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ABSTRACT 

 

Focal epilepsies are diseases of neuronal excitability affecting macroscopic networks of 

cortical and subcortical neural structures. These networks ("epileptogenic networks") can 

generate pathological electrophysiological activities during seizures but also between 

seizures (interictal period). Many works attempt to describe these networks by using 

quantification methods, particularly based on the estimation of statistical relationships 

between signals produced by brain regions, namely Functional connectivity (FC).  FC has 

been shown to be greatly altered during seizures and in the immediate peri-ictal period. An 

increasing number of studies have shown that FC is also altered during the interictal period 

depending on the degree of epileptogenicity of the structures. Furthermore, connectivity 

values could be correlated with other clinical variables including surgical outcome. This leads 

to a conceptual change and to consider epileptic areas as both hyperexcitable and 

abnormally connected. These data open the door to the use of interictal FC as a marker of 

epileptogenicity and as a complementary tool for predicting the effect of surgery. 

In this article, we will review the available data concerning interictal FC estimated from iEEG 

in focal epilepsies and discuss it in the light of data obtained from other modalities (EEG, 

MEG, MRI) and modelling studies. 
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Impact Statement:  In this article, we review the concepts of epileptogenic network and 

explained the basic notions of functional connectivity and the potential biases when 

studying it using intracranial EEG. We report the current body of published data using 

intracranial EEG. These data demonstrate that even at temporal distance from epileptic 

seizures there are differential changes in functional connectivity between areas epileptic or 

not. It appears that the connectivity of epileptic zone remains relatively preserved and 

higher than the connectivity of none-epileptic zone (decreased). These data could help in 

locating epileptic areas and predicting surgical outcome. 

 

 

List of Abbreviations:  

EZ: epileptogenic zone; PZ: propagation zone ; NIZ : non-involved zone ; RZ : resection zone ; 

IZ: irritative zone; iEEG : intracranial EEG ; SEEG: stereo-EEG; ECoG: electrocorticography; 

FCD: focal cortical dysplasia; CCEP: cortico-cortical evoked potential; h2: non-linear 

correlation coefficient; DTF: directed transfer function; PDC: partial directed coherence; AUC: 

area under the curve; DBS: deep brain stimulation, VNS: vagal nerve stimulation; IED: 

interictal epileptiform discharge; TLE: temporal lobe epilepsy 
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MAIN BODY 

 

1. INTRODUCTION 

 

Focal refractory epilepsy and the concept of epileptogenic network  

 

Epilepsy is a serious and highly prevalent neurological disease, affecting more than 1% of the 

population worldwide (Fiest et al., 2016) and associated with a significant overmortality and 

frequent comorbidities (Thurman et al., 2017). Approximately 60% of patients with 

epilepsies have focal seizures (Hauser et al., 1991). Pharmacoresistance to antiseizure 

medications remains a major issue for up to one-third of patients (Kwan et al., 2000). In 

these cases, epilepsy resective surgery, when possible, is the best option (Kalaivani et al., 

2017; Ryvlin et al., 2014; Wiebe et al., 2001). For these patients with drug-resistant focal 

epilepsies, the main prognostic factor of surgery is to achieve complete resection of the 

epileptogenic zone (EZ), the latter being defined on the basis of multimodal data (clinical, 

EEG, MRI, PET). In some cases, non-invasive data are not sufficient to accurately define the 

EZ and its relationship with eloquent cortices. In these cases, intracranial EEG (iEEG) 

recordings are mandatory (Isnard et al., 2017; Jayakar et al., 2016). Such iEEG recordings 

have led to the observation that focal epilepsy is often organised as a network with regards 

to the spatial organization of EZ, pattern of seizure propagation, and connectivity alteration 

induced by recurrent seizures (for a review see (Bartolomei et al., 2017)). In the last fifteen 

years, the notion of “Epileptogenic networks” has become more and more popular in 

epileptology (Bartolomei et al., 2017) since its first description in the early 2000s (Bartolomei 

et al., 2001; Spencer, 2002). In this context, the important breaking point is to replace the 

concept of epileptic focus (Rosenow and Luders, 2001) by that of epileptogenic networks. 
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This model involves spatio-temporal dynamics in the genesis of ictal and interictal activities 

between a more or less extended set of distant brain regions. In this model, there is a 

hierarchy of brain regions ranked according to their epileptogenicity: 1) EZ network, 2) 

Propagation zone (PZ) network and 3) Non-involved zone (NIZ) network (Figure 1). Indeed, 

the analysis of iEEG recordings of seizures often reveals an involvement of multiple cerebral 

structures, sometimes with different types of discharges (more or less rapid) and with 

variable delays of involvement. It is thus not always easy to define the limits of the area to 

be resected, especially in the case of short involvement times and extensive rapid discharge 

at seizure onset. Quantified analyses of seizure onsets actually show a gradient of 

epileptogenicity between the different structures involved (Bartolomei et al., 2017, 2008). 

The EZ network concerns the regions involved earlier in the seizure with the most rapid 

discharges, whereas the PZ network concerns regions involved later or via less rapid 

discharges. Interestingly, studies with other modalities (PET, MRI) also show such a gradient 

in the observed alterations (metabolic, structural connectivity respectively)(Besson et al., 

2017; Lagarde et al., 2020). 

The MRI visible lesion and the areas generating interictal paroxysms could, according to the 

patient, belong to one or more of the above ictal-defined (Epileptogenic, Propagation, Non-

involved) networks. While numerous studies have shown modified brain synchrony during 

seizures (pre-ictal, ictal, and post-ictal states) (see review in (Bartolomei et al., 2017)), 

cerebral connectivity is also notably altered during interictal period. However, pre-ictal, ictal 

and inter-ictal data reflects distinct pathophysiological processes and should not be mixed 

up when interpreting the existing literature. We will focus the present review on the 

functional connectivity alterations observed remotely from seizures, i.e. in the interictal 

period.  
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Functional connectivity  

Functional connectivity refers to the statistical link that can exist between activities recorded 

from distinct brain structures, reflecting more or less synchronized functioning of underlying 

neuronal populations. The first methods of functional connectivity analysis from EEG signals 

were developed in the 1950s (Barlow and Brazier, 1954), and first application to ictal signals 

in the 1980s (Gotman, 1983). The methods have developed in the following years, 

particularly with the rise of computers and digital EEG systems. Today, the range of methods 

that can be used to estimate functional connectivity is wide. These methods have been 

evaluated in studies using simulated signals (Ansari-Asl et al., 2006; Wang et al., 2014). The 

conclusion of these studies is that no method is universal (i.e., most efficient in all the 

situations tested). They show different performance depending on the type of model and 

the data used (electrophysiology or fMRI). Another observation is a strong influence of the 

choice of the frequency band of interest (Courtens et al., 2016). Still, methods belonging to 

the family of linear and non-linear correlations proved to be a good compromise in various 

tested models (Wang et al., 2014; Wendling et al., 2009).  

Functional connectivity at the macroscopic scale can be measured by EEG (scalp or 

intracranial), MEG and functional MRI. Functional MRI is an indirect marker of neural activity 

via the hemodynamic response. It should be noted that this hemodynamic response is 

delayed after the variation in neural activity (e.g. about 5 seconds after the start of a 

stimulus) (Logothetis, 2008). Thus, if fMRI allows whole brain exploration, derived measures 

of connectivity can only be estimated over relatively slow timescales (seconds). The data 

concerning MRI connectivity in focal refractory epilepsies have been reviewed in previous 

works (Bernhardt et al., 2013; Tavakol et al., 2019) and will not be the topic of this review.  
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Both MEG and EEG offer high temporal resolution and allow for analysis of neural activity at 

the millisecond scale. Despite whole brain covering, with some limitations for deep 

structures, their spatial resolution is limited to the study of regions with a volume of 1 cm3. 

Moreover, it is necessary to solve the inverse problem to go from the sensor to the brain 

sources level. In this context, volume conduction effect and sources leakage may influence 

the results of connectivity. However, several methods have been developed, notably source 

imaging and also specific connectivity analyses (e.g. imaginary part of coherence), to limit 

this problem (He et al., 2019). It should be noted that this problem of volume conduction is 

not absent in intracranial EEG either. A review concerning Interictal functional connectivity 

data in EEG and MEG can be found in (van Mierlo et al., 2019). 

Intracranial EEG recordings (iEEG) bring complementary information to EEG/MEG data by 

higher spatial resolution (with sampling at the mm3 level) and excellent temporal resolution, 

(ms, equivalent to scalp EEG and MEG), yet incomplete brain sampling. Two main techniques 

of iEEG recording are being used in routine: electrocorticography (ECoG) and stereotactic-

EEG (SEEG). Several studies have now confirmed that SEEG has lower morbidity than 

subdural recordings (Jehi et al., 2021; Katz and Abel, 2019; Mullin et al., 2016; Tandon et al., 

2019). SEEG has currently gained worldwide popularity due to its favourable morbidity 

profile, superior coverage of subcortical structures, ability to perform multilobar or bilateral 

explorations without the need for craniotomy. It is noteworthy that the assessment of 

functional connectivity and brain networks is not superimposable when using SEEG or ECoG 

data (Bernabei et al., 2021). SEEG allows to records the activity of multiple and distant brain 

regions, which are more likely to reveal large-scale network activities, which probably 

explains why the development of the concept of epileptogenic networks began with the 

pioneering work in the field (Bancaud and Talairach, 1992; Bartolomei et al., 1999; Chauvel 
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et al., 1987). However, the number of SEEG electrodes being obviously limited, the spatial 

sampling remains incomplete, which requires certain precautions to be taken when 

analysing and interpreting functional connectivity and network metrics from graph theory 

(see below). 

A SEEG electrode records local field potentials (LFP) corresponding to the electrical activity 

of cooperative activity in neuronal populations. Generally speaking, LFP depend on the 

geometry of dendrites and on the features of the dipole constituted by sinks and sources at 

the dendrites and soma of pyramidal cells. It is well admitted that LFP reflects several 

underlying processes such as synaptic potentials, afterpotentials of somato-dendritic spikes, 

and voltage-gated membrane oscillations (Wendling and Lopes da Silva, 2018). Regarding 

space,  they reflect the mean activity of a neuronal population between 1 mm3 and 1 cm3 

depending on the geometrical features of the extracellular electrode (micro- to meso-scale) 

and on the level of synchrony (Logothetis, 2003).  In the specific case of SEEG, the exact 

dimension of the recorded neuronal population is not accurately known. Still, in the last 

years, several SEEG studies have brought important knowledge on the alterations in 

interictal functional connectivity that are observed in focal refractory epilepsy.  This review 

aims at providing a detailed description of these data, highlighting methodological issues 

that should be considered for data interpretation and discussing the remaining questions to 

address. 

 

 

 

 

 



 9 

2. Overview of methods for measuring FC 

 

Functional connectivity estimation 

It has been hypothesized that the synchronization of neuronal oscillations between cerebral 

areas may allow transfer of information in the brain. Therefore, several quantitative 

methods have been developed to assess the statistical relationship between signals, namely 

the functional connectivity. There is now a plethora of available methods, each with its own 

advantages and disadvantages. These can be distinguished according to some of their 

characteristics, which we will briefly detail below. Interested readers could find more 

detailed review on the subject in (Bastos and Schoffelen, 2016; He et al., 2019). 

A first distinction can be made between the methods model-based (e.g. linearity assumed 

for correlation or granger causality) and model-free (e.g. mutual information, transfer 

entropy and non-linear correlation being sensitive to both linear and non-linear 

interactions). The simplest measure for estimating linear interactions is the Pearson 

correlation coefficient, which measures the linear relationship between two variables.  Other 

forms of non-linear coupling exist such as cross-frequency coupling (where the phase or 

amplitude of a certain frequency interacts with the phase or amplitude of another 

frequency), then other metrics sensitive to this non-linear coupling have been developed. 

For example, as the relationship between signals in epilepsy may be more complex than a 

simple shift, Pijn et al. have thus proposed to use a non-linear model for the transformation, 

which consists in a non-parametric analysis aiming at quantifying the correlation of a signal Y 

on a signal X, independently of the type of the relation between the two signals (Pijn and da 

Silva, 1993). This is a more flexible method, while keeping the number of parameters 

reasonably low (too many parameters would lead to ‘overfit’ i.e. good description of any 
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relationship including noise). In reference to the r2 this non-linear measure has been named 

h2. In practice, in a sliding window, a piecewise linear regression is performed between each 

pair of signals. The h2 is the coefficient of determination, which measures the goodness of fit 

of the regression (equivalent to the r2 used in linear regression). The h2 is bounded between 

0 (no correlation) and 1 (maximal correlation) and is asymmetric. This method has been 

shown to be sensitive to: nonlinear relationships between signals (Lopes da Silva et al., 

1989), phase-to-phase coupling (Wendling et al., 2009), amplitude-to-amplitude coupling 

(Wendling et al., 2009), signals generated by nonlinear systems and coupled linearly or 

nonlinearly (Wang et al., 2014; Wendling et al., 2009), asymmetric relationships between 

signals (Lopes da Silva et al., 1989), signals containing epileptic discharges generated by 

neural mass models (Wendling et al., 2009). Regarding the cross-frequency coupling, the h2 

is usually calculated in broadband and is independent of the frequency, which does not 

allow to evaluate this aspect. However, it is theoretically possible to calculate it on sub-band 

filtered signals to evaluate the cross-frequency coupling, and in this case the results are close 

to those obtained with a linear correlation. Finally, h2 is not a particularly designed method 

for evaluating phase-amplitude coupling. Other methods that does not assume a linear 

relationship have been developed such as mutual information or transfer entropy (Bastos 

and Schoffelen, 2016) and have shown a good sensitivity to non-linear relationships (Wang 

et al., 2014). 

Another important aspect is the distinction between methods that are computed from the 

time (e.g. correlation, cross-correlation, mutual information, transfer entropy) or frequency 

domain representation of the signals (e.g. coherence, phase locking value, phase slope 

index). For the latter, the equivalent of correlation in the frequency domain is coherence, 

introduced in the context of epilepsy by Brazier (Brazier and Casby, 1952). This measured 
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allows measuring the strength of linear coupling at different frequencies. The coherence 

measure (ranging between 0 and 1) is based on the Fourier transform, that decomposes 

each signal as a set of sine wave at different frequencies, each having an amplitude and a 

phase (temporal shift at a given frequency). The profile of amplitudes across frequencies is 

the spectrum. The coherence is simply the correlation of the Fourier coefficients across 

several time windows. Importantly, this requires averaging across several time windows – 

coherence between one time window and another one would be by construction 1. The 

coherence method assumes that signals are linked both in amplitude and frequency. This 

can be separated in a measure of amplitude correlations only and a measure of phase 

locking only (i.e. constant delays between signals at a given frequency across time windows, 

independently of the amplitude). To be noted, interictal signals containing transient patterns 

(e.g. interictal epileptiform discharges) may not be described well by stable sine waves of the 

Fourier transform. Thus, wavelet transform has been proposed, which is based on the non-

stationary wavelet transform, and correlation can be applied to the wavelet coefficients 

(Amini et al., 2011).  

 

One may be also interested in the direction of the flow of information in connectivity 

analyses and several methods have been developed to assess directionality (e.g. cross-

correlation, granger causality, transfer entropy) whereas some others cannot estimate this 

feature (e.g. correlation, mutual information, coherence, phase locking value). One of the 

easiest ways for this estimation is to look to propagation delays and then compute the 

correlation for shifted versions of one signal with respect to the other. The shift with highest 

correlation is retained, together with the respective correlation value. This is cross-

correlation, which is adapted when one signal is simply a delayed version of the other with 
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no transformation. Using non-linear correlation (h2), directionality could be estimated from 

both the delay of the shift maximising the h2 value and/or the asymmetry of the values 

(Wendling et al., 2001). Other methods have attempted to quantify the causal relationship 

between time series such as granger causality and transfer entropy. The principle underlying 

Granger causality can be described as follows: X “granger-causes” Y if Y is better modelled 

using both the past of X and the past of Y than only using the past of Y. This is a stronger 

statement that simple correlation. Indeed, if signals happen to be oscillations at a constant 

frequency, then granger causality will find that the relationship is low – one oscillation can 

be well predicted by its own past alone (this is also possible to detect in a repetition of the 

events where one would search for constant phase relationship, i.e. phase locking).  

 

Another important methodological point in the estimation of functional connectivity is how 

to deal with the common input problem. Indeed, the functional interaction between a pair 

of signals could be caused by common input from a third source (that may have not been 

considered/sampled). To limit this problem, methods using multivariate analysis have been 

developed. Their principle is that information from all channels is taken into account when 

estimating the functional connectivity between any pair of channels (e.g. directed transfer 

function, partial directed coherence but also partial version of cross-correlation linear or 

not) (Astolfi et al., 2008, 2007, 2005; Florin et al., 2010). 

 

Methodological Considerations 

In iEEG functional connectivity analyses several parameters may influence the results 

(algorithms and parameters used (Ansari-Asl et al., 2006; Wang et al., 2014), montage and 

reference used (Bartolomei et al., 1999; Bastos and Schoffelen, 2016), duration of the period 
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analysed (Chu et al., 2012; Goodale et al., 2019; Kramer et al., 2011; Wang et al., 2014), 

power spectrum of the signals (Müller et al., 2008), distance between recorded channels 

(Goodale et al., 2019; Lagarde et al., 2018; Warren et al., 2010), effect of the partial spatial 

sampling (Conrad et al., 2020) signal to noise ratio (Bastos and Schoffelen, 2016)  and 

interictal epileptiform discharges (Bartolomei et al., 2013; Bettus et al., 2008)) and may lead 

to detection of spurious connectivity. It should be kept in mind during the interpretation of 

results (Figure 2). For more detail about methodological considerations see Supplemental 

Data and the reviews by (Bastos and Schoffelen, 2016; He et al., 2019). 

 

Graph measures 

Connectivity measures across all channels of interest (that can in addition evolve with time) 

lead to high amount of data that can be potentially very complex to analyse. It is thus 

interesting to summarize these data using mathematical tool such as graph-theory. In this 

framework, channels (single contacts in monopolar or pairs of contact in bipolar montage) 

can be seen as nodes of a graph and the value of connectivity between these channels as the 

link (edge) between these nodes. The advantage of this representation is to summarize the 

specific properties of the studied network and help to analyse its topology. Topology analysis 

aims at quantifying the organisation of the network (nodes with dense connectivity,  

organisation of the connections between nodes, etc. (for further details see (Fornito et al., 

2015)). Schematically, two types of measures have been proposed. The first type measures 

the way a node (or a set of nodes = zone) is integrated in the whole network (local topology). 

The second type measures the overall organisation of the network (global topology). Local 

topology includes several measures of “centrality”, i.e. the importance of a node in terms of 
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its connectivity to the rest of the nodes (highly or weakly connected = high or low centrality 

value). Several metrics could be used (e.g. degree, node strength, betweenness centrality, 

eigenvector centrality, etc.), each with its own advantage and inconvenient, that we will not 

detailed (interested reader may look at specific review (Fornito et al., 2015, 2013; 

Gleichgerrcht et al., 2015; Vecchio et al., 2017)). In the case of directed functional 

connectivity measures, one can estimate ingoing and outgoing centrality of each node. 

Global topology gives the relation between short-range and long-range connections and 

then the efficiency of the whole network. For example, the small-world topology is 

characterized by an efficient balance with several short-range and some long-range 

connections. This is frequently seen in real life examples for many fields, for example 

transportation networks (the important nodes or ‘hubs’ are the large cities that connected 

with each other while smaller cities only need to be connected to the nearest hub), including 

brain organisation. 

Graph theory allows simplifying the analysis of complex networks such as those of the 

human brain (Stam, 2004) and help the comparison between patients. However, an 

important point concerning the use of graph theory metrics in iEEG studies is the bias related 

to incomplete spatial sampling. Thus, when we refer to centrality or topology in these 

studies, we are not speaking in terms of absolute values (at the scale of the entire brain as 

can be explore by fMRI, EEG or MEG) but in terms of relative values within the sub-network 

of explored structures. These metrics nevertheless make it possible to rank the structures 

according to their degree of connectivity, and to appreciate the modifications of topology 

within a sub-network related to its epileptic character or not. Another important problem is 

the risk of biasing the estimates of these metrics since some structures can be oversampled 

in iEEG which, if we consider all possible connections, risks overestimating the centrality of 
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these structures. It is necessary to control this bias by limiting to one the value of 

connectivity between regions of interest before performing the graph theory analysis. The 

centrality metrics must be normalized (for example by the theorical maximum of centrality) 

to take into account of difference in the number of sampled regions between patients. 

Moreover, not all centrality metrics are equally robust to the problem of incomplete 

sampling. It appears that the simplest ones (node strength) have good performance and 

some methods have been suggested to estimate the confidence interval of these metrics 

(Conrad et al., 2020).  

 

3. Functional connectivity in the interictal state  

 

3.1. Links between FC and epileptogenicity 

 

Table 1 synthesizes data from studies using ECoG and/or SEEG recordings, as described 

above. 

 

ECoG studies 

 

Several studies have investigated iEEG functional interictal connectivity in epilepsy using 

electrocorticography data (ECoG). Furstly, Towle and colleagues demonstrated areas of 

locally increased coherence on ECoG within / nearby the epileptic zone,  mostly in patients 

with temporal lobe epilepsy  (Towle et al., 1998). Following studies using a mix of ECoG and 

depth-electrodes within hippocampi confirmed greater interdependence between structures 

belonging to the epileptogenic zone as compared with structures in the non-involved zone 
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(Arnhold et al., 1999; Dauwels et al., 2009). Schevon and colleagues found areas of increased 

synchrony using several distinct functional connectivity measures (correlation, phase 

synchrony, coherence magnitude, granger causality) with stability over time, in a group of 9 

patients (Schevon et al., 2007). In this study, authors found a strong overlap between the 

epileptogenic zone and areas of hypersynchrony for both ECoG and depth-electrodes and, 

using mean phase coherence, found areas of local hypersynchrony (between 2-5cm) with 

temporal stability across time. This suggested that an increase in local synchrony could be a 

marker of epileptogenicity. Nevertheless, the overlap was not always perfect and the 

hypersynchrony clusters were sometimes located at the edge of, and not within, the 

epileptogenic zone. Moreover, complete resection of areas of local hypersynchrony was 

associated with favourable surgical outcome. Ortega and colleagues described a cluster of 

local hypersynchrony within the temporal neocortex of patients with temporal lobe epilepsy 

explored using intraoperative ECoG (Ortega et al., 2008). In this study, authors failed to find 

a correlation between complete resection of the clusters of local hypersynchrony and 

surgical outcome. This could be explained by the fact that most of their patients benefited 

from anterior temporal lobectomy and that ECoG are mostly sensitive to the activity of 

lateral temporal neocortex. Wilke and colleagues also showed a change in betweenness 

centrality obtained with directed transfer function  in gamma band within the epileptogenic 

zone (Wilke et al., 2011). 

Finally, only one iEEG study by Warren and colleagues was able to compare data from 

patients with epilepsy to patients without epilepsy (implanted for refractory facial pain), 

using ECoG, linear correlation and mean phase coherence (Warren et al., 2010). This study 

demonstrated that functional connectivity i) between the epileptogenic zone and other non-

epileptogenic areas and ii) between the non-epileptogenic areas was lower than the 
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corresponding connections in controls. These results suggested a disconnection of 

epileptogenic structures from non-epileptogenic structures and a decrease of connectivity 

within the non-epileptogenic cortices. 

 

SEEG studies 

 

The ECoG recording technique has several limitations (limited spatial sampling, exclusion of 

mesial cortical and subcortical structures, relatively indirect recording of cortical activity, 

mostly unilateral sampling and, for some reports, recordings performed under anaesthesia 

for intraoperative ECoG).  SEEG studies may overcome some of these limitations. A first set 

of SEEG studies used bilateral recordings with two depth electrodes implanted along the 

postero-anterior axis of both hippocampi in patients with mesio-temporal epilepsy for whom 

the question of bilateral epileptogenicity was raised. This type of implantation allows for 

comparison of epileptogenic versus non-epileptogenic mesio-temporal structures 

(hippocampus and amygdala mostly). Mormann and colleagues showed a local increase in 

synchrony (mean phase coherence) between the structures of the epileptogenic zone, in a 

group of 17 patients (Mormann et al., 2000). Following studies using same approach 

confirmed these findings (Arnhold et al., 1999; Dauwels et al., 2009) and showed a 

disconnection (lower strength and eigenvector centrality) of the epileptogenic zone from 

their contralateral analogous (Van Diessen et al., 2013).. 

Other studies have then used more complete SEEG sampling typically including neocortical 

temporal and extratemporal cortices. Three studies compared connectivity across the mesio-

temporal structures according to their epileptogenicity (patients with mesio-temporal 
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epilepsy compared to patients with extra-temporal epilepsy), using nonlinear analysis trough 

the h2 method (Bettus et al., 2011, 2008)) or the synchronization likelihood (Bartolomei et 

al., 2013). Authors have found higher connectivity between these structures when they 

belong to the epileptogenic zone (Bartolomei et al., 2013; Bettus et al., 2011, 2008). A 

methodological question was to know the role of interictal spikes and whether they could 

increase connectivity values (Bartolomei et al., 2013; Bettus et al., 2008). However, the 

suppression of sections comprising interictal spikes did not change the results of both 

functional connectivity (Bettus et al., 2008; Jiang et al., 2022) and graph theory metrics 

(Bartolomei et al., 2013).  Varotto and colleagues specifically addressing functional 

connectivity in patients with focal cortical dysplasia (FCD) type II estimated the role of the 

epileptogenic lesion itself (Varotto et al., 2012). They showed an increase in outgoing 

connections between 30-80Hz in FCD compared to other structures of the epileptogenic 

zone. Using measures of centrality from graph theory, this study also showed higher 

betweenness centrality values within the FCD.  

We recently reported a study of interictal functional connectivity (non-linear correlation, h2) 

in a large series of 59 patients with various form of focal epilepsies not limited to temporal 

epilepsies and with a broad SEEG sampling (Lagarde et al., 2018). In this study, the different 

epileptogenic networks were first defined as precisely as possible by quantifying the ictal 

activity recorded in SEEG thanks to the epileptogenicity index (Bartolomei et al., 2008) . 

Thus, the epileptogenic networks were defined as Epileptogenic Zone (EZ), Propagation Zone 

(PZ) and Non-Involved Zone (NIZ) networks. Independently of the inter-contact distance, 

there was a gradual decrease of FC from the EZ (disclosing the highest connectivity) to the PZ 

(characterized by intermediate level of connectivity); and finally, to NIZ (with lowest 

connectivity). Moreover, the areas belonging to the EZ were preferentially connected with 
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the areas belonging to the PZ. The EZ were also more interconnected than connected to NIZ. 

This result confirmed the findings of previous studies showing a trend for a “disconnection” 

of the epileptogenic structures with the non-epileptic brain areas (Van Diessen et al., 2013; 

Warren et al., 2010). Our findings were consistent in broadband but also in frequency sub-

bands. The directionality of connectivity (estimated from time delays) did not allow for 

identification of a significant leaders in broadband analysis, but the epileptogenic zone was 

found to be the leading zone in alpha and beta frequency bands. Goodale and colleagues 

confirmed our findings (Goodale et al., 2019) and found higher clustering coefficient, nodal 

betweenness centrality, and edge betweenness centrality for the epileptogenic areas. They 

also fitted a model in order to predict the epileptogenicity of structures based on 

connectivity measured and obtained an accuracy of 80.4% (sensitivity 82.5% and specificity 

of 60.4%). Narasimhan and colleagues extended these data using several methods for 

connectivity estimation: imaginary coherence, mutual information, partial directed 

coherence and directed transfer entropy (Narasimhan et al., 2020). The definition of the 

epileptogenic zone was not quantified in the study and not precisely defined, but authors 

found a gradual decrease of connectivity values from epileptogenic to propagation to 

irritative (defined as non-involved during seizure) and to non-involved zone. Looking at the 

predictive value of interictal connectivity to predict the epileptogenicity of the structures, 

authors found the best predictive value (AUC) for the three following methods (by 

decreasing performance): undirected mutual information, directed transfer function (DTF) 

and undirected imaginary coherence. Furthermore, the combination of connectivity 

measures improved the predictive value moderately (+4% on AUC). Notably, the model 

performed equally well in the subset of patients who were seizure-free after surgery (higher 

confidence in the exact definition of the epileptogenic zone). Recently, Paulo and colleagues 
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investigated the impact of time in EMU, changes in antiseizures medications doses, seizure 

burden, and differences between eyes-closed formal resting-state, and eyes-open pseudo-

resting states on interictal SEEG FC (imaginary coherence and partial directed coherence 

computed in the alpha band) (Paulo et al., 2022). They confirmed that non-directed and 

inward connectivity measures are higher in EZ compared to NIZ, but most importantly 

demonstrated that: 1) FC measures are stable over time; 2) FC measures are not influenced 

by the seizure burden; 3) antiseizure medication dose may influenced some FC measures 

(imaginary coherence with smaller difference between EZ and NIZ in case of smaller dose of 

antiseizure medication) but not some other (partial directed coherence); 4) the type of 

resting-state (formal eyes-closed or not) may influence some FC measures (partial directed 

coherence with higher difference between EZ and NIZ during formal eyes closed resting 

state) but not some other (imaginary coherence). Finally, Jiang and colleagues looked 

specifically at the asymmetry of connectivity between EZ and NIZ (Jiang et al., 2022). They 

observed that resting-state information flows from NIZ to EZ across all frequencies and that 

FC measures remain stable across several periods of recording. Moreover, using cross-

frequency coupling analyses they showed that information from NIZ high frequency activities 

lead EZ low frequency activity. Based on these features, authors found that a random forest 

classifier had an accuracy of 88% to predict the EZ. 

These studies discussed above used a definition of the epileptogenic zone based on iEEG 

biomarkers (visual or quantified) and have of course an inherent limitation as these markers 

do not have a perfect performance. It is possible that in some cases, especially in non-

seizure free patients, the epileptogenic zone has been misjudged. This is possibly suggested 

by some studies showing differences in connectivity according to the surgical outcome (see 

below). Thus, future studies focusing only on seizure-free patients after complete surgery of 
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their epileptogenic zone, thus with a priori a correct definition, would be useful to control 

this potential bias. To control this potential bias, some authors have also focused their 

analyses on an operational definition of the epileptogenic zone, namely the resection zone. 

Although this definition is pragmatic and close to clinical practice of epilepsy surgery, it has 

several disadvantages including: exclusion of non-operated patients (often more complex 

cases with wider epileptogenic zone and counting up to 50% of SEEG explored patients), 

inclusion of non-epileptogenic regions within this zone (e.g. anterior temporal lateral 

neocortex in standard anterior temporal lobectomy / lateral structures on the surgical access 

to mesial epileptogenic zone), and  exclusion of some epileptogenic zones (e.g. located in 

eloquent cortices). Following such methodology, Park and Madsen demonstrated that 

interictal connectivity (estimated from Granger causality on a mix of depth-electrodes and 

ECoG recordings in 25 patients) predicts significantly better than chance the location of 

epileptogenic / resection zone (RZ)  (Park and Madsen, 2018).  Shah and colleagues  have 

recently replicated this finding in a study on 27 patients recorded using a mix of ECoG and 

depth electrodes (with a majority of ECoG) (Shah et al., 2019). An interesting method in this 

study is the normalisation by a spatially constrained null model. In line with previous 

findings, these authors showed a gradual decrease of connectivity values (edge weight) 

from: 1) connections within the resection zone (highest values), 2) connections linking 

resection and non-resection zones, and 3) connections within non-resection zone (lowest 

values). 

Taken as a whole, data from SEEG studies demonstrated a higher connectivity of the EZ than 

NIZ and is relatively disconnected from the NIZ. These findings seem robust across time and 

method used. Moreover, the information from connectivity could be useful to locate the EZ.  
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Cortico-cortical evoked potentials studies 

 

Directed functional connectivity can also be estimated from cortico-cortical evoked 

potentials (CCEPs) generated by direct cortical electrical stimulation using intracranial 

electrodes (Boulogne et al., 2016; Trebaul et al., 2018). The foundations of this approach 

were laid more than 50 years ago when the Saint-Anne's team in Paris proposed to study the 

functional connections between the hippocampus and the amygdala from SEEG recordings 

(Buser et al., 1969). CCEPs consist in delivering bipolar single-pulse electrical stimulations in 

a given region and probing other regions for significant evoked potentials, that reflect actual 

anatomical connections between the stimulated and the responding regions (either direct or 

passing through synapses that delay the evoked response). CCEPs corresponds to early 

potentials beginning in the first 100 ms after the stimulation. From the presence or the 

absence of CCEP responses it is possible to infer the directed (and causal) connectivity 

between two areas and then to obtain a connectivity matrix.  

Table 2 synthesizes data from studies using CCEPs to infer anatomo-functional / effective 

connectivity in iEEG recordings. Lacruz and colleagues failed to observed difference in the 

hemispheric CCEPs according to their epileptogenicity (Lacruz et al., 2007). However, 

following studies using more refined methodology achieved to observe connectivity 

differences according to the epileptogenic nature of the structures. For example, looking at 

centrality metric derived from CCEP, Keller and colleagues found higher in-degree in the 

seizure-onset-zone than outside (without difference in out-degrees) (Keller et al., 2014). 

Interestingly, Parker and colleagues reported results that are very close to SEEG studies 

demonstrating: 1) higher effective connectivity for the connections within epileptogenic 
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zone, in comparison with the connections within zones outside the epileptogenic zone; 2) 

higher outdegree and normalised outdegree for contacts belonging to the epileptogenic 

zone (Parker et al., 2018). Zhao and colleagues also confirmed higher connectivity within the 

epileptogenic zone in comparison with the non-epileptogenic zones, with significantly higher 

degree centrality and nodal shortest path length (not significant for betweenness centrality, 

clustering coefficient and local efficiency) (Zhao et al., 2019). It should be noted that, in 

these studies, the majority of other nodal graph theoretical parameters (in-degree, 

clustering coefficient, centrality) showed no significant difference between epileptogenic 

and non-epileptogenic contacts (Parker et al., 2018; Zhao et al., 2019), pointing out the 

importance of the choice of the centrality measure (Coito et al., 2019; Geier and Lehnertz, 

2017). Following these studies, Guo and colleagues demonstrated in 25 patients recorded 

using SEEG electrodes that directed connectivity differs significantly between epileptogenic 

and non-epileptogenic zones after controlling for the inter-contact distance (Guo et al., 

2020). They found a decrease of connectivity from intra-epileptogenic zone connections 

(with highest value); to “between epileptogenic and propagation zones”; to “intra-

propagation zone connections”; to connections “between non-involved zone and 

propagation or epileptogenic zone”; to “intra-non-involved zone connections” (with the 

lowest value). Authors did not find significant directionality between zones (e.g., no 

difference between connectivity values from epileptogenic to propagation zone connection 

values from, propagation to epileptogenic zone).  

Overall, CCEPs studies confirmed findings from resting-state SEEG studies and demonstrated 

a higher connectivity of within EZ and PZ than within-NIZ. 
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3.2. Changes in network topology  

 

Varroto and colleagues  found higher betweenness centrality (i.e. ratio between the number 

of shortest paths passing through a specific node and the total number of shortest paths in 

the network) within FCD type II than outside the lesion area (Varotto et al., 2012). Goodale 

and colleagues found also higher centrality metrics within the EZ (betweenness centrality 

and clustering coefficient, this latter reflecting the degree to which nodes tend to cluster 

together) (Goodale et al., 2019). Using CCEPs, Zhao and colleagues found higher degree 

centrality and shorter path length within the EZ (Zhao et al., 2019). Therefore, studies 

suggest higher centrality of the EZ. Bartolomei and colleagues, looking at the SEEG data of 11 

patients with mesial temporal lobe epilepsy in comparison to 8 patients with non-mesial 

temporal lobe epilepsy, found an increase in the clustering coefficient and path length within 

the epileptogenic temporal lobe (Bartolomei et al., 2013). This result suggested a more 

regular organisation of the functional connectivity between temporal structures when they 

belong to the EZ. These studies suggest that some measures of centrality may be correlated 

with the degree of epileptogenicity of structures. However, the choice of the metric used 

seems crucial and future studies are needed. 

 

3.3. Directionality of functional connectivity 

 

 Several studies investigated the directionality of connectivity in order to identify the leading 

zone. This directionality could be estimated from causality method (Granger causality and its 

extensions as partial directed coherence (PDC), directed transfer function (DTF)) or using 

delays and/or asymmetry of non-linear correlation values. The literature in the domain is not 
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unanimous with some studies suggesting a leading role (higher out-connectivity) of the 

epileptogenic zone (Bettus et al., 2011; Lagarde et al., 2018; Varotto et al., 2012) and some 

others suggesting a higher inward connectivity toward the epileptogenic zone (Jiang et al., 

2022; Narasimhan et al., 2020; Paulo et al., 2022; Vlachos et al., 2017). Moreover, using 

CCEPs, Parker and colleagues highlighted the higher outward connectivity of the 

epileptogenic zone (Parker et al., 2018) whereas Guo and colleagues did not find significant 

difference between inward and outward connectivity of the epileptogenic zone (Guo et al., 

2020). These discrepancies could be due to variable methods used for connectivity 

estimation. To be noted, some studies using the same method, namely the partial directed 

coherence (PDC), have opposite results (Narasimhan et al., 2020; Paulo et al., 2022; Varotto 

et al., 2012). Another explanation could be the impact of interictal spikes on connectivity 

directionality, because some authors  included spikes in their analyses (Bettus et al., 2011; 

Lagarde et al., 2018; Varotto et al., 2012) and  others did not (Narasimhan et al., 2020; Paulo 

et al., 2022). Therefore, despite the relatively low effect of epileptic spikes on the overall 

connectivity value (Bartolomei et al., 2013; Bettus et al., 2008; Jiang et al., 2022; Park and 

Madsen, 2018), it is possible that spikes affect the directionality of connectivity 

(Karunakaran et al., 2017). Further studies looking at the effect of spikes and methods used 

for estimating the directionality of the connectivity of the epileptogenic zone are still 

needed. 

3.4. Association with other variables 

 

Van Dellen and colleagues investigated the effect of epilepsy duration on functional 

connectivity (phase lag index) in temporal neocortex (van Dellen et al., 2009). They showed a 
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decrease in connectivity value with increase in epilepsy duration, and a more random 

configuration of the network (decrease of the clustering coefficient and of the small word 

index) in case of longer epilepsy duration. Authors did not find significant association for age 

at epilepsy onset and seizure frequency. Unfortunately, the information about the type of 

epilepsy (mesio-temporal or latero-temporal) and the type of surgery performed were not 

available in this study. It is therefore difficult to speculate on the precise epileptogenicity of 

the studied structures. Bartolomei and colleagues suggested the that the topology of 

interictal networks evolves with time (Bartolomei et al., 2013). They observed an increase of 

the “small-worldness” (S index) with the increase in epilepsy duration (being essentially due 

to decrease of the path length over time). 

While the pattern of connectivity changes during peri-ictal state (pre-, per- and post-ictal) is 

increasingly known ((Bartolomei et al., 2004; Courtens et al., 2016) , review in (Bartolomei et 

al., 2017)), few studies have focused on the temporal variation / dynamics of interictal 

functional connectivity measured from intracranial EEG recordings. Geier and Lehnertz has 

shown fluctuation of the degree of centrality of brain regions across long-term intracranial 

recordings on timescales of hours to days, with strong contributions of daily rhythms (Geier 

and Lehnertz, 2017). This study found differences in the variation across time of centrality 

metric between EZ and non-involved regions, with slightly higher variation for EZ. The 

amplitude of variation was also higher using betweenness centrality rather than strength 

centrality. However, Kramer and colleagues demonstrated the emergence of stable network 

pattern across long-term recordings (Kramer et al., 2011). Similarly, others studies have 

reported stability of the functional connectivity results across days of intracranial EEG 

recordings in patients with epilepsy (Dauwels et al., 2009; Jiang et al., 2022; Mormann et al., 

2000; Paulo et al., 2022; Schevon et al., 2007). This result strengthens the confidence in the 
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use of connectivity data for EZ delineation purpose in practice. However, it remains unclear 

what could be the added value of the estimation of interictal functional connectivity 

dynamic into the delineation of the EZ and further studies on the topic are needed. 

 

3.5. Association with surgical outcome 

 

Table 3 summarizes the data concerning the association between functional connectivity 

data and surgical outcome. Schevon and colleagues  have  first suggested a link between the 

level of interictal functional connectivity impairment and post-surgical prognosis (Schevon et 

al., 2007). Antony and colleagues analysed the functional connectivity (linear correlation) 

between mesio-temporal and neocortical structures in 23 patients operated for drug 

refractory temporal lobe epilepsy (Antony et al., 2013). They found that the smaller the 

mean and the variation of the connectivity values, the better the surgical outcome. The 

performance of connectivity data was very good (accuracy = 87%) for distinguishing patients 

categorized with favourable and unfavourable post-surgical outcome, but the association 

with the SEEG-defined epileptogenic zone was not formerly studied. In contrast, Goodale 

and colleagues suggest that patients with higher connectivity within the resection zone 

could have more favourable surgical outcome (Goodale et al., 2019). 

Recently and in the same vein, Shah and colleagues found that patients with favourable 

outcome had higher within-resection zone (RZ) connectivity  than patients with 

unfavourable outcome (Shah et al., 2019). Moreover, the higher the overlap between the RZ 

and the nodes with the highest strength, the better the post-surgical seizure outcome. In 

addition, the distinction between patients with good or bad outcome was better using beta-
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band connectivity.  Nevertheless, the great variability of values across patients seems to 

preclude easy application at the individual level because of the difficulty to set a common 

threshold. A study using CCEPs to estimate directed functional connectivity, showed a 

positive correlation between the values of functional connectivity within the EZ and the 

surgical outcome (Guo et al., 2020). These results are in line with a study  using  MEG  

showing that  higher connectivity within the resection zone was associated with favourable 

outcome (Englot et al., 2015). Looking at the directionality of the FC, Jiang and colleagues 

demonstrated that larger resting-state within-frequency information flow asymmetry 

between EZ and NIZ was associated with favourable seizure outcome (Jiang et al., 2022). 

Interestingly using this information, a random forest classifier had an accuracy of 86% to 

predict surgical outcome. 

In our above-mentioned study, we have suggested that a larger disturbance of cerebral 

connectivity (higher connectivity outside EZ and PZ, i.e., within-NIZ and between PZ-NIZ) is 

associated with worse prognosis (Lagarde et al., 2018). Similar findings were recently 

reported using ECoG and betweenness centrality: patients not seizure-free after surgery had 

higher value of betweenness centrality (BC) in interictal and post-ictal period, and a greater 

proportion of extreme-valued BC nodes (Grobelny et al., 2018). However, the individual 

predictive value of these connectivity measures on post-surgical prognosis is not yet known. 

Future studies may investigate how this connectivity data can be use in clinical practice in 

order to predict the chance of surgical success.  

Overall, studies showed that the higher is the connectivity within the EZ and the larger is the 

difference with the connectivity of the NIZ, the better is the surgical outcome. The potential 

predictive value for surgical outcome obtained from presurgical connectivity has been also 
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reported in several works using tractography MRI data. It was suggested that pathologically 

increased limbic and extra-limbic structural connectivity can explain worse seizure outcome 

after epilepsy surgery (Bonilha et al., 2015, 2013), including a role of thalamocortical 

connectivity  (He et al., 2017; Keller et al., 2015). Noteworthy, these studies reported better 

predictive value of connectivity than the sole usual clinical variables for post-surgical 

outcome (He et al., 2017; Keller et al., 2015; Morgan et al., 2019).  

 

3.6. Connectivity changes induced by neurostimulation techniques 

 

Another important and growing field in epilepsy surgery is neurostimulation: vagal nerve 

stimulation, deep-brain stimulation, responsive neurostimulation (Fisher et al., 2010; Fisher 

and Velasco, 2014; Geller et al., 2017; Jobst et al., 2017; Ryvlin et al., 2021, 2014). Several 

studies have evaluated the impact of these techniques on intracranial EEG functional 

connectivity. Bartolomei and colleagues focused on VNS induced connectivity changes 

(comparison ON and OFF periods) in 5 patients explored by SEEG (Bartolomei et al., 2016). 

They found that non-responder patients exhibited increase in overall connectivity while the 

responder patients exhibited a decrease. These findings are in line with scalp EEG studies 

showing an association between the ability of VNS to decrease FC during ON periods and its 

efficacy (Bodin et al., 2015; Sangare et al., 2020). Moreover, VNS was able to induce some 

changes of connectivity within the EZ (increase in one non-responders patients and decrease 

in the responder one) (Bartolomei et al., 2016). Yu and colleagues focused on the effect of 

anterior thalamic nuclei (ANT) deep brain stimulation in 9 patients explored by SEEG (Yu et 

al., 2018). In this study, authors found that high-frequency stimulation of the ANT decreased 
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the connectivity of the brain networks during ON periods. In line with these results a recent 

study has shown that pulvinar stimulation can decrease the duration of temporal seizures 

and the associated alteration of consciousness (Filipescu et al., 2019), and that in responders 

stimulation leads to a decrease in synchrony between extratemporal brain regions 

(Deutschová et al., 2021). 

These preliminary studies suggested that neuromodulation techniques may act also by 

modulating functional connectivity. Further studies investigating systematically the effect of 

different parameters of neuromodulation on large-scale SEEG connectivity under various 

and neurostimulation protocols would be interesting, in order to help choosing optimal 

parameters to use for VNS or DBS. This is especially important as different frequencies seem 

to induce different changes on connectivity (Bartolomei et al., 2016; Yu et al., 2018)). 

 

4. COMPARISON WITH OTHER MODALITIES 

 

4.1. MRI 

Only a few studies have compared intracranial EEG and MRI functional connectivity.  Bettus 

and colleagues compared functional connectivity as extracted from SEEG recordings with 

that obtained from fMRI (Bettus et al., 2011). This latter study reported some multimodal 

agreement: 1) in the directionality of connectivity: the epileptogenic zone (ZE) influenced the 

none-involved zone (NIZ); 2) in the decrease of functional connectivity between the EZ and 

the NIZ (delta band SEEG) and within the NIZ in fMRI.  Nevertheless, there was some 

discrepancies with an increase in SEEG functional connectivity (in the beta band) in the EZ 

and secondary irritative zone (IZ2) while the BOLD functional connectivity was decreased in 

IZ2. These results can be explained by the fact that the two modalities do not study the same 
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processes, especially at different time scales. Ridley and colleagues looked at the 

comparison between functional connectivity recorded simultaneously in fMRI and SEEG 

(Ridley et al., 2017). They showed that there was a good intermodality correlation in non-

epileptic areas but an alteration of this correlation in epileptic regions.  

Besson and colleagues, focusing on the link between the structural connectivity alterations 

according to the brain network involved during seizure as defined by SEEG in patients with 

temporal lobe epilepsies, revealed that structural connectivity was significantly preserved 

within epileptic zones (epileptogenic and propagation zones) and decreased in non-epileptic 

structures (Besson et al., 2017). Taken together with other structural connectivity MRI 

studies, these findings suggest that : 1) areas involved in seizure generation and propagation 

(e.g. thalamus in temporal lobe epilepsy) have relatively preserved (higher) structural 

connectivity (Besson et al., 2017; Bonilha et al., 2012; Dinkelacker et al., 2015);  and 2), other 

remote areas have widely decreased structural connectivity (Besson et al., 2014). This 

pattern of local ‘hyperconnectivity’ within epileptic structures combined with widespread 

‘hypoconnectivity’ outside these areas is concordant with iEEG findings and other studies on 

functional connectivity extracted from non-invasive electrophysiological recording (see 

below). This similarity confirms both the tight relationships between structural and 

functional connectivity known to exist in healthy conditions (Goni et al., 2014; Honey et al., 

2007), and the increased structural-functional correlation in epilepsy (Wirsich et al., 2016). 
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4.2. MEG/EEG  

 

MEG studies have demonstrated an increase in functional connectivity between regions 

within the epileptogenic zone network (Englot et al., 2015; Juárez-Martinez et al., 2018; 

Nissen et al., 2016; Wu et al., 2014) associated with a decrease in functional connectivity 

between these regions and other non-involved brain regions (Englot et al., 2015; Nissen et 

al., 2016). Interestingly, Englot and colleagues (source-space MEG connectivity) found that 

the degree of global reductions in functional connectivity were related to epilepsy duration 

and frequency of consciousness-impairing seizures, and thus may reflect the deleterious 

effects of seizures on brain networks over time (Englot et al., 2015). Moreover, in this study, 

the increased regional connectivity appears to be a marker of favourable seizure outcome 

after surgery. Changes in network topology have also been identified in MEG (Chavez et al., 

2010; Horstmann et al., 2010), in particular an increase in the betweenness centrality in the 

network of epileptogenic regions (Nissen et al., 2017, 2018).  Nevertheless, the correlation 

between MEG and iEEG connectivity seems limited, as well as the ability of connectivity 

results  to distinguish between resection areas and non-resection areas (Juárez-Martinez et 

al., 2018; Nissen et al., 2018). These discrepancies could be due to the metrics used to 

analyse connectivity (Coito et al., 2019) and further studies are needed.  

Some scalp EEG studies have shown a decrease in the influence (in terms of out-

connections) of the default mode network, and an increase of in-connections into the 

epileptic hippocampus in patients with temporal lobe epilepsy (Coito et al., 2016). Coito and 

colleagues used high-density EEG and source-space functional connectivity in IED-s-free 

epochs (60s). They demonstrated that patients had a significantly reduced connectivity 
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within regions belonging to the default-mode network. Moreover, strongest connections 

arose from posterior cingulate cortex in controls and from the epileptic hippocampus in 

patients. Noteworthy, the connectivity results differ according to the disease duration, the 

cognitive (learning deficit) and psychiatric status (depression or not). Using similar 

methodology in epochs without interictal epileptiform discharges (IEDs), Verhoeven and 

colleagues applied two-class Random Forests classifiers on functional connectivity and were 

able to differentiate healthy control from patients and left from right temporal lobe epilepsy 

(TLE), at the individual level (Verhoeven et al., 2018). The classification achieved a high 

accuracy, sensitivity, and specificity (between 85% and 95%). As in the previous study by 

Coito and colleagues (Coito et al., 2015), the most important features for diagnosis were the 

outflows from left and right medial temporal lobe. However, it was important to consider 

the whole connectome (i.e., including connectivity values of several brain areas in the 

predictive model) to achieve correct classification.   

Overall functional connectivity data from non-invasive recordings techniques (EEG, MEG) 

confirmed higher connectivity within EZ and highlighted the widespread hypoconnectivity 

outside the EZ.  

 

4.3. Summary 

 

Taken as a whole, the data about connectivity from iEEG studies and from whole-brain non-

invasive modalities (especially MEG (Englot et al., 2015) and structural MRI data (Besson et 

al., 2017)) suggested that focal refractory epilepsies are associated with a global profile of 

large-scale network alteration including: 1) a wide decrease of connectivity outside the EZ; 2) 
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an EZ exhibiting, rather than an increase, a relative preservation of its intrinsic connectivity 

(Figure 3); 3) an EZ with a preferential connection to PZ and with a relative disconnection 

from NIZ.  

 

5. FROM EXCITABILITY TO CONNECTIVITY: CONCEPTUAL COMMENTS 

 

While most historical works have focused on the importance of the hyperexcitability of 

epileptic areas, it is increasingly apparent that the underlying connectivity is also essential 

for understanding the organization of interictal events and seizures. This hypothesis was 

suggested early on by Wendling and colleagues using a computational model (Wendling et 

al., 2005, 2001). The authors showed that the interictal-ictal transition was not explained 

solely by the excitation/inhibition balance but rather by the interactions between pyramidal 

cells and interneuron populations. Noteworthy, this concept has also been highlighted in 

experimental models (in vivo and in vitro), some authors have demonstrated how specific 

changes in the topology or synaptic strength can impact brain epileptogenicity (Morgan and 

Soltesz, 2008; Netoff et al., 2004). It has also been shown that a minor change in the 

topology of a network can explain the emergence of explosive changes in synchrony as 

observed during the generation and propagation of epileptic seizures (Wang et al., 2017).  

Phenomenological model has shown that the network's ability to generate seizures is highly 

dependent on its topology. Hebbink and colleagues have demonstrated that: 1) even in the 

presence of a hyperexcitable node, some networks do not generate seizure; 2) the existence 

of a driving node greatly increases the number of seizures; 3) the presence of reciprocal 

connections between two nodes could act as a stabilizer reducing the number of seizures 

(Hebbink et al., 2017). Proix and colleagues, using a different phenomenological model (Jirsa 
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et al., 2014), systematically explored the impact of excitability and coupling values on the 

behaviour of two oscillators mimicking the activity of two brain regions (Proix et al., 2014). 

Variations in these two parameters were sufficient to induce different behaviours: 1) 

systematic seizure propagation, 2) partial seizure propagation, 3) change in the seizure-

generating area across time, 4) lack of seizure propagation, and 5) lack of seizure genesis. 

This study has clearly demonstrated that both excitability and coupling of brain structures 

determine the behaviour of epileptic network. These concepts were recently confirmed in 

studies demonstrating that the dynamics of focal seizures is related to the underlying 

structural connectivity and that seizure spread is tightly controlled by structural connections  

(Proix et al., 2017; Shah et al., 2019a).  This principle is used in large-scale seizure modelling 

called “virtual epileptic patient” (VEP) that is a whole-brain model (based on the architecture 

of the “virtual brain”) using the structural connectivity of the patient coupled with a neural 

mass model, able to reproduce epileptic seizure dynamics (Jirsa et al., 2017, 2014) and to 

simulate the pattern of seizure spread. Interestingly this model was able to reproduce in 

silico the spatio-temporal dynamics of seizure evidenced in SEEG at the patient level (Jirsa et 

al., 2017; Makhalova et al., 2022; Proix et al., 2018, 2017). 

 

6. CONCLUSIONS AND PERSPECTIVES 

 

The different studies reviewed in this article were performed mainly with the aim of 

discriminating the EZ from less epileptogenic regions from invasive EEG data. Our results as 

well as data from the literature suggest a potential interest to distinguish the EZ from other 

areas (Narasimhan et al., 2020). In fact, an important point from our data (Lagarde et al., 

2018) is the small difference in connectivity strengths between EZ and PZ. This observation 
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makes it difficult for connectivity methods to distinguish between epileptogenic and 

propagation zones, a classic goal of the pre-surgical workup. However, it suggests that there 

is probably more of a gradient of epileptogenicity than a true “clear cut” difference between 

these regions.  Furthermore, because EZ have high intrinsic connectivity but low connectivity 

to nonepileptic areas, centrality measures (obtained by averaging the connectivity values of 

these two types of connections) may be insufficient to accurately determine EZ. Thus, the 

use of other markers may be relevant (e.g. directionality). Indeed, the literature suggests 

that only the EZ behaves as a "module" (higher connectivity within the EZ than between the 

EZ and other areas) (Lagarde et al., 2018), and then some specific graph-theoretic metrics 

could be markers to be tested in further studies. In addition, the added value of markers 

from connectivity analyses compared to classical markers of epileptogenicity such as ictal 

(e.g., epileptogenicity index (Bartolomei et al., 2008)) and interictal (e.g., spikes, HFO (Roehri 

and Bartolomei, 2019)) neuromarkers could also be investigated.  

Moving forward, several studies have recently examined the value of simulation/modelling 

methods in surgical decision making. Most studies used ictal / peri-ictal ECoG data (An et al., 

2019; Goodfellow et al., 2016; Junges et al., 2019; Khambhati et al., 2016; Kini et al., 2019; 

Lopes et al., 2018, 2017; Müller et al., 2018; Olmi et al., 2019; Steimer et al., 2017) and only 

one used inter-ictal ECoG data (Sinha et al., 2017). Further studies examining the added 

value of this simulation/modelling techniques in surgical decision making based on interictal 

SEEG functional connectivity data could be useful. 

Further study could also consider performing connectivity analysis over IED-centred time 

windows and especially looking at directionality (Bou Assi et al., 2020). Such an analysis 

could add information about the differences between spikes inside and outside the EZ and 
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help to delineate the EZ more effectively from the interictal period. The goal would be to 

find markers of epileptogenicity from spike propagation. These methods could be compared 

to results obtained from co-occurrences (Bourien et al., 2005; Lambert et al., 2017; 

Malinowska et al., 2014), which have proven to identify interictal spike networks.  
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TABLES 

 

Table 1: Summary of Studies on interictal functional connectivity using iEEG 

Studies are presented in chronological order. If the definition of the epileptic areas 

(epileptogenic, seizure onset zone, etc …) is variable from one study to another, for 

simplicity we summarised the data with the terms epileptogenic zone (EZ) and non-involved 

zone (NIZ). For studies using ECoG recordings we precise if the recordings were performed 

during surgery procedure (with anaesthesia) or long-term monitoring. 

ECoG: electrocorticography; SEEG: stereo-EEG; EZ: epileptogenic zone; PZ: propagation zone: 

NIZ: non-involved zone; TLE: temporal lobe epilepsy; FCD: focal cortical dysplasia; NDT: 

neurodevelopmental tumour; Irritative zone: area with interictal spikes but no ictal 

discharge; RZ: resection zone. 

Authors Population 
Recording 

Modality 
Methods Main results 

ECoG +/- depth electrodes 

Towle et al., 

1998 

25 patients 

Tumours in the 

sensory- motor region 

or temporal 

lobectomy 

ECoG 

During surgery 

(5 with also pre-

surgical 

recording) 

 

Coherence 

Local zone of 

increase FC 

nearby/within EZ 

Arnhold et 

al., 1999 

One patient with 

mesial TLE 

One patient with 

neocortical epilepsy 

ECoG + depth 

electrodes 

(During 

presurgical 

monitoring) 

 

“Interdependence” 

Greater FC 

within the EZ 

than within the 

NIZ 

Schevon et 

al., 2007 

9 patients with 

neocortical epilepsy 

ECoG 

(During 

presurgical 

Mean phase 

coherence 

Area of local 

hypersynchrony 

(stable in time) 

overlapping with 
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monitoring) the EZ 

Ortega et 

al., 2008 
29 patients with TLE 

ECoG 

(During surgery)  

Linear correlation, 

mutual information, 

and phase 

synchronization 

Cluster of local 

hypersynchrony 

in the epileptic 

temporal lobe (no 

good correlation 

with the 

epileptogenic 

zone) 

Dauwels et 

al., 2009 

6 patients with 

neocortical epilepsy 

ECoG + depth 

electrodes 

(During 

presurgical 

monitoring) 

Cross-correlation, 

granger causality 

(directed transfer 

function), phase 

synchrony, 

magnitude 

coherence 

Area of 

hypersynchrony 

correlate with the 

EZ 

Warren et 

al., 2010 

Comparison of 

patients with chronic 

pain (n=2) and with 

epilepsy (n=4) 

ECoG 

(During 

presurgical 

monitoring) 

Linear correlation, 

mean phase 

coherence 

Disconnection of 

EZ from the NIZ 

and decrease of 

connectivity 

within the NIZ 

Wilke et al., 

2011 

25 patients with 

neocortical epilepsy 

ECoG 

(During 

presurgical 

monitoring) 

Directed transfer 

function (gamma 

band) 

Correlation 

between “active 

node” and EZ 

(lower than 

interictal spikes) 

Park and 

Madsen, 

2018 

25 patients (10 TLE) 
ECoG + depth 

electrodes 
Granger causality 

FC predicts 

better than 

chance the EZ / 

RZ 

Shah et al., 

2019 
27 patients (18 TLE) 

ECoG + depth 

electrodes 
Linear Correlation 

Gradual 

decrease of FC: 

within-RZ > RZ-

OUT > within-

OUT 

SEEG 

Mormann 

et al., 2000 
17 patients with TLE 

SEEG  

(Bilateral 

Mean phase 

coherence 

Increase FC in the 

epileptogenic side 
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temporal mesial 

sampling) 

Bettus et 

al., 2008 

21 patients with 

mesial TLE + 14 with 

non-mesial TLE 

SEEG  

 

Nonlinear 

correlation (h2) 

FC within mesio-

temporal 

structures is 

higher when 

these structures 

belong to EZ 

Bettus et 

al., 2011 
5 patients with TLE 

SEEG  

 

Nonlinear 

correlation (h2) 

Higher FC within 

the EZ and the 

irritative zone 

than within the 

NIZ (in beta only) 

Leading role of 

the EZ 

Varotto et 

al., 2012 

10 patients with FCD II 

(neocortical epilepsy) 
SEEG  

Partial directed 

coherence 

Increase in 

outgoing 

connections (30-

80Hz) in FCD 

compared to 

other structures 

of the 

epileptogenic 

zone 

Increase in the 

betweenness 

centrality within 

the FCD. 

Van Diessen 

et al., 2013 
12 patients with TLE 

SEEG  

(Bilateral 

temporal mesial 

sampling) 

 

Phase Lag Index 

Disconnection of 

the epileptogenic 

mesio-temporal 

structures from 

their 

contralateral non-

epileptogenic 

homologous 

Bartolomei 

et al., 2013 

11 patients with 

mesial TLE + 8 with 

non-mesial TLE 

SEEG 
Synchronization 

likelihood 

FC within 

temporal 

structures is 

higher when 

these structures 

belong to EZ 

Lagarde et 59 patients with FCD SEEG  Nonlinear Gradual decrease 
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al., 2018 or NDT (20 TLE) correlation (h2) of FC: EZ > PZ > 

NIZ 

FC between EZ-PZ 

> PZ-NIZ 

Leading role of 

the EZ 

Goodale et 

al., 2019 
15 patients (12 TLE) 

SEEG  

 

Imaginary 

coherence 

FC in EZ and EZ-

NIZ higher than 

NIZ 

Higher clustering 

coefficient, 

betweenness 

centrality within 

EZ 

Predictive 

accuracy = 80.4% 

Narasimhan 

et al., 2020 
25 patients (18 TLE) 

SEEG  

 

Mutual information, 

Imaginary 

coherence, Partial 

Directed Coherence, 

Directed Transfer 

Entropy 

Gradual decrease 

of FC: EZ > PZ > 

Irritative zone > 

NIZ 

EZ with higher 

inward FC 

Predictive 

accuracy = 88%, 

better if 

combination of 

connectivity 

methods 

Paulo et al., 

2022 
32 patients (18 TLE) SEEG 

Imaginary 

coherence, Partial 

Directed Coherence 

(in alpha band) 

Stability across 

time (days) 

Higher FC in EZ 

than in NIZ 

This difference 

decreased with 

the antiseizure 

medication 

withdrawal when 

using imaginary 

coherence 

Jiang et al., 27 patients (23 TLE) SEEG Directed transfer 

function, cross-

Higher inward 

strength in EZ 
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2022 frequency 

directionality 

than in NIZ 

Information flow 

from NIZ high 

frequency activity 

to EZ low 

frequency activity 

 

 

Table 2: Summary of studies on connectivity using Cortico-Cortical Evoked Potential (CCEP) 

Studies are presented in chronological order 

FC: functional connectivity; EZ: epileptogenic zone; NIZ: non-involved zone; PZ: propagation 

zone. SEEG: stereo-EEG; ECoG: electrocorticography; TLE: temporal lobe epilepsy 

 

Authors Population Recording’s modality Main results 

Lacruz et al., 2007 51 patients  

ECoG + depth 

electrodes 

(Frontal and temporal 

recordings) 

No difference in 

ipsilateral and 

contralateral 

hemispheric CCEP 

according to the side 

of the EZ 

Keller et al., 2014 15 patients (10 TLE) 
ECoG + depth 

electrodes 

Higher in-degree in EZ 

(no difference in out-

degree) 

Parker et al., 2018 
7 patients with 

neocortical epilepsy 
SEEG 

Higher FC within-EZ 

than within-NIZ 

Higher outdegree of 

EZ 

Zhao et al., 2019 8 patients (3 TLE) 

ECoG 

(During presurgical 

monitoring) 

Higher FC of EZ > NIZ 

Higher degree 

centrality and shorter 

path length of EZ 

Guo et al., 2020 25 patients (10 TLE) SEEG 

Gradual decrease of 

FC: within-EZ > 

between EZ-PZ > 

within-PZ > between 

EZ-NIZ and PZ-NIZ > 
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within-NIZ 

No difference in 

directionality 

 

 

Table 3: Links between functional connectivity data and post-surgical seizure outcome 

Studies are presented in chronological order 

For studies using ECoG recordings we precise if the recordings were performed during 

surgery procedure (with anaesthesia) or long-term monitoring. 

FC: functional connectivity, ECoG: electrocorticography; SEEG: stereo-EEG; RZ: resection zone; 

EZ: epileptogenic zone; TLE: temporal lobe epilepsy 

Authors Population 
Recording 

modality 
Methods Main results 

Schevon et al., 

2007 

9 patients with 

neocortical 

epilepsy 

ECoG 

(During presurgical 

monitoring) 

Mean phase 

coherence 

Complete 

resection of area 

of local 

hypersynchrony 

associated with 

good outcome 

Ortega et al., 

2008 

29 patients with 

TLE 

ECoG 

(During surgery) 

Linear correlation, 

mutual 

information, and 

phase 

synchronization 

No correlation 

between 

complete 

resection of 

cluster of local 

hypersynchrony 

and post-

surgical 

outcome 

Antony et al., 

2013 

23 patients with 

TLE 
SEEG Linear correlation 

Better outcome if 

weaker overall FC 

and more 

homogenous 

overall FC (less 

outlier with high 
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FC) 

Lagarde et al., 

2018 

59 patients with 

FCD or NDT (20 

TLE) 

SEEG  

 

Nonlinear 

correlation (h2) 

Worse outcome is 

higher FC within-

NIZ 

Grobelny et al., 

2018 
36 patients 

ECoG 

(During presurgical 

monitoring) 

Granger causality 

Worse outcome if 

higher overall 

betweenness 

centrality and 

more outlier with 

high values 

Goodale et al., 

2019 

15 patients (12 

TLE) 

SEEG 

 

Imaginary 

coherence 

Better outcome if 

higher FC within-

RZ 

Shah et al., 2019 
27 patients (18 

TLE) 

ECoG + depth 

electrodes 
Linear Correlation 

Better outcome if 

higher FC within-

RZ 

Better outcome 

with higher 

overlap between 

RZ and nodes 

with the highest 

FC 

Guo et al., 2020 
25 patients (10 

TLE) 
SEEG CCEP 

Better outcome if 

higher FC within-

EZ 

Paulo et al., 

2022 

32 patients (18 

TLE) 
SEEG 

Imaginary 

coherence, Partial 

Directed 

Coherence (in 

alpha band) 

No difference in 

EZ FC between 

patients being 

Engel I or not 

Jiang et al., 2022 
27 patients (23 

TLE) 
SEEG 

Directed transfer 

function, cross-

frequency 

directionality 

larger within-

frequency 

information flow 

asymmetry 

between EZ and 

NIZ is associated 

with favourable 

outcome 
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FIGURES  

Figure 1 represents a seizure recorded in SEEG where we observe a simultaneous co-

implication of several distinct/distant cerebral areas at the time of the initiation and the 

propagation of the seizure. The frequent observation of this simultaneous involvement of a 

"network" of brain areas during seizures, as well as the connectivity changes observed at the 

time of the seizures (not shown here), led us to propose the concept of the three 

“networks”: epileptogenic zone network (EZN), propagation zone network (PZN) and non-

involved zone network (NIN). 

A) 3D representation of the epileptogenicity of the sampled area in a patient with SEEG 

recordings. Epileptogenic zone network (EZN) are the nodes with big red sphere, 

Propagation zone network (PZN) are the nodes with medium orange sphere, and Non-

Involved zone network (NIN) are the nodes with small yellow sphere. 

B) Example of SEEG traces during a seizure within the epileptogenic (EZN), propagation 

(PZN) and non-involved zones (NIN) networks; and summary of the most frequent 

observed changes within each zone in term of signal properties 

C) Bar plot of the level of epileptogenicity for the nodes sampled in this example, showing a 

gradual decrease of epileptogenicity (FCA: right middle temporal gyrus posterior part; OT: 

right middle temporal gyrus posterior part; GC: right superior temporal gyrus posterior 

part; TB: right inferior temporal gyrus anterior part; PA: right angular gyrus; B: right 

middle temporal gyrus anterior part; H: right planum temporale; T: right planum polare; 

A: right middle temporal gyrus anterior part; I: right middle frontal gyrus posterior part; 

PM: right middle frontal gyrus anterior part; OR: right superior frontal gyrus posterior 

part). 
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Figure 2 illustrates the confounders influencing the estimation of functional connectivity 

through the example of the non-linear correlation coefficient (h2) 

A) The connectivity value decrease with the increase of inter-contact distance (possible 

solution: normalisation by the distance (using non-involved zone data) / multivariate 

analysis using the distance-effect) 

B) The connectivity values are lower for higher frequencies (possible solution: sub-bands 

analysis / comparison of the frequency content before analysis) 

C) The IEDs (unprocessed data) increase slightly the connectivity value without changing the 

global trend of difference between zones (higher connectivity when mesio-temporal 

structures are epileptogenic MTLE versus non epileptogenic NMTLE) 
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Figure 3 synthesizes the main data on interictal functional connectivity. 

In comparison with healthy control, epileptogenic zone network (EZN) shows a relatively 

preserve connectivity while non-involved zone network (NIN) has a decrease connectivity. 

Propagation zone network (PZN) shows an intermediate level of connectivity. Epileptogenic 

zone network (EZN) is preferentially connected to the propagation zone network (PZN) and 

relatively disconnected of the non-involved zone network (NIN). 

For the clarity of the figure, all nodes are not inter-connected, and the connectivity is 

considered as equal between nodes in healthy condition (it is not the case in human brain). 

The directionality is not represented in this graph as the existing data are contradictory on 

the role of the epileptogenic zone: sender or receiver? 
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SUPPLEMENTAL MATERIAL 

 

 

METHODOLOGICAL ISSUES 

 

In iEEG functional connectivity analyses several parameters may influence the results and 

should be kept in mind during the interpretation of results (Figure 2). 

 

7. Algorithms to estimate functional connectivity 

 

Several algorithms to estimate functional connectivity exist and their choice could be 

difficult.  In a study looking at the estimated synchronization between left and right 

hemisphere using intracranial-electroencephalographic (EEG) and testing various 

synchronization measures (nonlinear interdependence, phase synchronization, mutual 

information, cross correlation, and coherence), authors found that, except mutual 

information, all these measures give a useful quantification and despite their conceptual 

differences, results are qualitatively the same (Quian Quiroga et al., 2002). Another 

comparative study using computational modelling and estimating various combination of 

models and synchronization methods confirms these findings showing that although results 

may differ from one method to the other, qualitatively their results are similar (Ansari-Asl et 

al., 2006). Furthermore, (Wendling et al., 2009) compared the performance of  three families 

of connectivity methods (regression, phase synchrony and general synchronization) using 

simulations from various models  in which a coupling parameter can be tuned. In this study, 
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none of the studied methods gave better results than the other ones in all simulated 

situations. However, regression methods (R2 and h2) were sensitive to the coupling 

parameter with average or good performances across situations. Moreover, in some 

situations, coherence and phase synchrony methods were not very sensitive to the increase 

of the coupling parameter (typically in amplitude coupling models where the 

interdependence between signals is not determined by a phase relationship).   

Moreover, in studies in human, the performance across methods of connectivity estimation 

are similar with good correlation between them: mutual information, generalized 

synchronization, phase synchronization and linear correlation (Kraskov, 2004); phase 

synchrony, magnitude coherence, granger causality and linear correlation (Dauwels et al., 

2009); linear correlation, mutual information and phase synchronization (Ortega et al., 

2008); linear correlation and mean phase coherence (Warren et al., 2010); and imaginary 

coherence, mutual information, partial directed coherence (PDC) and directed transfer 

entropy (DTF) (Narasimhan et al., 2020) in all studies using intracerebral EEG data in human. 

However, for intracranial EEG several works have demonstrated the interest and the good 

performance  of non-linear correlation analysis, probably because of the non-linear nature of 

iEEG signals especially within the EZ (Pijn et al., 1991; Casdagli C et al., 1997; Lehnertz, 1999; 

Elger et al., 2000; Andrzejak et al., 2001, 2006, 2011, 2012; Rummel et al., 2011; Wang et al., 

2014; Bartolomei et al., 2017).   

 

 

8. Pre-processing, parameters for connectivity analysis 
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In connectivity analyses, some parameters need to be tuned by the user, principally the size 

of the time windows, the step of the sliding-windows, and the maximum lags. These 

parameters could impact the results of connectivity obtained (Wang et al., 2014; Fraschini et 

al., 2016) and should be chosen adequately  based on simulation study (Wang et al., 2014) 

and adapted to the timing of neurophysiological processes that are investigated  (Chu et al., 

2015). The choice of reference / montage is also crucial (Anastasiadou et al., 2019), and it is 

recommended to use bipolar montage in order to limit effects of common source that 

increases the risk of spurious interdependence (Bartolomei et al., 1999; Bastos and 

Schoffelen, 2016). 

The duration of the analysed sample could also influence the connectivity results. Any 

statistical measure inherently yields only imperfect estimates of the desired quantity when 

calculated over a finite data window leading to the appearance of random correlations 

(Müller et al., 2008).  The non-stationary nature of the EEG signals is another potential 

concern and questions how long the analysed sample should be in order to extract robust 

functional connectivity. It has been shown that, although functional networks are highly 

variable on the order of seconds, stable network templates emerge after about 100 s of 

recording of resting-state (Kramer et al., 2011; Chu et al., 2012). Moreover a study compared 

2, 5, and 10-minute data segments within a period of resting-state and observed similar 

connectivity results (Goodale et al., 2019). Simulation study have confirm this finding 

suggesting sufficient duration being above 60s for iEEG (Wang et al., 2014).  However, by 

averaging connectivity estimation, one necessary loses the information about fluctuation of 

connectivity across time that could be potentially differ across studied zones. Further studies 

on this topic, notably using functional connectivity dynamics (Kopell et al., 2014; Hansen et 

al., 2015) on longer recordings, could be interesting.  
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The power spectrum of the signals has a major influence on the connectivity results in broad 

band. Hence, for any finite T, the width of the distribution, and therefore the probability for 

the occurrence of large correlation coefficients, gets larger with increasing power of low 

frequencies relative to fast components (Müller et al., 2008). For example, in our study 

(Lagarde et al., 2018), the h2 value was strongly influenced by the frequency contents, with 

lower frequencies having the greater connectivity strength. Therefore, in case a broadband 

functional connectivity analysis is used, the similarity of frequency contents of signals should 

be checked. If this content differs too significantly between regions, sub-bands analyses 

could be useful. Another, more complex and computationally costly method is the used of 

surrogate data (Schreiber and Schmitz, 2000; Stam, 2005; Kramer et al., 2009; Rummel et al., 

2015).  Surrogates testing have proved their usefulness in electrophysiological functional 

connectivity (Stam et al., 2003; Müller et al., 2008) with the combination of cross-correlation 

with surrogates to extract the “genuine cross-correlation” outperforming raw cross-

correlation for both linear and non-linear methods  (Rummel et al., 2010; Andrzejak et al., 

2011). However, in our experience the estimated functional connectivity was far higher than 

surrogates functional connectivity, discarding potential spurious connectivity artefact 

(Lagarde et al., 2018). 

Electrophysiological signals, like many physical processes, have an amplitude inversely 

proportional to frequency (Bénar et al., 2019). This means that considering the original 

(broadband) signal will be mostly influenced by the low frequencies. One way to cope with 

that is to ‘whiten’ the signals (Roehri et al., 2016). Another more classical option is to filter 

the signals in difference frequency bands. This allows emphasizing different components of 

the signal, for example the actual ‘spiky’ part of the interictal discharges in contrast to the 

slow wave (Courtens et al., 2016). In terms of interpretation, it is very important to 
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acknowledge that transient signal such as a sharp epileptic spike have energy spreading 

across many different frequency bands. Thus, filtering in a given frequency band does not 

guaranteed to observe actual oscillations within that band, but rather a mixture of actual 

oscillation, filtered transients as well as harmonics (Bénar et al., 2010). 

 

9. Spatial sampling, distance, volume conduction and reference effects 

 

The distance between recorded channels influences their estimated connectivity. Variations 

in the connectivity strength may be  influenced by distances between sampled regions 

(Perinelli et al., 2019). iEEG studies demonstrated a significant decrease of functional 

connectivity with increase in distance (Warren et al., 2010; Lagarde et al., 2018; Goodale et 

al., 2019). Therefore, inter-region distance should be taken into account in order to perform 

adapted multivariate statistical analyses (Ridley et al., 2017; Lagarde et al., 2018)  or to 

normalise the connectivity values using the decay of connectivity with distance observed in 

non-epileptic  areas.  

Most connectivity measures are affected by common sources in the signals that are 

compared. For example, use of a common reference or the fact that the same source can 

impact several sensors (“volume conduction” effects). The use of a bipolar montage 

(consecutive contacts, avoiding common electrodes in two channel pairs) can cancel 

reference effects and decrease volume conduction  effects (Gotman and Levtova, 1996). 

Both volume conduction and reference effects lead to instantaneous (zero-lag) correlation 

between signals. Thus, methods have been developed to specifically remove such effects 
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(imaginary coherence (Nolte et al., 2004), PLI (Stam et al., 2007), phase slope index (Nolte et 

al., 2008)), at the risk of lowering sensitivity to true connectivity at a small lags.  

An intrinsic problem concerning iEEG studies is the necessary limited spatial sampling. 

Indeed, missing data (non-sampled regions) affects the results of network analysis and the 

difference in the spatial sampling across patients restricts the comparability across them 

especially for the graph-theory metrics. This issue could be in part overcome using surrogate 

data or permutation/resampling techniques (Conrad et al., 2019). Moreover, the analysis at 

the level of region-of-interest (ROI) and not at the contact level probably helps to reduce the 

variability in the connectivity results obtained from various sampling (Bernabei et al., 2021). 

Notably the reliability of graph-theory metrics depends on the number of implanted 

electrodes, and all metrics are not similarly sensitive to incomplete sampling: node strength, 

eigenvector centrality, and clustering coefficient, have the best performance compared to 

betweenness centrality. Therefore, the choice of the graph-theory metrics used is not trivial 

as each one shows specific methodological issues. Actually, computed quantities are more or 

less sensitive to the spatial sampling bias (Conrad et al., 2019), fluctuate more or less during 

time (Geier and Lehnertz, 2017), and seem more of less correlated to epileptogenicity (Coito 

et al., 2019).  

 

10. Interictal epileptiform discharges 

 

A last potential confounding bias could be the presence of interictal epileptiform discharges 

(IEDs) and their intrinsic effect on the connectivity estimation. Studies found a correlation 

between higher IEDs frequency and higher connectivity values, however the effect was 
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limited (increase of about 5%)  (Bettus et al., 2008; Bartolomei et al., 2013). Moreover, the 

suppression of periods with IEDs in connectivity analysis did not change the overall results 

on functional connectivity (Bettus et al., 2008) or network topology (Bartolomei et al., 2013).  

Simulation study have reported a small effect on connectivity strength and network 

structure (Hu et al., 2019). Similarly (Park and Madsen, 2018) found relatively low overlap 

between the spiking zone and the zone with high granger causality values. Therefore, it 

seems possible to not necessary remove periods of IEDs for connectivity analysis. In 

addition, IEDs are intrinsic characteristics of the epileptogenic signal, and it should be 

inappropriate to remove them from the analysis. Moreover, the analysis of functional 

connectivity during IEDs may carry interesting information about the organisation of 

epileptogenic networks (Malinowska et al., 2014; Coito et al., 2015, 2016, 2019; Karunakaran 

et al., 2017; van Mierlo et al., 2019). 
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