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A B S T R A C T   

Forest map products are widely used and have taken benefit from progresses in the multisource forest inventory 
approaches, which are meant to improve the precision of forest inventory estimates at high spatial resolution. 
However, estimating errors of pixel-wise predictions remains difficult, and reconciling statistical outcomes with 
map products is still an open and important question. 

We address this problem using an original approach relying on a model-based inference framework and k- 
nearest neighbours (k-NN) models to produce pixel-wise estimations and related quality assessment. Our 
approach takes advantage of the resampling properties of a model-based estimator and combines it with 
geometrical convex-hull models to measure respectively the precision and accuracy of pixel predictions. A 
measure of pixel reliability was obtained by combining precision and accuracy. 

The study was carried out over a 7,694 km2 area dominated by structurally complex broadleaved forests in 
centre of France. The targeted forest attributes were growing stock volume, basal area and growing stock volume 
increment. A total of 819 national forest inventory plots were combined with auxiliary data extracted from a 
forest map, Landsat 8 images, and 3D point clouds from both airborne laser scanning and digital aerial photo
grammetry. k-NN models were built independently for both 3D data sources. Both selected models included 5 
auxiliary variables, and were generated using 5 neighbours, and most similar neighbours distance measure. The 
models showed relative root mean square error ranging from 35.7% (basal area, digital aerial photogrammetry) 
in calibration to 63.4% (growing stock volume increment, airborne laser scanning) in the validation set. At pixel 
level, we found that a minimum of 86.4% of the predictions were of high precision as their bootstrapped co
efficient of variation fall below calibration’s relative root mean square error. The amount of extrapolation varied 
from 4.3% (digital aerial photogrammetry) to 6.3% (airborne laser scanning). A relationship was found between 
extrapolation and k-NN distance, opening new opportunities to correct extrapolation errors. At the population 
level, airborne laser scanning and digital aerial photogrammetry performed similarly, offering the possibility to 
use digital aerial photogrammetry for monitoring purposes. 

The proposed method provided consistent estimates of forest attributes and maps, and also provided spatially 
explicit information about pixel predictions in terms of precision, accuracy and reliability. The method therefore 
produced high resolution outputs, significant for either decision making or forest management purposes.   

1. Introduction 

National Forest Inventories (NFIs) are crucial forest assessment 

programmes, providing estimates about the amount and state of the 
forest resources, and information forming the basis for the development 
of various forest management policies (Breidenbach et al., 2021). NFIs 
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are based on a rigorous statistical framework for designing sampling and 
inventory procedures with corresponding estimators (Tewari and 
Kleinn, 2015), and can deliver precise estimates of forest attributes such 
as growing stock volume (GSV) and basal area (BA) at national down to 
regional scales (Brosofske et al., 2014; Kangas et al., 2018). Below these 
scales, the estimation domain is too sparsely sampled, resulting in poor 
estimation precision of forest attributes (Coelho and Pereira, 2011). 
Such a decrease in estimation precision prevents forest stakeholders 
from using NFI estimates to develop strategies and support decision- 
making processes over small functional-management territories (Vega 
et al., 2021). To support these activities, NFI precision has to be 
improved and complemented with map products providing detailed 
information about the amount and localization of the forest resources 
(Chirici et al., 2020, Rahlf et al., 2021). 

Multisource National Forest Inventory (MSNFI) approaches has 
made it possible to answer these specific needs and also encourage wall- 
to-wall mapping of forest attributes at high spatial resolution (Saarela 
et al., 2020), through a statistical combination of NFI and auxiliary data 
(Tomppo et al., 2008). The auxiliary datasets such as thematic maps (i.e. 
forest maps, soil maps) and remote sensing products (i.e. optical, SAR, 
3D point cloud data) are selected based on their availability, correlation 
with the forest attributes of interest and their limited cost. 

Many optical remote sensing satellites such as SPOT, Landsat, IKO
NOS, GeoEye-1, Quickbird, and Sentinel-2 have been tested and used in 
various forest inventories programmes around the world (Castillo-San
tiago et al., 2010; Irulappa-Pillai-Vijayakumar et al., 2019; Puliti et al., 

2021). Despite their large spatial coverage and high temporal resolution, 
the availability of optical imagery is often impeded by cloud cover, haze, 
cloud shadow, while the derived vegetation indices tends to saturate in 
mid biomass (~130 Mg/ha) (Zhao et al., 2016). Airborne remote sensing 
data from airborne laser scanning (ALS) and digital aerial photogram
metry (DAP) (Gobakken et al., 2015; Irulappa-Pillai-Vijayakumar et al., 
2019) proved to be the most valuable sources of auxiliary data to 
characterize the forest canopy structure and estimate the most impor
tant forest attributes (Durrieu et al., 2015; White et al., 2013). Unlike 
ALS, DAP cannot provide forest structure information below the canopy 
cover, and for the computation of canopy height model, DAP relies on a 
digital terrain model (DTM) from an external source (St-Onge et al., 
2008). After conducting analytical research on 70 peer-reviewed 
studies, Zolkos et al. (2013) concluded that ALS proved to be perform
ing significantly better for forest resource estimation than any other data 
source. However, due to the low cost of DAP, the data are updated 
regularly which makes it appealing to use for forest monitoring (Rahlf 
et al., 2017). Hence, the debate on which auxiliary data is the most 
suitable for forest resource estimation in MSNFI remains largely open. 

The relationships between NFI and auxiliary data were investigated 
using various approaches. Numerous parametric (i.e. linear regression, 
Bayesian regression model, geographically weighted regression) and 
non-parametric (i.e. random forest, k-nearest neighbours or k-NN) 
methods have been implemented for downscaling NFI estimates over 
small management units (Barrett et al., 2016; Gregoire et al., 2016; 
Irulappa-Pillai-Vijayakumar et al., 2019; Tomppo et al., 2008). These 

Fig. 1. Location of the study area and spatial distribution of the NFI field plots. The colour of NFI plots represents the training and testing set used for modelling 
(Section 3.1). 
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methods are already operational in the boreal region (Kangas et al., 
2018), while experiences are limited in some temperate regions due to 
the complexity in forest composition and structure (Vega et al., 2021). 
Among all these methods, k-NN technique gained popularity in MSNFIs 
(Irulappa-Pillai-Vijayakumar et al., 2019; Magnussen et al., 2009). A 
strong argument for k-NN comes from its ease of implementation, its 
ability to predict multiple forest attributes simultaneously (Goerndt 
et al., 2019), and the absence of assumption regarding the distribution of 
predictor and response variables (Irulappa-Pillai-Vijayakumar et al., 
2019). 

Similarly, various inference frameworks have been used to estimate 
population parameters, including total, mean, and variance from plot 
and auxiliary data (Gregoire et al., 2016). Since NFI relies on sampling 
procedures, model-assisted inference has been largely used to build 
upon the properties of the sampling design for estimation (Saarela et al., 
2015). Small area estimation technique has been developed to down
scale the estimates to small geographical domains such as municipalities 
and forest districts (Breidenbach and Astrup, 2012; Tomppo et al., 
2008). However, a minimum number of sample plots is required in each 
domain to allow estimation, thus constraining the geographical scale at 
which forest attributes could be reported with a requested precision 
(Vega et al., 2021). The model-based inference framework allows more 
flexibility on the sampling design and could provide estimates even in 
those domains that do not include any field plot (Ståhl et al., 2016). As 
the estimates are directly derived from the model, the emphasis is placed 
on the model specification to minimize bias (Longford, 2005). The 
downside of k-NN technique in this context is the absence of a well- 
established theoretical inference framework, although several estima
tors have already been proposed (McRoberts et al., 2011). Furthermore, 
the incapacity of k-NN to predict outside of the calibration domain 
(James et al., 2013) requires the development of specific approaches to 
account for prediction bias (Magnussen et al., 2010). With much less 
sampled plots than auxiliary data, MSNFIs are naturally put in a situa
tion of imbalance that translates into frequent model extrapolation 
(Meyer and Pebesma, 2021). This stresses the importance of addressing 
model extrapolation while analysing and quantifying the reliability of 
the predicted forest attributes. 

Models have also largely been used to produce wall-to-wall maps of 
forest attributes (Chirici et al., 2020; Coops et al., 2021; Nilsson et al., 
2017), and error propagation methods have been proposed to assess 
prediction uncertainties (Blackard et al., 2008; Esteban et al., 2019; 
Mascaro et al., 2011). But the reliability of pixels predictions in the 
context of statistical inference have rarely been appreciated (Saarela 
et al., 2020). 

The objective of this study was to propose a method to adapt the 
model-based k-NN estimation framework of population parameters for 
the production of high resolution forest attribute and reliability maps at 
pixel level. We defined prediction reliability at pixel level in terms of 
precision and accuracy. Precision was derived through resampling, 
building upon a bootstrap model-based estimator proposed by McRo
berts et al. (2022) for population parameters. Prediction accuracy was 
defined through a measure of extrapolation, to account for k-NN’s 
inability to predict outside of its calibration domain (Magnussen et al., 

2010). Extrapolation was assessed using an original convex hull 
approach applied to the auxiliary variable space (Conn et al., 2015; 
Cook, 1977). The method was evaluated for three major forest attri
butes, GSV, BA, and growing stock volume increment (VI) in a large 
territory composed of complex forest structures. The auxiliary data 
included a forest map, Landsat 8 images and 3D point cloud data from 
ALS and DAP. 

2. Material 

2.1. Study site 

The study was carried out in the temperate forest of Sologne and 
Orléans, located in the French region of Centre Val De Loire (Fig. 1). The 
area covers 7,694 km2 which extends from 1.41◦ to 2.79◦ East Longitude 
and 47.1◦ to 48.1◦ North Latitude. The area is characterized by a semi- 
oceanic climate, with mean annual precipitation of 731 mm and a mean 
annual temperature of 10.9 ◦C. Elevation ranges from 70 to 180 m and 
topography represents a flat terrain. The soil is predominantly made up 
of sand and clay, originating from the erosion of Massif Central. Because 
of the low permeability of these soils, the area has numerous ponds and 
swamps. About 53% (3,900 km2) of the area is covered by forests. 
Forested areas are primarily dominated by broad-leaved stands (74%) of 
oaks (i.e., Quercus petraea Mill. and Quercus robur L.). Coniferous stands 
account for 16% of the forested area and are dominated by scots pines 
(Pinus sylvestris L.) and maritime pines (Pinus pinaster Ait.). The 
remaining forest area is covered by a mixed stand (10%) of oaks and 
Scots pines. The forest is characterized by different management policies 
influenced by forest ownership. The northern part of the study area is 
dominated by state-owned forests which are intensely managed. Private 
forests represent ~ 84% of the forested area. 

2.2. Field inventory data 

A total of 819 field plots were used. The plots were surveyed on the 
field between 2010 and 2014 in the framework of the NFI. Such an 
aggregation is used to produce official statistics at national and regional 
level (Robert et al., 2009). The plot sample was drawn in such a way that 
the last annual sample (2014) corresponded to the reference year for the 
auxiliary data described in Section 2.3. 

Field information is collected on 4 concentric circular plots of radius 
6, 9, 15, and 25 m. The largest concentric plot is used to describe the 
stand structure and composition. Tree measurements are restricted to 
the first three concentric plots according to the tree circumference at 
breast height (1.3 m). Small ([23.5–70.5 cm[), medium ([70.5–117.5 cm 
[), and large ([117.5 cm[) trees are measured in plots of radius 6, 9, and 
15 m respectively. The information about species, vegetation state, 5- 
year radial increment, and circumference at breast height are 
collected for all the trees fulfilling the circumference constraints. Tree 
attributes such as stem volume and stem volume increment are 
computed from field measurements using NFI’s species-specific allo
metric models. Plot position on the field is fixed using low-cost GPS, 
interpretation of printed aerial photographs, and/or routing and 
chaining. The precision of the plot centre position is evaluated at 3.67 m 
(±3.3 m) (Guitet, 2018). 

Plot-level forest attributes are computed from the tree measurements 
and their inclusion probability, which is based on the tree position 
within the plot (Hervé et al., 2014). The study focuses on three forest 
attributes of importance: GSV (m3ha− 1), computed as the weighted sum 
of the individual tree stem volume (stem diameter up to 7 cm), BA 
(m3ha− 1), defined as the weighted sum of the tree cross-sectional area at 
breast height, and VI (m3ha− 1yr− 1), computed as the weighted sum of 
the mean annual volume increment over 5 years. Summary statistics of 
the three forest attributes are shown in Table 1. 

Table 1 
Mean and standard deviation (SD) of forest attributes, for all plots (819 plots), 
training (80% of the plots) and testing (20 % of the plots) sets. Training and 
testing sets were used for model development (Section 3.1).  

Forest attribute All plots Training plots Testing plots 

Mean SD Mean SD Mean SD 

Growing stock (GSV, 
m3ha− 1)  

160.7  111.3  160.0  110.0  162.9  116.7 

Basal area (BA, m3ha− 1)  21.1  11.8  21.2  11.9  20.4  11.5 
Volume increment (VI, 

m3ha− 1yr− 1)  
5.7  3.9  5.7  3.9  5.3  3.8  
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2.3. Auxiliary data and processing 

Three freely available auxiliary data were considered in this study: 
forest map, Landsat images, and 3D point clouds. Two sources of point 
cloud were used for comparison: ALS, and DAP. 

The auxiliary data were processed and integrated into a grid of 30 m 
resolution, corresponding to the diameter of the NFI field plots. Each 
pixel of the grid had a surface of 900 m2.The origin of the grid was set 
according to the Lambert conic projection using Lambert-93 geodetic 
system (EPSG: 2154). Data processing and analysis were conducted in R 
(Version 4.0.2) environment, using lidR (Roussel et al., 2020), yaImpute 
(Crookston and Finley, 2008), and geometry (Habel et al., 2019) 
packages. 

2.3.1. Forest map 
The forest map (BD-Forêt® version 2.0) is an open-source vector 

map, defining the geographical reference for the forest land cover and 
the description of forest stands. The map is produced by the National 
Institute of Geographic and Forest Information (IGN), through semi- 
automatic segmentation of near-infrared aerial images (BD ORTHO®) 
with a resolution of 0.5 m, followed by the photo-interpretation of the 
resulting segments. The map provides information about forest area and 
composition for the dominant species within a forest patch of at least 
0.5 ha. 

The forest map was used to generate a forest mask to limit the spatial 
extent of the pixels within the forest land cover only. Each pixel was 

characterized by a dominant forest type (pure conifers, pure broad
leaved, or mixed stands), which was achieved by selecting the forest 
type at the pixel centre (Irulappa-Pillai-Vijayakumar et al., 2019). 

2.3.2. Landsat data 
Four processed Landsat 8 images acquired on 8 September 2014 

were used in this study. The data were acquired freely from the Theia 
portal (https://theia-landsat.cnes.fr). The images were processed to level 
2A, which includes: orthorectification, cloud and their shadow masking, 
and atmospheric correction (Hagolle et al., 2015). Landsat 8 Operational 
Land Imager images consist of nine spectral bands of 30 m spatial res
olution. Along with the spectral bands, 12 spectral indices were 
computed: Normalized Difference Vegetation Index, Normalized Dif
ference Moisture Index, Normalized Difference Water Index, Green 
Normalized Difference Vegetation Index, Soil Adjusted Vegetation 
Index, Specific Leaf Area Vegetation Index, Modified Soil Adjusted 
Vegetation Index, Enhanced Vegetation Index, Simple Ratio, Brightness, 
Greenness and Wetness. The details for the computation of indices were 
provided in Irulappa-Pillai-Vijayakumar et al. (2019). 

2.3.3. Airborne laser scanning and digital aerial photogrammetry 
The Airborne Laser Scanning (ALS) data were collected by IGN, be

tween January and March 2014. The northern part of the study area 
(2,758 km2) was covered using Optech ALTM 3100 EA laser scanner 
operated at an altitude of 1,530 m above ground level (AGL). The pulse 
repetition frequency was 71 Hz, and the scanning frequency was 35 Hz 

Fig. 2. Overview of the method, including (1) plot-level model selection and assessment, (2) population inference and maps.  
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with a maximum scan angle of 25◦. A supplementary flight was con
ducted to cover the southern part of the study site (4,936 km2). The data 
were acquired using a Leica ALS70 sensor flying at an altitude of 1,797 
m AGL. The pulse repetition frequency was 309 Hz, and the scanning 
frequency was 35 Hz with a maximum scan angle of 25◦. The point 
density of both flights was 2 pts m− 2. The point clouds were processed 
using IGN processing lines using Terrasolid’s Terrascan software 
(https://terrasolid.com). The data were delivered as classified point cloud 
tiles of 1 km resolution. The ground classified points were used to 
generate a DTM at a 1 m resolution using Triangulated Irregular 
Network algorithm. The points above the ground level were normalized 

using the DTM. 
The Digital Aerial Photogrammetry (DAP) data were acquired be

tween 2013 (July 06 – July 12) and 2014 (May 18 – July 16), using the 
IGN CamV2 system (14,650 × 10,700 pixels of 6.8 µm each) (Souchon 
et al., 2010) mounted with a Zeiss lens of 125 mm focal length. The 
images were acquired at 6,400 m AGL with 60% overlap along track and 
25% across track. The pixel resolution at ground level was 0.35 m. The 
oriented images were processed using IGN MicMac photogrammetric 
software (Rupnik et al., 2017). The dense image matching was imple
mented using a Per Image Matching approach. Depth maps of each 
image pair were generated at a pyramid level 2, merged, and then 

Fig. 3. Scheme of the process of identification and characterisation of extrapolation in a 2D auxiliary variable space: (a) reference (plots) and target (pixels) sets; (b) 
computation of the convex hull of reference; (c) classification of target into interpolation or extrapolation; (d) reclassification of extrapolated targets using an 
interpolation distance threshold. 

Fig. 4. Scheme of the reliability assessment for a sample of pixel’s predictions based on precision and accuracy.  
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converted into a 3D point cloud. The resulting points (0.9 pts m− 2) were 
further normalized using the ALS DTM. 

Multiple metrics were computed from both ALS and DAP point cloud 
at the grid level. These include: minimum, maximum and mean height, 
standard deviation, skewness, kurtosis and entropy of height distribu
tion, percentage of returns above mean height, percentile of height 
distribution, and cumulative percentage of return. The above metrics 
were computed for all the points above 2 m. ALS metrics were computed 
for the first and last returns, as well as for the intensity of first returns. 
Additional metrics were computed for the ratio of area and canopy 
closure ratio (Rcc: ratio between canopy and ground cover) (Roussel 
et al., 2020). 

3. Methods 

The methods included two steps, (i) model selection and assessment, 
and (ii) statistical inference and mapping (Fig. 2). The relationships 
between field attributes and the auxiliary data were investigated using 
non-parametric multivariate k-NN models (McRoberts, 2012). 

3.1. Model selection and assessment 

Model selection and assessment was achieved using a train
ing–testing approach. The data split was based on a geographical par
titioning of the study area (Meyer and Pebesma, 2021). First, the 
bounding box of the field plots was computed and one of the corners was 
randomly selected. Then, the 20% of the nearest plots from that corner 
were selected and retained as the testing set. The training set was formed 
with the remaining 80% of the plots and was used for model selection 
and evaluation. As the number of auxiliary variables were high and 
could be affected by autocorrelation issues, the variables were first 
thinned using a variable reduction approach. 

3.1.1. Variable reduction 
The k-NN predictions are sensitive to the model dimensionality 

(Breidenbach et al., 2012). A model with a large number of predictor 
variables would increase the modelling complexity, computation time, 

and may degrade its performance (Bhanu and Lin, 2003). Furthermore, 
some auxiliary variables are auto-correlated (e.g., ALS height percen
tile), and may cause model overfitting problems (Moser et al., 2017). 

Highly correlated auxiliary variables were circumvented through a 
variable reduction approach. The correlation matrix was computed be
tween auxiliary variables and the targeted field attributes. For each field 
attribute, the auxiliary variables with the highest correlation were 
selected to initiate a vector of variables. The remaining auxiliary vari
ables were then processed based on their correlation rank (from higher 
to lower). An auxiliary variable was added to the vector if its correlation 
with all the vector variables was lower than a threshold (0.7 units) 
(Dormann et al., 2013). The auxiliary variable common to all the vectors 
(one vector per field attribute) were then selected to initiate a vector of 
reduced variables and their average correlation with field attributes was 
computed. The remaining auxiliary variables were further ranked ac
cording to their mean correlation with the field attributes and tested for 
inclusion in the vector of reduced variables using the same procedure 
and parameters. 

3.1.2. k-NN models 
Along with the number of variables, k-NN model parameters include 

the number of neighbours, a distance metric and a distance weighting 
function (McRoberts, 2012). The optimal value of k is usually a trade-off 
between bias and variance (McRoberts et al., 2015). Following previous 
researches, models were implemented using a k value of 5 (Irulappa- 
Pillai-Vijayakumar et al., 2019; Chirici et al., 2020). The k-NN were 
tuned for 2 distances metrics and were built using 1 up to 10 auxiliary 
variables selected using an iterative feature selection algorithm. For 
both ALS and DAP, the best model was selected from a total of 40 
competing models. 

Distance metrics included Euclidean (Eq. (1)) and most similar 
neighbours (Eq. (2)) (Crookston and Finley, 2008; Moeur and Stage, 
1995). Both distances were computed in a normalized variable space by 
dividing their mean-centred values with their standard deviation and 
using an inverse distance weighting function (Eq. (3)): 

dij(euc) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xj

)T ( xi − xj
)

√

(1)  

dij(msn) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xj

)
ΓΛ2ΓT( xi − xj

)T
√

(2) 

Table 2 
Parameters of the selected k-NN models for ALS and DAP.  

Dataset k-NN models Selected variables 

Variable 
selection 

Distance Forest 
map 

3D point cloud Landsat 

ALS Deletion msn Forest 
type 

50th percentile of 
heights 
4th cumulative 
percentage of 
returns 
Canopy closure 
ratio 

Green band 

DAP Addition msn Forest 
type 

Standard 
deviation 
40th percentile of 
heights 

Green  
Short-wave 
infrared 1  

Table 3 
Cross-validation model prediction means and errors for ALS and DAP based prediction of growing stock volume (GSV, m3ha− 1), basal area (BA, m3ha− 1), and volume 
increment (VI, m3ha− 1yr− 1). Numbers in parenthesis are relative errors in percent.  

Dataset Forest attribute Calibration Validation 

Prediction Mean RMSE ME Prediction Mean RMSE ME 

ALS GSV  159.8 59.3 (37.1) − 0.1 (− 0.1)  159.6 76.4 (47.8) − 0.4 (− 0.2) 
BA  21.2 7.6 (35.9) 0.1 (0.3)  21.2 9.7 (45.7) 0.1 (0.3) 
VI  5.7 2.9 (50.0) < 0.1 (0.2)  5.7 3.6 (63.4) < 0.1 (0.1) 

DAP GSV  159.2 59 (36.9) − 0.6 (− 0.4)  159.6 75.2 (47.0) − 0.3 (− 0.2) 
BA  21.2 7.6 (35.7) < 0.1 (<0.1)  21.3 9.5 (45.0) 0.1 (0.5) 
VI  5.7 2.8 (48.2) − 0.1 (− 1.0)  5.7 3.6 (61.9) > − 0.1 (− 0.7)  

Table 4 
Test model prediction means and errors for ALS and DAP based predictions of 
growing stock volume (GSV, m3ha− 1), basal area (BA, m3ha− 1), and volume 
increment (VI, m3ha− 1yr− 1). Numbers in parenthesis are relative errors in 
percent.  

Dataset Forest attribute Prediction Mean RMSE ME 

ALS GSV  158.1 80.4 (49.3) − 4.8 (− 3.0) 
BA  20.4 9.4 (46.2) 0.1 (0.3) 
VI  5.2 3.6 (67.4) − 0.1 (− 2.2) 

DAP GSV  159.7 79.6 (48.8) − 3.5 (− 2.2) 
BA  21.0 9.6 (47.2) 0.6 (3.2) 
VI  5.6 3.4 (64.2) 0.3 (4.9)  
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wij =
1

1 + dij
(3)  

where, dij(euc) is the Euclidean distance, dij(msn) is the most similar 
neighbours distance, xi is the vector of target auxiliary variables, xj is the 
vector of reference auxiliary variables, Λ is the matrix of canonical 
correlations, Γ is the matrix of canonical vectors of auxiliary data 
resulting from the canonical correlation between auxiliary data and field 
attributes, T denotes the transpose of the matrix, and wij is the weight 
applied to dij to compute predictions. While dij(euc) only relies on 
auxiliary variables, dij(msn) also preserves the covariance structure of 
the field attributes. 

Variable selection was performed using an iterative feature selection 
algorithm applied in both addition and deletion modes (Crookston and 
Finley, 2008). The algorithm was developed for k-NN models and relied 
on the minimization of the Root Mean Square Error (RMSE, Eq. (4)) of 

Fig. 5. Graphs of the observed versus predicted growing stock volume (GSV) and of corresponding prediction residuals over the test set for both ALS and DAP 
based models. 

Table 5 
Model-based bootstrapped population mean (μ̂boot), variance (V̂boot), and bias 
(B̂boot) of predicted forest attributes with ALS and DAP based models.  

Dataset Forest attribute μ̂boot V̂boot(μ̂) B̂boot(μ̂)

ALS GSV (m3ha− 1)  161.9  6.4  0.2 
BA (m3ha− 1)  20.8  0.1  < 0.1 
VI (m3ha− 1yr− 1)  5.6  < 0.1  < 0.1 

DAP GSV (m3ha− 1)  160.7  5.1  0.1 
BA (m3ha− 1)  20.7  0.1  < 0.1 
VI (m3ha− 1yr− 1)  5.5  < 0.1  < 0.1  
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predictions. The algorithm was applied independently for each distance 
metric, and for each case, the best 10 variables were selected for further 
processing. 

The nested models made of 1 up to 10 variables were evaluated using 
leave-one-out cross-validation. For each model, the cross-validated 
RMSE (Eq. (4)), mean error (ME, Eq. (5)) and total error (TE, Eq. (6)) 
(Hou et al., 2017; Vega et al., 2021) were computed for both calibration 
and validation sets based on the following equations: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi )

2

√

; rRMSE =
RMSE

y
× 100 (4)  

ME =
1
n
∑n

i=1
(yi − ŷi); rME =

ME
y

× 100 (5)  

TE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RMSE2 + ME2

√
; rTE =

TE
y

× 100 (6)  

where yi is the observed value, ŷi is predicted value, y is the mean of 
observed values and n is the number of NFI plots. 

The optimal model was selected for both ALS and DAP in two steps. 
First, models exhibiting overfitting were filtered out from the selection. 
Overfitting was identified using the method proposed by Valbuena et al. 
(2017). It consisted in computing the ratio between the square error 
achieved on the cross-validation dataset and the one achieved using the 
entire train dataset (SSR, Eq. (7)), and rejecting models having a ratio 
value above 1.1: 

SSR =
1
n
∑n

i=1

(
ycv

i − ŷi
)
/

1
n
∑n

i=1

(
ytrain

i − ŷi
)

(7)  

where SSR is the overfitting index, ycv
i are the cross-validated predictions 

and ytrain
i are the training predictions. 

From the set of remaining models, the models having a rTE within 
1% of the lowest rTE were selected and the best model was defined as the 
one having the lowest number of predictors for model parsimony. 

Finally, a k-NN was built using the whole train set and evaluated on 
the test set as an independent performance assessment. Performance 
measures included both RMSE and ME. 

3.2. Statistical inference and mapping 

Predictions at the population level were obtained using bootstrap (N 
= 100). The size of the bootstrap sample was set to the number of field 
plots. k-NN models were trained for each bootstrapped sample and used 
to predict the entire population of pixels, resulting in 100 predictions for 
each pixel and forest attribute. 

3.2.1. Statistical inference 
The population mean (Eq. (8)) and variance (Eq. (9)) from the field 

plots were computed using a simple expansion estimator (Magnussen 
et al., 2020), and were used to evaluate the k-NN performance at the 
population level: 

Fig. 6. Map of ALS growing stock volume predictions at 30 m spatial resolution.  
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μ̂ =
1
n
∑n

i=1
yi (8)  

V̂(μ̂) = 1
n(n − 1)

∑n

i=1
(yi − μ̂)2 (9)  

where n is the number of sample plots and yi is the plot observed value. 
The bootstrapped model-based estimator was used to estimate the 

population parameters from k-NN predictions (McRoberts et al., 2022). 
The mean (Eq. (10)), bias (Eq. (11)), and variance (Eq. (12)) estimators 
were computed as follow: 

μ̂boot =
1

nboot

∑nboot

b=1
μ̂b

boot (10)  

B̂boot(μ̂) = μ̂boot − μ̂ (11)  

V̂boot(μ̂) =
1

nboot − 1
∑nboot

b=1

(
μ̂b

boot − μ̂boot
)2

(12)  

where nboot is the number of bootstrap samples, μ̂b
boot is the mean of the 

boot b, μ̂boot is the mean of the bootstrap samples. 

Fig. 7. Maps of predicted growing stock volume, and corresponding precision, accuracy and reliability, for both ALS and DAP based models.  

Table 6 
Mean predictions, mean k-NN distances and proportions of pixels per precision classes (H: high; I: intermediate; L: low) for both ALS and DAP-based models. The unit of 
the mean estimates corresponds to the unit of the forest attributes: growing stock volume (GSV, m3ha− 1), basal area (BA, m3ha− 1) and volume increment (VI, 
m3ha− 1yr− 1). k-NN distances are unit less.  

Dataset Attribute Mean predictions Mean distance Pixels (%) 

H I L H I L H I L  

GSV  176.2  47.0  21.0  0.13  0.21  0.25  89.9  5.3  4.8 
ALS BA  22.0  7.0  5.0  0.13  0.21  0.26  92.0  5.4  2.6  

VI  5.7  4.1  1.5  0.13  0.24  0.29  97.2  2.7  0.2  
GSV  179.4  54.5  24.3  0.11  0.15  0.15  86.4  7.8  5.8 

DAP BA  22.3  8.9  4.9  0.11  0.15  0.16  89.6  6.5  3.9  
VI  5.7  2.1  1.6  0.11  0.16  0.20  95.7  3.7  0.5  
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3.2.2. Map products 
The k-NN prediction maps were generated for each forest attribute at 

the grid pixel resolution (30 m) by computing the mean of the boot
strapped predictions. Along with the prediction maps, three additional 
maps per forest attribute were produced for the assessment of precision, 
accuracy and reliability. 

A map of precision was generated based on the bootstrapped pixel- 
level predictions. The precision was assessed through the calibra
tion–validation model rRMSEs (Eq. (4)) and coefficient of variation 
(CVboot) (Eq. (13)) of the bootstrapped prediction at pixel level. 

CVboot =
∑nboot

i=1

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi− x)2

nboot − 1

√ /

y

⎞

⎠

/

nboot (13)  

where, nboot is the number of bootstrap samples, xi and xi are respec
tively the prediction for a given sample and the prediction mean over the 
entire samples. For each pixel, the precision was considered high when 
CVboot was below calibration rRMSE, intermediate when CVboot was in 
between calibration and validation rRMSE, and low otherwise. Such a 
qualitative representation was preferred over a quantitative map for 
operational reasons. 

A map of accuracy was computed from the extrapolation status of the 
pixels. Since k-NN could not extrapolate, accurate predictions could only 
be expected from interpolated values. Extrapolation was identified in 
the auxiliary data space, using a convex hull approach (Fig. 3) (Barber 
et al., 1996). The convex hull was built using the auxiliary space 
describing the field plots. Pixels were then classified as interpolation or 
extrapolation according to their position with respect to the convex hull 
(Fig. 3c). The impact of extrapolation on prediction accuracy is expected 
to be a function of the extrapolation distance. Thus, extrapolated pixels 
were further classified according to a distance threshold. This threshold 
was defined as the mean k-NN distance of interpolated pixels plus two 
times its standard deviation. Extrapolated pixels having a k-NN distance 
lower than this threshold were reclassified as interpolated. Finally, the 
accuracy of pixels was considered high when pixels were classified 
interpolated and low otherwise. 

The third map relates to the reliability of the pixel predictions. From 

precision and accuracy maps, predictions were considered unreliable 
irrespective of their precision class when they were found as extrapo
lated. Otherwise, the reliability was set in accordance with the precision 
classes (Fig. 4). 

4. Results 

4.1. Model development and assessment 

The selected k-NN models are presented in Table 2. For ALS, 5 var
iables were selected using a variable deletion algorithm and the msn 
distance. The selected variables are the forest type, the Landsat green 
band and 3 ALS metrics describing the canopy height (i.e. the 50th 
percentile of the height distribution, corresponding to the median 
height), the canopy density (i.e., the 4th cumulative percentage of return 
computed as the proportion of returns above the 4 h decile of the height 
distributions to the total number of returns) and canopy opening (can
opy closure ratio). For DAP, the selected model also included 5 variables 
and was generated using the variable addition algorithm and msn dis
tance. Like ALS, the forest type and the Landsat green band contributed 
to the model. The 3 remaining auxiliary variables were the short-wave 
infrared band 1 (SWIR1) from Landsat, and 2 point cloud metrics 
describing the vertical structure of the canopy (i.e. the standard devia
tion and the 40th percentile of height distribution). 

Table 3 and 4, and Fig. 5 show the performance of the model with 

Table 7 
Mean predictions, mean k-NN distances and proportions of pixels per accuracy 
classes (H: interpolation; L: extrapolation) for both ALS and DAP-based models. 
The unit of the mean estimates corresponds to the unit of the forest attributes: 
growing stock volume (GSV, m3ha− 1), basal area (BA, m3ha− 1) and volume 
increment (VI, m3ha− 1yr− 1). k-NN distances are unit less.  

Dataset Attribute Mean predictions Mean distance Pixels (%) 

H L H L H L  

GSV  163.2 143     
ALS BA  21.1 15.8  0.12  0.37  93.7  6.3  

VI  5.7 4.3      
GSV  159.8 178.8     

DAP BA  20.8 19.9  0.10  0.37  95.7  4.3  
VI  5.6 5.5      

Table 8 
Mean predictions, mean k-NN distances and proportions of pixels per reliability classes (H: high; I: intermediate; L: low) for both ALS and DAP-based models. The unit 
of the mean estimates corresponds to the unit of the forest attributes: growing stock volume (GSV, m3ha− 1), basal area (BA, m3ha− 1) and volume increment (VI, 
m3ha− 1yr− 1). k-NN distances are unit less.  

Dataset Attribute Mean predictions Mean distance Pixels (%) 

H I L H I L H I L  

GSV  174.0  48.8  103.1  0.12  0.17  0.31  86.3  4.3  9.4 
ALS BA  22.0  7.6  13.6  0.12  0.17  0.34  87.9  4.2  7.9  

VI  5.7  4.0  4.2  0.12  0.19  0.37  91.7  1.9  6.4  
GSV  177.2  53.7  93.8  0.1  0.12  0.24  83.5  7.0  9.5 

DAP BA  22.2  8.8  13.2  0.1  0.13  0.26  86.4  5.8  7.7  
VI  5.7  2.0  5.1  0.1  0.13  0.35  92.0  3.3  4.7  

Table A1 
Test model prediction means and errors for inverted ALS and DAP based pre
dictions of growing stock volume (GSV, m3ha− 1), basal area (BA, m3ha− 1), and 
volume increment (VI, m3ha− 1yr− 1). Numbers in parenthesis are relative errors 
in percent. Inverted models were built using auxiliary data selected for ALS to 
DAP and conversely.  

Dataset Forest attribute Prediction Mean RMSE ME 

ALS GSV  163.8 84.4 (51.8) 0.8 (0.5) 
BA  21.3 10.1 (49.4) 0.9 (4.6) 
VI  5.7 3.7 (69.2) 0.4 (7.2) 

DAP GSV  163.8 80.5 (49.4) 0.6 (0.4) 
BA  21.4 9.7 (47.4) 1 (4.8) 
VI  5.7 3.7 (69.4) 0.4 (8.4)  

Table A2 
Model-based bootstrapped population mean (μ̂boot), variance (V̂boot), bias (B̂boot), 
of predicted forest attributes with inverted ALS and DAP based models. Inverted 
models were built using auxiliary data selected for ALS to DAP and conversely.  

Dataset Forest attribute μ̂boot V̂boot(μ̂) B̂boot(μ̂)

ALS GSV (m3ha− 1)  162.3  7.2  0.6 
BA (m3ha− 1)  20.9  0.1  0.1 
VI (m3ha− 1yr− 1)  5.6  < 0.0  < 0.0 

DAP GSV (m3ha− 1)  161.8  5.3  − 0.1 
BA (m3ha− 1)  20.8  0.1  < 0.0 
VI (m3ha− 1yr− 1)  5.5  < 0.0  < 0.0  
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training and testing data. For the ALS-based model, the cross-validated 
rRMSEs ranged from 35.9% for BA to 50% for VI in calibration and from 
45.7% for BA to 63.4% for VI in validation. The rME was within 0.3% in 
both calibration and validation for the three forest attributes surveyed 
(Table 3). The results achieved for the test set are of the same magnitude 
as the validation set. The test rRMSEs ranged from 46.2% to 67.4% for 
BA and VI respectively (Table 4). The lowest rME was − 3 % for GSV. 

For the DAP-based model, the cross-validated rRMSEs ranged from 
35.7% for BA to 48.2% for VI in calibration and from 45.0% to 61.9% for 
the same attributes in validation. The rME were slightly greater than 
those obtained for ALS. The calibration rME ranged from − 1.0% for VI 
to<0.1% for BA. The validation rME was of the same magnitude, with a 
minimum value of − 0.7% for VI and a maximum of 0.5% for BA 
(Table 3). The testing rRMSEs varied from 47.2% to 64.2% for BA and VI 
respectively. The rME was negative for GSV (− 2.2%) and positive for 
both BA and VI, with the greatest value achieved for VI (4.9%) (Table 4). 

4.2. Statistical inference and mapping 

Population estimates and corresponding maps are presented in 
Table 5 and Figs. 6 and 7. The mean GSV was estimated to 161.9 m3ha− 1 

and 160.7 m3ha− 1 with ALS and DAP respectively (Table 5). Corre
sponding variances were of 6.4 m3ha− 1 for ALS and 5.1 m3ha− 1 for DAP. 
Estimates for BA and VI were of the same order with both models. The 
largest volumes are predominantly found in public forests, localized in 
the northern, south-eastern and western part of the study area (Fig. 6). 

Table 6 showed the distribution of predictions within the three 
precision classes (see Section 3.2.2) for the 3 surveyed forest attributes. 
For both models, the mean attribute estimations decreased through the 
precision classes, indicating that lower precisions are associated to the 
lower attribute values. The mean k-NN distances followed the inverse 
trend, showing the lesser values in the high precision class and the 
greater values in the low precision class. Overall, the high precision class 
account for more than 86% of the pixels, ranging from 89.9% (GSV) to 
97.2% (VI) for ALS and from 86.4% (GSV) to 95.7 (VI) pixels with DAP- 
based model. 

Table 7 showed the ventilation of predictions in accuracy classes. 
The high accuracy represented respectively 93.7% and 95.7% of the 
predictions for ALS and DAP. A major difference between accuracy 
classes was the mean k-NN distance. Low accuracies, which corre
sponded to extrapolation, exhibited mean k-NN distances at least 3 times 
superior to the high accuracy. Mean estimates tended to be greater in the 
high accuracy class, indicating that extrapolation mostly affect lower 
attribute values. A noticeable exception from this trend was observed for 
GSV predicted using DAP-based model. The mean GSV in the low ac
curacy class was 19 m3ha− 1 greater than the mean GSV in the high ac
curacy class (i.e. 178.8 versus 159.8 m3ha− 1), showing a possible 
saturation effect of the model toward the greatest GSV. 

The reliability assessment performed through the intersection of 
precision and accuracy is presented in Table 8 and Fig. 7. More than 
86.3% and 83.5% of the predictions are classified as highly reliable for 
ALS and DAP respectively (Table 8). On the opposite, low reliability 
accounted for 4.7% (VI, DAP) up to 9.5% (GSV, DAP) of the predictions. 
Driven by the precision classes, the mean distance increased with 
decreasing reliability. That said, the low reliability class exhibited mean 
distances around 2 times greater than the other 2 classes. By comparison 
with the low precision (Table 6), the low reliability had greater pre
diction means. For ALS-based model, the GSV in low precision was 21.0 
m3ha− 1 which increased up to 103.1 m3ha− 1 in the low reliability class. 
Interestingly in DAP, the large GSV found in low accuracy (178.8 
m3ha− 1, Table 7) decreased to 93.8 m3ha− 1 in the low reliability class 
(Table 8), indicating that a significant proportion of predictions in this 
class had low attribute values, and are driven by low precision. Such a 
result could can also be seen in Fig. 7, which indicated that low precision 
is predominantly affecting low attribute values while low accuracy is 
mostly found towards greater attribute values. 

5. Discussion 

5.1. Model development and assessment 

In this study, models based on ALS and DAP included information 
from the three auxiliary data sources considered. The forest type infor
mation obtained from IGN forest map is a key attribute for differenti
ating structural and functional traits (Irulappa-Pillai-Vijayakumar et al., 
2019). Landsat 8 green band acquired between 0.53 and 0.59 µm and 
short-wave infrared band 1 (1.57–1.65 µm) emerged as the most influ
ential optical remote sensing variables. Astola et al. (2019) found that 
Landsat 8 visible green band was ranked first for predicting GSV and BA 
in the boreal forest of Finland. As emphasized by Cohen and Goward 
(2004), the SWIR1 band provided information about the vegetation and 
ground humidity and could be associated here with productivity gra
dients. The higher number of 3D variables selected in the models is 
associated with the high correlation between the vertical distribution of 
vegetation and the major forest attributes (Næsset, 2002). ALS data 
convey a higher amount of information related to the vertical distribu
tion of the vegetation, which could explain why a higher number of ALS 
metrics (3 metrics) were selected compared to DAP (2 metrics) data 
(Filippelli et al. 2019). DAP point clouds are restricted to the outer 
canopy structure and could not provide information about the vertical 
distribution of vegetation (St-Onge et al., 2008; White et al., 2013). 
Similar trends in the number of auxiliary variables were also reported by 
Järnstedt et al. (2012). 

For the estimation of forest resources, Chirici et al. (2016) and 
Cosenza et al. (2021) reported that k-NN models with 5 nearest neigh
bours and Euclidean distance performed better than any other k-NN 
configuration. Here, the selected models were based on the msn dis
tance. The higher performance of msn over Euclidean could be 
explained by the fact that msn distance integrates information from the 
field attributes. That said, this could make k-NN models less flexible to 
predict field attributes which were not considered during calibration. 
From investigating over 260 studies, Chirici et al. (2016), reported an 
average rRMSE of 37% (±32%) for growing stock volume, biomass and 
carbon stock. With test errors ranging from 46% (ALS, BA) to 67% (ALS, 
VI), our results are in the upper range of results reported by Chirichi 
et al. (2016). The large errors achieved here could be explained by the 
model selection method, which emphasize on model parsimony (Pestov, 
2013), and reduction of overfitting (Valbuena et al. 2017). Indeed, 
numerous studies included a large number of auxiliary variables in their 
models (Beaudoin et al., 2014; Nurminen et al., 2013), which tends to 
reduce the variance at the expense of a possible risk of model overfitting 
and bias. Part of our error could also be explained by positioning pre
cision of the field plots (Fadili et al., 2019), as well as the complexity of 
the forest structure studied, with mixture of conifers and hardwood 
stands and various management strategies from coppice stand to even- 
aged ones, and uneven-aged stands resulting from the transition from 
coppice to even-aged stands (Jarret, 2004). Regarding field attributes, 
the larger errors achieved for VI with respect to both GSV and BA could 
be explained by the nature of the attribute. VI is computed from volume 
and the 5 year radial increment, thus including a temporal dimension 
that is not well captured with the auxiliary data used. As shown in 
Irulappa-Pillai-Vijayakumar et al. (2019), the estimation of such flux- 
related attribute could be improved by taking into account auxiliary 
data from various points in time. 

5.2. Statistical inference and mapping 

In line with the model’s performances, the population estimates from 
both ALS and DAP models were of the same range. This result is in 
agreement with previous studies, which also indicated that the perfor
mance of DAP and ALS based predictions of forest attributes are similar 
(Bohlin et al., 2012; Gobakken et al., 2015; Järnstedt et al., 2012; 
Nurminen et al., 2013). This highlights the capability of DAP to compete 
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with ALS in the estimation of major forest attributes. The large spatial 
coverage of aerial surveys and their high renewal rates in many coun
tries makes DAP a serious competitor to ALS when a high resolution 
DTM is available (St-Onge et al., 2008). The availability of time series of 
aerial photographs opens up the possibility to further improve the 
variance of estimates of forest attributes related to fluxes such as VI 
(Irulappa-Pillai-Vijayakumar et al., 2019) and could also be an integral 
part of a forest monitoring systems (Ginzler et al., 2019). 

Nevertheless, the inflated variance observed for the GSV predicted 
with ALS was unexpected and questioned the quality of the model at 
population level. A possible explanation could be found in the k-NN 
distances and amount of extrapolation. The ALS model showed larger 
mean k-NN distances than it’s DAP counterpart (Table 8). Also, mean k- 
NN distances are inflating faster with decreasing reliability (i.e.. from 
high to low) with ALS than with DAP (Table 8). This inflation in dis
tances suggested that the choice of neighbours during the resampling 
process was more variable with ALS, thus contributing to an increased 
variance at the population level. This phenomenon was accentuated by 
the higher proportion of extrapolation with ALS (Table 7). A possible 
reason for this result may be associated to the nature of the data. As ALS 
is more sensitive to the inner-crown canopy structure (Filippelli et al., 
2019), one might consider that the variability brought in the auxiliary 
variable space could have introduced uncertainty in the neighbourhood 
selection during the resampling, contributing to an increase variance at 
the population level. The results of the inverted models, generated by 
applying the auxiliary variables selected with one model to the other, 
and provided in Table A1 and A2, showed that predictions with ALS 
remained more variables, corroborating this hypothesis. 

The high-resolution maps complement the bootstrap model-based 
estimates, by providing information about the localisation of the forest 
resources as well as their reliability. These maps can be anticipated to be 
increasingly relevant for future forest management and planning. The k- 
NN predictions were found to be imprecise in young stands and along 
forest transitions (Fig. 7), which are not measured in the French NFI. 
Indeed, with a minimum circumference at breast height of 23.5 cm, 
forest stands below 10 m height are very poorly described. Extrapolation 
was also found in those areas. More importantly, with the use of the 
convex hull approach, we observed that an even higher proportion of the 
pixels were extrapolated in highly stocked stands. This highlights a 
possible saturation of the model towards the upper values of the targeted 
forest attributes. It underlines the need to further study the magnitude of 
such a bias and the possibilities to correct it. Interestingly, the mean 
distance to the closest neighbours is significantly different for interpo
lation and extrapolation, suggesting that the extrapolation distance 
could serve as a metric to correct extrapolation bias in k-NN models 
(Magnussen et al., 2010). 

A limitation of our results comes from the binary assessment of the 
extrapolation. We used the entire calibration domain to identify the 
extrapolated pixels, resulting in a binary map. A more robust but time- 
consuming approach would be to assess extrapolation both at the plot 
level and population level by taking advantage of the bootstrap prop
erties. Computing extrapolation for each bootstrap sample would pro
vide a continuous evaluation of extrapolation (i.e. varying from 0 = no 
extrapolation; to the number of bootstrap samples = full extrapolation). 
Such information could be useful in complement the k-NN distances to 
analyse the relationship between extrapolation and errors at plot level 
(Meyer and Pebesma 2021), to identify outliers at both plot and popu
lation level (Cook, 1977) and develop appropriate bias-correction 
methods. 

6. Conclusion 

This research is a step ahead to connect prediction and reliability 
maps within an inferential framework. The approach relies on boot
strapped predictions to infer population parameters in a model-based 
framework and provide high-resolution maps of forest attributes with 

reliability assessment. The approach was developed for k-NN models, 
owing to their capabilities to predict multiple forest attributes in a single 
model. To account for the incapacity of k-NN to extrapolate, we further 
adapted the convex hull approach to measure the accuracy of prediction. 
Bootstrapped predictions with precision and accuracy were combined to 
provide a measure of prediction reliability at the unit level (grid cell or 
pixel). The high-resolution prediction maps will assist forest managers in 
the localisation of forest resources, and subsequently, the reliability 
maps (extrapolation and precision) will allow for judgments about 
whether the predicted forest attributes map is accurate enough for de
cision making. 
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Astola, H., Häme, T., Sirro, L., Molinier, M., Kilpi, J., 2019. Comparison of Sentinel-2 and 
Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. 
Environ. 223, 257–273. https://doi.org/10.1016/j.rse.2019.01.019. 

Barber, C.B., Dobkin, D.P., Huhdanpaa, H., 1996. The quickhull algorithm for convex 
hulls. ACM Trans. Math. Softw. TOMS 22, 469–483. https://doi.org/10.1145/ 
235815.235821. 

Barrett, F., McRoberts, R.E., Tomppo, E., Cienciala, E., Waser, L.T., 2016. 
A questionnaire-based review of the operational use of remotely sensed data by 
national forest inventories. Remote Sens. Environ. 174, 279–289. https://doi.org/ 
10.1016/j.rse.2015.08.029. 

Beaudoin, A., Bernier, P.Y., Guindon, L., Villemaire, P., Guo, X.J., Stinson, G., 
Bergeron, T., Magnussen, S., Hall, R.J., 2014. Mapping attributes of Canada’s forests 
at moderate resolution through kNN and MODIS imagery. Can. J. For. Res. 44, 
521–532. https://doi.org/10.1139/cjfr-2013-0401. 

Bhanu, B., Lin, Y., 2003. Genetic algorithm based feature selection for target detection in 
SAR images. Image Vis. Comput. 21, 591–608. https://doi.org/10.1016/S0262-8856 
(03)00057-X. 

Blackard, J.A., Finco, M.V., Helmer, E.H., Holden, G.R., Hoppus, M.L., Jacobs, D.M., 
Lister, A.J., Moisen, G.G., Nelson, M.D., Riemann, R., Ruefenacht, B., Salajanu, D., 
Weyermann, D.L., Winterberger, K.C., Brandeis, T.J., Czaplewski, R.L., 
McRoberts, R.E., Patterson, P.L., Tymcio, R.P., 2008. Mapping U.S. forest biomass 
using nationwide forest inventory data and moderate resolution information. 
Remote Sens. Environ. 112, 1658–1677. https://doi.org/10.1016/j.rse.2007.08.021. 

Bohlin, J., Wallerman, J., Fransson, J.E.S., 2012. Forest variable estimation using 
photogrammetric matching of digital aerial images in combination with a high- 
resolution DEM. Scand. J. For. Res. 27, 692–699. https://doi.org/10.1080/ 
02827581.2012.686625. 

Breidenbach, J., Astrup, R., 2012. Small area estimation of forest attributes in the 
Norwegian National Forest Inventory. Eur. J. For. Res. 131, 1255–1267. https://doi. 
org/10.1007/s10342-012-0596-7. 

Breidenbach, J., Næsset, E., Gobakken, T., 2012. Improving k-nearest neighbor 
predictions in forest inventories by combining high and low density airborne laser 
scanning data. Remote Sens. Environ. 117, 358–365. https://doi.org/10.1016/j. 
rse.2011.10.010. 

Breidenbach, J., McRoberts, R.E., Alberdi, I., Antón-Fernández, C., Tomppo, E., 2021. 
A century of national forest inventories – informing past, present and future 
decisions. For. Ecosyst. 8, 36. https://doi.org/10.1186/s40663-021-00315-x. 

Brosofske, K.D., Froese, R.E., Falkowski, M.J., Banskota, A., 2014. A Review of Methods 
for Mapping and Prediction of Inventory Attributes for Operational Forest 
Management. For. Sci. 60, 733–756. https://doi.org/10.5849/forsci.12-134. 

A. Sagar et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.rse.2019.01.019
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://doi.org/10.1016/j.rse.2015.08.029
https://doi.org/10.1016/j.rse.2015.08.029
https://doi.org/10.1139/cjfr-2013-0401
https://doi.org/10.1016/S0262-8856(03)00057-X
https://doi.org/10.1016/S0262-8856(03)00057-X
https://doi.org/10.1016/j.rse.2007.08.021
https://doi.org/10.1080/02827581.2012.686625
https://doi.org/10.1080/02827581.2012.686625
https://doi.org/10.1007/s10342-012-0596-7
https://doi.org/10.1007/s10342-012-0596-7
https://doi.org/10.1016/j.rse.2011.10.010
https://doi.org/10.1016/j.rse.2011.10.010
https://doi.org/10.1186/s40663-021-00315-x
https://doi.org/10.5849/forsci.12-134


ISPRS Journal of Photogrammetry and Remote Sensing 192 (2022) 175–188

187

Castillo-Santiago, M.A., Ricker, M., de Jong, B.H.J., 2010. Estimation of tropical forest 
structure from SPOT-5 satellite images. Int. J. Remote Sens. 31, 2767–2782. https:// 
doi.org/10.1080/01431160903095460. 

Chirici, G., Mura, M., McInerney, D., Py, N., Tomppo, E.O., Waser, L.T., Travaglini, D., 
McRoberts, R.E., 2016. A meta-analysis and review of the literature on the k-Nearest 
Neighbors technique for forestry applications that use remotely sensed data. Remote 
Sens. Environ. 176, 282–294. https://doi.org/10.1016/j.rse.2016.02.001. 

Chirici, G., Giannetti, F., McRoberts, R.E., Travaglini, D., Pecchi, M., Maselli, F., 
Chiesi, M., Corona, P., 2020. Wall-to-wall spatial prediction of growing stock volume 
based on Italian National Forest Inventory plots and remotely sensed data. Int. J. 
Appl. Earth Obs. Geoinformation 84, 101959. https://doi.org/10.1016/j. 
jag.2019.101959. 

Coelho, P.S., Pereira, L.N., 2011. A spatial unit level model for small area estimation. 
Revstat. 9, 155–180. 

Cohen, W.B., Goward, S.N., 2004. Landsat’s Role in Ecological Applications of Remote 
Sensing. Bioscience 54, 535–545. https://doi.org/10.1641/0006-3568(2004)054 
[0535:LRIEAO]2.0.CO;2. 

Conn, P.B., Johnson, D.S., Boveng, P.L., Boulinier, T., 2015. On Extrapolating Past the 
Range of Observed Data When Making Statistical Predictions in Ecology. PLoS ONE 
10 (10), e0141416. 

Cook, R.D., 1977. Detection of Influential Observation in Linear Regression. 
Technometrics 19, 15–18. https://doi.org/10.1080/00401706.1977.10489493. 

Coops, N.C., Tompalski, P., Goodbody, T.R.H., Queinnec, M., Luther, J.E., Bolton, D.K., 
White, J.C., Wulder, M.A., van Lier, O.R., Hermosilla, T., 2021. Modelling lidar- 
derived estimates of forest attributes over space and time: A review of approaches 
and future trends. Remote Sens. Environ. 260, 112477. https://doi.org/10.1016/j. 
rse.2021.112477. 

Cosenza, D.N., Korhonen, L., Maltamo, M., Packalen, P., Strunk, J.L., Næsset, E., 
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Hervé, J.-C., Wurpillot, S., Vidal, C., Roman-Amat, B., 2014. L’inventaire des ressources 
forestières en France : un nouveau regard sur de nouvelles forêts. Rev. For. Fr. 
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