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Introduction

Given a n-dimensional lattice Ω ⊆ R n , a trigonometric polynomial is a function

f : R n → R, u → f (u) := µ∈Ω c µ exp(-2πi µ, u ),
where •, • denotes the Euclidean scalar product and the finitely many nonzero coefficients c µ ∈ C satisfy c -µ = c µ . Such functions are good L 2 -aproximations for Λ-periodic functions, where Λ is the dual lattice. This paper offers a new approach to optimizing such a trigometric function, over R n , when this latter is invariant under a crystalographic reflection group. We show how the problem can then be reduced to polynomial optimization on a semi-algebraic set and handled with a variation on Lasserre hierarchy. The resulting algorithm is applied to the exploration of the spectral bound on the chromatic numbers of set avoiding graphs.

In the literature of trigonometric optimization, one often regards the lattice simply as a free Z-module, that is, Ω = Z n , ignoring the geometry and only taking central symmetry into account. For the purpose of optimization, a hierarchy of Hermitian sums of squares reinforcements provides a numerical solution [START_REF] Dumitrescu | Positive Trigonometric Polynomials and Signal Processing Applications[END_REF][START_REF] Bach | Exponential convergence of sum-of-squares hierarchies for trigonometric polynomials[END_REF]. Alternatively, one can apply Lasserre's hierarchy with complex variables [START_REF] Josz | Lasserre hierarchy for large scale polynomial optimization in real and complex variables[END_REF], where one has to restrict to the compact torus.

In this article, Ω is the weight lattice of a crystallographic root system in R n . Root and weight lattices provide optimal configurations for a variety of problems in geometry and information theory, with incidence in physics and chemistry. The A 2 root lattice (the hexagonal lattice) is classically known to be optimal for sampling, packing, covering, and quantization in the plane [START_REF] Conway | Sphere packings, lattices and groups[END_REF][START_REF] Künsch | Optimal lattices for sampling[END_REF], but also proved, or conjectured, to be optimal for energy minimization problems [START_REF] Petrache | Crystallization for coulomb and riesz interactions as a consequence of the cohn-kumar conjecture[END_REF][START_REF] Bétermin | Maximal theta functions universal optimality of the hexagonal lattice for madelung-like lattice energies[END_REF]. More recently, the E 8 lattice was proven to give an optimal solution for the sphere packing problem and a large class of energy minimization problems in dimension 8 [START_REF] Petrache | Crystallization for coulomb and riesz interactions as a consequence of the cohn-kumar conjecture[END_REF][START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF][START_REF] Cohn | Universal optimality of the E8 and Leech lattices and interpolation formulas[END_REF]. From an approximation point of view, weight lattices of root systems describe Gaussian cubature [START_REF] Li | Discrete Fourier analysis on fundamental domain and simplex of A d lattice in d variables[END_REF][START_REF] Moody | Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups[END_REF], a rare occurence on multidimensional domains. In a different direction, the triangulations associated with infinite families of root systems are relevant in graphics and computational geometry, see for instance [START_REF] Choudhary | Coxeter triangulations have good quality[END_REF] and references within.

The distinguishing feature of the lattices associated to crystallographic root system is their intrisic symmetry. This latter is given by the so called Weyl group W, a finite group generated by orthogonal reflections w.r.t.

•, • . It is this feature that we emphasize and offer to exploit in an optimization context. We present a new approach to numerically solve the trigonometric optimization problem

f * := min u∈R n f (u) (1.1)
under the assumption of crystallographic symmetry, that is, for A ∈ W, we have f (A u) = f (u), or equivalently c A µ = c µ . The first step of our approach, in Section 2, is a symmetry reduction that translates the trigonometric optimization above to the problem of optimizing a polynomial over a semi-algebraic set, a subject that ripened in the last two decades [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF][START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF][START_REF] Parrilo | Minimizing polynomial functions[END_REF][START_REF] Prajna | SOSTOOLS and its control applications[END_REF][START_REF] De Klerk | On the equivalence of algebraic approaches to the minimization of forms on the simplex[END_REF][START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF][START_REF] Laurent | Sums of Squares, Moment Matrices and Optimization Over Polynomials[END_REF][START_REF] Blekherman | Semidefinite Optimization and Convex Algebraic Geometry[END_REF][START_REF] Henrion | The Moment-SOS Hierarchy[END_REF]. The second step of our approach, in Section 3, is thus an adaptation of Lasserre's hierarchy of moment relaxations and sums of squares reinforcements. We indeed modify the hierarchy introduced in [START_REF] Hol | Sum of squares relaxations for robust polynomial semi-definite programs[END_REF][START_REF] Hol | Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs[END_REF][START_REF] Lasserre | Convergent sdp-relaxations in polynomialoptimization with sparsity[END_REF] to work directly in the basis of generalized Chebyshev polynomials. These are not homogeneous but naturally filtered by a weighted degree, different from the usual degree.

The simplest case of this symmetry reduction scheme, the univariate case, is obvious but maybe worth reviewing to get the initial idea. The group is then W = {1, -1} and the invariance condition is thus f (-u) = f (u) for all u ∈ R. That implies that one can write where {T k } k∈N are the Chebyshev polynomials of the first kind. We thus have

f (u) =
f * := min u∈R n f (u) = min z 2 ≤1 k∈N c k T k (z)
the right hand side being a polynomial optimization problem with semi-algebraic constraints.

With Ω = Z n and W = {1, -1} n , one can use products of univariate Chebyshev polynomials to operate a similar symmetry reduction. This is the A 1 × . . . × A 1 case. We look at all the lattices associated to crystallographic root systems, offering a wider range of domains of periodicity (hexagon, rhombic dodecahedron, icositetrachoron, . . . ) and simplices of any dimension, or cartesian products of these, as fundamental domains. The key to the symmetry reduction then is the existence and properties of generalized Chebyshev polynomials. They allow to rewrite any invariant trigonometric polynomials as polynomials of the fundamental generalized cosines. These generalized Chebyshev polynomials arose in different contexts, in particular in the search of multivariate orthogonal polynomials [START_REF] Dunn | Multi-dimensional generalizations of the Chebyshev polynomials, I[END_REF][START_REF] Eier | A class of orthogonal polynomials in k variables[END_REF][START_REF] Hoffman | Generalized Chebyshev polynomials associated with affine Weyl groups[END_REF][START_REF] Macdonald | Orthogonal polynomials associated with root systems[END_REF][START_REF] Beerends | Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator[END_REF]. A more recent development is the description of their domain of orthogonality, the image of the generalized cosines, as a compact semi-algebraic set given by a unified and explicit polynomial matrix inequality [START_REF] Hubert | T-orbit spaces of multiplicative actions and applications[END_REF][START_REF] Hubert | Polynomial description for the T-Orbit Spaces of Multiplicative Actions[END_REF][START_REF] Metzlaff | Groupes Cristallographiques et Polynômes de Chebyshev en Optimisation Globale[END_REF]. Such a description is necessary to proceed algorithmically with the obtained polynomial optimization problem.

In the algorithmic approach, we solve a primal/dual semi-definite program (SDP) that models a momentrelaxation/sums of squares reinforcement in terms of generalized Chebyshev polynomials. Our Maple package GeneralizedChebyshev 1 allows to compute the parameters of the SDP, specifically the matrices which impose the semi-definite constraints. The user can then solve the problem with a SDP solver of their personal preference. Beyond that, the package offers a large variety of tools, including the matrices from [START_REF] Hubert | Polynomial description for the T-Orbit Spaces of Multiplicative Actions[END_REF], a function to rewrite invariants in terms of generalized Chebyshev polynomials and an implemented recurrence formula for their computation. We can thus compare our method with the one in [START_REF] Dumitrescu | Positive Trigonometric Polynomials and Signal Processing Applications[END_REF] in practice. We observe in several examples throughout Section 3.4 that the quality of the approximation is improved, while the computational complexity is reduced.

As a second set of contributions, in Section 4, we apply our method to the computation of spectral bounds for chromatic numbers of set avoiding graphs. The first such graph considered was the Euclidean distance graph [START_REF] Soifer | The mathematical coloring book[END_REF][START_REF] Bachoc | Spectral bounds for the independence ratio and the chromatic number of an operator[END_REF][START_REF] Bachoc | The density of sets avoiding distance 1 in Euclidean space[END_REF][START_REF] Grey | The chromatic number of the plane is at least 5[END_REF], where the vertices are the points of R n and the set to be avoided is the sphere. As set of vertices we consider either R n , or a lattice thereof. As for the set to be avoided we mostly consider the boundary of a polytope with crystallographic symmetry. Choosing appropriate discrete measures on the polytope, the spectral bound from [START_REF] Bachoc | Spectral bounds for the independence ratio and the chromatic number of an operator[END_REF] made specific to the chromatic number can be expressed as the solution of a max-min optimization problem on a trigonometric polynomial. Our symmetry reduction technique of Section 2 then allows us to retrieve, with simple proofs, the chromatic number of the A n-1 lattice (Theorem 4.5), of the graph avoiding the crosspolytope of radius 2 in Z n (Theorem 4.10), and of the graph avoiding the cube in R n (Proposition 4.15). In other cases, we apply the algorithm in Section 3 to compute lower bounds numerically. We improve on [START_REF] Füredi | Distance graph on Z n with 1 norm[END_REF] by +2 for the chromatic number of Z 4 avoiding the crosspolytope of radius 4 (Table 4). We also give further bounds for the rhombic dodecahedron (Table 6) as well as the icositetrachroron (Table 7).

Crystallographic symmetries

To rewrite the trigonometric optimization problem in Equation (1.1) to a polynomial optimization problem, we require the lattice Ω to be full-dimensional and stable under some finite reflection group W, that is, W Ω = Ω. Then W must be the Weyl group of some crystallographic root system [START_REF] Kane | Reflection Groups and Invariant Theory[END_REF]Chapter 9] and Ω is the associated weight lattice. We need several facts from the theory of Lie algebras, root systems and lattices, which come from [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF][START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF][START_REF] Conway | Sphere packings, lattices and groups[END_REF]. In particular, we need Theorem 2.5, which states that any trigonometric polynomial with crystallographic symmetry can be written uniquely as a polynomial in fundamental invariants, also known as the generalized cosines. Subsequently, the feasible region of the so obtained polynomial optimization problem is the image of the fundamental invariants, a compact basic semi-algebraic set whose equations were given explicitely in [START_REF] Hubert | T-orbit spaces of multiplicative actions and applications[END_REF][START_REF] Hubert | Polynomial description for the T-Orbit Spaces of Multiplicative Actions[END_REF][START_REF] Metzlaff | Groupes Cristallographiques et Polynômes de Chebyshev en Optimisation Globale[END_REF].

Root systems and Weyl groups

Denote by •, • the Euclidean scalar product. A subset R ⊆ R n is called a root system in R n , if the following conditions hold.

R1 R is finite, spans R n and does not contain 0.

R2 If ρ, ρ ∈ R, then ρ, ρ ∨ ∈ Z, where ρ ∨ := 2 ρ ρ,ρ . R3 If ρ, ρ ∈ R, then s ρ (ρ) ∈ R, where s ρ is the reflection defined by s ρ (u) = u -u, ρ ∨ ρ for u ∈ R n .
The elements of R are called roots and the rank of R is Rank(R) := dim(R n ). The elements ρ ∨ are called the coroots. Furthermore, R is called reduced, if additionally the following condition holds.

R4 For ρ ∈ R and c ∈ R, we have cρ ∈ R if and only if c = ±1.

We assume that the "reduced" property R4 always holds when we speak of a "root system". Sometimes the "crystallographic" property R2 is emphasized as a seperate condition [START_REF] Kane | Reflection Groups and Invariant Theory[END_REF]. For visualizations, see Example 2.4.

Weyl group and weights

The Weyl group W of R is the group generated by the reflections s ρ for ρ ∈ R. This is a finite subgroup of the orthogonal group on R n with respect to the inner product •, • . The Weyl groups are the groups we consider in this article and now we define the lattices of interest.

A subset B = {ρ 1 , . . . , ρ n } ⊆ R is called a base, if the following conditions hold.

B1 B is a basis of R n .

B2 Every root ρ ∈ R can be written as

ρ = α 1 ρ 1 + . . . + α n ρ n or ρ = -α 1 ρ 1 -. . . -α n ρ n for some α ∈ N n .
Every root system contains a base [12, Chapitre VI, §1,

Theorem 3]. A partial ordering on R n is defined by u v if and only if u -v = α 1 ρ 1 + . . . + α n ρ n for some α ∈ N n .
A weight of R is an element µ ∈ R n , such that, for all ρ ∈ R, we have µ, ρ ∨ ∈ Z. The set of weights forms a lattice Ω, called the weight lattice. By the condition R2, every root is a weight. For a base B = {ρ 1 , . . . , ρ n }, the fundamental weights are the elements {ω 1 , . . . , ω n }, such that, for 1 ≤ i, j ≤ n, ω i , ρ ∨ j = δ i,j . The weight lattice is left invariant under the Weyl group, that is, WΩ = Ω. The fundamental Weyl chamber of W relative to B is

Λ Λ := {u ∈ R n | ∀ ρ ∈ B : u, ρ i > 0}.
The closure Λ Λ is a fundamental domain of W [12, Chapitre V, §3, Théorème 2]. Hence, Λ Λ contains exactly one element per W-orbit and the weights in Λ Λ are called dominant. We denote Ω + := Ω ∩ Λ Λ. Proposition 2.1. For µ ∈ Ω + , there exists a unique µ ∈ Ω + with -µ ∈ W µ. Furthermore, there exists a permutation σ ∈ S n of order at most 2, such that, for all 1 ≤ i ≤ n, we have ω i = ω σ(i) .

Proof. Let A be the longest element of W [12, Chapitre VI, §1, Proposition 17 et Corollaire 3]. Then AΛ Λ = -Λ Λ and so µ = -A µ ∈ Ω + . We define the permutation σ ∈ S n via the property ρ i = -A ρ σ(i) for 1 ≤ i ≤ n. Since A is an involution and the inner product is W-invariant, we obtain

ω i = -A ω i = n j=1 -A ω i , ρ ∨ j ω j = n j=1 ω i , -A ρ ∨ j ω j = n j=1 ω i , ρ ∨ σ(j) ω j = ω σ(i) .

The Voronoï cell

The set of all coroots ρ ∨ spans a lattice Λ in R n , called the coroot lattice. This Abelian group acts on R n by translation and is the dual lattice of the weight lattice, that is,

Ω * = {u ∈ R n | ∀ µ ∈ Ω : µ, u ∈ Z} = Λ.
Denote by • the Euclidean norm. The Voronoï cell of Λ is

Vor(Λ) := {u ∈ R n | ∀λ ∈ Λ : u ≤ u -λ }
and tiles R n by Λ-translation, that is,

R n = λ∈Λ (Vor(Λ) + λ), (2.1) 
where "+" denotes the Minkowski sum. The rest of this subsection is devoted to describe . Assume that R n = V (1) ⊕ . . . ⊕ V (k) is the direct sum of proper orthogonal subspaces and that, for each 1 ≤ i ≤ k, R (i) is a root system in V (i) . Then R := R (1) ∪ . . . ∪ R (k) is a root system in R n and called the direct sum of the R (i) . If a root system is not the direct sum of at least two root systems, then it is called irreducible, see [ Example 2.4. In the 2-dimensional case, we can consider the following irreducible root systems.

0 = α 1 ρ ∨ 1 + . . . + α n ρ ∨ n is the highest root of R for some α ∈ R n . Then = {u ∈ R n | ∀ 1 ≤ i ≤ n : u, ρ i ≥ 0
ρ 2 ρ 1 ω 1 ω 2 W(A 2 ) ∼ = S 3 ω 1 = [2, -1, -1] t /3 ω 2 = [1, 1, -2] t /3 ρ 1 = [1, -1, 0] t = ρ ∨ 1 ρ 2 = [0, 1, -1] t = ρ ∨ 2 ρ 0 = ρ ∨ 1 + ρ ∨ 2 Figure 1: The root system A 2 in R 3 / [1, 1, 1] t . ρ 2 ρ 1 ω 2 ω 1 W(B 2 ) ∼ = S 2 {±1} 2 ω 1 = [1, 0] t ω 2 = [1, 1] t /2 ρ 1 = [1, -1] t = ρ ∨ 1 ρ 2 = [0, 1] t = ρ ∨ 2 /2 ρ 0 = ρ ∨ 1 + ρ ∨ 2 Figure 2: The root system B 2 in R 2 . ρ 2 ρ 1 ω 2 ω 1 W(G 2 ) ∼ = S 3 {±1} ω 1 = [0, -1, 1, ] t ω 2 = [-1, -1, 2] t ρ 1 = [1, -1, 0] t = ρ ∨ 1 ρ 2 = [-2, 1, 1] t = 3 ρ ∨ 1 ρ 0 = 3 ρ ∨ 1 + 6 ρ ∨ 2 Figure 3: The root system G 2 in R 3 / [1, 1, 1] t . ρ 2 ρ 1 ω 2 ω 1 W(C 2 ) ∼ = S 2 {±1} 2 ω 1 = [1, 0] t ω 2 = [1, 1] t ρ 1 = [1, -1] t = ρ ∨ 1 ρ 2 = [0, 2] t = 2 ρ ∨ 2 ρ 0 = 2 ρ ∨ 1 + 2 ρ ∨ 2 Figure 4: The root system C 2 in R 2 .
Here, the roots are depicted in green, the base in red and the fundamental weights in blue. The Voronoï cell of the coroot lattice Λ is the gray shaded region, we have two squares (C 2 and B 2 ) and two hexagons (A 2 and G 2 ). The fundamental domain of the affine Weyl group is the blue shaded simplex.

Trigonometric polynomials with Weyl group symmerty

From now on, R is a root system in R n with Weyl group W, weight lattice Ω = Z ω 1 ⊕ . . . ⊕ Z ω n and coroot lattice Λ = Ω * . For µ ∈ Ω, we define the function

e µ : R n → C, u → exp(-2πi µ, u ).
A C-linear combination of these functions is a trigonometric polynomial. The set of all trigonometric polynomials forms an algebra that we denote by C[Ω].

The set {e µ | µ ∈ Ω} is closed under multiplication e µ e μ = e µ+μ and thus a group with neutral element e 0 and inverse (e µ ) -1 = e -µ . Since Ω is the free Z-module generated by the ω i , C[Ω] is generated by {e ±ω1 , . . . , e ±ωn }.

Since the coroot lattice Λ is the dual lattice of Ω, any element f ∈ C[Ω] is Λ-periodic, that is, for all u ∈ R n and λ ∈ Λ, we have f (u + λ) = f (u).

Generalized cosines and Chebyshev polynomials

The Weyl group W acts linearly on C[Ω] by the action described on its basis as

• : W × C[Ω] → C[Ω], (A, e µ ) → e Aµ . A trigonometric polynomial f ∈ C[Ω] is called W-invariant, if, for all A ∈ W, we have A • f = f . The generalized cosine function associated to µ ∈ Ω is the W-invariant trigonometric polynomial c µ : R n → C, u → 1 |W| A∈W e Aµ (u).
(2.2)

Theorem 2.5. [12, Chapitre VI, §3, Théorème 1] The following statements hold.

1. The c ω1 , . . . , c ωn are algebraically independent.

2. The set of W-invariants is the polynomial C-algebra generated by the c ω1 , . . . , c ωn , that is,

C[Ω] W = C[c ω1 , . . . , c ωn ].
The above Theorem 2.5 states that, for every

f ∈ C[Ω] W , there exists a unique polynomial g ∈ C[z] := C[z 1 , . . . , z n ] with the property f (u) = g(c(u))
, where c is the function

c : R n → C n , u → (c ω1 (u), . . . , c ωn (u)) .
This property is exclusive for Weyl groups [START_REF] Farkas | Reflection groups and multiplicative invariants[END_REF].

Definition 2.6. The generalized Chebyshev polynomials of the first kind associated to µ ∈ Ω is the unique

T µ ∈ C[z], such that T µ (c(u)) = c µ (u).
The coefficients of the T µ are real. We have T 0 = 1, T ωi = z i and, for µ, ν ∈ Ω,

|W| T µ T ν = A∈W T µ+Aν . (2.3) The set {T µ | µ ∈ Ω + } forms a vector space basis of C[z] [44].
This definition is a generalization of the univariate Chebyshev polynomials of the first kind T (cos(u)) = cos( u) with ∈ Z, which correspond to the root system A 1 .

Real cosines and Chebyshev polynomials

For our approach in Section 3, we need the generalized Chebyshev polynomials to be defined on a real domain. This is always true for -I n ∈ W and what follows is only necessary for -I n / ∈ W. Let µ, µ ∈ Ω + with -µ ∈ W µ. The real generalized cosines associated to the pair (µ, µ) are

(c µ ) = c µ + c µ 2 and (c µ ) = c µ -c µ 2i .
By construction, those are real-valued W-invariant trigonometric polynomials. We are interested in the pairs (µ, µ) with µ = ω i a fundamental weight. Let σ ∈ S n be the permutation from Proposition 2.1. Then µ = ω σ(i) is also a fundamental weight and we define the function

c R : R n → R n , u → (c ω1,R (u), . . . , c ωn,R (u)) , (2.4) 
where c ωi,R := c ωi for i = σ(i) and c ωi,R := (c ωi ), c ω σ(i) ,R := (c ωi ) for i < σ(i).

8 Wednesday 15 th March, 2023 §2 Proposition 2.7. Let µ, µ ∈ Ω with -µ ∈ W µ. Then there exist unique T µ , T µ ∈ R[z], such that T µ (c(u)) = T µ (c R (u)) + i T µ (c R (u)) and T µ (c(u)) = T µ (c R (u)) -i T µ (c R (u)).
Proof. Note that

(T µ + T µ )(c(u)) = 1 |Wµ| μ∈Wµ e μ(u) + e -μ (u)
is invariant under both W and {±I n }. Let σ ∈ S n be the permutation from Proposition 2.1. Then the

C-algebra (C[Ω] W ) {±In} is generated by the c ωi + c ω σ(i) with 1 ≤ i ≤ σ(i) ≤ n. Thus, (T µ + T µ )(c(u))/2 can be written as a polynomial T µ in c R (u). Similarly, (T µ -T µ )(c(u)) = 1 |Wµ| μ∈Wµ e μ(u) -e -μ (u) is invariant under W, but anti-invariant under {±I n }. The elements of C[Ω] W , which are anti-invariant under {±I n }, are, as an C-algebra, generated by the c ωi -c ω σ(i) with 1 ≤ σ(i) < i ≤ n. Hence, (T µ -T µ )(c(u))/(2i)
can be written as a polynomial T µ in c R (u). As polynomials, T µ and T µ are analytical functions and T R has nonempty interior. Hence, they are unique.

Convention 2.8. From now on, we will write T µ and c for T µ and c R , even if -I n / ∈ W. As we have shown above, the reformulation follows from a permutation σ and a substitution z i → z i ± i z σ(i) . For our implementation, it is important to remember this caveat, but for the article itself, we shall simplify the notation.

The image of the generalized cosines as a basic semi-algebraic set

We call T := c(R n ) the image of the generalized cosines. If is a fundamental domain for the affine Weyl group W Λ, then T = c( ) due to the W-invariance and Λ-periodicity. In particular, T is compact. With Convention 2.8, T is a real set and contained in the cube [-1, 1] n .

For the purpose of optimization, we need a polynomial description of T as a basic semi-algebraic set. Recently, a closed formula was given via a polynomial matrix inequality. This formula is available in the standard monomial basis z [START_REF] Hubert | T-orbit spaces of multiplicative actions and applications[END_REF][START_REF] Hubert | Polynomial description for the T-Orbit Spaces of Multiplicative Actions[END_REF], and in the basis of generalized Chebyshev polynomials T µ [START_REF] Metzlaff | Groupes Cristallographiques et Polynômes de Chebyshev en Optimisation Globale[END_REF].

Theorem 2.9. [48, Theorem 2.19] Let R be a root system of type A n-1 , B n , C n , D n or G n-1 and define the symmetric matrix polynomial P ∈ R[z] n×n via

2 i+j P(z) ij = -T (i+j) ω1 (z) + (i+j)/2 -1 =1 4 i + j -2 -1 - i + j T (i+j-2 ) ω1 (z) + 1 2 4 i+j-2 (i+j)/2-1 -i+j (i+j)/2 , if i + j is even 0, if i + j is odd . Then T = {z ∈ R n | P(z) 0}.
The matrix polynomial P ∈ R[z] n×n from Theorem 2.9 follows the pattern Remark 2.10.

        T0-T2 ω 1 4 Tω 1 -T3 ω 1 8 T0-T4 ω 1 16 2 Tω 1 -T3 ω 1 -T5 ω 1 32 • • • Tω 1 -T3 ω 1 8 T0-T4 ω 1 16 2 Tω 1 -T3 ω 1 -T5 ω 1 32 2 T0+T2 ω 1 -2 T4 ω 1 -T6 ω 1 64 • • • T0-T4 ω 1 16 2 Tω 1 -T3 ω 1 -T5 ω 1 32 2 T0+T2 ω 1 -2 T4 ω 1 -T6 ω 1 64 5 Tω 1 -T3 ω 1 -3 T5 ω 1 -T7 ω 1 128 • • • 2 Tω 1 -T3 ω 1 -T5 ω 1 32 2 T0+T2 ω 1 -2 T4 ω 1 -T6 ω 1 64 5 Tω 1 -T3 ω 1 -3 T5 ω 1 -T7 ω 1 128 5 T0+4 T2 ω 1 -4 T4 ω 1 -4 T6 ω 1 -T8 ω 1 256 • • • . . . . . . . . . . . . . . .         . (a) A2 (b) C2 (c) B2 (d) G2 (e) A3 (f) C3 (g) B3
1. If we are in one of the special cases E 6,7,8 or F 4 , then such a polynomial description of T can also be obtained with [54, §4]. In this case, one obtains a Gram matrix of differentials and has to rewrite the entries in the coordinates z of T .

2. The root system may not be irreducible, that is, R = R (1) ∪ . . . ∪ R (k) for some k ∈ N. Hence, we can write the fundamental domain of the affine Weyl group as = (1) × . . . × (k) and thus T = c is the positivity locus of a block-diagonal matrix polynomial P(z (1) , . . . , z (k) ) = diag(P (1) (z (1) ), . . . ,

P (k) (z (k) )),
where the P (i) are matrix polynomials corresponding to the irreducible R (i) .

As an example, take k orthogonal copies of A 1 . Then T = [-1, 1] k is the positivity locus of the matrix polynomial

P = diag(1 -z 2 1 , . . . , 1 -z 2 k ).

Optimizing trigonometric polynomials with crystallographic symmetry

We now address the trigonometric optimization problem from Equation (1.1). With the theory that was presented in the previous subsections, we can rewrite the objective function uniquely in terms of generalized Chebyshev polynomials using Theorem 2.5. Indeed, with the generalized cosines from Equation (2. 

c µ T µ (z) (2.5)
is the global minimum of f on R n . This transforms the region of optimization from R n into the image T of the generalized cosines. Thanks to Theorem 2.9, we can describe the latter explicitly as a compact basic semi-algebraic set with the Chebyshev basis. This makes it possible to solve the problem numerically with techniques from classical polynomial optimization, which is subject to Section 3.

Example 2.11. The symmetric group S 3 acts on R 3 / [1, 1, 1] t by permutation of coordinates and leaves the lattice

Ω := Z ω 1 + Z ω 2 := Z [0, -1, -1] t + Z [-1, -1, 2]
t invariant. This is the weight lattice of the root system G 2 with Weyl group W := S 3 × {±1}. We consider the W-invariant trigonometric polynomial

f (u) := c 2 ω1 (u) + 2 c ω2 (u) = (cos(2π 2 ω 1 , u ) + cos(2π 2 ω 1 -2 ω 2 , u ) + cos(2π 4 ω 1 -2 ω 2 , u ) + 2 cos(2π ω 2 , u ) + 2 cos(2π 3 ω 1 -ω 2 , u ) + 2 cos(2π 3 ω 1 -2 ω 2 , u ))/3 with u = (u 1 , u 2 , -u 1 -u 2 ) ∈ R 3 / [1, 1, 1] t . In the coordinates z = c(u) = (c ω1 (u), c ω2 (u)) ∈ T , we have f (z) = T 2 ω1 (z) + 2 T ω2 (z) = (6 z 2 1 -2 z 1 -2 z 2 -1) + 2 (z 2 ) = 6 z 2 1 -2 z 1 -1.
This univariate polynomial is minimal in

z 1 = 1/6 and z = (1/6, z 2 ) ∈ T if and only if z 2 ∈ [-11/24, -1/3].
Hence, the minimum of f is

f * = min u∈R 2 f (u) = min z∈T 6 z 2 1 -2 z 1 -1 = - 7 6 .
2 ω 1 ω 2 

Optimization in terms of generalized Chebyshev polynomials

In the previous section, we have shown that the trigonometric optimization problem with crystallographic symmetry from Equation (1.1) is equivalent to optimizing a linear combination of generalized Chebyshev polynomials

f (z) = µ∈S c µ T µ (z) ∈ R[z] (3.1)
with S ⊆ Ω + finite and c µ ∈ R. Here, T is the image of the generalized cosines, a compact basic semialgebraic set that can be represented as

T = {c(u) | u ∈ R n } = {z ∈ R n | P(z) 0},
where P ∈ R[z] n×n is a symmetric matrix polynomial, for example given by Theorem 2.9. In the present section, we show how to solve this new polynomial optimization problem

f * = min z∈T f (z) = min f (z) s.t. z ∈ R n , P(z) 0 (3.2)
numerically. We do this by adapting Lasserre's hierarchy. The novelty lies in exploiting the representation of the objective function in terms of generalized Chebyshev polynomials, which leads to a new notion of the hierarchy order.

Matrix version of Putinar's theorem

In [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF], Lasserre proposes a hierarchy of dual moment relaxations and sums of squares (SOS) reinforcements based on Putinar's Positivstellensatz [START_REF] Putinar | Positive polynomials on compact semi-algebraic sets[END_REF] to solve such problems, when the polynomial matrix inequality P(z) 0 (PMI) is replaced by finitely many scalar constraints. In principle, our problem falls in this setting. Indeed, the PMI can be rewritten to scalar inequalities by taking the coefficients of the characteristic polynomial and using Descartes' rule of signs [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]Theorem 2.33]. We would prefer to avoid such an approach, since the degrees of the so obtained scalar constraints are generically much larger than the entries of the matrix polynomial P.

To overcome this degree problem, Henrion and Lasserre [START_REF] Henrion | Convergent relaxations of polynomial matrix inequalities and static output feedback[END_REF] suggest using another Positivstellensatz due to Hol and Scherer, see Theorem 3.1, and propose a hierarchy of dual moment relaxations and matrix SOS reinforcements, that benefits from the matrix structure.

Matrix SOS reinforcement

A matrix polynomial Q ∈ R[z] n×n is said to be a sum of squares, if there exist k ∈ N and Q 1 , . . . , Q k ∈ R[z] n , such that Q(z) = k i=1 Q i (z) Q i (z) t . We write Q ∈ SOS(R[z] n ) and denote by QM(P) := {q + Trace(P Q) | q ∈ SOS(R[z]), Q ∈ SOS(R[z] n )}
the quadratic module of P. Then every element of QM(P) is nonnegative on T and enforcing this constraint gives a lower bound

f * = max λ s.t. λ ∈ R, ∀ z ∈ T : f (z) -λ ≥ 0 ≥ f sos := sup λ s.t. λ ∈ R, f -λ ∈ QM(P) . (3.3)

Moment relaxation

A linear functional L ∈ R[z] * is said to have a representing probability measure on T , if there exists a probability measure η on R n with support in T , such that, for all p ∈ R[z], T p(z) dη(z) = L (p). Such a functional is nonnegative on QM(P) and relaxing to this constraint gives another lower bound We have f sos ≤ f mom . Indeed, if L is feasible for f mom and λ is feasible for f sos , then

f * = min L (f ) s.t. L ∈ R[z] * has a representing probability measure on T ≥ f mom := inf L (f ) s.t. L ∈ R[z] * , L (1) = 1, ∀f ∈ QM(P) : L (f ) ≥ 0 . ( 3 
L (f ) -λ = L ( f -λ ∈QM(P) ) ≥ 0. (3.5)
We say that QM(P) is Archimedean, if there exists p ∈ QM(P), such that {z ∈ R n | p(z) ≥ 0} is compact.

Theorem 3.1. [START_REF] Hol | Sum of squares relaxations for robust polynomial semi-definite programs[END_REF][START_REF] Hol | Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs[END_REF] Assume that QM(P) is Archimedean.

1. Let p ∈ R[z]. If p > 0 on T , then p ∈ QM(P). 2. Let L ∈ R[z] * . If L ≥ 0 on QM(P)
, then L has a representing probability measure on T .

3. Equality holds in Equation (3.3) and Equation (3.4).

Remark 3.2. In our case, the Archimedean property can be enforced by adding an explicitly known ball constraint. Indeed, for z ∈ T , we have n ≥ z2 , and thus T = {z ∈ R n | P(z) 0}, where P := diag(P, n -

z 2 ) ∈ R[z] (n+1)×(n+1) . With Q = diag(0, . . . , 0, 1) ∈ SOS(R[z] n+1 ), we have Trace( P Q) ∈ QM( P) and the set {z ∈ R n | Trace( P(z) Q(z))} is compact.

Lasserre hierarchy with Chebyshev polynomials

The conditions f -λ ∈ QM(P) from Equation (3.3) and L ≥ 0 on QM(P) from Equation (3.4) can be parametrized through positive semi-definite conditions, but for computations we need to restrict to finite dimensional subspaces of R[z]. We shall now introduce these conditions in the basis of generalized Chebyshev polynomials and then adapt Lasserre's hierarchy [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF] to approximate the optimal value f * with semi-definite programs [START_REF] Boyd | Semidefinite Programming[END_REF]. In particular, we present these positive semi-definite conditions in the way they are implemented in our Maple package 2 .

Chebyshev filtration

For L ∈ R[z] * , we define the infinite symmetric matrix H L := L (T T t ), where L applies entry-wise and T is the vector of basis elements T µ with µ ∈ Ω + .

Then we can also define the P-localized matrix H P * L := L (P ⊗ (T T t )). Here, L applies entry-wise and ⊗ denotes the Kronecker product. The entries of this infinite matrix, indexed by µ, ν ∈ Ω + , are symmetric blocks of size n.

As in [START_REF] Henrion | Convergent relaxations of polynomial matrix inequalities and static output feedback[END_REF], we see that L ≥ 0 on QM(P) is equivalent to H L 0 and H P * L 0. By Equation (2.3), for µ, ν ∈ Ω + , the entries of H L are

H L µ ν = L (T µ T ν ) = 1 |W| A∈W L (T A µ+ν ) ∈ R. (3.6)
Furthermore, let us assume that the matrix P in Equation (3.2) is represented in the Chebyshev basis as

P(z) = γ∈Ω + P γ T γ (z) ∈ R[z] n×n with P γ ∈ R n×n .
The entries of H P * L are

H P * L µ ν = γ∈Ω + P γ L (T µ T ν T γ ) = 1 |W| 2 γ∈Ω + P γ A,B∈W L (T Aµ+Bν+γ ) ∈ R n×n . (3.7)
Restricting L to a finite dimensional subspace of R[z] in Equation (3.4) means to truncate the matrices H L and H P * L at the corresponding rows and columns. However, since we have chosen the Chebyshev polynomials as a basis, we need to ensure that these matrices are well-defined: For an index of the form A µ + ν in Equation (3.6), there is a unique dominant weight in the same W-orbit, say μ, and L must be defined on T μ, so that we can compute the matrix entries of H L (and analogously for H P * L ).

Proposition 3.3. Let R be an irreducible root system with highest root ρ 0 . For d ∈ N, we define the finite dimensional R-vector subspace [12, Chapitre VI, §1, Proposition 18], µ -Bµ and ν -BAν are sums of positive roots. Hence, there exists α ∈ N n , such that

F d := {T µ | µ ∈ Ω + , µ, ρ ∨ 0 ≤ d} R of R[z]. Then (F d ) d∈N is a filtration of R[z] as an R-algebra, that is, 1. R[z] = d∈N F d and 2. F d1 F d2 ⊆ F d1+d2 whenever d 1 , d 2 ∈ N. Proof. 1. Let p = µ c µ T µ ∈ R[z] and choose d ∈ N with d ≥ µ, ρ ∨ 0 whenever c µ = 0. Then p ∈ F d . 2. Let T µ ∈ F d1 and T ν ∈ F d2 . Then |W| T µ T ν = A T µ+Aν . For all A ∈ W, there exists B ∈ W, such that B(µ + Aν) ∈ Ω + . By
B(µ + Aν), ρ ∨ 0 = µ + ν, ρ ∨ 0 - n i=1 α i ρ i , ρ ∨ 0 .
By [12, Chapitre VI, §1.8, Proposition 25], we have ρ ∨ 0 ∈ Λ Λ and thus ρ i , ρ ∨ 0 ≥ 0. We obtain

B(µ + Aν), ρ ∨ 0 ≤ µ + ν, ρ ∨ 0 ≤ d 1 + d 2 .
Therefore, T µ T ν ∈ F d1+d2 .

Remark 3.4. For irreducible root systems, the filtration induces a weighted degree on R[z]. Otherwise, we can always construct a filtration by choosing an order on the irreducible components. From now on, we may therefore assume all root systems to be irreducible.

Modified Lasserre hierarchy

When L is only defined on F 2d , that is, L ∈ F * 2d , then the matrix H L is by Proposition 3.3 well-defined for all rows and columns up to weighted degree d. We denote this truncated matrix of size dim(F d ) by

H L d . Analogously, for d ≥ D := min{ /2 | ∈ N, P ∈ (F ) n×n },
the truncated P-localized matrix H P * L d-D is well-defined and of size n dim(F d-D ). On the other hand, if Q 1 , . . . , Q k ∈ F n d are polynomial vectors with entries of weighted degree at most d, then the polynomial matrix

Q = i Q i Q t i ∈ F n×n 2d
is a sum of squares. We write Q ∈ SOS(F n d ) and see that the truncated quadratic module

QM(P) d := {q + Trace(P Q) | q ∈ SOS(F d ), Q ∈ SOS(F n d-D )}
is contained in F 2d . We fix a hierarchy order d ∈ N, that has to satisfy 

d ≥ max{min{ /2 | ∈ N, f ∈ F }, D}, (3.8 
f d sos = lim d→∞ f d mom = f * .
Proof. 1. follows from the chain of inclusions F 1 ⊆ F 2 ⊆ . . .

is analogous to Equation (3.5).

3. By Theorem 3.1, for any ε > 0, there exist sums of squares q and Q, such that

f -f * + ε = q + Trace(P Q).
Since ε is arbitrary and

d∈N F d = R[z], we obtain lim d→∞ f d sos = f * . With 2.
, the same holds for f d mom .

SDP formulation

We translate Equation (3.9) to a semi-definite program (SDP), so that the problem can be implemented and a solution be approximated with solvers such as Mosek3 . For d ∈ N and a linear functional L ∈ F * 2d , we write

H L d 0 0 H P * L d-D = µ∈Ω + L (T µ ) A µ , (3.10) 
where A µ is the symmetric matrix coefficient of L (T µ ). For d ≥ D, L (T µ ) is well-defined whenever A µ = 0. We write Sym (d) := Sym dim(F d ) × Sym n dim(F d-D ) for the space of symmetric matrices with two blocks. The positive semi-definite elements are denoted by Sym (d) 0 and we define the dual problems

(P d ) inf µ∈S c µ y µ s.t. y ∈ R dim(F 2d ) , y 0 = 1, Z = µ∈Ω + y µ A µ ∈ Sym N 0 and (D d ) sup c 0 -Trace(A 0 X) s.t. X ∈ Sym (d) 0 , ∀ µ ∈ S \ {0} : Trace(A µ X) = c µ .
(3.11)

Proposition 3.6. The optimal value of (P d ) is f d mom and the optimal value of (D d ) is f d sos .

Proof. The statement for (P d ) follows immediately with y µ = L (T µ ) and

Z = diag(H L d , H P * L d-D ). Let L ∈ F *
2d and λ ∈ R be feasible for Equation (3.9). Then there exist q ∈ SOS(F d ) and

Q ∈ SOS(F n d-D ) with L (f ) -λ = L (f -λ) = L (q) + L (Trace(P Q)).
We construct a feasible matrix X = diag(X 1 , X 2 ) for (D d ) as follows. Since Q is a sum of squares, we can write

Q = Q 1 Q t 1 + . . . + Q k Q t k
and denote by T d-D the vector of generalized Chebyshev polynomials

T µ ∈ F d-D . For 1 ≤ i ≤ k, we have Q i = mat(Q i ) T d-D
, where mat(Q i ) is the coordinate matrix of the polynomial vector Q i in the Chebyshev basis with n rows and dim(F d-D ) columns. Then

Trace(P Q) = k i=1 Trace(P mat(Q i ) T d-D T t d-D mat(Q i ) t ) = Trace((P ⊗ T d-D T t d-D ) k i=1 vec(mat(Q i )) vec(mat(Q i )) t =:X2
),

where vec(mat

(Q i )) := ((mat(Q i ) •1 ) t , . . . , (mat(Q i ) •N d-D ) t ) t are the stacked columns of mat(Q i ). The matrix X 2 is symmetric positive semi-definite of size n dim(F d-D )
. By definition of the truncated localized moment matrix, we have L (Trace(P Q)) = Trace(H P * L d-D X 2 ). Analogously, there exists a symmetric positive semi-definite

X 1 of size dim(F d ) with L (q) = Trace(H L d X 1 ). When we fix X := diag(X 1 , X 2 ) ∈ Sym (d) 0
and A µ as in Equation (3.10), comparing coefficients yields

λ = c 0 L (1) -L (q(0)) -L (Trace(P(0) Q(0))) = c 0 -Trace(A 0 X)
and, for µ = 0, we have c µ = Trace(A µ X).

Conversely, we can always construct sums of squares q and Q from a matrix X = diag(X 1 , X 2 ) by writing X 1 and X 2 as sums of rank 1 matrices.

If (X, y, Z) are optimal for (P d ) and (D d ), then the duality gap of the Chebyshev moment and SOS hierarchy in Equation (3.9) is Note that m is the number of matrices A µ with µ = 0 and N is their size. Then Equation (3.11) is a semi-definite program with primal formulation (P d ) over the cone F * 2d ∼ = R m+1 with dual cone 0 and with dual formulation (D d ) over the self-dual cone QM(P) d ∼ = Sym N 0 . Computing the matrices A µ of the SDP involves the recurrence formula from Equation (2.3) and is not numerical. If we used the standard monomial basis {1, z 1 , z 2 , . . . , z 2 1 , z 1 z 2 , . . .}, this computation would be trivial, but the matrices would be larger when truncating at the usual degree instead of the weighted degree. Hence, our technique is more efficient, if the numerical effort to solve a larger SDP in the standard monomial basis is bigger than the combined effort to numerically solve a smaller SDP in the Chebyshev basis plus matrix computation. Another upside is that, since the matrices A µ only depend on the root system R and the order d, but not on the objective function f , the same matrices can be used to solve several problems as a preprocess. 

f d mom -f d sos = Trace(X Z) ≥ 0. Remark 3.

Optimizing on coefficients

For a finite set S ⊆ Ω + \ {0} of dominant weights, we shall be confronted in Section 4 with a bilevel optimization problem, where we not only have to minimize the objective function f from Equation (3.1) with respect to z ∈ T , but also maximize with respect to the coefficients c µ under some compact affine constraints. The problem can be represented as

F (S) := max c min z µ∈S c µ T µ (z) s.t. z ∈ T , c ∈ R S , b t c = 1, µ ≤ c µ ≤ u µ for µ ∈ S ,
where b ∈ R S and µ ≤ u µ ∈ R. For scalar polynomial constraints defining T , a hierarchy of SDPs to approximate F (S) was introduced in [41, Chapter 13]. With our polynomial matrix constraint, the theory is similar. For d ∈ N large enough, that is, T µ ∈ F 2d whenever µ ∈ S, we define

F (S, d) := sup -Trace(A 0 X) s.t. X ∈ Sym (d) 0 , µ∈S α µ Trace(A µ X) = 1, µ ≤ Trace(A µ X) ≤ u µ for µ ∈ S, Trace(A ν X) = 0 for ν / ∈ S ∪ {0}
, where the A 0 , A µ , A ν ∈ Sym (d) are the dim(F 2d ) many matrices defined via Equation (3.10). On the other hand, T = {z ∈ R n | P(z) 0} is compact and the T µ are continuous. Hence, the map g : c → (f c ) * is continuous on a compact set and there exists a feasible c * ∈ R S , such that F (S) = g(c * ). For any ε > 0, the polynomial µ∈S c * µ T µ -F (S) + ε is strictly positive on T . Thus, by Theorem 3.1, there exist sums of squares q ∈ SOS(R[z]) and

Q ∈ SOS(R[z] n ), such that µ∈S c * µ T µ -(F (S) -ε) = q + Trace(P Q).
For d ∈ N sufficiently large, we can follow our proof of Proposition 3.6 to construct a matrix X ∈ Sym

(d) 0 with -Trace(A 0 X) = c * 0 , -Trace(A 0 X) = F (S) -ε, Trace(A µ X) = c * µ for µ ∈ S and Trace(A ν X) = 0 for 0 = ν / ∈ S.
Then X is feasible for F (S, d), and therefore F (S, d) ≥ F (S) -ε. Since ε > 0 is arbitrary, the statement follows.

A case study

We apply the Chebyshev moment and SOS hierarchy to solve a trigonometric polynomial optimization problem with crystallographic symmetry and compare with another technique. One alternative approach is to reinforce positivity constraints on trigonometric polynomials to sums of Hermititan squares (SOHS), which goes back to the generalized Riesz-Féjer theorem [START_REF] Dumitrescu | Positive Trigonometric Polynomials and Signal Processing Applications[END_REF]Theorem 4.11]. With [START_REF] Dumitrescu | Positive Trigonometric Polynomials and Signal Processing Applications[END_REF]Equation (3.71)], one can then approximate the minimum of a trigonometric polynomial

f ∈ R[Ω] by solving a semi-definite program f S rf = sup λ s.t. f -λ ∈ SOHS(S) (3.12)
as in Riesz-Fejér, where S ⊆ Ω is a finite set of exponents containing the support of f up to central symmetry. This can be translated into SDP standard form with Kronecker products of elementary Toeplitz matrices, yielding a hierarchy of lower bounds.

Example 3.9. We search the global minima f * , g * , h * and k * of the following W-invariant trigonometric polynomials with graphs depicted in Figure 7.

1. Let R = G 2 , W = S 3 {±1}, Ω = Z ω 1 ⊕ Z ω 2 = Z[0, -1, 1] t ⊕ Z[-1, -1, 2] t and f (u) := c 2 ω1 (u) + 2 c ω2 (u) = (cos(2π 2 ω 1 , u ) + cos(2π 2 ω 1 -2 ω 2 , u ) + cos(2π 4 ω 1 -2 ω 2 , u ) + 2 cos(2π ω 2 , u ) + 2 cos(2π 3 ω 1 -ω 2 , u ) + 2 cos(2π 3 ω 1 -2 ω 2 , u ))/3.
In the coordinates z = c(u), we have

f (z) = 6 z 2 1 -2 z 1 -1 (see Example 2.11). 2. Let R = G 2 , W = S 3 {±1}, Ω = Z ω 1 ⊕ Z ω 2 = Z[0, -1, 1] t ⊕ Z[-1, -1, 2] t and g(u) := 2 c ω1 (u) + c ω2 (u) + c ω1+ω2 (u) + 4 c 3 ω1 (u) = (2 cos(2π ω 1 , u ) + 2 cos(2π ω 1 -ω 2 , u ) + 2 cos(2π 2 ω 1 -ω 2 , u ) + cos(2π ω 2 , u ) + cos(2π 3 ω 1 -2 ω 2 , u ) + cos(2π 3 ω 1 -ω 2 , u ) + 4 cos(2π 3 ω 1 , u ) + 4 cos(2π 3 ω 1 -3 ω 2 , u ) + 4 cos(2π 6 ω 1 -3 ω 2 , u ))/3 + (cos(2π ω 1 , u + ω 2 , u ) + cos(2π ω 1 -2 ω 2 , u ) + cos(2π 4 ω 1 -ω 2 , u ) + cos(2π 4 ω 1 -3 ω 2 , u ) + cos(2π 5 ω 1 -2 ω 2 , u ) + cos(2π 5 ω 1 -3 ω 2 , u ))/6.
In the coordinates z = c(u), we have g(z) = 144

z 3 1 -6 z 2 1 -69 z 1 z 2 -33 z 1 -21 z 2 -7. 3. Let R = C 2 , W = S 2 {±1} 2 , Ω = Z ω 1 ⊕ Z ω 2 = Z[1, 0] t ⊕ Z[1, 1] t and h(u) := 2 c ω1 (u) + c ω2 (u) -c 2 ω2 (u) -3 c ω1+ω2 (u) = cos(2π ω 1 , u ) + cos(2π ω 1 -ω 2 , u ) + (cos(2π ω 2 , u ) + cos(2π 2 ω 1 -ω 2 , u ) -cos(2π 2 ω 2 , u ) -cos(2π 4 ω 1 -2 ω 2 , u ))/2 -3/4 (cos(2π ω 1 -2 ω 2 , u ) + cos(2π ω 1 + ω 2 , u ) + cos(2π 3 ω 1 -2 ω 2 , u ) + cos(2π 3 ω 1 -ω 2 , u )).
In the coordinates z = c(u), we have

h(z) = 8 z 2 1 -6 z 1 z 2 -4 z 2 2 + 5 z 1 -3 z 2 -1. 4. Let R = C 2 , W = S 2 {±1} 2 , Ω = Z ω 1 ⊕ Z ω 2 = Z[1, 0] t ⊕ Z[1, 1] t and k(u) := 2 c 2ω1 (u) + c 2 ω2 (u) = cos(2π 2 ω 1 , u ) + cos(2π 2 ω 1 -2 ω 2 , u ) + cos(2π 2 ω 2 , u )/2 + cos(2π 4 ω 1 -2 ω 2 , u )/2
In the coordinates z = c(u), we have k(z) = 4 z 2 2 -1.

For 3 ≤ d ≤ 7, we choose S to be the set of all dominant weights µ ∈ Ω + with deg W (T µ ) ≤ d. In Equation (3.12), S = ( S -S) ∩ (H \ {0}) is an admissible choice for any halfspace H, since S contains all exponents of the objective functions up to central symmetry. In this case, we denote the optimal value by f d rf . On the other hand, we apply the Chebyshev SOS reinforcement f d sos from Equation (3.9), where we only need to take exponents up to Weyl group symmetry, that is, S itself.

With the two techniques, we obtain the results in Table 2. N denotes the matrix size and m the number of constraints, depending on d. In practice, it is usually not possible to determine the exact minimal value.

18

Wednesday 15 th March, 2023

However, since we compare lower bounds, it suffices to check which bound is larger and therefore closer to the actual minimum. To solve the semi-definite programs, we rely on Mosek. 

* ≥ f d sos ≥ f d rf for d ≥ 4.
Hence, our approximation of f * appears to be better in those cases, while the parameters N, m that indicate the size of the SDP are smaller (analogous for g, h, k). Differences in the quality of the approximation might depend on the stability of the SDP [START_REF] Cifuentes | On the local stability of semidefinite relaxations[END_REF].

Spectral bounds for set avoiding graphs

In this last section, we apply our method for trigonometric optimization problems with crystallographic symmetry to the computation of spectral bounds for chromatic numbers. The chromatic number of a graph gives the minimal number of colors needed to paint the vertices, so that no edge connects two vertices of the same color. When dealing with set avoiding graphs, [START_REF] Bachoc | Spectral bounds for the independence ratio and the chromatic number of an operator[END_REF] provides a lower bound, which involves minimizing the Fourier transformation of a measure.

While this bound has been used and strengthened for the graph R n avoiding Euclidean distance 1 [START_REF] Soifer | The mathematical coloring book[END_REF][START_REF] Grey | The chromatic number of the plane is at least 5[END_REF][START_REF] Bachoc | Spectral bounds for the independence ratio and the chromatic number of an operator[END_REF][START_REF] Bachoc | The density of sets avoiding distance 1 in Euclidean space[END_REF], it has not been widely used as a tool for polytopes. Crystallographic symmetry in the trigonometric optimization problem arises, when the polytope has Weyl group symmetry. Then we can rewrite the spectral bound in terms of generalized Chebyshev polynomials and use the results of Sections 2 and 3.

An advantage of our approach is that rewriting the optimization problem in terms of polynomials allows in several cases to compute bounds with simple proofs and to recover many results. In other cases, we compute numerical bounds with the modified Lasserre hierarchy from Section 3. Our approach allows to study the quality of the spectral bound and to estimate the optimal involved measure, see Figure 10.

Computing spectral bounds with Chebyshev polynomials

Let V ≤ R n be an Abelian group and S ⊆ V be bounded, centrally-symmetric with 0 / ∈ S. We consider the set avoiding graph G(V, S), where V is the set of vertices and two vertices u, v ∈ V are connected by an edge if and only if u -v ∈ S. In this context, we call S the avoided set.

A set of vertices I ⊆ V is called independent for G(V, S), if no pair of vertices in I are connected by an edge, that is, for all u, v ∈ I, we have u -v / ∈ S. A measurable coloring X of G(V, S) is a partition of V in independent Lebesgue-measurable sets. The measurable chromatic number of G(V, S) is

χ m (V, S) := inf{|X| | X is a measurable coloring of V }.

The spectral bound

In [START_REF] Bachoc | Spectral bounds for the independence ratio and the chromatic number of an operator[END_REF], Bachoc, Decorte, de Oliveira Filho and Vallentin generalized the Hoffman [START_REF] Hoffman | On eigenvalues and colorings of graphs[END_REF] and Lovasz [START_REF] Lovász | On the Shannon capacity of a graph[END_REF] bounds for finite graphs to the case V = R n , using the framework of bounded self-adjoint operators. Showing that the result holds for any set avoiding graph G(V, S) is a straightforward adaptation of [22, §5.1]. 

B(u) = S exp(-2πi u, v ) dB(v).
Then the measurable chromatic number of G(V, S) satisfies

χ m (V, S) ≥ 1 - sup u∈R n B(u) inf u∈R n B(u)
.

The problem of computing the measurable chromatic number of G(V, S) gained fame after Hardwiger and Nelson in 1950 studied the case V = R 2 and S = S 1 , the Euclidean unit sphere, which remains unsolved. Current bounds and the history of the problem can be found in [START_REF] Soifer | The mathematical coloring book[END_REF] and [START_REF] Grey | The chromatic number of the plane is at least 5[END_REF]. 

χ m (V, S) ≥ 1 - 1 F (S, d) .
Furthermore, if QM(P) is Archimedean, then lim The chromatic number of several instances of these graphs was computed in [START_REF] Sikiri'c | Coloring the Voronoi tessellation of lattices[END_REF], some of them through the spectral bound from Theorem 4.1. In this subsection, we reprove the bounds for the case, where Λ is the coroot lattice of an irreducible root system.

Proposition 4.4. Assume that Λ is the coroot lattice of an irreducible root system R with highest root ρ 0 . Then the set of strict Voronoï vectors of Λ is the orbit S = Wρ ∨ 0 .

Proof. By [12, Chapitre VI, §1, Proposition 11 et 12], there are at most two distinct root lengths and two roots have the same length if and only if they are in the same W-orbit.

If ρ ∈ R, then ρ 0 , ρ 0 ≥ ρ, ρ and so ρ ∨ 0 , ρ ∨ 0 = 4 ρ 0 , ρ 0 ≤ 4 ρ, ρ = ρ ∨ , ρ ∨ .
Thus, ρ ∨ 0 is a short root of the coroot system R ∨ . The lattice generated by R ∨ is Λ and, by the discussion before [17, Chapter 21, Theorem 8], the short roots W(R ∨ )ρ ∨ 0 are the strict Voronoï vectors. As W(R) = W(R ∨ ), the statement follows. ∈ Ω, we can replace T ρ ∨ 0 by T µ with µ = ρ ∨ 0 ∈ Ω for some > 0, because R n is invariant under scaling. For example, this is the case for G 2 , where ρ ∨ 0 = ρ 0 /3 = ω 2 /3 (and this is the only exception for the irreducible root systems). However, since the coroot lattice of G 2 is the hexagonal one from Figure 8, this case is covered by A 2 .

If ρ ∨ 0 ∈ Ω, we obtain χ(Λ) ≥ 1 - 1 min z∈T T ρ ∨ 0 (z) . ( 4 
We now reprove the bounds from [START_REF] Sikiri'c | Coloring the Voronoi tessellation of lattices[END_REF].

Theorem 4.5. The following statements hold.

1. The spectral bound is sharp for χ(Λ(C n )) = 2.

2. The spectral bound is sharp for χ(Λ(A n-1 )) = n.

We have χ(Λ(B

n )) = χ(Λ(D n )) ≥ n.
Proof. 1. We have Λ(C n ) = Z n . When we partition Z n in elements with even and odd 1 -norm, then this gives an admissible coloring with χ(Λ(C n )) ≤ 2. To see that the spectral bound is sharp, note that ρ ∨ 0 = ρ 0 /2 = ω 1 and consider the Chebyshev polynomial T ρ ∨ 0 = T ω1 = z 1 . With Equation (4.3), we obtain

χ(Λ(C n )) ≥ 1 - 1 min z∈T T ρ ∨ 0 (z) = 1 - 1 min z∈T z 1 ≥ 1 - 1 -1 = 2, because T ⊆ [-1, 1] n .
2. We have χ(Λ(A n-1 )) = n [START_REF] Sikiri'c | Coloring the Voronoi tessellation of lattices[END_REF] and

ρ ∨ 0 = ρ 0 = ω 1 + ω n-1 with -ω 1 ∈ Wω n-1 .
In Equation ( 4.3), we consider

T ω1+ωn-1 = |W ω 1 | T ω1 T ωn-1 - µ∈W ω1 µ =ω1 T µ+ωn-1 = n z 1 z n-1 -(T 0 + (n -2) T ω1+ωn-1 ).
The last equation follows from the fact that, if µ = -ω n-1 , then µ + ω n-1 = 0, and, if µ = -ω n-1 , then µ + ω n-1 ∈ W(ω 1 + ω n-1 ), see Equation (A). Since -ω 1 ∈ Wω n-1 , we also have z 1 z n-1 = z 1 z 1 = |z 1 | 2 for z ∈ T (in the case of A n-1 , T is complex and can be embedded in R n-1 with Equation (2.4)). Altogether, we obtain

χ(Λ(A n-1 )) ≥ 1 - 1 min z∈T T ρ ∨ 0 (z) = 1 - n -1 min z∈T n z 1 z n-1 -1 = 1 - n -1 min z∈T n |z 1 | 2 -1 ≥ 1 - n -1 -1 = n.
3. For R = B 2 , we are in the situation of 1. with χ(Λ(B 2 )) = 2 (the cubic lattice). For R = B 3 , we are in the situation of 2. with χ(Λ(B 3 )) = 3 (see Figure 16). The root system D n is not defined for n ≤ 3. Thus, let n ≥ 4 and R ∈ {B n , D n }. For 1

≤ i ≤ n -1, we have ρ ∨ i (B n ) = ρ ∨ i (D n ) and ρ ∨ n (B n ) = ρ ∨ n (D n ) -ρ ∨ n-1 (D n ) as well as ρ ∨ n (D n ) = ρ ∨ n (B n ) + ρ ∨ n-1 (B n ). Hence, we have Λ(B n ) = Λ(D n ) with ρ ∨ 0 = ρ 0 = ω 2 .
We consider T ρ0 = T ω2 (z) = z 2 and minimize on T . By Theorem 2.9, we have

T = {z ∈ R n | P(z)
0} and the first entry of P is 4 P 11 = T 0 -T 2ω1 with

T 2ω1 = |W ω 1 | T 2 ω1 - µ∈W ω1 µ =ω1 T µ+ω1 = 2 n z 2 1 -(1 + 2 (n -1) z 2 ).
The last equation follows from the fact that, if µ = -ω 1 , then µ + ω 1 = 0, and, if µ = -ω 1 , then µ + ω 1 ∈ W(ω 2 ), see Equations (B) and (D). Thus, for z ∈ T , we have 

0 ≤ 4 P 11 (z) = T 0 (z) -T 2ω1 (z) = 1 -(2 n z 2 1 -1 -2 (n -1) z 2 ) ⇔ z 2 ≥ n z 2 1 -1 n -1 ≥ -1 n -1
χ m (R n , ∂P) = χ m (R n , ∂(rP)) ≥ χ(Z n , B 1 r ).
Hence, computing the spectral bound for the chromatic number of Z n always yields a lower bound for the chromatic number of R n .

Analytical bounds

We compute the spectral bound for χ(Z n , B 1 r ) first for the cases, where our rewriting technique allows for an analytical proof. Proposition 4.9. Let r ∈ N be odd. The spectral bound is sharp for χ(Z n , B 1 r ) = 2.

Proof. Since r is odd, partitioning the vertices of G(Z n , B 1 r ) in those with even and those with odd 1 -norm yields two independent sets. Hence, χ(Z n , B 1 r ) = χ(Z n , B 1 1 ) = 2. To see that the spectral bound is sharp, let R be a root system of type C n . By Lemma 4.7, we have B 1 1 = Wω 1 and so

χ(Z n , B 1 1 ) ≥ 1 - 1 min z∈T z 1 ≥ 1 - 1 -1 = 2.
The chromatic number of Z n for 1 -distance r = 2 is 2 n. This was proven in [25, Theorem 1] with a purely combinatorial argument by fixing a coloring and showing that it is admissible and minimal.

Theorem 4.10. The spectral bound is sharp for χ(Z n , B 1 2 ) = 2 n.

Proof. Let R be a root system of type C n . Thanks to Lemma 4.7, we have B 1 2 = W(2 ω 1 ) ∪ Wω 2 . We choose c = 1/(2 n -1) and consider Figure 12: The chromatic number of R 2 for the hexagon is 2 2 = 4 [START_REF] Bachoc | On the Density of Sets avoiding Parallelohedron distance 1[END_REF].

c T 2ω1 + (1 -c) T ω2 = 2 n z 2 1 -2(n -1)z 2 -1 2 n -1 + 2(n -1)z 2 2 n -1 = 2 n z 2 1 -1 2 n -1 ,
Given a Weyl group W associated to a root systems in R n , the Voronoï cell of the coroot lattice Λ is a convex centrally-symmetric polytope, invariant under W and tiles R n by Λ-translation, see Equation (2.1). If the root system is irreducible with highest root ρ 0 , then we have Vor(Λ) = W , where

= {u ∈ R n | ∀ 1 ≤ i ≤ n : u, ρ i ≥ 0 and u, ρ 0 ≤ 1}
is a fundamental domain of the affine Weyl group W Λ, see Proposition 2.3. In particular, the part of the boundary ∂Vor(Λ) ∩ Λ Λ, which is also contained in the fundamental Weyl chamber, lies on a hyperplane parallel to •, ρ ∨ 0 = 0. Rescaling the polytope Vor(Λ) by a factor r > 0 does not affect the chromatic number, that is, χ m (R n , ∂Vor(Λ)) = χ m (R n , ∂(r Vor(Λ))). If we choose r = r ρ 0 , ρ 0 /2 for some 0 = r ∈ N, then ∂(r Vor(Λ)) ∩ Ω = ∅ and we obtain a hierarchy of lower bounds

χ m (R n , ∂Vor(Λ)) ≥ . . . ≥ 1 - 1 F (4r) ≥ 1 - 1 F (2r) ≥ 1 - 1 F (r) ≥ 1 - 1 F (1) , (4.5) 
where F (r) := F (S r ) is as in Theorem 4.2 with S r := W{u ∈ Λ Λ | u, ρ ∨ 0 = r}. Remark 4.14. The quantity 1 -1/F (r) is a lower bound for χ m (R n , ∂Vor(Λ)). More precisely, we have

χ m (R n , ∂Vor(Λ)) ≥ χ(Ω, S r ) ≥ 1 - 1 F (r)
and F (r) is the minimum of the Fourier transformation of the optimal measure B (with mass 1) in Theorem 4.1 for the graph G(Ω, S r ).

To compute F (r) numerically, we use Corollary 4. 

The hexagon in R 2

The hexagon in R 2 ∼ = R 3 / [1, 1, 1] t , as it has appeared several times now in the article, is the Voronoï cell of the coroot lattice Λ for A 2 and G 2 . It has 6 vertices and 6 edges.

For A 2 , the vertices of the hexagon are the orbits of the fundamental weights ω 1 and ω 2 . The centers of the edges are the orbit of (ω 1 + ω 2 )/2. We fix a hierarchy order d ≥ 3 and consider F (r, d) for 1 ≤ r ≤ 2d.

For G 2 , the vertices are the orbit of ω 1 /3. The centers of edges are the orbit of ω 2 /6. If r ∈ N is not a multiple of 3, then S r = ∅. Thus we consider F (3r, d) for 1 ≤ r ≤ 2d, but still write F (r, d).

The first column indicates the root system, that is, A 2 or G 2 . Then the rows are indexed by the relaxation order d and the columns by the radius r. For r ≥ 2, the best possible bound we obtained is already assumed at r = 2 and d = 3. We display the optimal coefficients for the corresponding measure below. This bound is assumed in all F (r, d) with r even at lowest possible order. For r odd, the value converges but does not stabilize.

(R 2 , ∂Vor(Λ(A 2 ))) = χ m (R 2 , ∂Vor(Λ(G 2 ))) ≥ 1 -1/F (r,
Although we recover that the chromatic number of R 2 for the hexagon is 4, see Figure 13, our computations indicate that the spectral bound is not sharp and never will be with r, d → ∞. For B 4 , the vertices are the orbits of ω 1 and ω 4 . The centers of edges are the orbits of (ω 1 + ω 4 )/2 and ω 3 /2. The centers of faces are the orbit of (ω 1 + ω 3 )/3. The centers of facets are the orbit of ω 2 /2.

0.33333 0.66667 A 2 G 2 r 1 -1/F (r, 8) c α = c α 1 -1/F (r , 
For D 4 , the vertices are the orbits of ω 1 , ω 3 and ω 4 . The centers of edges are the orbits of (ω 1 + ω 3 )/2, (ω 1 + ω 4 )/2 and (ω 3 + ω 4 )/2. The centers of faces are the orbit of (ω 1 + ω 3 + ω 4 )/3. The centers of facets are the orbit of ω 2 /2.

that does not involve spectral bounds. We reprove this fact with the spectral bound by taking a W-invariant measure, which is supported on the vertices and centers of edges, faces, etc. of Vor(Λ(C n )). is an admissible choice for Equation (4.5). We show that it provides the optimal bound 2 n . To do so, we rely on the formula for the fundamental weights from Equation (C), which gives us follows from Vieta's formula and equality holds for u = 1/2 ω j . Hence,

χ m (R n , ∂Vor(Λ(C n ))) ≥ 1 - 1 min z∈T n i=1 c i z i ≥ 1 - 2 n -1 -1 = 2 n .
Remark 4.16. For small n (2 ≤ n ≤ 10), one can observe experimentally that the polynomial

p := 1 + n i=1 n i z i ∈ R[z].
is one of two linear factors in Det(P), P being the matrix from Theorem 2.9, and T is contained in the halfspace {z ∈ R n | p(z) ≥ 0}. We conjecture that it is true in general. This would simplify the proof of Proposition 4.15, giving it completely in terms of generalized Chebyshev polynomials and providing a new motivation for the choice of coefficients.

Discussion on the results

In addition to provide bounds on the chromatic number of the graphs that we consider, our method gives information on the discrete measures supported on lattice points up to scaling.

For example, in the case of the hexagon, even by increasing the number of support points, we did not get a discrete measure providing a better bound, see Table 5. Our experiments then suggest that the optimal measure supported on rational points is the one supported by two orbits: the vertices of the hexagon, with weight 1/3, and the middle of the edges, with weight 2/3.

In the case of the cross-polytope from Section 4.3, we observe a different phenomenon: when increasing the number of possible support points, the optimal measure distribution does not appear to stabilize. It seems then reasonable to expect the bound to get better when increasing the number of points, even though it is hard to conjecture for an optimal discrete measure after our experiments, see Figure 10. Moreover, we note that the larger the set of possible support points is, the higher we need to go in the order of the hierarchy to get a good bound. This can be explained by the fact that the weighted degrees of the involved Chebyshev polynomials get higher, making the semi-definite programs harder to solve.

Even if we could prove that the spectral bound is sharp for several of our set avoiding graphs, sometimes the bounds that we obtain look far from the expected chromatic number of R n . This might happen for several reasons. First, when considering our discrete measures supported on lattices, we are always implicitly computing a bound for a discrete subgraph of R n , that might have a chromatic number smaller than R n . However, this is not the only reason: getting back to the hexagon, the measure supported on the vertices and the middles of edges gives a bound for a discrete graph. However, it was proven in [START_REF] Bachoc | On the Density of Sets avoiding Parallelohedron distance 1[END_REF] that this graph has chromatic number 4. In this case, it is likely that the spectral bound is exactly 25/7, and does not give the chromatic number. Such a phenomenon was already observed in [START_REF] Sikiri'c | Coloring the Voronoi tessellation of lattices[END_REF], where, for the lattice E 7 , the optimal spectral bound was computed to be 10, while the chromatic number of this lattice is 14.

Conclusion

We give an algorithm to minimize a trigonometric polynomial with crystallographic symmetry. To do so, we rewrite the problem in terms of generalized Chebyshev polynomials and use established techniques from polynomial optimization with matrix inequalities. This results in a hierarchy of SDPs. A Maple package to conduct computations with generalized Chebyshev polynomials and to obtain the matrices for the SDP is available 4 .

To strengthen our approach, one could consider further techniques from symmetry exploitation, such as symmetry adapted bases [START_REF] Gatermann | Symmetry groups, semidefinite programs, and sums of squares[END_REF], and combinations with the exploitation of sparsity [START_REF] Magron | Sparse polynomial optimization: theory and practice[END_REF].

For the chromatic number of avoidance graphs, we present a hierarchy of lower semi-definite bounds that originates from a bilevel polynomial optimization problem. For such problems, it would be interesting to compute the spectral bound for continuous measures supported on the boundary of our polytopes, to conclude whether such an approach could be at least as powerful as the combinatorial approach. Improving the implementation would allow at some point to handle the famous E 8 lattice.

k∈N c k 2 (

 2 exp(2πi ku) + exp(-2πi ku)) = k∈N c k cos(2π ku) = k∈N c k T k (cos(2π u)),

Figure 5 :

 5 Figure 5: The image of the generalized cosines for the irreducible root systems of rank 2 and 3.

  2) we can write any f ∈ C[Ω] W uniquely as f = µ∈S c µ c µ 10 Wednesday 15 th March, 2023 for some finite set S ⊆ Ω + of dominant weights. If c µ = c µ ∈ R whenever -µ ∈ W µ, then f takes only real values and f * := min u∈R n f (u) = min z∈T µ∈S

Figure 6 :

 6 Figure 6: The support of f as a trigonometric polynomial on the left consists of the W-orbits of 2 ω 1 and ω 2 . The graph of this W-invariant periodic function is depicted in the middle. The image of the generalized cosines T on the right is the new feasible region of the polynomial optimization problem and the set of minimizers for f is {1/6} × [-11/24, -1/3].
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7 .

 7 The coefficients c µ are known from the original problem in Equation (3.2). The key in setting up Equation (3.11) is the computation of the matrices A µ . For fixed order d, we define • the matrix size N := dim(F d ) + n dim(F d-D ) and • the number of constraints m := dim(F 2d ) -1.

Theorem 3 . 8 .

 38 The sequence (F (S, d)) d∈N is monotonously non-decreasing. If QM(P) is Archimedean, then lim d→∞ F (S, d) = F (S). Proof. The proof is analogous to the one of [41, Theorem 13.1], but uses the Positivstellensatz of Hol and Scherer instead of Putinar's. Let X be optimal for F (S, d) and set c µ := Trace(A µ X) for µ ∈ S. Then F (S, d) ≤ (f c ) * ≤ F (S), where (f c ) * denotes the minimum of f c := µ∈S c µ T µ ∈ R[z] on T .

  (a) The graph of f for u = (u1, u2, -u1 -u2). (b) The graph of g for u = (u1, u2, -u1 -u2). (c) The graph of h for u = (u1, u2). (d) The graph of k for u = (u1, u2).

Figure 7 :

 7 Figure 7: The graphs of the objective functions for u∈ R 3 /[1, 1, 1] t ∼ = R 2 .

Theorem 4 . 1 .

 41 [5, §3.1] Let B be a finite Borel measure supported on S with Fourier transformation

20 Wednesday 15 th March, 2023 Corollary 4 . 3 .

 202343 [of Theorems 3.8 and 4.2] Let W S = S and S ∩ Ω = ∅. The sequence (F (S, d)) d∈N is monotonously non-decreasing and we have

d→∞F

  (S, d) = F (S).

4. 2

 2 The chromatic number of a coroot lattice For an n-dimensional lattice V = Λ in R n , we call λ ∈ Λ \ {0} a strict Voronoï vector, if the intersection (λ + Vor(Λ)) ∩ Vor(Λ) is a facet of Vor(Λ), that is, a face of dimension n -1 of the Voronoï cell. In this case, a natural choice for the avoided set S is the set of all strict Voronoï vectors of Λ. The chromatic number χ(Λ) of the lattice Λ is defined as the chromatic number of the graph G(Λ) := G(Λ, S).

Figure 8 :

 8 Figure 8: The chromatic number of the A 2 coroot lattice is χ(Λ(A 2 )) = 3.

(a) r = 1 (b) r = 2 (c) r = 3 Figure 9 :

 1239 Figure 9: The crosspolytope of radius r with respect to the 1 -norm and the points B 1 r with integer coordinates on the boundary.

Remark 4 . 8 .

 48 Denote by P the crosspolytope from Figure9for r = 1, that is,P = ConvHull(B 1 1 ). Then G(Z n , B 1 r ) is a discrete subgraph of G(R n , ∂(rP)) and, since R n is scaling invariant, we have

  (a) r = 4 (b) r = 6 (c) r = 8 (d) r = 10 (e) r = 12 (f) r = 14

Figure 10 :

 10 Figure 10: The coefficients c α for F (r, 9) in the case of B 3 , indicated by the intensity of the color as RGB(1, 1 -(c α -c min )/(c max -c min ), 1 -(c α -c min )/(c max -c min )).

  3 and write F (r, d) := F (S r , d). Note that, in this case, F (r, d) ≥ F ( r, d) is only certain for ∈ N when d → ∞.

Figure 13 :

 13 Figure 13: Rescaling the hexagon increases the number of weights S r ∩ Ω on the boundary.

  d) for the hexagon.For r = 1, there is no choice for the coefficients c µ , as S 1 only contains one element in both cases A 2 and G 2 . The value F (1) is -1/2. This gives spectral bound 3 and is obtained from F (r, d) for d ≥ 4, respectively d ≥ 5. Furthermore, this fits with the bound from Theorem 4.5, where χ(Λ) ≥ n for A n-1 .

Figure 14 :Figure 17 :

 1417 Figure 14: The scaled Voronoï cell and the optimal coefficients for F (2, 8). Supporting points µ = α 1 ω 1 + α 2 ω 2 in the same Weyl group orbit and their additive inverse µ have the same coefficients c α = c α , denoted by either red or blue dots.

Figure 18 :

 18 Figure 18: In the case of A 3 , there are two minimizers z min ≈ (0.22209, 0.05915, ±0.23708) for F (2, 8) on the boundary of T , the image of the gernalized cosines, with two preimages u min ≈ (0.40432, ±0.15713, 0.17550) on the boundary of , the fundamental domain of W Λ.
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 43 The icositetrachoron in R4 The icositetrachoron in R 4 is the Voronoï cell of the coroot lattice Λ for B 4 and D 4 . It has 24 vertices, 96 edges, 96 faces and 24 facets. The facets are octahedral cells.

Proposition 4 . 15 .

 415 The spectral bound is sharp for χm (R n , ∂Vor(Λ(C n ))) = 2 n .Proof. The set of dominant weights µ ∈ Ω + of C n with µ, ρ ∨ 0 = 1 is {ω 1 , . . . , ω n }. We set (2 n -1) c i := n i . Then c 1 , . . . , c n ≥ 0 with c 1 + . . . + c n = 1 and the polynomialµ,ρ ∨ 0 =1 c µ T µ (z) = n i=1 c i z i .

( 2 n

 2 -1) c i c i (u) = σ i (cos(2πu 1 ), . . . , cos(2πu n )),where σ i is the i-th elementary symmetric function. When we substitutez i = c i (u) for u ∈ R n , then (2 n -1) n i=1 c i z i = n i=1 (2 n -1) c i c i (u) = n i=1 σ i (cos(2πu 1 ), . . . , cos(2πu n )) = n k=1 (1 + cos(2πu k )) ≥0 -1 ≥ -1

  The intersection of two distinct cells Vor(Λ) + λ and Vor(Λ) + λ is either empty or a common facet, that is a face of dimension n -1 [17, Chapter 2, §1.2].The affine Weyl group is the group generated by the reflections s ρ, for ρ ∈ R and ∈ Z, where s ρ, is defined via s ρ, (u) = s ρ (u) + ρ ∨ , see[12, Chapitre VI, §2, Définition 1].

	It can also be seen as the
	semi-direct product W Λ [12, Chapitre VI, §2, Proposition 1]. We are interested in the chambers of this
	infinite reflection group, which are called alcoves to avoid confusion. In particular, the closure of any alcove
	is a fundamental domain for W Λ.
	Proposition 2.2. [12, Chapitre VI, §2, Proposition 4] and [17, Chapter 21, §3, Theorem 5] There is a
	unique alcove of W Λ in Λ Λ, which contains 0 in its closure . We have Vor(Λ) = W .

  12, Chapitre VI, §1.2].

	The Weyl group W is the product of the Weyl groups corresponding to the irreducible components, see the
	discussion before [12, Chapitre VI, §1, Proposition 5]. Furthermore, any alcove of the affine Weyl group is
	the product of alcoves corresponding to the irreducible components, see the discussion after [12, Chapitre
	VI, §2, Proposition 2]. We are thus left to determine	for irreducible root systems. If R is irreducible with
	base B, then there is a unique positive root ρ 0 ∈ R + , which is maximal with respect to the partial ordering
	induced by B [12, Chapitre VI, §1, Proposition 25]. We call ρ 0 the highest root.
	Proposition 2.3. [12, Chapitre VI, §2, Proposition 5 et Corollaire] Let R be an irreducible root system and
	B = {ρ 1 , . . . , ρ n } be a base, such that ρ	

  and u, ρ 0 ≤ 1} is a fundamental domain for W Λ. Furthermore, for 1 ≤ i ≤ n, we have α i > 0 andIn particular, if R is irreducible, then any closed alcove of the affine Weyl group is a simplex.Every root system can be uniquely decomposed into irreducible components [12, Chapitre VI, §1, Proposition 6] and there are only finitely many cases [12, Chapitre VI, §4, Théorème 3] denoted by A n-1 , B n , C n (n ≥ 2), D n (n ≥ 4), E 6,7,8 , F 4 and G 2 . Throughout this article, we shall focus on the four infinite families A n-1 , B n , C n , D n and the special case G 2 . For those root systems, the base, fundamental weights and Weyl group are recalled in Appendix A.

	= ConvHull 0,	ω 1 α 1	, . . . ,	ω n α n	.
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  ) 14 Wednesday 15 th March, 2023 where f is the objective function from Equation (3.2). The Chebyshev moment and SOS hierarchy of order d is

	f d mom := inf L (f ) H L d , H p * L d-D 2d , L (1) = 1, 0 s.t. L ∈ F *	f -λ ∈ QM(P) d s.t. λ ∈ R, sos := sup λ and f d	.	(3.9)
	Theorem 3.5. The following statements hold.			
	1. The sequences (f d sos ) d∈N and (f d mom ) d∈N are monotonously non-decreasing.		
	2. For d ∈ N, we have f d sos ≤ f d mom .			
	3. If QM(P) is Archimedean, then lim d→∞			

Table 1 :

 1 

	R\d	2	3	4	5	6	7	8	9	10
	B2, C2	6 + 2, 14 10 + 6, 27 15 + 12, 44	21 + 20, 65	28 + 30, 90	36 + 42, 119	45 + 56, 152	55 + 72, 189	66 + 90, 230
	G2	-	6 + 3, 15	9 + 6, 24	12 + 12, 35	16 + 18, 48	20 + 27, 63	25 + 36, 80	30 + 48, 99	36 + 60, 120
	A2	-	10 + 3, 27	15 + 9, 44	21 + 18, 65	28 + 30, 90	36 + 45, 119	45 + 63, 152	55 + 84, 189	66 + 108, 230
	B3	-	13 + 3, 49	22 + 9, 94	34 + 21, 160	50 + 39, 251	70 + 66, 371	95 + 102, 524	125 + 150, 714	161 + 210, 945
	C3	-	20 + 3, 83 35 + 12, 164	56 + 30, 285	84 + 60, 454	120 + 105, 679	165 + 168, 968 220 + 252, 1329	286 + 360, 1770
	A3	-	-	35 + 4, 164	56 + 16, 285	84 + 40, 454	120 + 80, 679	165 + 140, 968 220 + 224, 1329	286 + 336, 1770
	B4	-	-	30 + 4, 174	50 + 12, 335	80 + 32, 587	120 + 64, 959	175 + 120, 1484 245 + 200, 2199	336 + 320, 3145
	C4	-	-	70 + 4, 494 126 + 20, 1000 210 + 60, 1819 330 + 140, 3059 495 + 280, 4844 715 + 504, 7314 1001 + 840, 10625
	D4	-	-	46 + 4, 294	80 + 16, 580	130 + 44, 1035 200 + 96, 1715 295 + 184, 2684 420 + 320, 4014	581 + 520, 5785

The SDP parameters (N, m) for Equation

(3.11) 

depend on the root system R and the order d.
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Table 2 :

 2 Comparison of the two techniques in terms of approximation and SDP parameters (N, m). Remark 3.10. In Table2, we observe f

  .3) Indeed, since the strict Voronoï vectors form a single W-orbit, there is no freedom for the coefficients in Theorem 4.2 and we are left with minimizing with respect to z ∈ T .

	If ρ ∨ 0 /	
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Table 5 :

 5 The bound χ m

https://github.com/TobiasMetzlaff/GeneralizedChebyshev

Optimizer API for Python 3 docs.mosek.com/latest/pythonapi/index.html
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For V = R n and S = S n-1 the Euclidean unit sphere, the bounds obtained from Theorem 4.1 have been computed for χ m (R n , S n-1 ), see for example [START_REF] Bachoc | The density of sets avoiding distance 1 in Euclidean space[END_REF]. In this case, the optimal measure is the surface measure on S n-1 . Beyond the spectral bound, the computation of χ m (R n , S n-1 ) has been studied in [START_REF] Bellitto | On the density of sets of the Euclidean plane avoiding distance 1[END_REF][START_REF] Ambrus | Density estimates of 1-avoiding sets via higher order correlations[END_REF][START_REF] Ambrus | The density of planar sets avoiding unit distances[END_REF].

Reformulation in terms of Chebyshev polynomials

For a root system R in R n with Weyl group W and weight lattice Ω, we consider those S ⊆ V with Weyl group symmetry, that is W S = S. The W-invariant trigonometric polynomials R[Ω] W with support in S are the Fourier transformations of atomic W-invariant Borel measures supported on Ω ∩ S. We treat the optimization problem in Theorem 4.1 for this class of measures with the theory developped in Section 3. In fact, by an averaging argument on all orbits, we see that an optimal measure for Theorem 4.1 is obtained from such a W-invariant trigonometric polynomial. We denote by

the image of the generalized cosines and define 

.

Proof. Since S is bounded, the nonempty set S ∩ Ω is finite. We consider the atomic Borel measure

with δ µ Dirac and 0 ≤ c µ = c -µ ∈ R, such that, for all A ∈ W, c Aµ = c µ . Then the Fourier transformation is

In particular, we have

and equality holds for u = 0. Optimizing over the coefficients c under the condition µ c µ = 1 and using Equation (2.5) with Theorem 4.1 gives the lower bound 1 -1/F (S) for χ m (V, S).

In practice, the problem of computing F (S) analytically is not always possible. Instead we can use the theory of Section 3 to lower bound it numerically. For d ∈ N sufficiently large, we consider the SDP

where the semi-definite cone Sym 

Remark 4.6. Since, up to rescaling, two adjacent vertices in G(Λ) are also adjacent in the graph G(Λ, Λ ∩ ∂Vor(Λ)), the value of χ(Λ) also gives a lower bound on χ m (R n , ∂Vor(Λ)), even if the two numbers can be far from each other. For instance, we have

The chromatic number of Z n for the crosspolytope

We consider the integer lattice V = Z n together with the avoided set

Two vertices in the graph G(Z n , B 1 r ) are adjacent, if the absolute values of the differences between their coordinates sums up to r. The convex hull of B 1 r is the ball of radius r with respect to the 1 -norm, also known as the crosspolytope, see Figure 9. Several bounds for the chromatic number χ(Z n , B 1 r ) were given in [START_REF] Füredi | Distance graph on Z n with 1 norm[END_REF] without using spectral bounds, but through combinatorial arguments. If B 1 r ⊆ Ω is contained in the weight lattice of some root system in R n , then we can compare by computing

where

Proof. This follows from Equations (C) to (D).
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where the expression for T 2ω1 is obtained as in the proof of Theorem 4.5 (3.). By Equation (4.4), we have

Corollary 4.11. Let 0 < r ∈ N be even. The spectral bound is sharp for χ(Z 2 , B 1 r ) = 4.

Proof. For r = 2, this is a special case of Theorem 4.10. Since 2 divides r whenever r is even, the spectral bound gives at least 4 for χ(Z 2 , B 1 r ). Let P = ConvHull(B 1 1 ) be the crosspolytope in R 2 , that is, a square. By [START_REF] Bachoc | On the Density of Sets avoiding Parallelohedron distance 1[END_REF] and Remark 4.8, we have

2 ) ≥ 4.

Numerical bounds

We will now give spectral bounds for χ(Z n , B 1 r ) numerically for the dimensions n = 3 and n = 4. In order to do so, we apply Corollary 4.3 and compute F (r, d) := F (B 

6.00000 6.28148 6.30269 6.30455 6.30048 6.30069 -7

6.00000 6.28148 6.30269 6.30494 6.30057 6.30229 6.30156

The value χ(Z 3 , B 1 2 ) = 6 is obtained immediately with F (2, 1). The highest value in the table is given by F (9, 10) for B 3 . Furthermore, F (4, d) seems to be stable in the case of both root systems. We give the obtained optimal coefficients, which coincide for B 3 and C 3 in Figures 10 and11 

The value χ(Z 4 , B 1 2 ) = 8 is obtained immediately with F (2, 1). The highest value is F (4, 7) for B 4 . None of the computed bounds F (r, d) is stable in d and we are limited by the size of the semi-definite program, see Table 1. Again, in the case of B 4 for example, we see that F (4, 7) ≥ F (8, 7), because we do not take the limit.

Remark 4.13. This computation improves the lower bound 9 from [25, Prop. 9] by +2.

The chromatic number of R n for Voronoï cells

Finally we consider the case of the Euclidean space V = R n as a set of vertices, where the avoided set S = ∂P is the boundary of a convex centrally-symmetric polytope P. This setting was studied in [START_REF] Bachoc | On the Density of Sets avoiding Parallelohedron distance 1[END_REF], giving bounds on χ m (R n , ∂P) without using spectral bounds. There it was proven that χ m (R n , ∂P) ≤ 2 n whenever P tiles R n and equality is conjectured. We now investigate the strength of the spectral bound for certain instances of this graph.
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Wednesday 15 th March, 2023 the best possible discrete measure. Indeed, for r ∈ N, we have 

The rhombic dodecahedron in R 3

The rhombic dodecahedron in R 3 (Figure 16) is the Voronoï cell of the coroot lattice Λ for A 3 and B 3 . It has 14 vertices, 24 edges and 12 faces.

For A 3 , the vertices are the orbits of ω 1 , ω 2 and ω 3 . The centers of the edges are the orbits of (ω i + ω 2 )/2 for i = 1, 2, and the centers of the facets are the orbit of (ω 1 + ω 3 )/2.

For B 3 , the vertices are the orbits of ω 1 and ω 3 . The centers of the edges are the orbit of (ω 1 + ω 3 )/2, and the centers of the facets are the orbit of ω 2 /2. r,d) for the rhombic dodecahedron.

For r = 1, the numerically computed bound seems to converge to 4. For r ≥ 2, the best possible bound we obtain is already assumed at r = 2 and d = 3, respectively d = 4. We display the optimal coefficients for the corresponding measure below. This bound is approximately assumed in all F (r, d) with r even at lowest possible order d. For r odd, the value does not stabilize with r or d growing. A 3 and B 3 give the same coefficients for the same supporting points. As in the case of the hexagon, the gap between the spectral bound for such discrete measures and the actual chromatic number of R 3 for the rhombic dodecahedron (known to be 8 by [START_REF] Bachoc | On the Density of Sets avoiding Parallelohedron distance 1[END_REF]) seems quite large. ))) = χ m (R 4 , ∂Vor(Λ(D 4 ))) ≥ 1 -1/F (r, d) for the icositetrachoron.

For r = 1, the numerically computed bound seems to converge to 4. For r ≥ 2, the best possible bound we obtained is assumed at r = 2 and d = 7, respectively d = 6. For r odd, the value is always smaller than for r even.

We observe that, for B 4 , we have F (2, 7) ≥ F (4, 7) although 2 divides 4. This is because the monotonous growth in Theorem 4.2 only holds for d → ∞. In the D 4 case, we have the same for F (2, 6) ≥ F (4, 6). We display the optimal coefficients for the corresponding measure below. 

The cube in R n

The cube [-1/2, 1/2] n is the Voronoï cell of the coroot lattice for the root system C n , that is, for the cubic lattice Λ(C n ) = Z n . In this case, the chromatic number is known to be 2 n , see [START_REF] Bachoc | On the Density of Sets avoiding Parallelohedron distance 1[END_REF] for a counting argument

A Irreducible root systems of type

For 1 ≤ i ≤ n, we denote by ei ∈ R n the Euclidean standard basis vectors.

A n-1

The group Sn acts on R n by permutation of coordinates and leaves the subspace

The root system An-1 given in [12, Planche I] is a root system of rank n -1 in V with base and fundamental weights ρi = ei -ei+1 and ωi

The Weyl group of An-1 is W ∼ = Sn and the reflection sρ i permutes the coordinates i and i + 1. Thus, -ωn-i ∈ W ωi and the orbit W ωi has cardinality n i for 1 ≤ i ≤ n -1.

C n

The groups Sn and {±1} n act on R n by permutation of coordinates and multiplication of coordinates by ±1. The root system Cn given in [12, Planche III] is a root system in R n with base and fundamental weights ρi = ei -ei+1, ρn = 2 en and ωi = e1

We have -In ∈ W and thus, -ωi ∈ W ωi. Furthermore, the orbit W ωi has cardinality 2 i n i for 1 ≤ i ≤ n.

B n

The root system Bn given in [12, Planche II] is a root system in R n . Its Weyl group is isomorphic to that of Cn. The base and fundamental weights are ρi = ei -ei+1, ρn = en and ωi = e1 + . . . + ei, ωn = (e1 + . . . + en)/2. (B) for 1 ≤ i ≤ n. The Weyl group of Bn is ∼ = W ∼ = Sn {±1} n . We have -In ∈ W and thus, -ωi ∈ W ωi. Furthermore, the orbit W ωi has cardinality 2 i n i for 1 ≤ i ≤ n.

D n

The groups Sn and {±1} n + := { ∈ {±1} n | 1 . . . n = 1} act on R n by permutation of coordinates and multiplication of coordinates by ±1, where only an even amount of sign changes is admissible. The root system Dn given in [12, Planche IV] is a root system in R n with base and fundamental weights ρi = ei -ei+1, ρn = en-1 + en and ωi = e1 + . . . + ei, ωn-1 = (e1 + . . . + en-1 -en)/2, ωn = (e1 + . . . + en)/2.

(D)

The Weyl group of Dn is W ∼ = Sn {±1} n + . For all 1 ≤ i ≤ n, we have -ωi ∈ W ωi, except when n is odd, where -ωn-1 ∈ W ωn. Furthermore, the orbit W ωi has cardinality 2 i n i for 1

The group S3 {±1} acts on R 3 by permutation of coordinates and scalar multiplication with ±1. The subspace

is left invariant. The root system G2 given in [12, Planche IX] is a root system of rank 2 in V with base and fundamental weights

The Weyl group of G2 is W ∼ = S3 {±1}. We have -I3 ∈ W and thus, -ω1 ∈ W ω1 as well as -ω2 ∈ W ω2.