
HAL Id: hal-03768067
https://hal.science/hal-03768067v1

Preprint submitted on 2 Sep 2022 (v1), last revised 23 May 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of trigonometric polynomials with
crystallographic symmetry and applications

Tobias Metzlaff, Philippe Moustrou, Cordian Riener, Evelyne Hubert

To cite this version:
Tobias Metzlaff, Philippe Moustrou, Cordian Riener, Evelyne Hubert. Optimization of trigonometric
polynomials with crystallographic symmetry and applications. 2022. �hal-03768067v1�

https://hal.science/hal-03768067v1
https://hal.archives-ouvertes.fr


Optimization of trigonometric polynomials

with crystallographic symmetry and applications

Evelyne Hubert∗, Tobias Metzlaff∗, Philippe Moustrou†, Cordian Riener‡

Friday 2nd September, 2022

Abstract

The Weyl group of a crystallographic root system has a multiplicative action on the ring of multivariate
trigonometric polynomials. We study the problem of minimizing an invariant trigonometric polynomial
on Rn. This problem can be written as a polynomial optimization problem on a compact basic semi–
algebraic set. Lasserre’s moment–SOS hierarchy is formulated in the basis of generalized Chebyshev
polynomials, leading to a different notion of the polynomial degree and smaller matrices in the arising
semi–definite program. Bilevel optimization techniques are applied to solve max–min problems. Optimal
values of trigonometric polynomials appear in spectral bounds for chromatic numbers and independence
numbers of geometric distance graphs. We study the quality of these bounds for Rn and Zn for polytope
norms and prove sharpness in several cases.
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Optimization of trigonometric polynomials with crystallographic symmetry and applications

1 Introduction

Trigonometric polynomials as real linear combinations of complex exponential functions are ubiquitous in
applied mathematics and physics. In the present article, we consider multivariate trigonometric polynomials,
which are sign symmetric and invariant under the multiplicative action of a Weyl group, and study the
problem of finding the optimal value of a trigonometric polynomial. We show how with the help of generalized
Chebyshev polynomials, this problem can be reformulated to a polynomial optimization problem and solved
with a modification of Lasserre’s hierarchy. This has been done before with univariate Chebyshev polynomials
and their tensor products.

The most basic example of a trigonometric polynomial is the cosine function. As the real part of the complex
exponential function, we can write

cos(2πu) =
exp(2πiu) + exp(−2πiu)

2
=:

x+ x−1

2
(1.1)

with u ∈ R. Since the cosine is an even function, the right hand side is a Laurent polynomial and invariant
under inversion of monomials, which is an action on the exponent by the group {±1}. The ring of invariants
is R[x+ x−1]. Indeed for ` ∈ N, we have

cos(2π` u) = T`

(
x+ x−1

2

)
, (1.2)

where T` is the univariate Chebyshev polynomial associated to `. Finding the minimum of cos(` u) on R is
equivalent to minimizing T` on [−1, 1], the image of the cosine function.

Multivariate generalizations of cosine functions are well–known in Fourier analysis since the works of Nichol-
son [Nic71], Fuglede [Fug74], Koornwinder [Koo74] and Winograd [Win76]. We define them via multiplicative
actions of finite groups, a well–established technique thanks to [Lor05]. For Weyl groups of crystallographic
root systems, the ring of invariants is a polynomial algebra and one can define multivariate Chebyshev polyno-
mials. The orthogonality property of these polynomials, which carries over from the univariate case, makes
them attractive in computational and numerical mathematics [EL82, LX10, MP11, MKNR12, CHHM16,
HS21]. This generalization of Chebyshev polynomials in terms of invariant theory is an extension of tensor
products of univariate polynomials as they appear for example in [BP97, VS07].

Trigonometric polynomials and positive exponentials have seen recent advances in optimization [DHNdW20,
DNT21, MSEDST22]. In the book [Dum07], optimization in the univariate case is with many details carried
out through spectral factorizations and relaxation techniques, pointing out the importance of trigonomet-
ric polynomials for signal processing. In the present article, we consider the case of real coefficients and
propose an approach that exploits symmetry on the level of exponents before the machinery of polynomial
optimization is mobilized. This improves the efficiency of monomial methods.

A problem in the optimization of multivariate trigonometric polynomials lies in the fact that the feasible
region as the image of the generalized cosine function is not as straightforward to describe as in the univari-
ate case. The orthogonality region of the Koornwinder polynomials and Steiner’s hypocycloid are typical
examples, see Figure 2. In general, this set is the orbit space of a nonlinear group action and a unifying
explicit formula for Weyl groups through a polynomial matrix inequality was recently provided in [HMR22].
The resulting polynomial optimization problem is given in terms of generalized Chebyshev polynomials.
Non–monomial polynomial bases have already seen success when it comes to moment methods [CH18]. In
particular, symmetry adapted bases improve computations and complexity. We utilize the techniques of
[HS05, HL06], which already found application in polynomial optimization [ALRT13], and formulate them
in the basis of generalized Chebyshev polynomials. This leads to a different notion of polynomial degree
and, overall, reduces the size of arising semi–definite programs. With the methods established in this article,
we can also optimize on coefficients, a special case of bilevel optimization and mixed problems, see [Las09,
Chapter 13].

As Fourier transformations of Borel measures, trigonometric polynomials arise in the computation of spectral
bounds for graphs. We consider the problem of finding the independence number and chromatic number of
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infinite graphs and use the results of [BDdOFV14] to compute lower bounds effectively. In several cases, we
can show that the spectral bound for the chromatic number is sharp and certify its quality in others.

2 Trigonometric polynomials and Chebyshev polynomials

Let n ∈ N and denote the Euclidean scalar product on Rn by 〈·, ·〉. For a subset Ω ⊆ Rn, consider a
sequence c = (cµ)µ∈Ω ∈ RΩ with finite support S = {µ ∈ Ω | cµ 6= 0}. A trigonometric polynomial f is a
multivariate map

f : Rn → C
u 7→

∑
µ∈Ω

cµ exp(−2πi 〈µ, u〉).
(2.1)

The support of f is defined as the support of (cµ)µ∈Ω and denoted by Sf . The set of all trigonometric
polynomials with support in Ω is denoted by R[Ω]. If the coefficients are symmetric, that is, for all µ ∈ Sf ,
cµ = c−µ, then f is real–valued.

Positivity of trigonometric polynomials has been studied for several applications. The Riesz–Fejér theorem
states that a univariate (n = 1, Ω = Z) trigonometric polynomial with symmetric coefficients is nonnegative
on Rn if and only if it has a spectral factorization. In this case, complex coefficients are admissible and the
factorization reads

f = hh∗,

where h is causal with support in N and h∗ is obtained from h by complex conjugation of coefficients and
inversion of monomials [Dum07, Theorem 1.1]. Such a representation of f reminds of positivity certificates
in real algebraic geometry, such as the Positivstellensätze of Schmüdgen, Putinar and others. Algorithms
to compute such a factorization are known, see for example [KS01, MW02, MSEDST22]. The Riesz–Fejér
theorem can be generalized to the multivariate case and was done so in [Dum07, Chapter 3] via tensor
products of univariate trigonometric polynomials. Another related subject, where representations of specific
positive polynomials plays an import role, is that of circuit polynomials. Algebraic properties of the SONC
and SAGE cones are studied in [DIdW19, MSdW19, DHNdW20, DKdW22]. These positivity certificates
benefit us in problems of optimization, which to solve is the primary goal of this article.

Assume that f ∈ R[Ω] has symmetric coefficients and consider the optimization problem

f∗ = inf
u∈Rn

f(u). (2.2)

In this section, we show how Equation (2.2) can be reformulated to a polynomial optimization problem in
terms of generalized Chebyshev polynomials, when Ω is the weight lattice associated to a crystallographic
root system and the coefficients of f are invariant under the Weyl group. Under these assumptions, we do
not necessarily rely on factorization techniques specifically designed for trigonometric polynomials, but can
benefit from more general concepts, which are subject to Section 3.

2.1 Generalized cosine functions

We assume that Ω is an n–dimensional lattice in Rn. For µ ∈ Ω, define the trigonometric polynomial

eµ : Rn → C,
u 7→ exp(−2πi 〈µ, u〉).

Denote by Λ := Ω∗ the dual lattice, that is, 〈µ, λ〉 ∈ Z for µ ∈ Ω and λ ∈ Λ. As an Abelian group, Λ acts
on Rn by translation.

Let W ⊆ On(R) be an orthogonal group leaving Ω invariant, that is, Aµ ∈ Ω for A ∈ W and µ ∈ Ω. W acts
linearly on R[Ω] by an exponential or multiplicative action, given via monomial maps

· : W × R[Ω] → R[Ω],
(A, eµ) 7→ eAµ.
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A trigonometric polynomial f is called W–invariant, if A · f = f for all A ∈ W. The set of all W–invariant
trigonometric polynomials is a finitely–generated R–algebra [Lor05] and denoted by R[Ω]W .

We introduce a family of W–invariant Λ–periodic trigonometric polynomials.

Lemma 2.1. [Fug74, Section 5] Let W ⊆ On(R) be a finite reflection group, such that the product of W by
Λ is semi–direct. Assume that 4 ⊆ Rn is a fundamental domain for W n Λ.

1. W4 is a Voronöı cell for Λ.

2. {eµ |µ ∈ Ω} is an orthonormal basis for both

(a) the Λ–periodic locally square integrable function L2(Rn/Λ) and

(b) the square integrable functions on W4

with respect to the inner product

(f, g) 7→ 1

|W|Vol(4)

∫
W4

f(u) g(u) du,

where Vol(4) is the Lebesgue measure of 4 in Rn.

Definition 2.2. The generalized cosine function associated to µ ∈ Ω is

cµ : Rn → C,

u 7→ 1

|W|
∑
A∈W

eAµ(u).

Remark 2.3. Let µ, ν ∈ Ω. By Lemma 2.1 and the W–invariance, we have

1

Vol(4)

∫
4

cµ(u) cν(u) du =


|StabW(µ)|
|W|

, if µ ∈ Wν

0, otherwise
.

2.2 Integer representations

As in Equation (1.1), we think of the trigonometric polynomial eµ as a monomial in a polynomial ring, so
that the polynomial functions are defined on the algebraic torus. This requires some notation.

Let Ω ⊆ Rn be an n–dimensional lattice and W ⊆ On(R) be a finite group, such that Ω is left invariant by
the linear action of W on Rn by matrix multiplication. For a fixed basis {ω1, . . . , ωn} of Ω, let W ∈ Rn×n
be the matrix with columns ωi and denote set G := {W−1AW |A ∈ W}.

Remark 2.4. G ⊆ GLn(Z) is the integer representation of W and WZn = Ω. Indeed, for A ∈ W and
1 ≤ i ≤ n, let α ∈ Zn, such that Aωi = α1 ω1 + . . .+αn ωn. With B := W−1AW , we have B ei = α. Thus,
B ∈ Zn×n. Since Det(B) = Det(A) and A ∈ On(R), we have B ∈ GLn(Z).
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Figure 1: W is the change of basis from {e1, . . . , en} to {ω1, . . . , ωn}.

Denote by (C∗)n := (C \ {0})n the algebraic n–torus. For x = (x1, . . . , xn) ∈ (C∗)n and a column vector
α = [α1, . . . , αn]t ∈ Zn, define xα := xα1

1 . . . xαnn ∈ C∗. The matrix group G has a nonlinear action

? : G × (C∗)n → (C∗)n,
(B, x) 7→ B ? x := (xB

−1
·1 , . . . , xB

−1
·n ),

(2.3)

where B−1
·i ∈ Zn denotes the i–th column vector of B−1 ∈ G for 1 ≤ i ≤ n.

The coordinate ring of (C∗)n is the ring of multivariate Laurent polynomials R[x±] := R[x1, x
−1
1 , . . . , xn, x

−1
n ].

The monomials of R[x±] are xα = xα1
1 . . . xαnn , where α ∈ Zn, and ? induces a linear action on R[x±], given

by monomial maps

· : G × R[x±] → R[x±],
(B, xα) 7→ B · xα := xBα.

(2.4)

Hence, for f =
∑
α∈Zn

cα x
α ∈ R[x±] and B ∈ G, we write

B · f = f(xB) =
∑
α∈Zn

cα x
Bα.

If B · f = f for all B ∈ G, then f is called G–invariant and the set of G–invariant Laurent polynomials is
denoted by R[x±]G .

With xα ∼= eWα, we obtain an isomorphism between the set of trigonometric polynomials R[Ω] with basis
{eµ |µ ∈ Ω} and the ring of Laurent polynomials R[x±] with basis {xα |α ∈ Zn}. The action of W on
the exponents of trigonometric polynomial is therefore identified with the action of G on R[x±]. We have
R[Ω]W ∼= R[x±]G .

This change of basis allows us to work over the integers and fits in the setting of [HS21].

Example 2.5. Consider the group W = 〈A1, A2〉 with

A1 =

[
−1 0
0 1

]
and A2 =

1

2

[
−1

√
3√

3 1

]
.

W ∼= S3
∼= D3 is of order 6 and leaves the lattice Ω := Zω1 ⊕ Zω2 := Z

[√2/2√
6/6

]
⊕ Z

[
0√
6/3

]
invariant,

see Figure 1. Here S3 denotes the symmetric group and D3 the dihedral group. Under W = [ω1|ω2], the
generators of the integer representation G are[

−1 0
1 1

]
and

[
1 1
0 −1

]
.
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For i ∈ {1, 2}, the averaging sum of monomials in the orbit of xi = xei is

1

|G|
∑
B∈G

B · xi =
1

6

∑
B∈G

xB·i =
1

3
σi(x1, x

−1
1 x2, x

−1
2 ) ∈ R[x±]G ,

where σi denotes the i–th elementary symmetric function.

What can we say about the algebraic structure of the ring of invariants R[x±]G? The answer is given in the
next section.

2.3 Crystallographic symmetries

In this article, we study groups W, which are generated by crystallographic reflections. Such groups are
related to semi–simple Lie algebras and their root system. We recall the essential definitions from [Bou68,
Hum72].

Let V be an n–dimensional R–vector space with inner product 〈·, ·〉 and R be a finite subset of V .

Definition 2.6. We say that R is a root system in V , if the following conditions hold.

1. R spans V and does not contain 0.

2. If ρ, ρ̃ ∈ R, then sρ(ρ̃) ∈ R, where sρ is the reflection on V defined by sρ(u) := u− 2 〈u,ρ〉〈ρ,ρ〉ρ.

3. For all ρ, ρ̃ ∈ R, 2 〈ρ̃,ρ〉〈ρ,ρ〉 ∈ Z.

4. For ρ ∈ R and c ∈ R, we have cρ ∈ R if and only if c = ±1.

Remark 2.7. [Bou68, Chapitre VI, §1, Proposition 6 et §4, Théorème 3] A root system can be decomposed
into a direct sum of irreducible components. This leaves us with seven families, which are denoted An−1,
Bn, Cn (n ≥ 2), Dn (n ≥ 4) as well as En (n ∈ {6, 7, 8}), F4 and G2.

The element
ρ∨ = 2

ρ

〈ρ, ρ〉
that appears in the definition of the reflection sρ is called the coroot of ρ ∈ R. The set of all coroots is
denoted by R∨ and this set is again a root system called the dual root system with the same reflections
as R.

Definition 2.8. Let R be a root system in V .

1. The Weyl group W =W(R) of R is the group generated by the reflections sρ for ρ ∈ R.

2. The coroot lattice Λ of R is the lattice spanned by the coroots ρ∨ for ρ ∈ R.

3. The affine Weyl group of R is the semi–direct product W n Λ.

W is a subgroup of the orthogonal group with respect to the inner product 〈·, ·〉 on V .

Definition 2.9. Let R be a root system in V .

1. A subset B = {ρ1, . . . , ρn} of R is a base if the following conditions hold.

(a) B is a basis of the vector space V .

(b) Every ρ ∈ R can be written as ρ = α1 ρ1 + . . .+ αn ρn with α ∈ Nn or −α ∈ Nn.
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The elements of B are called simple roots.

2. If B is a base, the roots of the form ρ = α1 ρ1 + . . .+ αn ρn with α ∈ Nn are called the positive roots
and the set of all positive roots is denoted by R+.

3. R contains a unique positive root ρ0 with maximal coefficients, called the highest root.

Existence of the highest root follows from [Bou68, Chapitre VI, §1, Proposition 25]. The Weyl group is
generated by the reflections associated to the simple roots [Hum72, Chapter III, §10.3].

Definition 2.10. The fundamental Weyl chamber in V relative to the base B = {ρ1, . . . , ρn} is ΛΛ :=
{u ∈ V | ∀ 1 ≤ i ≤ n : 〈u, ρi〉 > 0}.

The closure ΛΛ of the fundamental Weyl chamber in V is a fundamental domain for the Weyl group of R.
Furthermore,

4 = {u ∈ Rn | ∀ 1 ≤ i ≤ n : 〈u, ρi〉 ≥ 0 and 〈u, ρ0〉 ≤ 1}

is a fundamental domain for the affine Weyl group [Bou68, Chapitre V, §3, Théorème 1 et Théorème 2].

Definition 2.11. Let B = {ρ1, . . . , ρn} be a base of R.

1. An element µ of V is called a weight if
〈µ, ρ∨i 〉 ∈ Z

for 1 ≤ i ≤ n. The set of weights forms a lattice Ω, called the weight lattice.

2. The fundamental weights are the elements {ω1, . . . , ωn} such that 〈ωi, ρ∨j 〉 = δi,j , 1 ≤ i, j ≤ n.

3. A weight µ is strongly dominant if 〈µ, ρi〉 > 0 for all ρi ∈ B. A weight µ is dominant if 〈µ, ρi〉 ≥ 0
for all ρi ∈ B.

Proposition 2.12. The following statements hold.

1. Ω is left invariant under the Weyl group.

2. The strongly dominant weights are contained in ΛΛ and the dominant weights are contained in the
closure of ΛΛ.

3. The fundamental weights lie on the walls of ΛΛ.

4. For every µ ∈ Ω, there exists a unique dominant weight µ′, such that µ ∈ Wµ′.

5. A partial ordering on V is defined by u1 � u2 if and only if u1 − u2 is a sum of positive roots, that is,
u1 − u2 =

∑n
i=1 αiρi for some α ∈ Nn.

The exponential polynomials R[Ω] are, essentially, a ring of Laurent polynomials R[x±] with a multi-
plicative action of the Weyl group W, respectively its integer representation G. For α ∈ Zn, define
Θα := 1/|G|

∑
B∈G x

Bα ∈ R[x±]G and for simplicity θi := Θei = 1/|G|
∑
B∈G x

B·i . This is the orbit polyno-
mial corresponding to the i–th fundamental weight ωi. Only Weyl groups of crystallographic root systems
have the following property.

Theorem 2.13. [Bou68, Chapitre VI, §3, Théorème 1] Let W be a Weyl group with integer representation
G. Then

1. θ1, . . . , θn are algebraically independent over R and

2. R[x±]G = R[θ1, . . . , θn] is a polynomial algebra.
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2.4 T–orbit spaces

We now introduce a semi–algebraic set, that will play a central role for the optimization of trigonometric
polynomials. Let R be a root system with Weyl group W. In the language of trigonometric polynomials,
Theorem 2.13 states

R[Ω]W ∼= R[cω1
, . . . , cωn ].

Hence, to conduct a transformation from W–invariant trigonometric polynomials to classical polynomials,
we need to describe the image of the map

c : Rn → Cn,
u 7→ (cω1

(u), . . . , cωn(u)).

This image is a basic semi–algebraic set and how to find an explicit polynomial description is the result of
[HMR22]. We give a short overview.

Define T := {x ∈ C |xx = 1} ⊆ C∗, where x denotes the complex conjugate. T is the maximal compact
subgroup of C∗, which is closed under inversion x 7→ x−1 and satisfies x−1 = x for all elements.

We denote by Tn the compact n–torus. Tn is left invariant by the nonlinear action ? of any group G ⊆
GLn(Z). Assume that G is the integer representation of W. For θ1, . . . , θn fundamental invariants as in
Theorem 2.13, define

ϑ : Tn → Cn,
x 7→ (θ1(x), . . . , θn(x)).

Then the map
Tn/G → ϑ(Tn),
G ? x 7→ ϑ(x)

is well–defined and bijective. We call T := ϑ(Tn) the T–orbit space of G. Denote by R[z] = R[z1, . . . , zn]
the polynomial ring in n indeterminates.

Theorem 2.14. Let R be a root system of type An−1, Bn, Cn or Dn. Then there exists a symmetric matrix
polynomial P ∈ R[z]n×n and an R–vector space Z, such that, for all z ∈ Z, P (z) is real and

T = {z ∈ Z |P (z) � 0}.

(a) Koornwinder orthogonality (b) Steiner’s hypocycloid

Figure 2: Two well–known examples for the T–orbit space T in R2.

The entries of P are known. In the case of the irreducible root system G2, we confirm that such an explicit
description of T also exists. If not stated otherwise, we think of Z as Rn and of T as a real semi–algebraic
set. If this is not the case, we require the following statement.
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Proposition 2.15. Let Sn denote the symmetric group. There exists a permutation σ ∈ Sn of order 2,
such that, for all 1 ≤ i ≤ n, the following equivalent statements hold.

1. We have −eσ(i) ∈ Gei.

2. We have −ωσ(i) ∈ Wωi.

Proof. For B a base of a rank n root system R in an R–vector space V , −B is by definition also a base. By
[Bou68, §1 Theorem 2], W acts simply transitively on the set of chambers. Hence, there exist A ∈ W and
σ ∈ Sn with σ2 = 1, B = A (−B) and ρi = −Aρσi for all 1 ≤ i ≤ n. The fundamental weights with respect
to −B are −ω1, . . . ,−ωn and −B admits highest root −ρ0.

Since σ is a permutation and the inner product is W–invariant, we have

〈−ωσ(i),−ρ∨σ(j)〉 = δi,j = 〈ωi, ρ∨j 〉 = 〈Aωi, A ρ∨j 〉 = 〈Aωi,−ρ∨σ(j)〉

for all 1 ≤ i, j ≤ n. Since −B is a basis of V , Aωi = −ωσ(i). �

Therefore, (θi(x) + θσ(i)(x))/2 and (θi(x)− θσ(i)(x))/(2i) are always real on Tn.

Corollary 2.16. Assume that 4 is a fundamental domain of the affine Weyl group W n Λ. Then the
following statements hold.

1. For µ = Wα ∈ Ω, we have cµ = Θα ◦ (eω1 , . . . , eωn).

2. There are canonical bijections 4 ∼= Rn/(W n Λ) ∼= Tn/G.

3. The T–orbit space is c(Rn) = c(4) = T .

4. Let σ ∈ Sn be the permutation from Proposition 2.15 and 1 ≤ i ≤ n. For i = σ(i), we leave
the i–th coordinate of c as it is. For i < σ(i), we replace the i–th and σ(i)–th coordinate of c by
cωi,R := (cωi + cωσ(i))/2 and cωσ(i),R := (cωi − cωσ(i)))/(2i). The resulting map

cR : Rn → Rn,
u 7→ (cω1,R(u), . . . , cωn,R(u))

(2.5)

has image TR ⊆ [−1, 1]n.

2.5 Generalized Chebyshev polynomials and degrees

For the remainder of this section, let R be a root system with highest root ρ0 and Weyl group W. Denote
by W the matrix with columns given by the fundamental weights and by G the integer representation of W.
R[x±]G = R[θ1, . . . , θn] is the ring of invariants as in Theorem 2.13 and the T–orbit space of G is T .

Definition 2.17. The generalized Chebyshev polynomials of the first kind associated to α ∈ Nn is
the unique Tα ∈ R[z], such that Tα(θ1, . . . , θn) = Θα.

For Wα = µ ∈ Ω, we have

Tα ◦ (cω1 , . . . , cωn) = θα ◦ (eω1 , . . . , eωn) = cµ,

where c(u) = (cω1
(u), . . . , cωn(u)) denotes the trigonometric polynomial vector of generalized cosines. This

is a generalization of the univariate case T`(cos(u)) = cos(` u) with ` ∈ N, corresponding to the root system
A1.
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Proposition 2.18. We have T0 = 1. For α, β ∈ Nn,

|G|Tα Tβ =
∑
B∈G

T(α+Bβ)′ ,

where γ′ ∈ Nn is defined via γ ∈ Gγ′ for γ ∈ Zn. We refrain from this notation and simply write Tγ .

A well–known relation between T–orbit spaces and generalized Chebyshev polynomials is the following
statement, which appears for example in [HW88]. In the present form, it is also proven in [HMR22].

Theorem 2.19. [HMR22] There exists a weight function φ(θ1, . . . , θn) ∈ R[x±]G, such that, for α, β ∈ Nn,

∫
T

Tα(z)Tβ(z) |φ(z)|−1/2 dz =

2π |Det(W )|
n∏
i=1

|Gei|
Vol(4) |StabG(α)|

|G|
, if α = β

0, otherwise
.

The notion of degree can be misleading for generalized Chebyshev polynomials. For example, the degree of
the product Tα Tβ is not necessarily that of Tα+β , see later Example 3.5.

Definition 2.20. The weighted degree of Tα is degW (Tα) := 〈Wα, ρ0〉 ∈ N.

Remark 2.21. It is possible that there exists no α ∈ Nn with degW (Tα) = 1. This happens when the highest
root ρ0 is such that ρ0 = m1 ρ

∨
1 + . . . + mn ρ

∨
n with mi ≥ 2. The irreducible root systems, for which this is

the case, are Cn, E7, E8 and G2.

Proposition 2.22. For d ∈ N, define the finite dimensional R–vector subspace

Fd :=

d⊕
`=0

⊕
degW (Tα)=`

RTα

of R[z]. Then (Fd)d∈N is a filtration of R[z] as an R–algebra, that is

1. R[z] =
⋃
d∈N Fd and

2. if d1, d2 ∈ N, then Fd1 Fd2 ⊆ Fd1+d2 as a product of algebras.

Proof. 1. Let p =
∑
α cα Tα ∈ R[z]. Choose d ∈ N, such that d ≥ 〈Wα, ρ0〉 for all cα 6= 0. Then p ∈ Fd.

2. Let Tα ∈ Fd1 and Tβ ∈ Fd2 . Then |G|Tα Tβ =
∑
B Tα+Bβ . For all B ∈ G, there exists A ∈ G, such that

A(α+ Bβ) ∈ Nn. By [Hum72, §13.2, Lemma A], W (α− Aα) and W (β − ABβ) are sums of positive roots.
Hence, there exists α ∈ Nn, such that

〈WA(α+Bβ), ρ0〉 = 〈W (α+ β), ρ0〉 −
n∑
i=1

αi〈ρi, ρ0〉.

By [Bou68, Chapitre VI, §1.8, Proposition 25], ρ0 ∈ ΛΛ and thus 〈ρi, ρ0〉 ≥ 0. We obtain

〈WA(α+ABβ, ρ0〉 ≤ 〈W (α+ β), ρ0〉 ≤ d1 + d2.

Therefore, Tα Tβ ∈ Fd1+d2 . �

Proposition 2.23. For α ∈ Nn, there exists a unique α̂ ∈ Nn with −α ∈ Gα̂ and degW (Tα) = degW (Tα̂).

11
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Proof. As in Proposition 2.15, let A ∈ W be the group element that takes the base −B to B. With
α̂ := −W−1AW α ∈ Nn,

` = 〈Wα, ρ0〉 = 〈AWα,Aρ0〉 = 〈−Wα̂,−ρ0〉 = 〈Wα̂, ρ0〉.

Since W acts simply transitively on the chambers, α̂ is unique. �

Proposition 2.24. Let α ∈ Nn with −α ∈ Gα̂. Then Tα, Tα̂ have the same weighted degree and there exist
unique T̂α, T̂α̂ ∈ R[z], such that

Tα(c(u)) = T̂α(cR(u)) + i T̂α̂(cR(u)) and Tα̂(c(u)) = T̂α(cR(u))− i T̂α̂(cR(u)).

Proof. For −In ∈ G, there is nothing to show. By Proposition 2.15, Tα and Tα̂ have the same weighted
degree and |Gα| = |Gα̂|. Thus,

(Tα + Tα̂)(θ1(x), . . . , θn(x)) =
1

|Gα|
∑
α̃∈Gα

xα̃ + x−α̃

is invariant under the multiplicative action of both G and {±1}. We have

(R[x±]G){±1} ∼= 〈{θi + θσ(i) | 1 ≤ i ≤ σ(i) ≤ n}〉

as R–algebras and so (Tα + Tα̂)(c(u))/2 can be written as a polynomial T̂α in cR(u). Similarly,

(Tα − Tα̂)(θ1(x), . . . , θn(x)) =
1

|Gα|
∑
α̃∈Gα

xα̃ − x−α̃

is invariant under G, but anti–invariant under {±1}. The elements of R[x±]G , which are anti–invariant under
{±1}, are as an R–algebra isomorphic to

〈{θi − θσ(i) | 1 ≤ σ(i) < i ≤ n}〉.

Hence, (Tα + Tα̂)(c(u))/(2i) can be written as a polynomial T̂α̂ in cR(u).

Since T̂α and T̂α̂ are globally defined as the real and imaginary part of Tα, they are unique. �

Example 2.25. Consider the root system A2 with W ∼= S3. Then −ω1 ∈ Wω2 or equivalently
[̂
1
0

]
=
[
0
1

]
∈

Z2, and ρ0 = ω1 +ω2, see [Bou68, Planche I] and Example 2.5. The generalized Chebyshev polynomials with
weighted degree 2 are

T2,0 = 3 z2
1 − 2 z2, T1,1 = 3/2 z1 z2 − 1/2, T0,2 = 3 z2

2 − 2 z1 ∈ R[z].

After substitution z1 7→ z1 + i z2, z2 7→ z1 − i z2, we have

T2,0 = (3 z2
1 − 3 z2

2 − 2 z1) + (6 z1 z2 + 2 z2) i,
T1,1 = (3/2 z2

1 + 3/2 z2
2 − 1/2) + 0 i,

T0,2 = (3 z2
1 − 3 z2

2 − 2 z1)− (6 z1 z2 + 2 z2) i,

and the new polynomials from Proposition 2.24 are

T̂2,0 = 3 z2
1 − 3 z2

2 − 2 z1, T̂1,1 = 3/2 z2
1 + 3/2 z2

2 − 1/2, T̂0,2 = 6 z1 z2 + 2 z2 ∈ R[z].
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2.6 From fundamental domains to orbit spaces

Finally, we address the problem introduced in the beginning of the section. Let

f : Rn → C
u 7→

∑
µ∈Ω

cµ exp(−2πi 〈µ, u〉).

be a trigonometric polynomial with support S ⊆ Ω, such that cµ = c−µ for µ ∈ Sf . We want to determine

f∗ = inf
u∈Rn

f(u).

Assume that the support of f is closed under W by matrix multiplication, and that cµ = cAµ for all A ∈ W
and µ ∈ S. We identify Ω with Zn and write cµ = cα for µ = Wα. Denote by

S(N) := {W−1µ |µ ∈ S dominant} ⊆ Nn

the coordinates of dominant weights in S with respect to the basis of fundamental weights. Then

f(u) =
∑

α∈S(N)

|Gα| cα Tα(c(u)). (2.6)

Lemma 2.26. Determining f∗ is a polynomial optimization problem on a compact basic semi–algebraic set.

1. If −In ∈ G, then

f∗ = min
z∈T

∑
α∈S(N)

|Gα| cα Tα(z).

2. If −In /∈ G, then

f∗ = min
z∈TR

∑
α∈S(N)
−α∈Gα

|Gα| cα T̂α(z) + 2
∑

{α6=α̂}⊆S(N)
−α̂∈Gα

|Gα| cα T̂α(z),

where the second sum ranges over all pairs α 6= α̂ with T̂α(cR(u)) = <(Tα(c(u))) = <(Tα̂(c(u))).

Numerical examples are studied in Section 4. Here we summarize the contents of the section.

Example 2.27. The symmetric group S3 of order 6 acts on R3 by permutation of coordinates. Consider
the set

S := S3

2

3

 2
−1
−1

,
 1

0
−1

, 2

3

 1
1
−2

 ⊆ R3/〈

1
1
1

〉.
If we think of R = A2 as a root system for R3/〈[1, 1, 1]t〉 ∼= R2, then S ⊆ Ω is invariant under the Weyl
group W ∼= S3. Indeed,

S =W (2ω1) ∪ W (ω1 + ω2) ∪ W (2ω2) and S(N) = {2 e1, e1 + e2, 2 e2}.

We see that equivariant representation spaces for W lead to the same integer representation, compare also
with Example 2.5 and Example 2.25. Define the trigonometric polynomial

f(u) :=
1

3

∑
µ∈S

eµ(u) = T20(c(u)) + T11(c(u)) + T02(c(u))

with support S. We have c20 = c02 and find the minimum

f∗ = min
z∈T

T20(z) + T11(z) + T02(z) = min
z∈TR

2 T̂20(z) + T̂11(z).
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In this case, TR = {z ∈ R2 |P (z) � 0} is obtained from Theorem 2.14 with

P (z) =

16 T̂0 − 16 T̂2ω1 8 T̂ω1 − 8 T̂3ω1 4 T̂0 − 4 T̂4ω1

8 T̂ω1
− 8 T̂3ω1

4 T̂0 − 4 T̂4ω1
4 T̂ω1

− 2 T̂3ω1
− 2 T̂5ω1

4 T̂0 − 4 T̂4ω1
4 T̂ω1

− 2 T̂3ω1
− 2 T̂5ω1

2 T̂0 + T̂2ω1
− 2 T̂4ω1

− T̂6ω1

 .

ω1 + ω2

2ω1

2ω2

ω1

ω2

0

Figure 3: The weights of A2, which support f . Their coordinates are the orbits of
[
2
0

]
,
[
1
1

]
,
[
0
2

]
under G.

3 Optimization of generalized Chebyshev polynomials

In the previous section, we showed that finding the optimal value f∗ of a trigonometric polynomial with
Weyl group symmetry is a polynomial optimization problem. The goal of the present section is to solve this
problem efficiently. In a more general context, we strengthen a method to compute the optimal value of a
linear combination of generalized Chebyshev polynomials

f =
∑
α∈Nn

cα Tα

on a basic semi–algebraic set. The contents of this section can be adjusted to any basis of R[z] with a known
recurrence relation and an associated filtration as in Proposition 2.22.

Let W be the Weyl group of a rank n root system R with integer representation G. We identify the weight
lattice Ω with Zn. A polynomial f has coefficients given by a sequence c = (cα)α∈Nn ∈ RNn . The support of
f is the finite set S of all α ∈ Nn, such that cα 6= 0.

Let P ∈ R[z]n×n be a symmetric matrix polynomial and denote the closed positivity locus of P by T :=
{z ∈ Rn |P (z) � 0}. In the setting of Section 2, T is the real T–orbit space of G and thus compact.

We consider the polynomial optimization problem

f∗ = inf f(z)
s.t. z ∈ T

= inf f(z)
s.t. z ∈ Rn, P (z) � 0.

(3.1)

Lasserre [Las01] proposed two hierarchies of dual moment–sums of squares relaxations for Equation (3.1). We
could now formulate the polynomial matrix inequality P (z) � 0 in terms of scalar nonnegative polynomials
in the standard monomial basis, but due to the arising high degrees and the particular structure of the
problem, this approach may not be appropriate. Instead, the matrix inequality can be exploited in this
situation and was done so in [HS05] and [Koj03] with sums of squares–matrices. It was complemented with
a dual moment formulation in [HL06]. Both approaches lead to converging dual hierarchies and were applied
for example in [ALRT13].

An immediate observation to be made is that the constraints in Equation (3.1) can be replaced by measures
on the one hand, and by positivity on the other, which leads to a primal and dual formulation as follows.
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Let η be a finite Borel measure on Rn with support in T and mass 1. We call η a probability measure on
T , see also [Lau09]. Using Dirac measures, it is easy to see that

f∗ = inf
∫
T
f(z) dη(z)

s.t. η is a probability measure on T ,

(3.2)

for example from [Las09, Theorem 1.1]. On the other hand, we have

f∗ = sup λ
s.t. λ ∈ R, ∀ z ∈ T : f(z)− λ ≥ 0.

(3.3)

We shall now adapt the results of Lasserre [Las01, Las09], Parrilo [Par03] and others in the presence of
generalized Chebyshev polynomials.

3.1 Hankel operators

The reformulation Equation (3.2) does not seem to yield an immediate benefit for solving Equation (3.1).
However, it leads to a linear problem on a finite dimensional space. First note that a finite Borel measure η
on Rn defines a linear form

R[z] → R
f 7→

∫
f(z) dη(z).

The opposite is not true, as not every linear form defines a measure and certainly not a probability measure
(on T ), see also [BF20, HKL21] for more information on such moment problems. Yet we can replace the set
of probability measures with the set of linear forms with representing measures as follows.

Definition 3.1. The Hankel operator associated to a linear form L ∈ R[z]∗ is

HL : R[z] → R[z]∗,

f 7→ Lp :

{
R[z] → R,
g 7→ L (f g).

For the bases {Tα |α ∈ Nn} of R[z] and the dual basis of R[z]∗, the (infinite) matrix HL of HL is symmetric
with entries

HL
αβ = LTα(Tβ) = LTβ (Tα) = L (Tα Tβ).

Assume that the constraints of Equation (3.1) are given by

P (z) =
∑
γ∈Nn

Pγ Tγ(z) ∈ R[z]n×n,

where Pγ ∈ Rn×n is the coefficient matrix of the generalized Chebyshev polynomial Tγ(z) in P (z).

Definition 3.2. The P–localized Hankel operator associated to a linear form L ∈ R[z]∗ is

HP∗L : R[z] → (R[z]∗)n×n,

f 7→ (P ∗L )f :

R[z] → R
g 7→

∑
γ∈Nn

Pγ L (Tγ f g) .

The matrix of HP∗L with respect to the Chebyshev basis and its dual is denoted by HP∗L and the entries
are (n× n)–matrices.

A necessary condition for L to have a representing measure on T is given in terms of the associated moment
matrix and localized moment matrix. So far, we could have replaced {Tα |α ∈ Nn} with any basis of R[z].
We now move on by exploiting the properties of the generalized Chebyshev polynomials.
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Definition 3.3. A linear form L ∈ R[z]∗ is said to have a representing measure on T , if there exists a
probability measure η on T , such that for all α ∈ Nn,

∫
T
Tα(z) dη(z) = L (Tα).

For α ∈ Zn, recall that α′ denotes the unique element in Nn, which is contained in the G–orbit of α.

Proposition 3.4. Let L ∈ R[z]∗. For α, β ∈ Nn, we have

HL
αβ =

1

|G|
∑
A∈G

L (T(Aα+β)′) ∈ R

and

HP∗L
αβ =

1

|G|2
∑
γ∈Nn

Pγ
∑

A,B∈G
L (T(Aα+Bβ+γ)′) ∈ Rn×n.

If L has a representing measure on T , then HL � 0 and HP∗L � 0.

Proof. The formula for the entries follows from the recurrence relation Proposition 2.18.

The following works with any fixed basis of R[z]. We choose the Chebyshev basis and denote by T the vector
of generalized Chebyshev polynomials indexed by α ∈ Nn. Then we have HL = L (T Tt), where L applies
entry–wise. Assume that L has a representing measure η on T . Then for all f ∈ R[z] with coordinate vector
vec(f) in the Chebyshev basis,

vec(f)tHL vec(f) = L ((vec(f)t T)2) = L (f2) =

∫
T

f(z)2 dη(z) ≥ 0.

Hence, HL � 0. Furthermore, T is the positivity locus of P and

HP∗L
αβ = L ((T Tt ⊗ P )αβ),

where ⊗ denotes the Kronecker product. Thus, HP∗L � 0. �

It now becomes evident, why we use weighted degrees instead of the classical notion.

Example 3.5. Consider the root system B3. We observe that the index [1, 0, 2]t ∈ N3
3 appears in

T 2
010 = (2T200 + 4T102 + y020 + 4T010 + T000)/12,

although [0, 1, 0]t ∈ N3
1 and T 2

010 = z2
2 has “classical” degree 2. This is because degW (T010) = degW (z2) = 2

and degW (T 2
010) = 4.

Hence, if we take the matrix HL associated to a linear form L ∈ R[z]∗ with yα := L (Tα) and truncate it
at degree 1, then there are moments of degree ≥ 3.
y000 y001 y010 y100

y001 (3y100 + 3y010 + y002 + y000)/8 (2y101 + y011 + y001)/4 (y101 + y001)/2
y010 (2y101 + y011 + y001)/4 (2y200 + 4y102 + y020 + 4y010 + y000)/12 (y110 + y100 + y002)/3
y100 (y101 + y001)/2 (y110 + y100 + y002)/3 (y200 + 4y010 + y000)/6


If we truncate at weighted degree 1 instead, all appearing moments have weighted degree ≤ 2.

For a linear form L ∈ F∗2d, the operator

HL
d : Fd → F∗d ,

f 7→ Lf :

{
Fd → R
g 7→ L (f g)

(3.4)
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is well–defined thanks to Proposition 2.22. The matrix of HL
d is HL

d , which has rows and columns indexed
by the Tα ∈ Fd. The size of HL

d is dim(Fd).
We also need to take the P–localized Hankel operator into account. Set

D := min{d`/2e | ` ∈ N, P ∈ (F`)n×n}. (3.5)

For a linear form L ∈ F∗2(d+D), define

HP∗Ld : Fd → (F∗d )n×n,

f 7→ (P ∗L )f :

Fd → R
g 7→

∑
γ∈Nn

Pγ L (Tγ f g) ,

(3.6)

where Pγ is the coefficient matrix of Tγ(z) in P (z). The matrix of HP∗Ld is HP∗L
d , which has rows and

columns indexed by the Tα ∈ Fd. The size of HP∗L
d is n dim(Fd).

3.2 Lasserre hierarchy: moment relaxation

Definition 3.6. Let L ∈ R[z]∗ have a representing measure on T . Then

1. the sequence (L (Tα))α∈Nn is called Chebyshev moment sequence for η and

2. the matrix HL is called Chebyshev moment matrix for η.

By Proposition 3.4 and Equation (3.2), the polynomial optimization problem from Equation (3.1) can be
relaxed to

f∗ = inf
∑
α∈S

cα L (Tα)

s.t. L ∈ R[z]∗, L (1) = 1,
L has a rep. measure on T

≥ inf
∑
α∈S

cα L (Tα)

s.t. L ∈ R[z]∗, L (1) = 1,
HL � 0, HP∗L � 0.

(3.7)

Fix a relaxation order d ∈ N large enough, that is,

d ≥ max{min{d`/2e | ` ∈ N, f ∈ F`}, min{d`/2e | ` ∈ N, P ∈ (F`)n×n}}.

The Chebyshev moment relaxation of order d for Equation (3.1) is

f∗ ≥ fdmom := inf
∑
α∈S

cα L (Tα)

s.t. L ∈ F∗2d, L (1) = 1,
HL
d � 0, HP∗L

d−D � 0,

(3.8)

where HL
d and HP∗L

d−D are the matrices of the operators in Equation (3.4) and Equation (3.6) with entries

explicitly given by Proposition 3.4. The sequence (fdmom)d grows monotonously. Convergence to the optimal
value f∗ is proven in the next section.

3.3 Lasserre hierarchy: SOS relaxation

Definition 3.7. A matrix polynomial Q ∈ R[z]n×n is said to be a sum of squares, if there exist k ∈ N
and Q1, . . . , Qk ∈ R[z]n, such that

Q(z) =

k∑
i=1

Qi(z)Qi(z)
t.

We write Q ∈ SOS(R[z]n×n).
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With Equation (3.3), we can now relax Equation (3.1) to

f∗ = sup λ
s.t. λ ∈ R, ∀ z ∈ T :∑

α∈S
cα Tα(z)− λ ≥ 0

≥ sup λ
s.t. λ ∈ R, q ∈ SOS(R[z]), Q ∈ SOS(R[z]n×n),∑

α∈S
cα Tα − λ = q + Trace(P Q).

(3.9)

Hol and Scherer proved an extension for Putinar’s Positivstellensatz [Put93] in terms of polynomial matrices.

Theorem 3.8. [HS05] If there exist q ∈ SOS(R[z]) and Q ∈ SOS(R[z]n×n), such that

{z ∈ Rn | q(z) + Trace(P (z)Q(z)) ≥ 0}

is compact, then equality holds in Equation (3.9).

Equality can be forced rather easily for compact sets.

Remark 3.9. In the case where T is the orbits space of G, we have T = {z ∈ Rn |P (z) � 0} ⊆ [−1, 1]n.

Thus for all z ∈ T , n − ||z||2 ≥ 0. Therefore, P (z) can be replaced by P̂ (z) := diag(P (z), n − ||z||2) in

Equation (3.9). For q = 0 and Q̂ = en+1 e
t
n+1,

{z ∈ Rn | q(z) + Trace(P̂ (z) Q̂(z)) ≥ 0}

is the Euclidean ball of radius
√
n and thus compact. In the basis of generalized Chebyshev polynomials, the

additional polynomial n− ||z||2 is

n− T 2
e1 − . . .− T

2
en = n− 1

|G|
∑
B∈G

n∑
i=1

Tei+Bei .

We impose restrictions on the weighted degree of q and Q. The Chebyshev SOS relaxation of order d
for Equation (3.1) is

fdsos := max λ
s.t. λ ∈ R, q ∈ SOS(Fd), Q ∈ SOS(Fn×nd−D),∑

α∈S
cα Tα − λ = q + Trace(P Q).

(3.10)

Proposition 3.10. We have fdsos ≤ fdmom. Under the assumptions of Theorem 3.8, the sequence (fdsos)d∈N
is monotonously converging to f∗.

Proof. Let L be a solution of Equation (3.8) and (λ, q,Q) be a solution of Equation (3.10). Then∑
α∈S

cα L (Tα)− λ = L (q) + L (Trace(P Q)).

The right hand side is nonnegative, because q,Q are sums of squares and HL
d , HP∗L

d−D � 0. Thus, λ ≤∑
α cα L (Tα).

Since Fd ⊆ Fd+1 is a filtration of R[z], we have fdsos ≤ fd+1
sos . By Theorem 3.8, lim

d→∞
fdsos = f∗. �

3.4 Semi–definite programming and duality

The Chebyshev moment relaxation and SOS relaxation form a dual convex problem that can be solved
numerically as a semi–definite program [BV96]. Assume that(

HL
d 0
0 HP∗L

d−D

)
=
∑
α∈Nn

L (Tα)Aα, (3.11)
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where Aα is the symmetric coefficient matrix of L (Tα) in HL
d and HP∗L

d−D with blocks of size Nd := dim(Fd)
and nNd−D. Define the linear operators

A : F∗2d → SymN := SymNd × SymnNd−D ,
L 7→ (HL

d , HP∗L
d−D ),

A∗ : SymN → F∗2d,

X = (X1, X2) 7→

{
F2d → R,
Tα 7→ Trace(AαX).

We write X = (X1, X2) � 0 when X1 � 0 and X2 � 0. Consider the problems

(P) inf
∑
α∈S

cα L (Tα)

s.t. L ∈ F∗2d, L (1) = 1, Z ∈ SymN
�0,

A(L ) = Z

(D) sup c0 − Trace(A0X)

s.t. X ∈ SymN
�0, ∀α 6= 0 :

A∗(X)(Tα) = cα.

(3.12)

Proposition 3.11. Fix a relaxation order d. The following statements hold.

1. The optimal value of (P) is fdmom.

2. The optimal value of (D) is fdsos.

3. A and A∗ are adjoint with respect to the trace inner products on SymN and the induced Euclidean
scalar product on F∗2d.

4. If (X,L , Z) are optimal for (P) and (D), then the duality gap is

fdmom − fdsos = Trace(X Z).

Proof. Let L be optimal for (P). Then
∑
α
cα L (Tα) = fdmom by definition.

Now let λ ∈ R, q ∈
∑

(Fd)2 and Q ∈
∑

(Fn×nd−D)2 be optimal for Equation (3.10). Then∑
α∈S

cα L (Tα)− λ = L (q) + L (Trace(P Q)).

Assume that Q =
k∑
i=1

QiQ
t
i and let Td−D be the vector of generalized Chebyshev polynomials in Fd−D. For

1 ≤ i ≤ k, write Qi = mat(Qi) Td−D, where mat(Qi) is the coordinate matrix of Qi with n rows and Nd−D)
columns. We have

Trace(P Q) =
k∑
i=1

Trace(P mat(Qi) Td−D Tt
d−D mat(Qi)

t)

= Trace((Tt
d−D Td−D ⊗ P )

k∑
i=1

vec(mat(Qi)) vec(mat(Qi))
t

︸ ︷︷ ︸
=:X2

),

where vec(mat(Qi)) := ((mat(Qi)·1)t, . . . , (mat(Qi)·Nd−D )t)t are the stacked columns of mat(Qi). The ma-
trix X2 is symmetric of size nNd−D. Hence, L (Trace(P Q)) = Trace(HP∗L

d−D X2). Especially, there exists

X1 ∈ SymNd with L (q) = Trace(HL
d X1). With X := (X1, X2) ∈ SymN and Aα as in Equation (3.11), we

obtain

λ = c0 L (1)−L (q(0))−L (Trace(P (0)Q(0))) = c0 − Trace(A0X) and ∀α 6= 0 : cα = Trace(AαX).
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Thus, c0 − Trace(A0X) = fdsos. Furthermore,

Trace(A(L )X) =
∑
α∈Nn

L (Tα) Trace(AαX) =
∑
α∈Nn

L (Tα)A∗(X)(Tα).

Hence, A and A∗ are adjoint.

Finally, the duality gap is

Trace(X Z) = Trace(X A(L )) + Trace(X A0)− c0 =
∑
α∈S

A∗(X)α L (Tα) + Trace(X A0)− c0

=
∑
α∈S

A∗(X)α L (Tα)− (c0 − Trace(X A0)) = fdmom − fdsos.

�

Remark 3.12. For fixed order d, we define

1. the number of matrices Aα as m+ 1 := dim(F2d) and

2. the overall matrix size as N := dim(Fd) + n dim(Fd−D).

Then Equation (3.12) is a semi–definite program with primal formulation (P) over the cone Rm with dual
0 and with dual formulation (D) over the self–dual cone SymN

�0. Especially, fdsos is the dual formulation of

fdmom.

R\d 2 3 4 5 6 7 8 9 10

A2 − 13, 27 24, 44 39, 65 58, 90 81, 119 108, 152 139, 189 174, 230
B2,C2 8, 14 16, 27 27, 44 41, 65 58, 90 78, 119 101, 152 127, 189 156, 230

G2 − 9, 15 15, 24 24, 35 34, 48 47, 63 61, 80 78, 99 96, 120
A3 − − 39, 164 72, 285 124, 454 200, 679 305, 968 444, 1329 622, 1770
B3 − 16, 49 31, 94 55, 160 89, 251 136, 371 197, 524 275, 714 371, 945
C3 − 23, 83 47, 164 86, 285 144, 454 225, 679 333, 968 472, 1329 643, 1770
B4 − − 34, 174 62, 335 112, 587 184, 959 295, 1484 445, 2199 656, 3145
C4 − − 74, 494 146, 1000 270, 1819 470, 3059 775, 4844 1219, 7314 1841, 10625
D4 − − 50, 294 96, 580 174, 1035 296, 1715 479, 2684 740, 4014 1101, 5785

Table 1: SDP parameters (N,m) for Equation (3.12).

If we took the standard monomial basis and applied the moment relaxation from [HL06], the number of
obtained matrices for the SDP would be the same as in the case of An and Cn, because the weighted degree
is essentially the classical degree in those cases. Here we see an immediate advantage when using Bn, Dn or
G2 instead. The number of matrices and there overall size is significantly smaller.

3.5 Solving max–min problems

For S ⊆ Nn \ {0} finite, consider the max–min problem

F (S) := sup
c

inf
z

fc(z) =
∑
α∈S

cα Tα(z)

s.t. c ∈ RS≥0,
∑
α∈S

cα = 1, P (z) � 0.

(3.13)

An analogous problem was considered in [Las09, Chapter 13] and referred to as a robust problem, as it arises
multiplayer games. For a fixed relaxation order d sufficiently large, define

fdmix := sup λ
s.t. λ ∈ R, c ∈ RS≥0,

∑
α∈S

cα = 1,

q ∈ SOS(Fd), Q ∈ SOS(Fn×nd−D),∑
α∈S

cα Tα − λ = q + Trace(P Q),

= sup −Trace(A0X)

s.t. X ∈ SymN
�0,

∑
α∈S

Trace(AαX) = 1,

Trace(AαX) ≥ 0 for α ∈ S,
Trace(Aβ X) = 0 for β /∈ S, β 6= 0,

(3.14)
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where Aα, Aβ are defined as in Equation (3.11). We follow the proof of [Las09, Theorem 13.1] to show
convergence.

Theorem 3.13. Under the same assumptions as Theorem 3.8, the sequence (fdmix)d∈N is monotonously
converging to F (S).

Proof. Let (λ, c, q,Q) be optimal for Equation (3.14). Then fdmix = λ ≤ (fc)
∗ ≤ F (S).

On the other hand, T = {z ∈ Rn |P (z) � 0} is compact due to the assumptions of Theorem 3.8 and the Tα
are continuous. Hence, the map g : c 7→ (fc)

∗ is continuous and the feasible region for c is compact. Thus,
there exists c∗ ∈ RS≥0 with

∑
α∈S

c∗α = 1, such that F (S) = g(c∗). Again by Theorem 3.8, for all ε > 0, there

exist q ∈ SOS(R[z]) and Q ∈ SOS(R[z]n×n), such that∑
α∈S

c∗α Tα − (F (S)− ε) = q + Trace(P Q).

For d ∈ N sufficiently large, that is,

d ≥ max{min{` | ` ∈ N, q ∈ SOS(F`)}, min{` | ` ∈ N, Q ∈ SOS(Fn×n`−D )}},

(F (S) − ε, c∗, q,Q) is feasible for Equation (3.14), and therefore fdmix ≥ F (S) − ε. Since ε > 0 is arbitrary,
the statement follows. �

Proposition 3.14. Let X ∈ SymN
�0 be optimal for Equation (3.14) and define the vector of coefficients c

with cγ := Trace(Aγ X). Assume that (fc)
∗ = (fc)

d
sos and L ∈ F∗2d, Z ∈ SymN

�0 are such that (X,L , Z) is
an optimal solution of Equation (3.12) with respect to c. Then

F (S) = fdmix

and the vector of Trace(AαX) with α ∈ S is optimal for Equation (3.13).

Proof. We have F (S) = sup
c

(fc)
∗ ≥ sup

c
(fc)

d
mom ≥ sup

c
(fc)

d
sos = fdmix, because 0 /∈ S and thus c0 = 0. �

Remark 3.15. If −In /∈ G, one must add the additional constraints Trace(Aα̂X) = Trace(AαX) for
−α ∈ G α̂ to Equation (3.14).

4 Spectral bounds for geometric graphs

Finally, we present a natural application of our approach. The Fourier transform of a discrete measure is a
trigonometric polynomial, and if the support of the measure is invariant under a Weyl group, then optimizing
this Fourier transform over Rn falls within our context. For instance, such optimization problems appear
when trying to compute the spectral bound for graphs. In this section, after a recap on the spectral bound
for infinite graphs, we explain the connection with our method, and provide several examples.

4.1 Framework

First, we review definitions and results about the spectral bound for graphs, most of them are taken from
[BDdOFV14], otherwise from [BBMP19] or [DSMMV19].
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4.1.1 The spectral bound for infinite graphs

For a finite graph G = (V,E), an independent set is a subset I ⊆ V such that no pair of vertices in I are
connected by an edge. Then, the independence number α(G) of G is the largest size of an independent
set in G. The chromatic number χ(G) of G is the least number of colors required to color the vertices of
the graph in such a way that no pair of adjacent vertices are given the same color. For a finite graph, these
two numbers are well defined and finite, and since a coloring is nothing but a partition of the vertices of G
into independent sets, we have the following inequality

α(G)χ(G) ≥ |V |.

If we define the independence ratio as the quotient α(G) = α(G)/|V |, then the previous inequality reads

χ(G) ≥ 1

α(G)
,

and therefore any upper bound on α(G) gives a lower bound on χ(G).

Historically, the spectral bound gives a lower bound on the chromatic number of a graph. For finite graphs,
this bound goes back to Hoffman [Hof70]. If A is the adjacency matrix of a finite graph, then

χ(G) ≥ M(A)−m(A)

−m(A)

where M(A) and m(A) respectively denote the largest and the smallest eigenvalues of A. By relating the
Hoffman bound to the theta number, Lovász proved in [Lov79] the stronger inequality

α(G) ≤ −m(A)

M(A)−m(A)
.

These notions and bounds have been generalized in [BDdOFV14] from finite to infinite graphs, using the
general framework of operators in the place of adjacency matrices. This bound can be specified in particular
contexts, especially for geometric graphs.

Consider the Euclidean space Rn equipped with the Lebesgue measure, together with a centrally symmetric
bounded subset S ⊆ Rn whose closure does not contain 0. We can define the graph G(Rn, S), where the
vertices are the points of Rn, and two vertices u and v are connected by an edge whenever u − v ∈ S. In
this setup, the definition of an independent set is still valid, but the independence number does not make
sense, since an independent set might be infinite, or even of infinite Lebesgue measure. Thus, we define the
(upper) density of a Lebesgue–measurable set A ⊆ Rn as

δ(A) = lim sup
r→∞

Vol(A ∩ [−r, r]n)

Vol([−r, r]n)
.

This allows to define the independence ratio α(Rn, S) of G(Rn, S) as the supremum of the δ(I) where I runs
through all the independent sets of Rn. Regarding the chromatic number, the definition is the same, even if
χ(Rn, S) might be infinite. We would expect a similar relation between α and χ as in the finite framework,
but this relation only holds with the measurable chromatic number χm(Rn, S), where the color classes
are required to be measurable. We then have

χm(Rn, S) ≥ 1

α(Rn, S)
.

By considering the chromatic number of an operator, together with see [BDdOFV14, Sec 3.2], one obtains
the following spectral bound for such a graph. For any centrally symmetric signed Borel measure ν with
support contained in S, the independence ratio of the corresponding graph G(Rn, S) satisfies

α(Rn, S) ≤
− inf
u∈Rn

ν̂(u)

supu∈Rn ν̂(u)− inf
u∈Rn

ν̂(u)
, (4.1)
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where ν̂ denotes the Fourier transform

ν̂(u) =

∫
Rn

exp(−2πi 〈u, v〉)dν(v)

with u ∈ Rn. As a consequence, one also obtains

χm(Rn, S) ≥
supu∈Rn ν̂(u)− inf

u∈Rn
ν̂(u)

− inf
u∈Rn

ν̂(u)
= 1−

supu∈Rn ν̂(u)

inf
u∈Rn

ν̂(u)
. (4.2)

Such a generalization also works in a discrete framework, as in [DSMMV19]. More precisely, if Ω ⊆ Rn is a
lattice and 0 /∈ S is a subset of Ω such that −S = S, we can consider the graph G(Λ, S). Then by replacing
the Lebesgue measure with the counting measure, we also get a notion of independence ratio α(Ω, S) which
gives a bound on the chromatic number χ(Ω, S), and the previous spectral bound also holds. Furthermore,
G(Ω, S) is an induced subgraph of G(Rn, S), and therefore the spectral bound computed for G(Ω, S) also
gives a bound on the chromatic number χ(Rn, S). We will now compute such bounds for special instances
of forbidden sets S.

4.1.2 Sets avoiding distance 1 in Rn for polytope norms

A well known type of graph of the form G(Rn, S) consists of distance graphs. Let ‖ · ‖ be a norm in Rn. If
we take S as the unit sphere {y ∈ Rn | ‖y‖ = 1}, then S satisfies the required condition. The corresponding
graph G(Rn, S) is called the unit–distance graph associated with ‖ · ‖ and denoted by G(Rn, ‖ · ‖). The
computation of the parameters α(Rn, ‖ · ‖) , χm(Rn, ‖ · ‖), and more importantly χ(Rn, ‖ · ‖) have been
extensively studied for the Euclidean norm, see [Soi09] and the recent advances [dG18, BPS21, AM22], but
also for other norms such as p–norms or polytope norms [BR19, BBMP19]. Indeed, if P is a centrally
symmetric convex polytope, then the function ‖u‖ = inf{` ∈ R | u ∈ `P} defines a norm whose unit sphere
is S = ∂P. While the spectral bound has been computed and strengthened for the case of the Euclidean
norm [BDdOFV14, BPT15, AM22], it has not been used as a tool for other norms.

In the computation of the spectral bound, we a priori have some freedom regarding the choice of the
measure. However, one can see through an averaging argument that if S is invariant by a subgroup W
of the orthogonal group On(R), then in order to get the best possible bound, we may assume that the
measure ν is alsoW–invariant. For the group On(R) and the Euclidean norm, this does not leave any choice.
The best bound will be given by taking the surface measure on the Euclidean sphere. We focus on other
types of norms, with a finite symmetry group. More precisely, we will consider norms whose unit ball are
polytopes affording Weyl group symmetry. Naturally, this applies when the polytope P is the Voronöı cell of
a coroot lattice Λ. In this case, P tiles Rn by translation. It is conjectured and proved in several cases, that
α(Rn, ∂P) = 1/χ(Rn, ∂P) = 1/2n [BBMP19]. However, our method also applies in the case of the 1–norm.

Figure 4: The chromatic number of Rn for ‖ · ‖Vor(Λ) is at most 2n
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Before going into the details, we present our strategy. Assume that a given polytope P is symmetric with
respect to the reflections of a crystallographic root system, that is P is closed under the action of the Weyl
groupW. We will consider discrete measures supported onW–orbits of points on the boundary ∂P. In fact,
these points will be closely related to the weight lattice Ω, which is dual to the lattice of coroots Λ. For
some integers `, we will consider orbits of points of the weight lattice Ω that lie on the boundary of ` ∂P.
After rescaling by 1/`, this indeed gives a measure invariant under W and supported on the boundary of P.
Also, in addition to the choice of points, we have freedom on the choice of the coefficients we can attribute
to the points in the support of the measure, and we will optimize over the possible coefficient distributions.
Finally, note that with our strategy, we are actually computing spectral bounds for the discrete graphs
G(1/`Ω, (1/`Ω) ∩ ∂P).

4.1.3 The chromatic number of lattices

Our approach also applies for the discrete geometric graphs considered in [DSMMV19].

Let Λ be a lattice in Rn. A vector v ∈ Λ \ {0} is called a strict Voronöı vector, or sometimes a relevant
vector, if the intersection (u+ Vor(Λ)) ∩ Vor(Λ) is a facet of Vor(Λ), that is a face of dimension n− 1. Let
S be the set of strict Voronöı vectors of Λ. Then the chromatic number of the lattice Λ is the chromatic
number of the graph G(Λ, S).

A coloring of this graph gives implicitely a coloring of Rn, where we color all the points in the interior of the
Voronöı cell v + V or(Λ) with the color of v (let us not care about the boundaries here), see Figure 5.

Figure 5: The chromatic number of a lattice.

The spectral bound for such graph was computed in [DSMMV19]. In this case, we have to take µ as the
discrete measure supported on the strict Voronöı vectors of Λ.

4.2 Measures with crystallographic symmetry

For a root system R in Rn with base B = {ρ1, . . . , ρn}, we consider the lattice Λ = Z ρ∨1 ⊕ . . .⊕Z ρ∨n spanned
by the coroots. The dual of Λ is the weight lattice Λ∗ = Ω = Zω1 ⊕ . . .⊕ Zωn. Similar to crystallographic
reduced root systems, Witt (1941) classified the lattices generated by elements u with sprodu, u = 2 as direct
sums of the following irreducible lattices, see also [DSMMV19, Lemma 2.4 and Theorem 2.5]. We have

Λ =


Zn, if R = Cn

{µ ∈ Zn |µ1 + . . .+ µn = 0}, if R = An−1

{µ ∈ Zn |µ1 + . . .+ µn is even}, if R = Bn or R = Dn

.

The cases G2 and F4 are obtained from A2 and B4 by rescaling, respectively. We do not list En here. The
coroot lattice for E8 is a self–dual extension of B8 and E6, E7 are sublattices of E8, see [Bou68, Planche I –
IX].
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Denote by

4 = {u ∈ Rn | ∀ 1 ≤ i ≤ n : 〈u, ρi〉 ≥ 0 and 〈u, ρ0〉 ≤ 1}

the fundamental domain relative to B of the affine Weyl group W nΛ, see [Bou68, §2, Proposition 5]. Then
W4 is a fundamental region for Λ and contains 0. Thus, Vor(Λ) = W4 is the Voronöı cell of the coroot
lattice.

Lemma 4.1. [Bou68, §2, Corollary] Assume that

ρ0 =

n∑
i=1

mi ρ
∨
i

is the highest root of the root system with 0 < m1, . . . ,mn ∈ N. Then

Vor(Λ) ∩ ΛΛ = 4 = ConvHull

(
0,

ω1

m1
, . . . ,

ωn
mn

)
,

where ΛΛ denotes the closure of the fundamental Weyl chamber.

Proof. For 1 ≤ i, j ≤ n, we have 〈ωi/mi, ρ
∨
j 〉 = δi,j/mi ≥ 0. Thus, ωi/mi is contained in a wall of ΛΛ and

〈ωi/mi, ρ0〉 =

n∑
j=1

mj

mi
〈ωi, ρ∨j 〉 =

n∑
j=1

mj

mi
δi,j =

mi

mi
= 1

for 1 ≤ i ≤ m implies that ωi/mi is on the hyperplane 〈·, ρ0〉 = 1. By Lemma 2.1, 4 has to be the convex
hull of 0 and the ωi/mi. Since the fundamental weights are linearly independent, it is an n–simplex. �

In this section, let S ⊆ Ω \ {0} be centrally symmetric, finite, nonempty, and

ν =
∑
µ∈S

cµ δµ

be a centrally symmetric signed Borel measure with δµ Dirac and cµ ≥ 0.

Proposition 4.2. We have sup
u∈Rn

ν̂(u) =
∑
µ∈S

cµ.

Proof. For u ∈ Rn,

ν̂(u) =
∑

{±µ}⊆S

cµ (exp(2πi〈µ, u〉) + exp(−2πi 〈µ, u〉))

=
∑

{±µ}⊆S

2 cµ cos(2π〈µ, u〉) =
∑
µ∈S

cµ cos(2π〈µ, u〉) ≤
∑
µ∈S

cµ

and “=” holds for u = 0. �

We identify Ω with Zn and write cα instead of cµ for µ = Wα ∈ Ω. Denote by

S(N) := {W−1µ |µ ∈ S dominant weight} ⊆ Nn

the coordinates of dominant weights in S with respect to the basis of fundamental weights.
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Proposition 4.3. If for all A ∈ W and µ ∈ S, we have Aµ ∈ S and cAµ = cµ, then the Fourier transfor-
mation of ν is

ν̂(u) =
∑

α∈S(N)

|Gα| cα Tα(c(u)),

where Tα is the generalized Chebyshev polynomial associated to α and c is the vector of generalized cosines.

Proof. We have

ν̂(u) =
∑
µ∈S

cµ

∫
Rn

exp(−2πi 〈v, u〉) dδµ(v) =
∑
µ∈S

cµ exp(−2πi 〈µ, u〉).

Since ν is centrally symmetric and W–invariant, the statement follows from Equation (2.6). �

Corollary 4.4. The following statements hold.

1. If ν is as in Proposition 4.3 and
∑

α∈S(N)

|Gα| cα = 1, then sup
u∈Rn

ν̂(u) = 1.

2. If the support of ν is S = ` ∂Vor(Λ) ∩ Ω 6= ∅ for some ` ∈ N, then S(N) = {α ∈ Nn | degW (Tα) = `}.

3. If the support of ν is the set S of strict Vornöı vectors for Λ and ρ∨0 ∈ Ω, then S ∩ ΛΛ = {ρ∨0 }.

Proof. 1. follows from Proposition 4.2.

2. follows from the definitions of 4 and weighted degree.

3. By [Bou68, §1, Proposition 25], the highest root is contained in ΛΛ, and so is no other element in its orbit.
We have 〈ρ∨0 , ρ0〉 = 2, and thus ρ∨0 /2 is contained in a facet of the the Voronöı cell. Hence, the strict Voronöı
vectors of Λ are Wρ0. �

4.3 The chromatic number of Rn for ‖ · ‖Vor(Λ)

We consider the problem of computing the spectral bound for the measurable chromatic number from
Equation (4.2) of the graph

G(Rn, ∂Vor(Λ)) =

(
V = Rn, E =

{
{u, v} ∈

(
V

2

) ∣∣∣∣u− v ∈ ∂Vor(Λ)

})
.

Let ` ∈ N and set S` := {α ∈ Nn | degW (Tα) = `}. If S` 6= ∅, then

χm(Rn, ∂Vor(Λ)) ≥ 1− 1

F (`)
,

where

F (`) := max

min

 ∑
α∈S`(N)

cα Tα(c(u)) |u ∈ Rn

∣∣∣∣ ∑
α∈S`(N)=`

cα = 1, cα ≥ 0


can be bounded from below with the techniques in Section 3. The reciprocal of the right hand side gives an
upper bound for the independence ratio α(Rn, ∂Vor(Λ)). The value 1 − 1/F (`) is bounded from above by
2n, because Vor(Λ) is a polytope that tiles Rn.

Corollary 4.5. If `1 divides `2 and S`1 6= ∅, then F (`1) ≤ F (`2).
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Proof. Set r := `2/`1. Then r S`1 ⊆ S`2 and so, for any admissible choice of coefficients c for F (`1), set
c′rα = cα, if α ∈ S`1 , and c′γ = 0, otherwise. Then c′ is admissible for F (`2) and yields the same bound. �

We compute the matrices for the Chebyshev moment and SOS relaxation of order d. The numerical solutions
for the “max–min” problem Equation (3.14) are listed in Table 3, Table 5 and Table 7. The number of
matrices is m + 1 = dim(F2d) and the matrix size is N = dim(Fd) + n dim(Fd−D). To solve the semi–
definite program, we rely on [MOS].

4.3.1 Example: The cube in Rn

The cube [−1/2, 1/2]n is the Voronöı cell of the coroot lattice Λ for the root system Cn. The fundamental
weights are ωi = e1 + . . .+ ei and the highest root is ρ̃ = 2 ρ∨1 + . . .+ 2 ρ∨n .

Proposition 4.6. [Bou68, Plate III],[Lor05, Example 3.5.4] For 1 ≤ i ≤ n,(
n

i

)
ci(u) = σi(cos(2πu1), . . . , cos(2πun)).

and the orbit of ωi under the Weyl group consists of the centers of the (n− i)–dimensional faces of 2 ∂Vor(Λ)
(facets, . . ., faces, edges, vertices).

Theorem 4.7. Let R be a root system of type Cn with coroot lattice Λ. Then the spectral bound is sharp for

χm(Rn, ∂Vor(Λ)) = 2n.

Proof. Define c1, . . . , cn ≥ 0 by (2n − 1) ci =
(
n
i

)
. Since S1 = ∅ and S2 = {ω1, . . . , ωn},

∑
α∈S2(N)

cα Tα(c(u)) =

n∑
i=1

cici(u)

Thanks to Proposition 4.6 and Vieta’s formula,

(2n − 1)

n∑
i=1

cici(u) =

n∑
i=1

σi(cos(2πu1), . . . , cos(2πun)) =

n∏
k=1

(1 + cos(2πuk))− 1 ≥ −1.

Equality holds when u = 1/2ωj for some 1 ≤ j ≤ n. We have c1 + . . .+ cn = 1, and thus

2n ≥ χm(Rn, ∂Vor(Λ)) ≥ 1− 1

F (2)
≥ 1− 1

−1/(2n − 1)
= 2n.

�

Remark 4.8. For 1 ≤ i ≤ n, u = 1/2ωi is a minimizer for F (2). The image in the T–orbit space is
c(1/2ωj), a vertex of the semi–algebraic set T . The last vertex c(0) is at the maximizer.

4.3.2 Example: The hexagon in R2

The hexagon in R2 ∼= R3/〈[1, 1, 1]t〉, as it has appeared several times now in Figure 1, Figure 3, Figure 4,
and Figure 5, is the Vornöı cell of the coroot lattice Λ for A2 and G2. It has 6 vertices and 6 edges.

For A2, the vertices are the orbits of ω1 and ω2. The centers of the edges are the orbit of (ω1 + ω2)/2.

For G2, the vertices are the orbit of ω1/3. The centers of edges are the orbit of ω2/6. If ` is not a multiple
of 3, then S` = ∅. Thus we only consider F (3`) for 1 ≤ ` ≤ d.
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Lemma 4.9. [BBMP19, Theorem 1] The chromatic number of R2 for the hexagon is 4.

R d\` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A2 3 2.99386∗ 3.57143 3.52451∗ 3.57143 3.37484∗ 3.57143 − − − − − − − − − −
4 3.00000 3.57143 3.52911 3.57143 3.54698 3.57143 3.47461∗ 3.57143 − − − − − − − −
5 3.00000 3.57143 3.52912 3.57143 3.54789 3.57143 3.54016 3.57143 3.51384∗ 3.57143 − − − − − −
6 3.00000 3.57143 3.52912 3.57143 3.54789 3.57143 3.54786 3.57143 3.55920 3.57143 3.47623∗ 3.57143 − − − −
7 3.00000 3.57143 3.52912 3.57143 3.54789 3.57143 3.55183 3.57143 3.55921 3.57143 3.51433 3.57143 3.14739∗ 3.57143 − −
8 3.00000 3.57143 3.52912 3.57143 3.54789 3.57143 3.55347 3.57143 3.55921 3.57143 3.53571 3.57143 3.25411∗ 3.57143 2.38163∗ 3.57143

G2 3 2.99732∗ 3.57143 3.39930∗ 3.57143 2.47997∗ 3.57143 − − − − − − − − − −
4 2.99962∗ 3.57143 3.52821∗ 3.57143 3.41805∗ 3.57143 2.54024∗ 3.57143 − − − − − − − −
5 3.00000 3.57143 3.52908 3.57143 3.49102 3.57143 2.76603 3.57143 2.45902∗ 3.57143 − − − − − −
6 3.00000 3.57143 3.52912 3.57143 3.52318 3.57143 3.39290 3.57143 2.70265 3.57143 2.98423∗ 3.57143 − − − −
7 3.00000 3.57143 3.52912 3.57143 3.54301 3.57143 3.54780 3.57143 3.53627 3.57143 3.28144 3.57143 2.50993∗ 3.57143 − −
8 3.00000 3.57143 3.52912 3.57143 3.54656 3.57143 3.55294 3.57143 3.54181 3.57143 3.54139 3.57143 3.13764 3.57143 2.06472∗ 3.57143

Table 2: Lower bounds for 1− 1/F (`) through Chebyshev moment–SOS relaxation of order d.

The best possible bound for 1− 1/F (`) is already assumed at ` = 2 and d = 3.

A2 G2

` 1− 1/F (`) |Gα| cα = |Gα̂| cα̂ 1− 1/F (`) |Gα| cα
1 2.999772878 c10 = 1.000000000 2.999993042 c10 = 1.000000000
2 3.571428501 c11 = 0.666666677 3.571428619 c01 = 0.666666656

c20 = 0.333333323 c20 = 0.333333344

Table 3: Spectral bounds for R2 and the hexagon.

Lemma 4.10. For R = A2 and ` ∈ N,

f∗ := min
z∈TR

2

3
T̂` `(z) +

1

3
T̂2` 0(z) = −7/18.

For R = G2 and ` ∈ N,

f∗ := min
z∈T

2

3
T0 `(z) +

1

3
T2` 0(z) = −7/18.

In both cases, 1− 1/f∗ = 25/7 ∼ 3.571428571.

Proof. Let u ∈ R3, such that u1 + u2 + u3 = 0. With [Bou68, Planche I], one finds that, for R = A2, the
trigonometric polynomial(

2

3
T̂` ` +

1

3
T̂2` 0

)
(cR(u)) =

1

9

∑
i<j

cos(2π `(ui − uj)) +
1

18

∑
i

cos(2π ` ui)

has minimum independent of ` ∈ N. Thus, it suffices to consider ` = 1. In this case,

pA(z) :=
2

3
T̂11(z) +

1

3
T̂20(z) = 2 z2

1 −
2

3
z1 −

1

3

is independent of z2 (Example 2.25). The projection of TR ⊆ R2 on the line “z2 = 0” is the interval [−1/2, 1].
Hence, we can simply minimize pA on TR as a univariate polynomial to obtain a line of minimizers

{z ∈ TR | z1 = 1/6} = {1/6} × [−
√

3/6,
√

3/6]

on which pA assumes value −7/18. The condition cω1,R(u) = 1/6 on R3/〈[1, 1, 1]t〉 defines a family of ovals
with centers given by the lattice of coroots Λ.
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Analogously for R = G2, one finds with [Bou68, Planche IX] that it suffices to consider ` = 1 and

pG(z) :=
2

3
T01(z) +

1

3
T20(z) = 2 z2

1 −
2

3
z1 −

1

3

coincides with pA. In this case, the line of minimizers is

{z ∈ T | z1 = 1/6} = {1/6} × [−11/24,−1/3].

The condition cω1,R(u) = 1/6 on R3/〈[1, 1, 1]t〉 defines a family of ovals (not circles) with centers given by
the lattice of coroots Λ (Figure 6). �

(a) A2 (b) G2

Figure 6: The minimizers of pA and pG in the T–orbit space (lines, above) with preimages (ovals, below).

4.3.3 Example: The rhombic dodecahedron in R3

The rhombic dodecahedron in R3 (Figure 7) is the Vornöı cell of the coroot lattice Λ for A3 and B3. It has
14 vertices, 24 edges and 12 faces.

For A3, the vertices are the orbits of ω1, ω2 and ω3. The centers of the edges are the orbits of (ωi + ω2)/2
for i = 1, 2, and the centers of the faces are the orbit of (ω1 + ω3)/2.

For B3, the vertices are the orbits of ω1 and ω3. The centers of the edges are the orbit of (ω1 + ω3)/2, and
the centers of the faces are the orbit of ω2/2.

Lemma 4.11. [BBMP19, Theorem 4] The chromatic number of R3 for the rhombic dodecahedron is 8.
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(a) A3 (b) B3

Figure 7: The rhombic dodecahedron is the Voronöı cell of the lattice of coroots for A3 and B3.

R d\` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A3 4 3.99424∗ 6.10767 5.86933∗ 6.10766 5.81858∗ 6.10766 4.77576∗ 6.10766 − − − − − − − −
5 3.99611 6.10767 5.86964 6.10766 5.90988∗ 6.10767 5.85369∗ 6.10766 5.46888∗ 6.10766 − − − − − −
6 3.99653 6.10767 5.86972 6.10767 5.93658 6.10767 5.85762∗ 6.10766 5.85825∗ 6.10766 3.78978∗ 6.10766 − − − −
7 3.99702 6.10767 5.86988 6.10767 5.94146 6.10766 5.96334 6.10767 5.85986 6.10766 4.12186∗ 6.10766 1.94791∗ 6.10766 − −
8 3.99719 6.10767 5.86992 6.10767 5.94327 6.10767 6.05399 6.10767 5.86357 6.10766 5.59839 6.10766 3.88490∗ 6.10766 3.10863∗ 6.10766

B3 3 3.83791∗ 6.10767 3.39918∗ 6.10766 2.15034∗ 6.10766 − − − − − − − − − −
4 3.84571∗ 6.10767 4.11626∗ 6.10766 2.77567∗ 6.10766 1.92638∗ 6.10766 − − − − − − − −
5 3.98454 6.10767 5.80542 6.10766 5.08174 6.10767 2.09752∗ 6.10766 1.58956∗ 6.10766 − − − − − −
6 3.99667 6.10767 5.87057 6.10767 5.86644 6.10767 5.82630 6.10766 1.75024∗ 6.10766 1.15133∗ 6.10766 − − − −
7 3.99872 6.10767 5.87057 6.10767 5.94578 6.10766 5.96989 6.10767 5.88810 6.10766 1.44041∗ 6.10766 1.00035∗ 6.10766 − −
8 3.99925 6.10767 5.87057 6.10767 5.96374 6.10767 5.99825 6.10767 5.94949 6.10766 5.92157 6.10766 5.31568 6.10766 1.00161∗ 6.10766

Table 4: Lower bounds for 1− 1/F (`) through Chebyshev moment–SOS relaxation of order d.

The best possible bound for 1− 1/F (`) is already assumed at ` = 2 and d = 4.

A3 B3

` 1− 1/F (`) |Gα| cα = |Gα̂| cα̂ 1− 1/F (`) |Gα| cα
1 3.997022716 c010 = 0.332980408 3.996665896 c100 = 0.333147446

c100 = 0.667019592 c001 = 0.666852534
2 6.107676359 c020 = 0.102819134 6.107667327 c200 = 0.102826086

c101 = 0.592761620 c010 = 0.592779979
c110 = 0.243918720 c101 = 0.243896452
c200 = 0.060500524 c002 = 0.060497465

Table 5: Spectral bounds for R3 and the rhombic dodecahedron.

We investigate the minimizers of the associated sum of generalized Chebyshev polynomials.

Remark 4.12.

1. For R = B3 and ` ∈ N, the coefficients cα in Table 5 are such that

f := c2` 0 0 T2` 0 0 + c0 ` 0 T0 ` 0 + c` 0 ` T` 0 ` + c0 0 2` T0 0 2`

is (approximately) independent of z2. With a similar argument as in Lemma 4.10, we may assume
` = 1. Let c200, c010, c101, c002 ≥ 0, such that c200 + c010 + c101 + c002 = 1 and c010 = 4 c200 + 3 c002.
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Indeed, then f ∈ R[z1, z3] and the critical points satisfy

z1 =
−8 c2002 + (40 c200 − 8) c002 + 5 (5 c200 − 1)2

32 c2002 + (−16 c200 − 16) c002 + 10 (5 c200 − 1)2
,

z3 =
−3 (4 c002 + 5 c200 − 1) (c002 − 2 c200)

32 c2002 + (−16 c200 − 16) c002 + 10 (5 c200 − 1)2
.

Using the values from Table 5, we obtain a line of local minimizers

zmin = (0.059271558, z2, 0.222115283),

where z2 is such that zmin ∈ T .

2. For R = A3 and ` ∈ N, the coefficients cα = cα̂ in Table 5 are such that

f := c2` 0 0 T̂2` 0 0 + c0, 2` 0 T̂0 2` 0 + c` 0 ` T̂` 0 ` + c` ` 0 T̂` ` 0

is (approximately) independent of z3. We may assume ` = 1. Let c200, c020, c101, c110 ≥ 0, such that
c200 + c020 + c101 + c110 = 1 and c010 = 4 c020 + 3 c200. Indeed, then f ∈ R[z1, z2] and the critical points
satisfy

z1 =
3 (10 c2020 + 3 c020 c200 − 4 c2200 − 2 c020 + c200

2 (25 c2020 − 8 c020 c200 + 16 c2200 − 10 c020 − 8 c200 + 1)
,

z2 =
25 c2020 + 40 c020 c200 − 8 c2200 − 10 c020 − 8 c200 + 1

2 (25 c2020 − 8 c020 c200 + 16 c2200 − 10 c020 − 8 c200 + 1)
.

Using the values from Table 5, we obtain a line of local minimizers

zmin = (0.222089809, 0.059154429, z3),

where z3 is such that zmin ∈ TR. The two minimizers on the boundary are

zmin,± = (0.222089809, 0.059154429,±0.237084947) ∈ T

with preimages

umin,+ = (0.631522672, 0.211345729, 0.192977587,−1.035845990)
= 0.420176943ω1 + 0.018368142ω2 + 1.228823578ω3,

umin,− = (0.211345730, 0.192977587,−0.035845991,−0.368477327)
= 0.018368143ω1 + 0.228823578ω2 + 0.332631336ω3

under cR in the fundamental domain of the affine Weyl group (Figure 8).

(a) umin,± (b) zmin,±

Figure 8: The minimizers in the fundamental domain and its image in the T–orbit space of A3.
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4.3.4 Example: The icositetrachoron in R4

The icositetrachoron in R4 is the Vornöı cell of the coroot lattice Λ for B4 and D4. It has 24 vertices, 96
edges, 96 faces and 24 facets. The facets are octahedral cells.

For B4, the vertices are the orbits of ω1 and ω4. The centers of facets are the orbit of ω2/2.

For D4, the vertices are the orbits of ω1, ω3 and ω4. The centers of facets are the orbit of ω2/2.

Lemma 4.13. [BBMP19, Theorem 5] The chromatic number of R4 for the icositetrachoron polytope is 15
or 16.

R d\` 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B4 4 3.01160∗ 10.00001 1.24848∗ 10.00000 1.00771∗ 0.00000 1.00015∗ 10.00000 − − − − − −
5 3.77462∗ 10.00035 2.43060∗ 10.00000 1.34713∗ 10.00000 1.02338∗ 10.00000 1.00032∗ 10.00000 − − − −
6 3.99453 10.02433 9.10927 10.01295 8.91701 10.00001 4.69147∗ 10.00000 1.52210∗ 10.00000 1.00481∗ 10.00000 − −
7 3.99961 10.02434 9.12574 10.01902 9.26148 10.00819 9.32108 10.00000 8.35442∗ 10.00000 4.15681∗ 10.00000 1.03062∗ 10.00000

D4 4 3.07035∗ 10.00004 1.25175∗ 10.00000 1.00911∗ 10.00000 1.00007∗ 10.00000 − − − − − −
5 3.94031∗ 10.00231 2.58640∗ 10.00000 1.39804∗ 10.00000 1.03298∗ 10.00000 1.00134∗ 10.00000 − − − −
6 3.99496 10.02432 9.11312 10.01314 8.93873 10.00001 5.12215∗ 10.00000 1.53522∗ 10.00000 1.00943∗ 10.00000 − −

Table 6: Lower bounds for 1− 1/F (`) through Chebyshev moment–SOS relaxation of order d.

The best possible bound for 1− 1/F (`) is already assumed at ` = 2 and d = 7 or d = 6.

B4 D4

` 1− 1/F (`) |Gα| cα 1− 1/F (`) |Gα| cα
1 3.994525612 c1000 = 0.333025278 3.9949608288 c1000 = 0.333048268

c0010 = 0.333475854
c0001 = 0.666974607 c0001 = 0.333475795

2 10.000012587 c0100 = 0.400624648 10.000047734 c0100 = 0.401884372
c1010 = 0.176922303

c1001 = 0.354905317 c1001 = 0.176922299
c0011 = 0.177263235

c2000 = 0.022338842 c2000 = 0.022448705
c0010 = 0.177694019 c0020 = 0.022279531
c0002 = 0.044437165 c0002 = 0.022279533

Table 7: Spectral bounds for R4 and the icositetrachoron.

4.4 The chromatic number of Λ for strict Voronöı vectors

Let Λ be the coroot lattice of a crystallographic root system R with highest root ρ0 and Weyl group W. We
consider the problem of computing the spectral bound for the chromatic number from Equation (4.2) of the
graph

G(Λ, S) =

(
V = Λ, E =

{
{u, v} ∈

(
V

2

) ∣∣∣∣u− v is a strict Voronöı vector

})
This problem has been studied in [DSMMV19]. By Corollary 4.4, the strict Voronöı vectors S of Λ are the
orbit of ρ∨0 = 2/〈ρ0, ρ0〉 ρ0 under W. Hence if ρ∨0 ∈ Ω, then ρ∨0 = α1 ω1 + . . .+ αn ωn for some α ∈ Nn, and
we have S(N) = {α}. Therefore,

χ(Λ) ≥ 1− 1/F := 1− 1

min
u∈Rn

Tα(c(u))
.
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We solve the optimization problem with the techniques from Section 3, where optimization of coefficients is
not necessary. The following is a consequence of [Bou68, Planche I – IX].

R An−1 B2 Bn, n ≥ 3 Cn D3 Dn, n ≥ 4 E6 E7 E8 F4 G2

ρ∨0 ω1 + ωn−1 2ω2 ω2 ω1 ω2 + ω3 ω2 ω2 ω1 ω8 ω1 1/3ω2

Table 8: The coroot of the highest root in the basis of fundamental weights.

The exceptional case is G2. Here ρ0 = ω2 ∈ Ω, but ρ∨0 = 1/3ω2 /∈ Ω. In order to compute χ(Λ), we thus
have to scale by a factor 3.

Theorem 4.14. [DSMMV19, Theorem 5.3 and Theorem 5.4] The following statements hold.

1. If R is a root system of type Cn, then χ(Λ) = 2.

2. If R is a root system of type An−1, then χ(Λ) ≥ n+ 1.

3. If R is a root system of type Bn or Dn, then

χ(Λ) ≥

{
n, if n is even

n+ 1, if n is odd
.

The above statement confirms our computational results.

R A2 B2 C2 G2 A3 B3 C3 B4 C4 D4

1− 1/F 3.00000 2.00000 2.00000 3.00000 4.00000 4.00000 2.00000 4.00000 2.00000 4.00000

Table 9: Lower bounds for χ(Λ) for relaxation order d of the Chebyshev moment–SOS relaxation as small
as possible.

4.5 The chromatic number of Zn for the 1–norm

For r ∈ N, the sphere of radius r with respect to the 1–norm ‖·‖1 is

B1
r := {u ∈ Rn | ‖u‖1 = |u1|+ . . .+ |un| = r} = ∂ ConvHull(±r e1, . . . ,±r en).

We consider the problem of computing the spectral bound for the chromatic number from Equation (4.2) of
the graph

G(Zn,B1
r) =

(
V = Zn, E =

{
{u, v} ∈

(
V

2

) ∣∣∣∣u− v ∈ B1
r

})
.

This problem has been studied in [FK04], giving theoretical bounds for the chromatic number. We apply
the techniques, which have been developed in this article, to compute the spectral bound and test whether
it is sharp.

As usual, W is the Weyl group of a crystallographic root system R with weight lattice Ω and W denotes the
matrix with columns given by the fundamental weights ω1, . . . , ωn. Here we have to be careful as Zn is on
one hand a lattice in Rn, and on the other the coordinates of weights in Ω.

Let r ∈ N and set Sr := B1
r ∩ Zn. If S ⊆ Ω, then

χ(Zn,B1
r) ≥ 1− 1

F (r)
,
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where

F (r) := max

min

 ∑
α∈Sr(N)

cα Tα(c(u)) |u ∈ Rn

∣∣∣∣ ∑
α∈Sr(N)

cα = 1, cα ≥ 0


can be bounded from below with the techniques in Section 3. The reciprocal of the right hand side gives an
upper bound for the independence ratio α(Zn,B1

r).

Proposition 4.15. Let r ∈ N. If R is a root system of type Bn, Cn or Dn, then Sr ⊆ Ω and

Sr(N) = {W−1µ |µ ∈ Sr} =


{α |α ∈ Nn,

n∑
i=1

i αi = r}, if R = Cn

{α+ αn en |α ∈ Nn,
n∑
i=1

i αi = r}, if R = Bn

{α+ αn−1 en−1 + αn en |α ∈ Nn,
n∑
i=1

iαi + αn−1 = r}, if R = Dn

.

Proof. By [Bou68, Planche II, III, IV], we have

Zn =

n⊕
i=1

Z
i∑

j=1

ej

 =

n−2⊕
i=1

Zωi ⊕


Zωn−1 ⊕ Zωn, if R = Cn

Zωn−1 ⊕ 2Zωn, if R = Bn

Z (ωn−1 + ωn)⊕ 2Zωn, if R = Dn

.

Thus, Zn is a sublattice of Ω and the weights in B1
r with integer coordinates are precisely Sr. �

Corollary 4.16. Let r ∈ N be odd. The spectral bound is sharp for

χ(Zn, B1
r) = 2.

Proof. An admissible coloring for G(Zn,B1
1) admits an admissible coloring for G(Zn,B1

r). Thus, χ(Zn, B1
r) =

χ(Zn, B1
1) = 2. Let R be a root system of type Cn. Thanks to Proposition 4.15, we have S1 = Wω1.

Therefore,
2 = χ(Zn, B1

1) ≥ 1− 1/F (1) ≥ 1− 1/(−1) = 2.

�

The following statement is analogous to Corollary 4.5.

Corollary 4.17. If r1 divides r2, then F (r1) ≤ F (r2).

We compute the matrices for the Chebyshev moment and SOS relaxation of order d with respect to the root
systems Bn, Cn and Dn. The numerical solutions and the optimal coefficients for the “max–min” problem
Equation (3.14) are listed in Table 11 and Table 13. The number of matrices is m + 1 and the matrix size
is N . To solve the semi–definite program, we rely on [MOS].

4.5.1 Example: n ≥ 2, r = 2

The chromatic number of Zn for 1–distance r = 2 is 2n [FK04]. We prove that the spectral bound is sharp
in this case.

Proposition 4.18. [Newton identity] Let 1 ≤ i ≤ n, and denote by pi ∈ R[z] the i–th power sum. Then

(−1)i pi + i σi =

i−1∑
j=1

(−1)j−1 σi−j pj .
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Theorem 4.19. The spectral bound is sharp for

χ(Zn, B1
2) = 2n.

Proof. Let R be a root system of type Cn. Thanks to Proposition 4.15, we have S2 =W {2ω1, ω2}. For c ∈
[0, 1], define the trigonometric polynomial fc(u) := c T2ω1(c(u))+(1−c)Tω1(c(u)). We apply Proposition 4.6
to obtain

fc(u) = c
n σ1(cos(4πu1), . . . , cos(4πun)) + 2 (1−c)

n (n−1) σ2(cos(2πu1), . . . , cos(2πun))

= 2c
n σ1(cos(2πu1)2, . . . , cos(2πun)2) + 2 (1−c)

n (n−1) σ2(cos(2πu1), . . . , cos(2πun))− c.

Choose c = 1/(2n− 1) and set zk := cos(2πuk) for 1 ≤ k ≤ n. It follows

fc(u) =
2

n (2n− 1)
p2(z) +

2 (2n− 2)

n (n− 1) (n− 2)
σ2(z)− 1

2n− 1
=

2

2n− 1
(p2(z) + 2σ2(z))− 1

2n− 1
.

By the Newton identity, p2(z) + 2σ2(z) = σ1(z) p1(z) = σ1(z)2 ≥ 0. Thus, fc(u) ≥ −1/(2n− 1) and finally

2n = χ(Zn, B1
2) ≥ 1− 1

F (2)
≥ 1− 1

inf
u∈Rn

fc(u)
≥ 1− 1

−1/(2n− 1)
= 2n.

�

Corollary 4.20. Let r ∈ N be even. The spectral bound is sharp for

χ(Z2, B1
r) = 4.

Proof. For n = 2, B1
r is up to rotation and scaling the cube from Theorem 4.7. By Theorem 4.19, Corol-

lary 4.17, G(Zn,B1
r) being a subgraph of G(Rn,B1

r) and Theorem 4.7, we have

4 = χ(Z2, B1
2) = 1− 1/F (2) ≤ 1− 1/F (r) ≤ χ(Z2, B1

r) ≤ χ(R2, B1
r) = 4.

�

4.5.2 Example: n = 3, r ≤ 16

(a) r = 1

(b) r = 2

(c) r = 3

Figure 9: The ball of radius r with respect to the 1–norm and the weights in Z3 ∩ B1
r.
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R d\r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B3 3 1.50464∗ 6.00000 1.04104∗ 6.28148 1.00044∗ 6.01551 − − − − − − − − − −
4 2.00000 6.00000 2.00000 6.28148 1.69771∗ 6.07717 1.01953∗ 6.28148 − − − − − − − −
5 2.00000 6.00000 2.00000 6.28148 2.00000 6.29004 2.00000 6.28183 2.00000 6.12543 − − − − − −
6 2.00000 6.00000 2.00000 6.28148 2.00000 6.30244 2.00000 6.29799 2.00000 6.27850 2.00000 6.282344 − − − −
7 2.00000 6.00000 2.00000 6.28148 2.00000 6.30269 2.00000 6.30435 2.00000 6.30031 2.00000 6.29708 2.00000 6.27830 − −
8 2.00000 6.00000 2.00000 6.28148 2.00000 6.30269 2.00000 6.30463 2.00000 6.30053 2.00000 6.30088 2.00000 6.29604 2.00000 6.28875

C3 3 1.98005∗ 6.00000 1.64265∗ 6.28148 1.15697∗ 6.02310 − − − − − − − − − −
4 2.00000 6.00000 2.00000 6.28148 2.00000 6.29021 1.99928∗ 6.28198 − − − − − − − −
5 2.00000 6.00000 2.00000 6.28148 2.00000 6.30182 2.00000 6.29951 2.00000 6.29810 − − − − − −
6 2.00000 6.00000 2.00001 6.28148 2.00001 6.30269 2.00001 6.30455 2.00002 6.30048 2.00000 6.30069 − − − −
7 2.00000 6.00000 2.00001 6.28148 2.00000 6.30269 2.00001 6.30494 2.00003 6.30057 2.00001 6.30229 2.00005 6.30156 − −

Table 10: Lower bounds for 1− 1/F (r) through Chebyshev moment–SOS relaxation of order d.

C3 B3

r 1− 1/F (r) |Gα| cα 1− 1/F (r) |Gα| cα
4 6.281481181 c400 = 0.017527596 6.281481283 c400 = 0.017540199

c210 = 0.226814405 c210 = 0.226804994
c101 = 0.593802569 c102 = 0.593756423
c020 = 0.161855423 c020 = 0.161898371

Table 11: Spectral bounds for Z3 and the 1–norm.

4.5.3 Example: n = 4, r ≤ 14

R d\r 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B4 4 1.88318∗ 8.00000 1.31560∗ 10.33968 1.07863∗ 9.09234 1.01171∗ 10.33968 − − − − − −
5 2.00021∗ 8.00000 2.00007∗ 10.33969 1.9996∗ 9.72339 1.16935∗ 10.33969 1.03041∗ 9.17503 − − − −
6 2.00000 8.00000 2.00000 10.83655 2.00000 10.18050 2.00000 10.33969 2.00000 9.90514 1.51085∗ 10.33968 − −
7 2.00000 8.00000 2.00000 10.86019 2.00000 10.51696 2.00000 10.51282 2.00001 10.16103 2.00001 10.33968 2.00001 10.03938

C4 4 1.99921∗ 8.00000 1.94741∗ 10.33993 1.75038∗ 9.72014 1.31253∗ 10.33968 − − − − − −
5 2.00000 8.00000 2.00002 10.83902 2.00004 10.07664 2.00001 10.33968 1.99864∗ 9.94864 − − − −

D4 4 1.89748∗ 8.00000 1.36805∗ 10.34750 1.09384∗ 9.08887 1.01095∗ 10.33969 − − − − − −
5 2.00031∗ 8.00000 2.00015∗ 10.39184 1.99990∗ 9.72430 1.25343∗ 10.34011 1.06749∗ 9.52887 − − − −
6 2.00002 8.00000 2.00001 10.83844 2.00001 10.34886 2.00001 10.35578 2.00001 9.97888 1.61251∗ 10.33971 − −

Table 12: Lower bounds for 1− 1/F (r) through Chebyshev moment–SOS relaxation of order d.

B4 C4 D4

r 1− 1/F (r) 1− 1/F (r) 1− 1/F (r)
4 10.339689715 10.339925681 10.347498023

Table 13: Spectral bounds for Z4 and the 1–norm.

5 Conclusion

With the results of [HMR22], we are able to compute a solution for the optimization problem in Equa-
tion (2.2) efficiently. We use techniques from polynomial optimization with polynomial matrix inequalities
to relax the problem to a semi–definite program. In the basis of generalized Chebyshev polynomials, the
SDP requires smaller and fewer matrices than in the standard monomial basis at the same order of relax-
ation. This depends strongly on the choice of the root system and in particular on the highest root. A
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Maple package to compute generalized Chebyshev polynomials and the SDP data is available (https://www-
sop.inria.fr/members/Tobias.Metzlaff/GeneralizedChebyshev.zip).

For geometric graphs, we present several computational results. In general, spectral bounds for the chromatic
number and independence number of distance graphs for norms can be computed with the techniques in this
paper, as long as one finds weights on the sphere.

For coroot lattices, we give examples for sharp spectral bounds of chromatic numbers in Table 3, Table 5
and Table 7 at ` = 1. In this case, the measure is only supported by strict Vornöı vectors.

For Rn, we see that the computed bound does not reach the desired chromatic number 2n (or theoretically
known values) in several cases. There are two possible reasons for that. Either the number of supporting
points is not sufficient or the spectral bound does not provide a sharp bound when discrete measures are
used. The de Bruijn–Erdös theorem states that the chromatic number is the supremum of the chromatic
numbers of the discrete subgraphs. Since we observe that the computed bound stabilizes at some level, one
can not conclude that the spectral bound is sharp.

Question [with the notation of Corollary 4.5] Let `1 < `2 < . . . ∈ N, such that `i | `i+1 and degW (`1) 6= ∅.
Set r := `2/`1. Assume that

1. F (`1) = F (`2) and

2. if c, c′ are optimal coefficients of F (`1), F (`2), then for all α ∈ degW (`1), c′rα = cα.

Is F (`1) = F (`i) for all i ∈ N?

For Zn, we compare with the results in [FK04]. Indeed for r = 2, we find χ(Zn, 2) = 2n in Table 11 and
Table 13 and also prove it theoretically. The other values fit in the given range, but improve on the lower
bounds.

We have provided an effective method to compute lower bounds for optimal values of multivariate trigono-
metric polynomials with symmetry. This is quantified by the hierarchy of Chebyshev levels. With more
computational effort, future work revolves around symmetries, which are given by the E8 lattice and other
norms.
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