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Abstract
Superduplex stainless steels have seen increasing use in past decades in applications that require both
excellent mechanical properties and corrosion resistance. The properties of duplex steels depend
strongly on their thermal history, which can produce a wide range of austenite to ferrite ratios;
whereas optimal properties generally require near 50-50 ferrite-austenite duplex microstructures.
Additive manufacturing processes involve large thermal gradients as new material is melted on top
of already printed material, and thermal history depends on process parameters. As the equilibrium
phase ratio depends strongly on temperature, the result is a wide range of reported phase ratios,
ranging from negligible fractions of austenite to greater than 60 %. So it is important to understand
and predict how the phase ratio depends on process parameters. We assesses the microstructures
in single-bead-thickness walls of SAF 2507 superduplex stainless steel printed using constant
process parameters, using the laser metal powder directed energy deposition (LMPDED) additive
manufacturing technique. Post-printing microstructural analysis revealed a gradient of austenite
phase fraction as a function of distance from the build platform. This data reveals the relation
between the thermal history and solid-solid phase transformation of ferrite to austenite during the
fabrication process. The thermal history of each position in the wall was modelled by a previous fast
numerical simulation (that has been improved in this contribution), and a fast diffusion controlled
solid-solid phase transformations model based on semi-analytical methods has been developed.
Numerical results for the phase ratios are in reasonable agreement with experimental observations.
The proposed simulations strategy is sufficiently fast to enable to adjust the process parameters to
achieve a targeted distribution of phase ratio in order to facilitate additive manufacturing of super
duplex stainless steels, and a temperature control strategy of the build platform has been proposed
on this basis to reach almost uniform near 50-50 phase ratios.

Keywords: Duplex steel, Directed Energy Deposition Additive Manufacturing, Microstructure,
Phase proportions gradients

1. Introduction

Significant progress in additive manufacturing (AM) technologies, also called 3D printing,
have taken place over the last decade. These technologies have the potential to revolutionise man-
ufacturing for several reasons: minimal material waste, flexibility in the geometry and designs of
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components, short time-to-market, and the possibility of producing functionally graded materials.
However, applications are restricted by the unpredictability of the product properties, as porosity,
microstructure and residual stresses, which all depend on product geometry and processing pa-
rameters. Therefore it is essential to develop realistic numerical models that can predict, and so
control, these properties before the product is printed. Directed energy deposition (DED) is a form
of additive manufacturing (AM) in which a heat source melts extra material layer by layer onto
a substrate. In laser metal powder directed energy deposition (LMPDED), metal powder is fed
coaxially with a laser. As shown in figure 1, the powder is transported by a cover gas through the
nozzle to the build platform (i.e., substrate), where it is melted by the laser to form a melt pool.
The nozzle moves parallel with the substrate in order to form beads of metal alloy. Each bead can
act as a foundation for subsequent beads, building the final product layer by layer.

Print direction

Build direction

Laser beam

Build platform

Ar gas

Metal powder
Ar gas

Melt pool

Deposited beads

Figure 1: Schematic representation of laser metal powder directed energy deposition. This figure is inspired by Lim
et al. [1]

This results in complex, time-dependent temperature profiles within the fabricated part. Each
point on the product is likely to experience repeated heating and cooling cycles. This may not be
a significant problem for single phase alloys, like 316 austenitic stainless steel, but precipitation-
hardening alloys or duplex steels can undergo solid-solid phase transformations which vary with
position and process parameters [2].

Duplex stainless steels (DSS) combine many of the beneficial properties of ferritic and austenitic
steels. The excellent strength, toughness and fatigue resistance that duplex steels offer are a result
of the balance between the body-centered cubic (BCC) and face-centered cubic (FCC) phases
(i.e. two phase duplex microstructures) [3]. Super DSS have higher concentrations of Cr, Mo,

2



N which increase its resistance to pitting and crevice corrosion, indicated by a pitting resistance
equivalent number (PREN) over 40 [3]. Such alloys have seen increasing use in recent decades in
marine, petrochemical, and other applications which need a combination of excellent mechanical
properties and corrosion resistance [4]. Compared to austenitic steels (like 316 steel), duplex steels
are enriched in Cr, Mo and N, and purposefully poorer in Ni, which enables a 50-50 ratio of austenite
and ferrite around 1400 K [5]. DSS are designed to solidify ferritically (ie. initially 100 % ferrite),
which requires a mono-ferritic temperature region near the melting point [3]. Austenite precipitates
by solid-solid phase transformation in the ferrite at slightly lower temperatures. Ramirez et al.
[6] reported that the super SAF 2507 DSS quenched from a ferritization temperature of 1623 K
was not completely ferritic; however, Hertzman et al. [7] had already found experimentally that
in this alloy 100 % ferrite only occurs in a higher temperature range: between 1653 and 1658 K.
Pettersson et al. [8] confirmed the finding that SAF 2507 shows a region of 100 % ferrite near
the melting point, and concluded that equilibrium calculations generally over-estimate austenite
stability (especially near the melting point). An exception is the adjustment of Thermocalc [9]
by Calliari et al. [5], which correctly represents the experimental data near the melting point of
SAF 2507.

However, application of AM to duplex steels has been limited by the inability to form a
consistent ferrite/austenite microstructure in the as-printed material. Duplex steels are known to
present a range of equilibrium austenite (i.e., γ) to ferrite (i.e., δ) phase fraction ratios as a function
of temperature [5]. At high temperatures near the melting point ferrite is favoured relative to
austenite. The equilibrium fraction of austenite then increases during cooling, as shown in figure 2,
but the kinetics of the transition slows. As a result, the room-temperature fraction of austenite
depends on the thermal history. A balanced austenite/ferrite ratio could be achieved by subsequent
annealing at around 1400 K [10, 11]; however, not only is this an additional manufacturing
step which can lead to dimensional changes, but in some applications, such as repair of existing
components, it is impossible.

Thus to better understand and predict how the phase ratio depends on process parameters, this
study assesses the microstructures and proportion of austenite to ferrite in single bead thickness
walls of SAF 2507 super-duplex stainless steel printed via LMPDED. The experimental analysis
is complemented by a numerical simulation of temperature fields, and solid-solid phase transfor-
mations arising during the printing process. The model was checked against the experimental data
and offers a fast tool to adjust the process parameters to reach a targeted distribution of phase
fraction. This is especially important for DSS because of their sensitivity to thermal history. Solid
state phase transitions are considered as a post-processing of the temperature field computation.
The proposed simulations strategy should fast enough to enable to adjust the process parameters to
achieve a targeted distribution of phase ratio in order to facilitate additive manufacturing of super
duplex stainless steels.

In the literature there are only a few papers on AM of DSS [12]: they use laser powder bed
fusion (LPBF) (also referred to as selective laser melting (SLM)), wire arc additive manufacturing
(WAAM), and directed energy deposition (DED) with wire or powder. The few examples of
duplex steel printed by AM have shown a wide range of phase ratios in as-printed specimens: from
almost fully ferritic microstructure using LPBF [10] to up to 80 % austenite microstructures for
WAAM [13]. The LPBF printing process is known to have exceptionally high cooling rates (in
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the range of 105 to 107 K.s-1) [14]. Thus [10, 11, 14] have shown only a negligible fraction of
austenite forms, located exclusively along ferrite-ferrite grain boundaries (overall less than 1 %
γ). Therefore post-printing treatment was needed to reach the desired 50-50 ratio. By contrast,
[13, 15] found microstructures to be predominantly austenite after WAAM. This technique builds
the product by adding successive arc welding beads, so it applies orders of magnitude more energy
than powder-based AM (400-870 J.mm-1 [13], compared to around 0.355 J.mm-1 in LPBF [10]).
However, in WAAM, the austenite fraction reached even 73-85 %, because the cooling rates are
slower as the melt-pool is not always surrounded by a massive heat-sink; and furthermore the
deposited material can get reheated by subsequent passes to temperatures which favours austenite
precipitation. DED uses energies intermediate between those in LPBF and WAAM. Brázda et al.
[16] applied 28.3-49.5 J.mm-1 when printing super-DSS using LMPDED (unfortunately they did
not specify their powder mass flow rate during the printing to allow more effective comparison of
printing parameters). They printed microstructures with 30 to 38 % austenite, showing primary
ferrite grains with a layer of grain boundary (GB) austenite. The GB layer was much thicker than
that in LPBF. At higher austenite fractions, austenite also penetrated the ferrite grains in the form
of Widmenstätten plates and ultimately formed globular intragranular austenite. In a more detailed
description of LMPDED printing of super-DSS, Iams et al. [17] found it is possible to achieve
58.3 % austenite fraction with a higher energy rate of 188.7 J.mm-1. They also reported that, within
a single printed part, austenite fraction increased with distance from the substrate: from 55 % at
5-10 mm to 70 % at 20 mm. Thus they had rather too much austenite (65 %) and the phase fractions
were not constant in the printed part.

Considering these difficulties, a natural idea is to simulate the AM process and phase transition
so that the process parameters can be optimized in order to reach a targeted phase fraction ratio.
Regarding numerical approaches to compute temperature fields in LMPDED, many papers focus
on very detailed simulations at the mesoscopic scale, especially powder melting, the hydrodynamic
problem, and crystallization during cooling (e.g., [18–20]). However, such numerical simulations
are often limited to a single layer, and cannot capture phase gradients in the entire part. Macroscopic
simulations have also been developed (e.g., [21–23]) but are still computationally costly. Thus,
simplified linear thermal analyses have been proposed (e.g., [24, 25]), which neglect the latent
heat of fusion, and are limited to simple flat-wall geometries. In this paper, a fast numerical
approach [26, 27], which can deal with complex geometry and takes account of latent heat release
during solidification, is used. This approach to temperature modelling has already been validated
experimentally by infrared measurements using a pyrometer [26] and an infrared camera [28], and
was used to predict residual stresses [28] and grain growth [29–31]. Some improvements have
been implemented in this contribution to capture more precisely the effect of the laser power, the
latent heat of fusion, and the build platform temperature evolution in order to accurately predict
the kinetics of the ferrite to austenite phase transition.

In the literature, the ferrite to austenite phase transition in DSS has been modeled in different
ways. For instance, Johnson-Mehl-Avrami equation has been fitted on experiments [32, 33].
However the present paper takes into account that most austenite grows from the grain boundaries.
So the ferrite grain size is taken into account, and a diffusion controlled growth model is applied
to estimate austenite growth from the boundaries. A well known diffusion controlled growth
theory has been proposed by Bhadeshia [34], which relies on a simple analytical solution of the
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diffusion equation in a 1D infinite slab. However, when the diffusion zone joins at the grain
center (i.e., mechanism refereed as soft impingement) the infinite slab approximation is no longer
valid, and the approach should be adapted. To avoid approximation issues, the usual strategy
[35–37] is to numerically solve a 1D diffusion problem in a finite slab with mass conservation
in the grain (i.e., no mass exchange with other grains). In addition, as for the classical theory
[34], the composition of ferrite and austenite at their mutual interface is considered to be in local
equilibrium. In this contribution, a similar approach is derived, but since fast computation time is
aimed, semi-analytical solutions are exploited.

The paper is organized as follows. The experimental study is presented in section 2 and
the microstructure and phase proportion are discussed with respect to process parameters. The
improvements to the thermal analysis proposed in [26] are broached in section 3.1. The diffusion-
controlled growth model is derived in section 3.2. Material properties are detailed in section 4,
and the comparison of the simulations with experimental results is presented in section 5. Finally,
the effect on the ferrite to austenite ratio of preheating the substrate or even control its temperature
during fabrication is investigated in section 6, and conclusive remarks are given in section 7.

2. Experimental study

2.1. Materials and method
A series of SAF 2507 DSS walls were built via DED using a BeAM Mobile-004 machine

equipped with a Itterbium YLR fibre laser (1070 nm wavelength) and a 500 W maximum power
output. The walls were constructed using a powder feedstock of SAF 2507 DSS made by Sandvik,
with a 77.6 µm average powder particle diameter and 98.4 % of particles in the range of 45-99 µm.
The composition was verified by Sandvik and corresponded to the SAF 2507 DSS norms. The
nominal powder composition is given in table 1.

The walls were built to single bead thickness by layering single beads on top of each other.
No dwell time was applied and the printing direction alternated between layers. The printing was
carried out using the DSS powder starting on a 316 austenitic stainless steel substrate. The length
of the wall was set to 50 mm (X direction). The height was controlled by the increment in Z
between layers (0.15 mm) and the number of layers, which was adjusted to achieve 15 mm of wall
height from the substrate (100 layers). The printing speed was 2000 mm.min-1, with 225 or 250 W
laser power, and 7.1 g/min powder flow rate.

The printed walls were then cut along the plane perpendicular to the printing direction X to
make cross section samples. These samples were then set in conducting epoxy resin and polished.
Polishing was carried out using grinding paper down to P4000 (5 µm), then diamond paste polishing
with 3 µm, followed by 1 µm. The final polishing step consisted of ion polishing using 6 kEV,
6 rpm and an incident angle of 6 degrees. The microstructures of the samples were analysed in
a scanning electron microscope (SEM) using electron backscatter diffraction (EBSD) in a Quanta
600 with an oxford Instruments X detector which enables maximum frame rate of 3000 Hz. The
results of the equilibrium calculations made using Thermocalc [9] are shown in figure 2. This
equilibrium calculation serves two purposes: firstly in this experimental section it will give us a
better understanding of the microstructures formed during the printing process, secondly for the
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numerical simulation of the printing process and solid-solid phase transformations, it will give us
the equilibrium element partitioning between ferrite and austenite at different temperatures.

Thermocalc predicts a rather large range of temperatures from 1602 to 1670 K with fully ferrite
phase (and excess nitrogen). This corresponds to the fully ferritic phase regime calculated in [5],
whose temperature range lies roughly between 1600 and 1650 K. Experimental evidence confirms
the presence of this high temperature mono-ferritic phase [7] but over a much narrower range of
temperatures (1653-1658 K). Equilibrium calculations have a tendency to overestimate austenite
stability according to [8] and present no ferrite regime, fortunately this is not an issue with the
equilibria here in figure 2.

Starting from 1602 K, the top of the δ +γ phase region, as the temperature falls the equilibrium
fraction of austenite increases and eventually becomes the majority phase (the 50-50 inflexion point
is near 1400 K, which is consistent with [5]). At lower temperatures, below 1330 K the fraction
of sigma phase increases dramatically at the expense of the ferrite. Jacob and Povoden-Karadeniz
[38] confirmed the presence of sigma phase at 1273 K and below, consistent with [5] calculation.
Formation of sigma phase however is heavily time dependent as the kinetics of diffusional phase
transformations is much slower than at higher temperatures.

1 000800 1 200 1 400 1 600 1 800900 1 100 1 300 1 500 1 700

0

100

20

40

60

80

10

30

50

70

90 liquid
  ferrite 
  austenite
  phase

gas

HCP

Temperature (Kelvin)

Amount of phase fraction (%)

Figure 2: Diagram of phase fractions vs temperature for equilibria calculations using ThermoCalc [9].

Phase equilibria for 2507 duplex steel as a function of temperature were calculated using
ThermoCalc TCFE9 database using system conditions: pressure 105 Pa, system size 1 mole, alloy
composition according to table 1.
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Table 1: Nominal DSS Alloy Composition SAF 2507 DSS in wt %

Fe Ni Cr Mo Mn N C Si P Cu S
Balance 7 25 4 1.2 0.285 0.03 0.8 0.035 0.5 0.02

2.2. Experimental results
The section taken from the as-printed duplex steel wall is illustrated in figure 3. The red

highlighted area represents the surface area analysed by EBSD and presented in figures 4 and 5.
Figure 4 illustrates the distribution and form of austenite (red) and ferrite (blue) phases. Super
duplex steel is expected to solidify initially as 100 % ferrite, this is illustrated by the distribution
of austenite mostly along prior ferrite-ferrite GBs. Subsequent austenite growth also occurs into
the existing grains of the ferrite matrix as Widmenstätten plates and intragranular precipitates [16].
The ferrite only EBSD inverse pole figure map of figure 5 illustrates the morphology of the ferrite
grains. The solidification of the material begins near the wall surface on the left and right hand
sides, here the ferrite grains have predominantly equiaxed morphology. A few of these grains
with favourable crystal orientation relative to the thermal gradient grow in towards the middle of
the wall via epitaxial growth giving elongated grains. The direction of the epitaxial growth is
slanted towards the middle, following the thermal gradient as heat escapes via convection at the
wall surface and conduction down to the substrate.

316L build platform

Cross section
for EBSD

at mid-length

Build direction

Print direction

Thin-walled structure

Normal
direction

Figure 3: Illustration of the section of the wall, with the EBSD map area highlighted in red.

The texture of these ferrite grains is analysed using pole figures in figure 6 which shows that in
DSS the epitaxial ferrite grain growth follows predominantly the [100] direction [39]. The EBSD
map can be broken down into 5 areas from left to right. We observe that the 1-st and 5-th areas
near the surface of the wall present negligible texture with equiaxed grains. In the second and
fourth sections the epitaxial grains grow at an angle of approximately 35-45 degrees towards the
centre following the [100] direction. Right in the middle the grain growth is no longer inclined
with respect to the surface to the left or right, but rather towards the build direction (out of the
page).
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Figure 4: EBSD phase map of AM wall cross-section 250 W

The grain size of the equiaxed grains within the first 100 µm of the wall surface is of the order
of 10 µm. One expects to observe relatively small grains in duplex steel because austenite formed
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Figure 5: EBSD inverse pole figure map of the ferrite BCC phase of AM wall cross-section 250 W

at the ferrite GBs inhibits the usual coarsening of ferrite grains by ferrite-ferrite GB mobility. The
longer epitaxial grains that grow in from the wall surface show a wider range of sizes: they can
grow even to 100 µm in length, but are on average 50 µm long, and 20 µm wide. An accurate
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Figure 6: [100] Pole figures of ferrite phase giving the textures of AM wall as a function of depth from the wall surface,
250 W

measure of the original ferrite grain size is relatively difficult due to the presence of a high fraction
of austenite. The phase map in figure 4 shows how the austenite grows in the matrix of ferrite
mostly along the prior ferrite grain boundaries. This is due to the necessary partitioning of the
alloying elements between the newly formed austenite and existing ferrite matrix. The diffusion
of alloying elements therefore limits the growth of the austenite, and the relatively small grain
sizes mean GBs dominate as preferential sites for austenite nucleation and growth. For the small
equiaxed ferrite grains near the surface, the austenite forms exclusively along the grain boundaries.
For larger epitaxial grains, where less grain boundary area is available, the austenite grows also
partly into the grains as parallel dendrites1. These vary in their spacing, but are generally of the
order of 10 µm.

As we established in the introduction, one of the most complex factors of DSS is control
of the two-phase austenite-ferrite microstructure. For forged duplex steels the standard solution
treatments are applied at temperatures near 1100 ◦C where the ratio of austenite to ferrite is close
to 50-50. The following section will consider the significant effect of the complex thermal history
DED has on duplex microstructure. An analysis of austenite phase fraction as a function of distance
from the substrate was made in figure 7 by extracting row by row the data from the phase map

1In literature these are generally considered as Widmenstätten growth, however as characterised by Ohmori they
should not be confused with displacively formed Widmenstätten plates. In duplex steel they are still controlled by a
diffusional mechanism of element partitioning.
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in figure 4. On this scatter plot, in the initial stages of printing, heat can escape quickly through
the proximity of the relatively large substrate. This means cooling rates are faster, and less time
is spent at high temperatures, limiting austenite growth in these initial duplex steel layers. As the
printing progresses, and the layers are printed further from the substrate, the fraction of austenite
increases (relatively more red phase is visible in figure 4). Finally, the last few layers at the end of
the printing process contain less austenite (dip in the curve). There is a lack of subsequent layers
reheating the structure, meaning less austenite formed.

Figure 7: Graph of austenite phase fraction of the duplex printed wall as a function of distance from the substrate

3. Modeling strategy

3.1. Temperature field computation
The computation of the temperature field relies on the assumption that for single bead structures,

heat fluxes along the print direction are negligible with respect to the build and normal directions.
Based on this assumption a numerical strategy has been established in [26] based on analytical
solutions of successive 2D multilayer composites heat conduction problems. Three improvements
are proposed in this contribution to better capture the δ → γ phase transition. First, the deposition
temperature denoted by Tdep is a parameter corresponding to the melt pool temperature, and has
been calibrated for specific process parameters. In this contribution, since two experiments have
been performed with two different laser power, the deposition temperature is approximated as in
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[28] by the following analytical form [40]:

Tdep = IRbeam√
πλliq

arctan

2

√
Dliqtbeam

Rbeam

 (1)

Where Rbeam is the laser beam radius, λliq and Dliq are respectively the thermal conductivity and
diffusivity of the liquid metal, I = Pbeam/(2πR2

beam) and tbeam = Rbeam/Vbeam with Vbeam the
laser beam velocity.

The second improvement is related to the latent heat of fusion. Indeed, the latent heat of fusion
was taken into account in [26] by interpolating the liquid to solid phase transition rate on a series
of time decreasing exponential functions. However, the heat source due to the phase transition
does not start immediately after the deposition of the molten metal, but only when the temperature
reaches the liquidus temperature Tliq. This delay being difficult to capture with time decreasing
exponential functions, the heat source was applied at t = 0 directly when the molten metal is
deposited. If this approximation is acceptable to capture the temperature kinetics of the solid
material, the cooling rate during solidification cannot be estimated accurately. As detailed in the
following, the studied δ → γ phase transition depends on the grain size of the solidified δ phase,
which highly depends on the cooling rate during solidification. Therefore, the approach proposed
in [26] has been improved to correctly address the cooling rates during solidification. To do so, a
new initial condition is set at t = tliq when T = Tliq (where t denotes the time and T the computed
temperature), and the heat source due liquid to solid phase transition is applied.

The third improvement is related to the build platform temperature, which has a significant
impact on the temperature kinetics. The substrate was assumed to be constant and homogeneous
during the fabrication of each layer, which is acceptable after a certain number of layers when
the laser is sufficiently far from the substrate, but rather inaccurate for the first layers. To better
capture the non-uniform distribution of phase fraction along the build direction, a better estimation
of the substrate temperature is proposed in this paper by solving the following non-uniform 1D
heat conduction problem:

∂T n
sub

∂t
(Z, t) − Dsub

∂T n
sub

∂Z2 (Z, t) = 0 (2)

Where T n
sub is the substrate temperature during deposition of the n-th layer, t the time, Z the spatial

coordinate along the print direction, and Dsub (m2.s−1) the substrate thermal diffusivity. Boundary
conditions read as convection conditions:

−λsub
∂T n

sub
∂Z

(
hsub

2
, t

)
= Hbuild

(
T n

sub

(
hsub

2
, t

)
− T n

build

)

λsub
∂T n

sub
∂Z

(
−hsub

2
, t

)
= Hplate

(
T n

sub

(
−hsub

2
, t

)
− Tplate

) (3)

where λsub (W.m−1.K−1) is the thermal conductivity of the substrate, hsub its thickness, T n
build is

the average temperature of the bottom first layer of the part during during the deposition of the n-th
layer, Tplate is the temperature of the plate beneath the substrate, and Hbuild and Hplate (W.m−2.K−1)
are the heat transfer coefficients respectively between the part and the top surface of the substrate,
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and between the bottom surface of the substrate and the plate underneath. In addition the initial
condition reads:

Tsub(Z, t = 0) = T n−1
sub (Z, tn−1) (4)

where T n−1
sub (Z, tn−1) is the temperature of the substrate at the end of the previous layer deposi-

tion. The diffusion equation (2) with boundary conditions (3) and initial condition (4) is solved
analytically in Appendix A.

3.2. Diffusion controlled growth of austenite
The δ → γ phase transition is controlled by diffusion of alloying elements, and arises by

thickening of a continuous austenite layer formed at the ferrite GBs in a net structure. Indeed,
as already mentioned for the studied alloy (i.e., SAF 2507 DSS), the primary solidification is
fully ferritic. In addition, equilibrium compositions at different temperatures have been computed
with ThermoCalc, and the normalized mass of N is presented at equilibrium in figure 8. Four
different regimes are clearly identified and correspond to four different mechanisms. 1) During
solidification (i.e., 1738-1677 K), N atoms (i.e., austenite stabilizer) are concentrating in the liquid
phase. 2) At the end of solidification (i.e., 1677-1602K), since BCC is saturated in N, more than
half of the total mass of N remains outside the ferrite bulk, in gas form according to ThermoCalc,
which results in significant driving force to transform ferrite into austenite. 3) Thus, within a short
temperature range (i.e., 1602-1587 K) all the N content outside the ferrite bulk is rapidly diffused
to the forming austenite. Therefore, even though the primary microstructure is fully ferritic, a
significant amount of austenite is produced assisted by fast diffusion of N. Of course, this amount is
limited by the cooling rates and diffusion properties of N between 1602 and 1587 K, so that very low
γ phase fraction is reported in very fast cooling processes such as LPBF, although more significant
amounts are usually reported in DED with lower cooling rates. 4) When temperature decreases
below 1587 K the equilibrium δ and γ mass fractions are more stable with respect to temperature.
At this point, an other diffusive mechanism takes place. Indeed, Cr (i.e., ferrite stabilizer) diffuses
from austenite to ferrite, and Ni (i.e., austenite stabilizer) from ferrite to austenite, which limits
the phase transition rate, because both Cr and Ni are substitutionally-diffusing elements, which
diffuse orders of magnitude slower than interstitial elements such as N. Both Cr and Ni could have
been taken into account together in the diffusion problem below 1587 K, but only Ni has been
considered as Ni and Cr share similar diffusive properties.

The phase transition is therefore computed by solving a two-species diffusion problem. First
the phase transition is controlled by the fast diffusion of N between 1602-1587 K, and then the
phase transition is controlled by slower diffusion of Ni for lower temperatures. However, it should
be noted that the diffusion of both N and Ni should be computed simultaneously so that the Ni
concentration profile is estimated at 1587 K when Ni diffusion starts to control the phase transition.
Since there is a large number of different layers subjected to thermal cycling, short computation
time can only be obtained by developing a numerical strategy relying on analytical solutions of the
diffusion equation. The proposed approach consists in solving the same diffusion problem as in
[35–37] (i.e., mass balance in the grain and equilibrium at the δ/γ interface) in a 1D finite domain
(i.e., sphere, cylinder or slab). However, the diffusion equation is highly non-linear due to the
mobile δ/γ interface, and temperature dependant diffusivity and equilibrium phase fractions. To
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Figure 8: Normalized mass of N at equilibrium (left scale) computed as the mass of N in different phases divided by
the total mass of the compound, and equilibrium mass fraction (right scale) computed as the mass of different phase
divided by the total mass of the compound.

overcome this difficulty, a general analytical solution is derived for fixed δ/γ interface at constant
temperature. Therefore, to correctly follow the phase transition evolution, a time discretization is
introduced and the analytical solution is successively applied only during short time increments,
which is consistent with the proposed assumptions (i.e., fixed δ/γ interface at constant temperature).
In addition to temperature, the δ/γ interface is updated at the end of each time step based on the
mass balance equation. Moreover, at each time step, a new initial condition is prescribed based on
the solution concentration profile at the end of the previous time step. Of course, since between
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two successive time steps the δ/γ interface is updated, the solution concentration profile is adapted
to define the new initial condition in order 1) to be consistent with the new interface position and
2) to ensure that the total mass of the alloying element is unchanged.

The temperature dependant equilibrium concentrations of the alloying element in the δ and
γ phases are respectively denoted by cδ

eq(T ) and cγ
eq(T ) (where T (K) is the time dependent

temperature). Moreover w(t) (m) is the time dependant austenite thickness. The proposed strategy
involves solving the following problem at each time step (indexed by k). The second Fick’s law
reads for 1D domains, ∀t ∈ [tk, tk+1] (where tk is the time at the beginning of the k-th time step
and tk+1 = tk + ∆tk where ∆tk is the time increment):

∂cδ
k

∂t
(x, t) − Dδ

k

xq

∂

∂x

(
xq ∂cδ

k

∂x
(x, t)

)
= 0 if 0 ≤ x ≤ R − wk

∂cγ
k

∂t
(x, t) − Dγ

k

xq

∂

∂x

(
xq ∂cγ

k

∂x k
(x, t)

)
= 0 if R − wk ≤ x ≤ R

(5)

where for the time step k, cδ
k(x, t) and cγ

k(x, t) are the concentration profiles of the considered
alloying element (i.e., N and Ni) in the δ and γ phases respectively, Dδ

k and Dγ
k (m2.s−1) denote the

diffusivity in the δ and γ phases respectively, wk = w(tk) (m) is the austenite thickness, x denotes
the spatial coordinate, and q = 0, 1, 2 for slab, cylinder and sphere respectively.

Boundary conditions read, ∀t ∈ [tk, tk+1]:

(a)


∂cδ

k

∂x
(x = 0, t) = 0

∂cγ
k

∂x
(x = R, t) = 0

(b)
{

cδ
k(x = R − wk, t) = cδ

eq,k

cγ
k(x = R − wk, t) = cγ

eq,k

(6)

It should be noted that wk, Dδ
k, Dγ

k , cδ
eq,k, and cγ

eq,k are assumed to be constant in [tk, tk+1], and are
only updated at the end of the time step. Equation (6) (a) corresponds to mass conservation in the
grain (i.e., no mass transfer outside the grain), and (6) (b) corresponds to the equilibrium of the
δ/γ interface.

The initial concentration profiles in the δ and γ phases are respectively denoted by cδ
ini,k(x) and

cγ
ini,k(x), hence: {

cδ
k(x, t = tk) = cδ

ini,k(x) if 0 ≤ x ≤ R − wk

cγ
k(x, t = tk) = cγ

ini,k(x) if R − wk ≤ x ≤ R
(7)

At the beginning of diffusion (i.e., for the first time step k = 1 at T = 1602 K), the initial
concentration profile of N is assumed to be uniform and equal to the bulk concentration in the
δ phase, i.e., cδ

ini,1(x) = 0.29 wt % according to table 1. In addition, a nucleation thickness of
the γ layer is postulated and denoted by wγ

ini, hence w1 = wγ
ini. The dimensionless normalized

mass of N outside the ferrite bulk at 1602 K denoted by mγ
eq,N = 1.598 × 10−3 (g of N per g

of compound) (see figure 8) is entirely affected to the nucleated layer of austenite, which reads
cγ

ini,1(x) = mγ
eq,N R/wγ

ini, where R is the average equivalent grain radius. Furthermore, since Ni
diffuses much slower, we assume that the initial concentration profile of Ni is uniform and equal to
the bulk concentration in both the δ and γ phases, i.e., cδ

ini,1(x) = cδ
ini,1(x) = 7 wt % according to

table 1.
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For following time steps (i.e., k ≥ 2) the initial concentration profile is based on the concen-
tration at the end of the previous time step, which reads:

cδ
ini,k(x) =

cδ
k−1

(
Λδ

k x, t = tk

)
Λδ

k

if 0 ≤ x ≤ R − wk

cγ
ini,k(x) =

cγ
k−1 (Λγ

k x + Γγ
k, t = tk)

Λγ
k

if R − wk ≤ x ≤ R

(8)

where: 
Λδ

k = R − wk−1

R − wk

Λγ
k = wk−1

wk

and Γγ
k = R

(
wk − wk−1

wk

) (9)

Where coefficients Λδ
k, Λγ

k and Γγ
k have been introduced to accommodate the update of the austenite

thickness wk−1 → wk, and to ensure that the total mass of the alloying element in the grain is
conserved. The analytical solution of (5) with boundary conditions (6) and initial condition (7)
is derived in details in Appendix B. Even though grains or sub-structures from which austenite is
forming are close to spheres or cylinders, the analytical solution has been found to be much faster
for slabs. Thus, the solution for slabs has been used in practise and the slab size has been adjusted
to correspond to an equivalent sphere as detailed in Appendix B.

The update of the austenite thickness is obtained from mass balance, which reads:

ẇ(t) = Dδ(T (t))∂cδ

∂x
(R − w(t), t) − Dγ(T (t))∂cγ

∂x
(R − w(t), t) (10)

Thus, the update is approximated as follows:

wk = wk−1 + Dδ
k−1

∫ tk

tk−1

∂cδ
k−1

∂x
(R − wk−1, t)dt − Dγ

k−1

∫ tk

tk−1

∂cγ
k−1

∂x
(R − wk−1, t)dt (11)

Where integrals are calculated analytically as detailed in Appendix B.

4. Process parameters and material coefficients

Two experiments have been performed and the corresponding process parameters are listed
in table 2. Heat transfer coefficients (HTC) have been estimated in [26] by comparing numerical
results and infrared pyrometer measurements. However, the HTC between the build platform and
the machine plate underneath has been decreased as the build platform was not clamped to the
machine plate therefore decreasing the heat transfer coefficient.

The grain size after solidification should also be estimated because the grain equivalent radius
R is directly involved in the proposed diffusion model detailed in section 3.2. Higher cooling rates
are associated with lower austenite content as shorter time is spent in the temperature range where
the δ → γ phase transition occurs, but higher cooling rates are also associated with finer grain
structure, which in turn promotes higher phase transition rate. Therefore, we consider the grain
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Table 2: Simulation parameters

Number of layers Nlay (-) 100
Substrate thickness hsub (mm) 5
Initial substrate temperature T 0

sub (K) 300
Length of wall L (mm) 50
Powder flow Q (g.min−1) 7.1
Layer height hz (µm) 160
Layer thickness hy (µm) 650
Laser beam radius Rbeam (µm) 338
Laser beam speed Vbeam (mm.min−1) 2000
Dwell time tdwell (s) 0
Laser beam power Pbeam (W) 250 (resp. 225)
Deposition temperature, see. (1) Tdep (K) 2511 (resp. 2260)
HTC part/air Hair (W.m−2.K−1) 15
HTC part/build platform Hbuild (W.m−2.K−1) 20000
HTC build platform/machine plate Hplate (W.m−2.K−1) 500

size as a function of the cooling rate (instead of using a single measured value for all the layers)
to take into account these opposite effects on phase transition kinetics for heterogeneous cooling
rates along the height of the structure. In the literature, various approaches have been proposed to
predict grain size, and some of them have been applied to additive manufacturing conditions [41].
A common approach proposed in [42] is to consider 1) nucleation of dendritic equiaxed grains
from preexisting impurities or voluntarily added particles in the melt, 2) grain growth according to
a simple analytic formula of the dendritic tip velocity [43], and 3) impingement using an Avrami
equation (i.e., the proportion of grains stopping to grow due to the proximity of an other grain).
However, this approach necessitates to postulate a size distribution of impurities in the melt, and
has mainly been developed and used for aluminum alloys, which makes difficult to find data for
duplex steels. Within the framework of fast simulation developed in this contribution a simpler
empirical approach [44] enables us to relate the grain size and the cooling rate during solidification
in the form of a power law:

R = R0

(
χ

Ṫsol

)n

(12)

Where χ and n are calibration coefficients, and Ṫsol is the average cooling rate during solidification.
This empirical formula has been calibrated within the context of additive manufacturing of a Ni
superalloy in [45], and for ferritic solidification in [46] for cooling rates ranging from 50 to 104

K.s−1. Since for the 2507 duplex steel, the primary solidification is fully ferritic, the estimate
reported in [46] (i.e., R0=1 µm, χ = 3.2 × 106 K.s−1 and n = 0.4) has been used as a basis for the
present study. From the EBSD map in figure 4, the average grain radius is roughly estimated to
around 9 µm so that the estimate is slightly modified to χ = 2.6×106 K.s−1. As already mentioned,
the cooling rate during solidification Ṫsol is computed for each layer by using the thermal analysis
proposed in [26] modified in this paper to better take into account the latent heat associated with
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solidification.
In addition, thermal properties of 2507 DSS (i.e., thermal conductivity and thermal diffusivity)

can be estimated as a function of temperature using softwares such as JMatPro [47] or from
experimental data as reported in [48]. In this study, thermal properties are estimated for the solid
phase from [48]. However, to the best of our knowledge there is no measurement of thermal
properties of liquid 2507 DSS. These properties are needed in (1) to estimate the deposition
temperature, which is expected to be higher than for 316L stainless steel used in [26, 28] as the
liquidus is higher. Thermal conductivity and diffusivity of the liquid phase are chosen as twice
the values of the solid state. The resulting value for the thermal diffusivity of the liquid may seem
high for a steel (i.e., 13×10−6 m2.s−1), but it is consistent with very low specific heat measured at
high temperature in [48].

Furthermore, diffusivity coefficients of alloying elements are classically given in the form of
Arrhenius laws:

D = D0 exp
(

− Q

R T

)
(13)

where R (J.mol−1.K−1) is the gas constant, D0 (m2.s−1) the pre-factor and Q (J.mol−1) the activation
energy. Pre-exponential factors and activation energies are extracted from the literature. Diffusion
properties of N in the δ and γ phase of a DSS have been measured between 350 to 500 ◦C in [49]
and at 1200 ◦C in [50]. A fit of (13) on the data provided in [49, 50] gives D0 = 2 × 10−6 m2.s−1

and Q = 117000 J.mol−1, and are assumed to be identical in both δ and γ phases as observed
in [49]. Furthermore, diffusion properties of Ni have been collected and analysed in [51] for
various Cr-Fe-Ni alloys. A parametric formula, which depends on the metal composition, has been
proposed in the spirit of the Calphad approach [52] and fitted on the experimental data. Using the
fitted formula in [51] and chemical composition in table 1 one obtains for Ni diffusion parameters:
D0 = 420×10−6 m2.s−1 and Q = 218000 J.mol−1 assumed to be identical for both δ and γ phases.
All material properties used in the proposed simulation are listed in table 3.

As already mentioned a ThermoCalc computation has been performed to quantify the equilib-
rium concentrations of the different alloying elements involved in the diffusion problem, which are
presented in figure 9.

5. Results analysis

In this section, the proposed thermal analysis and phase transition model are applied and
compared to the tested experimental conditions. The temperature history can be extracted at any
location in each layer. In this study to avoid to deal with large amounts of data, only the middle of
each layer is considered at the location where the samples have been extracted. The temperature
kinetics of the 1-st layer is presented in figure 10 for both tested conditions. Temperature cycles
clearly show that the temperature range where the δ → γ phase transition occur is reached several
times. Diffusion profiles of Ni are presented in figure 11 for the first layer at different times in order
to understand the diffusion mechanisms. The initial γ layer is fixed to 5 % of the total cell size R
in order to avoid extremely thin time discretization if nearly zero thickness were chosen. (Several
computations with different initial thicknesses show that 5 % leads to similar results with much
coarser time discretization than smaller initial austenite thicknesses). As already mentioned, the
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Table 3: Material parameters

Liquidus temperature Tliq (K) 1738
Solidus temperature Tsol (K) 1677
Thermal conductivity of the liquid metal λliq (W.m−1.K−1) 30
Thermal diffusivity of the liquid metal Dliq (m2.s−1) 13×10−6

Thermal conductivity of the solid metal λsol (W.m−1.K−1) 15
Thermal diffusivity of the solid metal Dsol (m2.s−1) 6.5×10−6

Density ρ (kg.m−3) 7830
Latent heat of fusion Lf (J.g−1) 300
Pre-exponential factor for N in (13) D0 (m2.s−1) 2×10−6

Activation energy for N in (13) Q (J.mol−1) 11700
Pre-exponential factor for Ni in (13) D0 (m2.s−1) 420×10−6

Activation energy for Ni in (13) Q (J.mol−1) 21800
Reference grain size in (12) R0 (µm) 1
Reference cooling rate in (12) χ (K.s−1) 2.6 × 106

Exponent in (12) n (-) 0.4
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Figure 9: Equilibrium concentration of Ni and N in mol %.

initial Ni concentration is uniform and equal to the bulk concentration 6.61 mol % (i.e., 7 wt %)
as listed in table 1. When the phase transition is assisted by N diffusion (i.e., red dot lines in
figure 11), Ni atoms diffuse from ferrite to austenite as the equilibrium concentration in the γ side
cγ

eq is larger than the initial bulk concentration. As a result, when the phase transition starts to be
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limited by Ni diffusion (i.e., red solid lines in figure 11), the Ni concentration in the austenite layer
is around 8 to 8.5 mol %, although the equilibrium concentration cγ

eq decreases. This results in
an additional driving force to move the δ/γ interface in the direction of austenite thickening, as
detailed in (10). In the δ side, when the phase transition is assisted either by N diffusion or by
Ni diffusion (i.e., blue dot and solid lines in figure 11), the equilibrium concentration of Ni cδ

eq is
lower than the initial bulk concentration, resulting in a driving force to move the δ/γ interface in
the direction of the austenite thickening.

0 2 4 61 3 5 70.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

2 000

1 000

200

400

600

800

1 200

1 400

1 600

1 800

2 200

2 400

2 600

0 0.020.01 0.030.005 0.015 0.025

2 000

1 000

800

1 200

1 400

1 600

1 800

2 200

2 400

2 600

Fully liquid

Solidification

Ferrite to austenite phase transition

250 W
225 W

Figure 10: Computed temperature cycles (left) and magnification (right) (1st layer, 250 W and 225 W).

A comparison between measured and computed γ phase fraction is presented in figure 12 as a
function of the position with respect to the build platform, where raw data presented in figure 7 have
been averaged to obtained a single value by layer as for the computation. A reasonable agreement
is observed for both the experiments corresponding to different laser powers (i.e., 225 and 250 W).
Lower power results in lower melt pool temperature and higher cooling rates, which tend to reduce
the amount of the product γ phase. However, this effect is mitigated by the fact that higher cooling
rates leads to finer grain structure, which promote faster phase transition. This explains the fact
that the difference between the measured phase fractions of both experiments is relatively small.

Heterogeneous phase fraction profiles are obtained according to the history of the temperature
field. The first layers cool down faster because of the influence of the build platform acting as
heat sink and resulting in lower γ phase fractions. Cooling rates decrease with the distance to the
build platform because the melt pool is further and further from the heat sink whose temperature
increases with time. This structural effect tends to a nearly steady state after more than half of the
total number of layers in the tested conditions.

Furthermore, the last few layers undergo less thermal cycling than previous layers due to the
interruption of fabrication, which results in a significant decrease of the transformed phase fraction.
Indeed, thermal cycling plays a significant role as shown in figure 13.
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6. Numerical investigation for controlling phase distribution

In section 5 the influence of laser power, other things being equal, has been demonstrated. In
this section, the effect of controlling the substrate temperature on the phase transition distribution is
numerically investigated in order to reach a more uniform and balanced δ/γ phase ratio. Excepted
for the tested parameter all process parameters are identical to those listed in table 2 (with laser
power Pbeam set to 250 W).

First the effect of preheating the build platform is investigated. That is to say that the initial
temperature of the build platform is prescribed, and then when the fabrication starts, the heating
device is shut down so that the build platform temperature naturally evolves with the laser input.
Three different initial build platform temperatures have been tested (300 K, which the reference
computation without preheating, 600 K and 800 K). Resulting γ phase fraction profiles are presented
in figure 14. It is clear that pre-heating enables to reach higher austenite phase fraction for the first
half of the part. Indeed, as a result of the build platform preheating lower cooling rates take in the
temperature range where N and Ni can diffuse leading to higher austenite phase fraction. However,
when the number of layers increases the local temperature around the melt pool becomes more
independent from the build platform temperature and therefore the austenite phase fraction tends
to stabilize near the reference computation. The main effect of a significant preheating of the build
platform is only to obtain slightly more uniform phase fraction distribution but without significantly
modifying the target δ/γ ratio in the stabilized region. To reach even more uniform phase fraction
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distribution in the part and ferrite to austenite phase ratios closer to 50/50, one can imagine to
control the substrate temperature during fabrication using heating/cooling device with a control
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loop. The proposed temperature profile linearly decreases from 1000 K for the first layer to 800 K
for the last layer. Results are presented in figure 14 and compared to the reference computation
without temperature control of the substrate. This example shows almost uniform phase fraction
distribution may be obtained with a ferrite to austenite phase ratio close to the targeted 50/50.
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600 K
300 K

Temperature control of the substrate
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Figure 14: γ phase fraction for different initial build platform temperatures and for controlled temperature of the build
platform.

Of course this simple analysis does not replace a proper parametric study for each specific part.
Indeed there is a complex interweaving between process parameters such as laser power and speed,
scanning strategy, dwell time, build platform temperature control etc., and properties of the build
such as the deposition temperature (see. equation (1)), layer height and thickness (as reported
for instance in [53]), grain size, all having a significant influence on the phase transition kinetics.
However, the tools proposed in this contribution enables to reach sufficiently short computation
time to be able to optimize the phase fraction ratio in DSS parts.

7. Conclusion

In this paper an experimental study enabled to characterise the microstructure (grain morphol-
ogy and austenite to ferrite ratio) in a super duplex stainless steel (i.e., SAF-2507) obtained by
directed energy deposition additive manufacturing. The thermal history in this fabrication process
being rather complex, heterogeneous phase fraction distributions have been observed, and higher
power is associated with higher austenite phase fraction. After around 50 layers phase fraction
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profiles tend to stabilize to a ferrite to austenite phase ratio near 55/45 for 250 W and 60/40 for
225 W.

Since such duplex stainless steel alloys necessitate ferrite to austenite phase ratio near 50/50 in
the entire part, a fast numerical approach (temperature and diffusion controlled phase transition)
has been developed to optimize process parameters in order to reach a more uniform phase fraction
distribution. Numerical results have been compared to the experiments and a reasonable agreement
has been observed. In addition, the model has then been tested to determine suitable temperature
control of the build platform in order to reach the desired phase fraction distribution. In addition,
the proposed simulation tool is sufficiently fast to consider parametric studies or optimization
loops in order to facilitate additive manufacturing of super duplex stainless steels and other alloys
undergoing diffusion controlled solid state phase transitions.
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Appendix A. Analytical solution of the substrate temperature

In this section the 1D heat conduction problem (2) with boundary conditions (3) and initial
condition (4) is solved analytically. Separation of variables enables to write the solution in the
form:

T n
sub(Z, t) =

N∑
j=1

(
T n

j cos
(

Z

Zj

)
+ T̃ n

j sin
(

Z

Zj

))
exp

(
−Dsub

Z2
j

t

)
+ T n

1
Z

hsub
+ T n

0 (A.1)

where T n
j , T n

1 , T n
0 are unknown coefficients to be determined. The boundary conditions (3) com-

bined with (A.1) lead to:(
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where: 
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Therefore, Zj are defined as successive positive roots of A+
j B−

j + A−
j B+

j = 0, and the following
relation holds: T̃ n

j = (A+
j /B+

j )T n
j . Thus the last coefficients to determine are T n

j . The initial
condition (4) involves the substrate temperature at the end of the previous layer deposition, which
reads:

T n−1
sub (Z, tn−1) =

N∑
j=1

T n−1
j fj

(
Z

Zj

)
exp

(
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Z2
j
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1
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0 (A.5)

where we defined the eigenfunctions:

fj : y 7→
(

cos(y) +
A+

j

B+
j

sin(y)
)

(A.6)

Because of orthogonality of the eigenfunctions fj with respect to the inner product (A.8) one
obtains:

Tj = T n−1
j exp

(
−Dsub

Z2
j

tn−1
)

+ T n−1
1 − T n

1
hsub

〈Z, fj〉
〈fj, fj〉
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0 − T n

0 ) 〈1, fj〉
〈fj, fj〉

(A.7)

where the usual inner product has been defined:

〈f, g〉 =
∫ hsub

2

− hsub
2

f(Z) g(Z)dZ (A.8)

Appendix B. Analytical solution of the diffusion problem

In this section the analytical solution of (5) subjected to boundary conditions (6) and initial
condition (7) is derived for slabs, cylinders and sphere (i.e., for q = 0, 1, 2). The equation is solved
by separation of variables and the solution reads:

cδ
k(x, t) =

N∑
j=1

cδ
j,k f
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x

xδ
j,k

)
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− Dδ
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(B.1)
where cδ

j,k, cγ
j,k, c̃γ

j,k are unknown coefficients, xδ
j,k, xγ

j,k are the eigenvalues to be determined, and f
and g are the following eigenfunctions:

q = 0 q = 1 q = 2

f(x) cos(x) J0(x) sin(x)
x

g(x) sin(x) Y0(x) cos(x)
x

(B.2)
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where Jp and Yp denote the p-th order Bessel functions of the first and second kind respectively.
Eigenvalues xδ

j,k, xγ
j,k are determined by using boundary conditions (6), which lead to:
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j,k

c̃γ
j,k

 =

 0

0

 (B.3)

hence non trivial solution are obtained by computing the roots of the matrix determinant in (B.3):

f

(
R − wk

xγ
j,k

)
g′
(

R

xγ
j,k

)
− f ′

(
R

xγ
j,k

)
g

(
R − wk

xγ
j,k

)
= 0 (B.4)

and:

c̃γ
j,k = −

f
(

R−wk

xγ
j,k

)
g
(

R−wk

xγ
j,k

) cγ
j,k (B.5)

Therefore the eigenvalues read:

q = 0 q = 1 q = 2

xδ
j,k

R − wk
π
2 + j π

R − wk

ζj

R − wk

j π

xγ
j,k

wk
π
2 + j π

wk

ξj

wk

χj,k

(B.6)

where ζj (1 ≤ j ≤ N ) are the positive successive zero of the 0-order Bessel function of the first
kind J0, which are known, χj,k are the positive successive roots of χ 7→ (χ − (wk/R)tan(χ)), and
ξj,k are the positive successive roots of ξ 7→ T1(R/wk ξ) − T0((R/wk − 1) ξ) (where Tp = Jp/Yp).
Therefore, it is clear from (B.6) that the eigenvalues xδ

j,k are fairly easy to compute for each time step
k as explicit formulae have been obtained. However, for q = 1, 2 the eigenvalues xγ

j,k necessitate
to numerically solve non-linear equations that depend on the time step k. Thus, the computation
cost is much higher if there is a large number of time steps. Fortunately for slabs (i.e., q = 0) the
eigenvalues xγ

j,k are also given explicitly, which enables to reach very short computation times.
Unknown coefficients cδ

j,k, cγ
j,k, c̃γ

j,k are determined by applying the initial condition (7). Con-
sidering the following orthogonality relations:

〈
f
(
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)
, f
(
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j,k

)〉δ

k
=
{

0 if i 6= j
6= 0 if i = j〈

f
(
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)
, f
(
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j,k

)〉γ

k
=
{

0 if i 6= j
6= 0 if i = j〈

g
(
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i,k

)
, g
(
x/xγ

j,k

)〉γ

k
=
{

0 if i 6= j
6= 0 if i = j〈

f
(
x/xγ

i,k

)
, g
(
x/xγ

j,k

)〉γ

k
= 0

(B.7)
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where the inner products are defined as follows:
〈f1, f2〉δ

k =
∫ R−wk

0
xqf1(x)f2(x)dx

〈f1, f2〉γ
k =

∫ R

R−wk

xqf1(x)f2(x)dx

(B.8)

the coefficients read: 

cδ
j,k =

〈
f(x/xδ

j,k), cδ
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〉δ

k〈
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ini,k(x)
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k〈
g(x/xγ

j,k), g(x/xγ
j,k)
〉γ

k

(B.9)

Using (8) along with (B.1) it is clear that cδ
ini,k, cγ

ini,k are given analytically and involves the same
eigenfunctions f and g, which enables to compute analytically the inner products in (B.9).

The update of the austenite thickness given in (11) reads:

wk = wk−1 + Dδ
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(B.10)
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