensures the convergence of ( l
R,e , N R,e ), to (l, N) (32).

6.3 Numerical Results
For some specific fragmentation kernels and growth rates, the
eigenpair (l, �N) is explicitly known, see (32). We can use these
formula to check that the algorithm is able to find the expected
values and profiles. To this end, we introduce the relative errors

Eh
l =

l − ~l
			 			

~l
  and Eh

V = ho
I

i=1
N Kð Þ
i − N ihð Þ

			 			
where N(K) and N are both normalized by hoI

i=1N
(K)
i = h

oI
i=1N(ih) = 1.
Mitosis fragmentation kernel. We start with the binary

division kernel:

k z ∣ z0
� �

= dz0=2z (22)

The associated division operator is described by (2). We
assume that a and V are constant. In this specific case the
eigenpair is given by

l = a, N zð Þ = No
∞

n=0
−1ð Þnanexp  −2n+1

a
V
z

� �
, (23)

with N > 0 an appropriate normalizing constant and ( an ) n∈N is
the sequence defined by the recursion

a0 = 1, an =
2

2n−1 an−1:

In practice we shall use a truncated version of the series that
defines N. For the numerical tests, we use the parameters
collected in Table 4.

With this threshold e, the approached eigenpair is reached in
43 iterations, independently of the size step. Figure 10 represents
the evolution of the error Eh

V as a function of h in a log-log scale,
see also Table 5: N(K) approaches N at order 1. The rate improves
when using a quadrature rule with a better accuracy. For this test,
the approximation of the eigenvalue is already accurate with a
coarse grid; it is simply driven by the threshold e and Eh

L does not
significantly change with h.

Uniform fragmentation. The Uniform fragmentation kernel
is defined by:

k(z ∣ z0) =
1
z0
10≤z≤z0 :

We apply the algorithm for the following two cases:
TABLE 4 | Data for the numerical tests: binary division kernel.

a V R ∈

4 0.6 5 10-6
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V(z) = V0 and a(z) = a0z. We have l =
ffiffiffiffiffiffiffiffiffiffi
a0V0

p
and

N zð Þ = 2
ffiffiffiffiffiffi
a0
V0

r
Z +

Z2

2

� �
exp  −Z −

Z2

2

� �
:

We still use the values in Table 4 (especially, a0 = a and V0 =
V). The approximated eigenpair is obtained in 84 iterations and,
as in the previous test, it does not change with the size step. In
this case, both the eigenvalue and the eigenfunction are
approached at order 1, see Table 6 and Figure 11.

V(z) = V0z and a(z) = a0z
n with n∈N∖{ 0 } . The eigenpair is

defined by the following formula:
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n = 1 l = V0 N zð Þ = a0
V0
exp   − a0

V0
z

� �
n = 2 l = V0 N zð Þ = 2a0

pV0
exp   − a0

2V0
z2

� �
n l = V0 N zð Þ = a0

nV0

� �1
n n
G 1

nð Þ exp   − a0
nV0

zn
� �

Note that the growth rate V vanishes and Theorem 1.1 does
not apply as such. Nonetheless, the algorithm works well and still
captures the eigenpair. We perform the test for n = 1 and n = 2
FIGURE 10 | Binary division kernel: convergence rates of (l(K), N(K)) with respect to h.
TABLE 5 | Binary division kernel: errors for several number of grid points.

Number of cells El EV

1000 3.73 × 10-5 3.83 × 10-2

2000 5.68 × 10-8 1.93 × 10-2

4000 6.77 × 10-7 9.69 × 10-3

8000 6.84 × 10-7 4.85 × 10-3
TABLE 6 | Uniform fragmentation, ex. 1: errors for several number of grid points.

Number of cells El EV

1000 1.30 × 10-2 8.89 × 10-3

2000 6.43 × 10-3 4.50 × 10-3

4000 3.23 × 10-3 2.24 × 10-3

8000 1.62 × 10-3 1.13 × 10-3
June 2022 | Volume 12 | Art
FIGURE 11 | Uniform fragmentation, ex. 1: rate of convergence to the exact eigenpair with respect to h.
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and the results are recorded in Table 7; Figure 12 and Table 8;
Figure 13, respectively.

7 SENSITIVITY ANALYSIS ON THE
EQUILIBRIUM MASS

Having an efficient procedure to predict the residual mass of the
equilibrium phase also opens perspectives to discuss the
influence of the parameters. This can provide useful hints for
the design and the optimization of anti-tumor therapies. We
address this issue by performing a global sensitivity analysis on
the immune-controlled tumor mass. Sensitivity analysis also
provides information on the quantification of uncertainty in
the model output with respect to the uncertainties in the input
parameters. We remind the reader that the equilbrium mass is
seen as a function of the parameters in Table 1:

m1 = f a,A, p, c,D, gð Þ: (24)

We consider that the input parameters are independent random
variables uniformly distributed in an interval [ x1 ,x2 ]⊂( 0,∞ ) :

M = a,A, p, c,D, gð Þ with Mi ∼ U x1, x2ð Þ : (25)

The pillar of the Sobol sensitivity analysis is the
decomposition of f into 2n - 1 summands of increasing
dimensions:

f Mð Þ = f0 +o
n

i=1
fi Mið Þ

+ o
1≤i<j≤n

fij Mi,Mj

� �
+⋯+f1⋯ n M1,⋯,Mnð Þ,

(26)

Where

1
x2−x1

Z
x1,x2½ �

fi1 ⋯ ip Mi1 ⋯ ip

� �
 dMik = 0 for k ∈ 1, :::, pf g, (27)

f0 =
1

x2 − x1ð Þn
Z
½x1,x2�n

f Mð Þ dM, (28)

Z
½x1,x2�n

fi1 ⋯ ip Mi1 ⋯ ip

� �
fj1 ⋯ jp Mj1 ⋯ jp

� �
 dM = 0, (29)

andM i1 ⋯ip =(M i1 ,⋯M ip ) . The existence and uniqueness
of the above decomposition has been proven in (69), given f a
square integrable function. Owing to the orthogonality condition
(29), the total variance of f reads:
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V = Var f Mð Þð Þ = 1
(x2 − x1)

n

Z
½x1,x2�n

f (M)2 dM − f 20 : (30)

Given (26), V can be decomposed as follows:

V =o
n

i=1
V i+ o

1≤i<j≤n
V ij +⋯+V1⋯ n, (31)

where the terms V i1 ⋯ip , called partial variances read:

V i1 ⋯ ip =
1

(x2 − x1)
n

Z
½x1,x2�n

f 2i1 ⋯ ip dMi1 ⋯ dMip : (32)

Following the description in (69), the Sobol’ sensitivity
indices are defined as follows:

Si1 ⋯ ip =
V i1 ⋯ ip

V
(33)

They verify

o
n

i=1
Si+ o

1≤i<j≤n
Sij +⋯+S1⋯ n = 1: (34)

Each index S i1 ⋯ip measures how the total variance of f is
affected by uncertainties in the set of input parameters i1 ⋯ip.
An equivalent definition of the above indices is given by
[see (68)]:

V i = Var(E(Y ∣Mi)), V ij = Var(E(Y ∣Mi,Mj)) − V i − V j,…

(35)

The total effect of a specific input parameter i is evaluated by
the so-called total sensitivity index S(i)T , the sum of the sensitivity
indices which contain i:

S ið Þ
T =o

Ci

Si1 ⋯ ip (36)

where Ci ={ ( i1 ⋯ip ):∃m∈{ 1,...,p }, im =i }. In practice, the
sensitivity indices that are needed to discriminate the impact of
the parameters are the first, second and total Sobol’ sensitivity
indices. The above indices are computed using Monte Carlo
simulations combined with a careful sampling of the parameters
space in order to reduce the computational load and the number
of model evaluations. For this purpose, the following
estimators can be derived using two different N samples A and
B, see (68, 74),

bf0 = 1
No

N

l=1

f Mlð Þ, (37)

V̂ =
1
No

N

l=1

f 2 Mlð Þ − f̂ 20, (38)

V̂ i =
1
No

N

l=1

f M Að Þ
−ið Þl ,M

Að Þ
il

� �
f M Bð Þ

−ið Þl ,M
Að Þ
il

� �
− f̂ 20, (39)
TABLE 7 | Uniform fragmentation, ex. 2, case n = 1: errors for different number
of cells.

Number of cells El EV

1000 4.70 × 10-2 2 × 10-2

2000 2.43 × 10-2 1.06 × 10-2

4000 1.25 × 10-2 5.5 × 10-3

8000 6.39 × 10-3 2.81 × 10-3
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V̂ ij =
1
No

N

l=1

f M Að Þ
− i,jð Þl ,M

Að Þ
il ,M Að Þ

jl

� �
f M Bð Þ

− i,jð Þl,M
Að Þ
il ,M Að Þ

jl

� �
− f̂ 20 − V̂ i − V̂ j

(40)

Here the notationM −( i1 ⋯ip )l stands for the l-th sample line
where we get rid of the points corresponding to the indices i1 ,⋯,
ip. The total sensitivity (87) is given by:

STi
= 1 − S−i (41)
FIGURE 12 | Uniform fragmentation, ex. 2 case n = 1: rate of convergence to the exact eigenpair with respect to h.
TABLE 8 | Uniform fragmentation, ex. 2, case n = 2: errors for different number
of cells.

Number of cells El EV

1000 2.39 × 10-2 8.81 × 10-2

2000 1.23 × 10-3 4.53 × 10-3

4000 6.41 × 10-3 2.35 × 10-3

8000 3.41 × 10-3 1.24 × 10-3
FIGURE 13 | Uniform fragmentation, ex. 2: rate of convergence to the exact eigenpair with respect to h.
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where S-i is the sum of all the sensitivity indices that do not contain
the index i. Hence, the total sensitivity index estimator reads:

Ŝ Ti
= 1 −

V̂ −i

V̂ (42)

Where

V̂ −i =
1
No

N

l=1

f M Að Þ
−ið Þl ,M

Að Þ
il

� �
f M Að Þ

−ið Þl ,M
Bð Þ
il

� �
− f̂ 20 :
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