
HAL Id: hal-03768055
https://hal.science/hal-03768055

Submitted on 4 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Software Product Reliability Based on Basic Block
Metrics Recomposition

Tiziano Fiorucci, Giorgio Di Natale, Jean-Marc Daveau, Philippe Roche

To cite this version:
Tiziano Fiorucci, Giorgio Di Natale, Jean-Marc Daveau, Philippe Roche. Software Product
Reliability Based on Basic Block Metrics Recomposition. IEEE 28th International Sympo-
sium on On-Line Testing and Robust System Design (IOLTS 2022), Sep 2022, Turin, Italy.
�10.1109/IOLTS56730.2022.9897289�. �hal-03768055�

https://hal.science/hal-03768055
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Software Product Reliability Based on Basic Block
Metrics Recomposition

Tiziano Fiorucci1,2, Giorgio Di Natale2, Jean-Marc Daveau1, Philippe Roche1
1STMicroelectronics, 850 Rue Jean Monnet 38926 Crolles Cedex, France

2Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France

Abstract—In the context of functional verification, the focus
has always been on hardware and its ability to be both resilient
to errors and to recover from them autonomously. In order to
evaluate these characteristics, an extensive use of Fault Injection
tools is made to achieve clear and granular results. These testing
campaigns are carried out on the entire DUT and require a
consistent amount of time and computational resources. The
possibility of reducing these costs applying modern techniques
as the study of the Dysfunctional State Machine or the proof
of concept regarding the composability of single block fault
injection campaigns to obtain a library of component of which
the reliability metrics are well known, as already been extensively
discussed and proven on hardware. In this work instead the
application of this methodologies to software is presented for the
first time. In order to do so, the software has been divided into
basic block, atomic chunks of code having precise carachteristics
that will ensure the possibility to study them singularly and
then recompose them into a software product which reliability
metrics are known, without the need for complete Fault injection
campaign.

I. INTRODUCTION

In the last years the density of integration in VLSI sys-
tems and microprocessors performances have continuously
increased, thanks to the relentless technology scaling. Even
though this trend can only continue on its path, several con-
straints may obstruct the way (power, energy, performance), in
particular reliability (or cross-layer resilience) can become the
more relevant. Hardware redundancy can be used to manage
errors at the hardware architecture layer, and eventually even
software implemented error detection and correction mecha-
nisms can manage those errors that escalated from the lower
layers of the stack [1] [2]. Overall, the goal is to determine
the resilience of a particular system in determined conditions,
meeting the requirements considering its sensitivity to hard-
ware faults.

It is also true that software failures are not only caused
by software implemented faults, as it has been shown [3] the
propagation of hardware faults plays a central role, eventually
catastrophic. Base on what literature reports on hardware faults
evaluation reports [4] [5] it is possible to observe that the
percentage of software failure that are caused by pure hardware
faults average around 10% [6]. The most famous example is
surely the crash of the Mars Polar Lander [7], which cause
was established to be dependant on hardware faults resulting
in software failure. In that case the lander was not able to settle
the legs into their deployed position, which is an hardware
fault, and the software gave a wrong order to turn off the
engines in the air of Mars, which is a software fault. The
system crashed and the entire mission failed.

This paper not only wants to furthermore analyse the be-
haviour of software failure due to hardware propagated fault
but parallely to the main research [8] path that applies these
new methodology to Hardware design in order to simplify the

*Institut National Polytechnique Grenoble Alpes

reliability assessment, the idea of applying the same method
in the scope of the assessment of the reliability of software
has never been tested. In order to do so, there is the need to
specify the main characteristic that Software Products have,
fundamental to lay the basis for the described work. Every
software can be divided into basic block, atomic chunks of
software having the following proprieties:

• One entry point, meaning no code within it is the desti-
nation of a jump instruction anywhere in the program.

• One exit point, meaning only the last instruction can cause
the program to begin executing code in a different basic
block.

Under these circumstances, whenever the first instruction in
a basic block is executed, the rest of the instructions are
necessarily executed exactly once, in order. The code may
be source code, assembly code, or some other sequence of
instructions. More formally, a sequence of instructions forms
a basic block if:

• The instruction in each position dominates, or always
executes before, all those in later positions.

• No other instruction executes between two instructions
in the sequence. This definition is more general than
the intuitive one in some ways. For example, it allows
unconditional jumps to labels not targeted by other jumps.
This definition embodies the properties that make basic
blocks easy to work with when constructing an algorithm.

The blocks to which control may transfer after reaching the
end of a block are called that block’s successors, while the
blocks from which control may have come when entering a
block are called that block’s predecessors. The start of a basic
block may be jumped to from more than one location. Laid
these basis, if, as we’ll show in this paper, the reliability metrics
extracted for each basic block can be recomposed just knowing
the sequence of block required to execute a precise operation,
the need for a fault injection campaign on the entire software
product doesn’t stand anymore.

This paper is organised as follows: the current state of the art
is summarised in section II; section III describes the proposed
methodology, including its setup, the fault injection procedure
and the re-composition of the results from each basic block; a
test case is provided in Section IV, while Section V presents
the obtained results and sketches some perspectives.

II. STATE OF THE ART

The rush to develop a methodology to assess the reliability
and availability of electronic systems has speed up together
with the increasing complexity of the microelectronic systems
and the miniaturization of such devices. In particular an eye has
been keep onto the propagation of faults throughout the entire
stack of layers that compose the system as whole, starting from
the technological layer all the way up to the software/applica-
tion layer passing through hardware. In particular the extraction



of reliability metrics for software has been the focus of a
consistent thread of research [6] [9] [10] that aimed to verify:

1) whether the software respects the specification require-
ments,

2) the improvement of the software quality and,
3) the reliability of the software
Tools to verify the reliability of software, defined as the

probability of the correct software performances for specific
period of time on specific environments, have been already
developed. In particular the SyRA [11] Cross-Layer Soft Error
Resilience evaluation framework proposes a solid method to
move from the industrial level Cross-Layer evaluation tech-
niques that are still mainly guided by the sole experience of
the designers [1]. These methods are all based on the use of
fault injection tools, and they all produce satisfying results in
their fields. Nevertheless they have limitation, the description
of the Software Fault Models have always been based on the
simulation of propagation from the hardware architecture up to
software routines, assessing their impact in the correctness of
the computation as in [12] [13] [14]. Moreover no attention has
been given to the enormous effort that this type of campaign
require, in terms of time, licences for tools and computational
power, for an assessment that is limited to the hardware the
application is running on and most importantly on the inputs
the software receives to perform its calculation. This makes the
assessment completely not re-usable in the future requiring a
completely new set of campaigns.

Here the focus will be, instead, put on how the software
computation reacts to the vulnerable hardware underneath and
most importantly to the de development of a methodology
like there are no other example in the related research, the
possibility of decomposing the software products to abstract
the single basic blocks and perform a reliability assessment on
the single, apparently meaningless blocks to then recompose
them obtaining the reliability assessment with a huge time and
computational power advantage with respect to the existing
methods.

III. METHODOLOGY

The Classical reliability assesment of Hardware as well
as Software is Fault Injection driven. The extensive usage
of commercial fault injection tools like the ones provided
by Cadence [15] or Synopsys [16] guarantees the proper
exploration of the behaviour of the DUT when subject to SEU
or other types of faults. This allows the Verification Engineers
to have an idea of the behavior of their design without the
need to move onto practical testing in radiation environments,
which require a dedicate setup [17] and an expensive and not
widely available infrastructure.

These advantages come at two main costs, time and Com-
putational Power, which are comsumed in great quantities by
the above mentioned simulators. Attempts of Optimization and
Parallelization have been put in practice before, but they are
not tackling the bigger overhead that we need to take care of
every time we simulate a design. Let us assume that, as shown
in Fig:3 there is the need to test and entire Software Product
composed of n basic blocks, this simulation will last as long as
the time to initialize Tinit plus the time of the checker/footer
to be executed Tfoot plus the sum of the duration of all basic
blocks multiplied by their multiplicity through the program
mn · Tbbn . All multiplied by the number of runs that the
simulator has to perform to achieve the desired number of
injections I , resulting in:

Tcampaign = I ·

[
Tinit + Tfoot +

N∑
0

mn · Tbbn

]
(1)

In which the entire program is executed every time entirely,
the method proposed by this paper consist in a fragmented
study of the basic blocks composing the software, extracting
the same metrics that would be extracted by the same fault
injection campaing on the whole Software. In this case, in the
same way we did before, it is possible to calculate the time
needed to carry out the fault injection campaign as we have
defined it now, on separate basic blocks, each of them having
their random initialization and checker to ensure functionality.

I ·

[
Tinit + Tfoot +

N∑
0

Tbbn

]
(2)

In this way we have drastically reduced the amount of
time needed to perform the same amount of fault injections,
just focusing on the single blocks. Moreover, the difference
between the two previously calculated timings, will give us
the benefit of studying the blocks singularly, as follow:

I ·

[
N∑
0

mn · Tbbn

]
− I ·

N∑
0

Tbbn =

= I ·

[
N∑
0

mnTbbn −
N∑
0

Tbbn

]
=

= I ·
N∑
0

Tbbn · (mn − 1)

(3)

which means that we save the time needed for the execution
of each basic block multiplied by its multiplicity, minus one
that we still have to execute. Clearly this saved time increases
with the length of the Software and therefore the multiplicity
of the blocks. In particular, the length of the Fault injection
campaign on the entire software is linear with respect to the
increasing of multiplicity of the basic blocks, for example due
to a larger data input, whereas the solution proposed in this
paper is linear with respect to the overall number of unique
basic blocks, which remain the same regardless of the data.

A. Setup
The first step towards the application of the method de-

scribed in the previous section, is the identification and of
the different basic block that compose the Software Product
under analysis. This can be easily carried out automatically
by a simple parser. Basic Block at Assembly level are easy to
identify and parse thanks to their intrinsic definition of linear
chunks of code. It is therefore trivial to identify in the code
all those instructions that modify the flow of the program,
tearing down the hypothesis of linearity that defines the blocks
themselves. For instance, all the jumping and branching point
define the end of a block, as well as the beginning of the
following one. Labels in the code also identify starting point
of basic block, as they are frequently arrival points for the
above mentioned jump and branch operations.

1 addi sp,sp,-48 \\Beginning of BB_1
2 sw s0,44(sp)
3 addi s0,sp,48
4 li a5,3
5 sw a5,-48(s0)
6 li a5,5
7 sw a5,-44(s0)
8 li a5,1
9 sw a5,-40(s0)

10 li a5,2
11 sw a5,-36(s0)
12 li a5,4
13 sw a5,-32(s0)
14 sw zero,-20(s0)



15 j .L2 \\End of BB_1
16 .L6: \\Beginning of BB_2
17 sw zero,-24(s0)
18 j .L3 \\End of BB_2
19 .L5: \\Beginning of BB_3
20 lw a5,-24(s0)
21 slli a5,a5,2
22 addi a4,s0,-16
23 add a5,a4,a5
24 lw a4,-32(a5)
25 lw a5,-24(s0)
26 addi a5,a5,1
27 slli a5,a5,2
28 addi a3,s0,-16
29 add a5,a3,a5
30 lw a5,-32(a5)
31 bge a5,a4,.L4 \\End of BB3

Listing 1: Example of software

For example, the chunk of code reported in [listing1] Includes
3 basic blocks as divided in the comments, having as extremes
the jumping/branching operations as well as lables.

Standalone
Basic Block Test

BB#n Init

branch

BB#n

Random Init
of Resources

Scope of
Fault Inj.

Footer/Checker

Fig. 1: Block Diagram of the Entire SW Product

Although having the set of basic blocks divided in single
file may seem sufficient, there still the need to initialize all the
resources that both the processor and the basic block itself
need to run properly, as well as a control logic to ensure
that the functionalities of the basic block are preserved (or
not) throughout the course of the fault injection campaign. As
Shown in fig:2 a random initialization is included in the header
for the basic block, ensuring the non dependability of the
reliability metrics extracted on the input data, together with a
footer that checks the functionalities of the block itself. Notice
that in in this case, contrary of what is done in the Hardware
methodology, there is no physical probing of the circuit on
which the program or the testbench is running. In this study
only the functional aspect of the Software Product under test
is observed.

B. Fault Injection on Randomly Initialized Resources

Fault injection is the mean by which the misbehavior and
faulty execution is provoked on purpose on digital systems. In
the past, especially on hardware, fault injection was aimed to
functionally verify the designs under test. Those DUT were
analysed, their functions (data dependent) extracted and inputs
were selected in order to exercise those functions. Later on
the fault injection had the role of determining whether those
functions were preserved in cases of fault or how eventually
they were modified. Today this is still the state of the art for
software verification.

With time a second approach on hardware was presented,
testing moved from functional to structural, where the integrity
of the device is evaluated, regardless of the function (and

Software Product

BB#1 Init

branch

BB#1

branch

BB#n-1

branch

BB#n

Random Init
of Resources

Scope of
Fault Inj.

Footer/Checker

Fig. 2: Block Diagram of the Entire SW Product

therefore of data), verifying solely the implemented boolean
function.

The methodology introduced in this paper presents the
novelty of applying this structural approach to software. To
abstract the basic block as much as possible from its link to
data, every resource utilized has been randomized before
each fault injection. The probability of failure and propagation
probabilities are therefore extracted independently of their
data input.

Probes (i.e., observation points) are defined during the
setup of the fault injection campaign. It is the role of the
Footer/Checker (out of the scope of the fault injection) to
redirect the output of the block function into a reserved portion
of the memory to be probed. Probes are set on those reserved
memory location on all blocks, not probing the correctness of
the data with respect to the golden run, but solely if the basic
function included in that portion of code has been affected by
the fault injection.

C. Re-Composition of the basic blocks
Once the fault injection campaigns are over, it is time to re-

compose the information that have been extracted on the single
blocks into a complete description of the original Software
Product. To perform the re-composition there is the need run
the software once and record the trace, this will allow us to
know exactly the sequence in which the basic blocks have been
executed during the nominal run.

We distinguish two main branches of the re-composition, the
ones containing fault that do not modity the program flow and
those that lead to a modified program flow

1) Not modified Program Flow: First we nee to define the
probability of being executing a precise basic block in time
during the execution of the program. Assuming a deterministic
duration per executed instruction, without nested or hidden
operation, we can define the probability of executing BBn

as
Pin−bbn =

instructions− in−BBn

total − instruction− in− exe
(4)

Next step is to define the probability of a fault happening in
BBn being able to become an error in the same block. This has



been deduced from fault injection and must be differentiated
per every register in which we inject faults and it represented
as:

PAm

gBBn
(5)

Last probability to define is the probability of a block to receive
a wrong input and propagate it to its output. Defined as:

PAm

pBBn
(6)

which is related to the ”time of life” of the variables, defined
as the number of basic block between the last time a variable
has been read and the first time it gets overwritten.

Once these probabilities ha been defined we can describe
the worst possible case, in which a fault is injected in BBn

and gets propagated throughout the whole program.

Pin−bbn ∗ PAm

gBBn
∗
[
PAm

pBBn+1
. . . PAm

pBBf

]
+

+ Pin−bbn+1 ∗ P
Am

gBBn+1
∗
[
PAm

pBBn+2
. . . PAm

pBBf

]
. . .

(7)

which summarizes, per every register Am as:

N∑
n=0

Pin−bbn ∗ PAm

gBBn
∗

[
N∏
i=n

[
PAm

pBBi+1

]]
(8)

Ptot = [Pin−bb−x ∗ Pp−bbx] + [Pp−bbx+1 ∗ Pp−bbx+1] . . . (9)

2) Modified Program Flow: Regarding the possibility of
having a fault injected on a register while the program is
executing a precise Basic Block that requires a branching oper-
ation at the end, we cannot consider them while recomposing
the metrics as in the previous subsection.

These blocks contribute instead to the composition of a
particular subset of runs (diverse behaviour of the program)
which include all those runs in which the program simulation
has reached the end in a time that differs from the nominal
one. In particular, it can be shortened due to a premature
jump to the conclusive part of the program as well as delayed
due to an incorrect loop that sends the machine into a non-
necessary series of states from which it will eventually recover.
In the case in which the machine would not be able to
recover, we categorize those runs as Timeouts (when longer
than 150% of nominal time). It worth to point out that, due
to the nature of the injections, which focus on the Register
file, with one SEU per run, these cases are reduced to the
minimum, if not nonexistent. Give these assumptions, taking
into account this second section of Basic Blocks, it is possible
to assume that most, if not all of these runs will generate a
failure in the functionalities of the program itself. therefore
the recomposition, that was missing a good half of what was
neded, now finds the missing cases in all those blocks that led
to a modification in the flow.

In particular, considering the possibility that this blocks have
not to propagate (to mask) a fault occurring in the course
of their routine, the event of flow corruption has probability
1 − Pmasking , then the probability of these fault becoming
a funcional error is 100% and it does not propagate. In this
case the recomposition technique is slightly different than the
previous section, as the case of a missed branch or jump leads
directly to an error. So defined the multiplicity of the same
critical block in the nominal sequence m, the probability of
having a functinoal failure is described by:

Perr+Pmsk∗Perr+(Pmsk)
2∗Perr · · ·+(Pmsk)

m∗Perr (10)

Taking into accoun the approximation due to the algorithm
intrinsic ability to recover from a flow error.

IV. TEST CASE AND APPLICATION

A. The Software
The Software of choice for the Proof of Concept of this

methodology is the Bubble Sort Algoritm, in its Assembler
for RISC-V Version of the C code reported Below.

1 #include <stdio.h>
2

3 int main()
4 {
5 int arr[5];
6 arr[0] = 3;
7 arr[1] = 5;
8 arr[2] = 1;
9 arr[3] = 2;

10 arr[4] = 4;
11

12 int tmp;
13

14 for(int i = 0; i < 4; i++){
15 for(int j = 0; j < 4 - i; j++){
16 if(arr[j] > arr[j + 1]){
17 tmp = arr[j];
18 arr[j] = arr[j + 1];
19 arr[j + 1] = tmp;
20 }
21 }
22 }
23 return 0;
24 }

Listing 2: Implemented Algoritm

Bubble sort is an O(n2) sorting algorithm. A simple sorting
algorithm that performs a one-way comparison of two adjacent
records from the head to tail of the disordered part in each
sort trip. Of course, the direction can also be the contrary,
one-way comparison from the tail to head of the disordered
part. This will form gradually an ordered table at the head of
the disordered table, and the basic idea of the algorithm has
no difference with the foregoing [18]. The implementation in
Assembler is not reported in this paper due to lenght, but the
code results to be organized as follow:

• .main - Create stack and initialize the parameters arr[]
and i in stack memory

• .L2 - If i < 4 jamp to .L6, else free the stack memory
then return

• .L6 - Initailize parameter j in stack memory
• .L3 - If (j - i) < 4 jump to .L5, else i++ and go to .L2

to check i
• .L5 -

– Compare arr[j] to arr[j+1]
– If arr[j+1] < arr[j]

∗ Store arr[j] to tmp
∗ Assign arr[j+1] to arr[j]
∗ Assign tmp to arr[j+1]
∗ Go to .L4 to execute j++ then check j

– If arr[j+1] > arr[j]
∗ Jump to .L4 and execute j++ then check j

• .L4 - Jump to .L4 and execute j++ then check j

B. The Division in Basic Block
The processing of dividing the Software under test into

basic block has been carried out automatically and returned
8 different blocks, together with the list of resources that each
and every basic blocks utilizes during its own functions. After
a Nominal run without faults of the entire software, it was
possible to trace the transition between the different basic
blocks throughout the whole execution. These information,
summarized in the scheme below, will be the key to predict
the behaviour of the program starting from the behaviour of
the basic blocks themselves.



TABLE I: Result of Fault Injection on basic blocks

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x31
bb 0 0 0 139 0 0 0 0 0 379 0 0 0 0 0 0 162 0 ... 0
bb 1 0 0 0 0 0 0 0 0 500 0 0 0 0 0 0 0 0 ... 0
bb 2 0 0 0 0 0 0 0 0 269 0 0 0 0 28 14 38 0 ... 0
bb 3 0 0 0 0 0 0 0 0 500 0 0 0 0 16 131 244 0 ... 0
bb 4 0 0 0 0 0 0 0 0 495 0 0 0 0 0 0 62 0 ... 0
bb 5 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 ... 0
bb 6 0 0 0 0 0 0 0 0 494 0 0 0 0 0 0 41 0 ... 0
bb 7 0 0 0 0 0 0 0 0 466 0 0 0 0 0 0 0 0 ... 0

TABLE II: Comparison of Fault Injection data vs Recomposed data on Entire Software

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x31
FI 0 0 4 0 0 0 0 0 221 0 0 0 0 15 41 90 0 ... 0
Reco 0 0 5 0 0 0 0 0 228 0 0 0 0 13 44 98 0 ... 0

TABLE III: Control Flow Driven Errors

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x31
FI 0 0 0 0 0 0 0 0 198 0 0 0 0 4 77 90 0 ... 0

BB 0

BB 1

BB 3

BB 4

BB 5

BB 6
BB 7

BB 2

Fig. 3: Block Diagram of the Entire SW Product

C. The Platform
The choice of the platform on which the program has been

run and tested fell on the SCR1SOC. SCR1 is an open-source
and free to use RISC-V compatible MCU-class core, designed
and maintained by Syntacore. It is industry-grade and silicon-
proven (including full-wafer production), works out of the box
in all major EDA flows and Verilator, and comes with extensive
collateral and documentation []. This choice had mostly been
driven by the larger and larger usage of these kind of RISCV
based cores in the academic community. Any test based on
these platforms is and added value to their development.

D. The Fault Injection Campaign
The next step in the methodology is fault injection. It is

performed using Cadence fault injection tool FSV [15]. Once
fault injection sites are automatically identified from the RTL
description, fault injection is performed and 20 faults are
injected per identified site using a custom pre-generated fault
dictionary, including a random injection time. An in-house tool
build on top of the GSL [19] has been developed for this
purpose. Such number is statistically significant enough [20]
without compromising fault injection campaign running time.
Faults are injected on the integrity of the register file, mimic
as well the possibility of faults propagated to the memory and
back. Also, fault probes are set on non excerciced memory

location to record which injected faults will cause a functional
failure of the basic block. For each fault injection run, a logfile
is generated which reports the outcome of the run, later a
custom made parsing tool will recollect the data from this
logfile and present the results to the re-composition tool.

V. RESULTS AND FUTURE WORK

The results of the recomposition are based on Table:1, which
summarizes the result of the fault injection campaign that
has been carried out on the single basic blocks. Each entry
of the table enumerates the number of functional error on
caused by each register in the register file, keeping in mind
that every bit in the register has been affected by 20 faults
randomized in time, for a total of 640 faults per register. Once
these table has been given to the recomposition tool, Table:2 is
returned, including the benchmark fault injection campaign on
the entire Software Product for validation of results together
with the expected number of faults, calculated following the
methodology described. Last, Table:3 Reports the number of
Errors that have been caused by an error in the flow of the
program, which can be extracted by an equivalent of table
number 1 for flow errors caused by each register failing in
each basic block and recomposed as in its dedicated section.

The last part of the methodology will be the focus of the
work to come, as includes the implicit ability of the different
algorithms to recover from flow errors, which understanding
can lead to much more refined results.

REFERENCES

[1] Eric Cheng, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher,
Hyungmin Cho, Kevin Skadron, Mircea R. Stan, Klas Lilja, Jacob A.
Abraham, Pradip Bose, and Subhasish Mitra. Clear: Cross-layer ex-
ploration for architecting resilience: Combining hardware and software
techniques to tolerate soft errors in processor cores. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2016.

[2] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muham-
mad Shafique, Mehdi Tahoori, and Norbert Wehn. Reliable on-chip
systems in the nano-era: Lessons learnt and future trends. In 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–10,
2013.

[3] Jinhee Park, Hyeon-Jeong Kim, Ju-Hwan Shin, and Jongmoon Baik.
An embedded software reliability model with consideration of hardware
related software failures. In 2012 IEEE Sixth International Conference
on Software Security and Reliability, pages 207–214, 2012.



[4] Mojtaba Ebrahimi, Abbas Mohammadi, Alireza Ejlali, and Seyed Ghas-
sem Miremadi. A fast, flexible, and easy-to-develop fpga-based fault in-
jection technique. Microelectronics Reliability, 54(5):1000–1008, 2014.

[5] Mojtaba Ebrahimi, Maryam Rashvand, Firas Kaddachi, Mehdi B.
Tahoori, and Giorgio Di Natale. Revisiting software-based soft error
mitigation techniques via accurate error generation and propagation
models. In 2016 IEEE 22nd International Symposium on On-Line
Testing and Robust System Design (IOLTS), pages 66–71, 2016.

[6] Maha Kooli, Firas Kaddachi, Giorgio Di Natale, Alberto Bosio, Pascal
Benoit, and Lionel Torres. Computing reliability: On the differences
between software testing and software fault injection techniques.
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO),
50:102–112, May 2017.

[7] M. Blackburn, R. Busser, A. Nauman, R. Knickerbocker, and R. Ka-
suda. Mars polar lander fault identification using model-based testing.
In Eighth IEEE International Conference on Engineering of Complex
Computer Systems, 2002. Proceedings., pages 163–169, 2002.

[8] Tiziano Fiorucci, Jean-Marc Daveau, Giorgio di Natale, and Philippe
Roche. Automated dysfunctional model extraction for model based
safety assessment of digital systems. In 2021 IEEE 27th International
Symposium on On-Line Testing and Robust System Design (IOLTS),
pages 1–6, 2021.

[9] Maha Kooli and Giorgio Di Natale. A survey on simulation-based fault
injection tools for complex systems. In 2014 9th IEEE International
Conference on Design Technology of Integrated Systems in Nanoscale
Era (DTIS), pages 1–6, 2014.

[10] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis, M. Kooli, A. Savino,
G. Politano, A. Bosio, G. Di Natale, D. Gizopoulos, and S. Di Carlo.
Cross-layer reliability evaluation, moving from the hardware architec-
ture to the system level: A {CLERECO} {EU} project overview.
Microprocessors and Microsystems, 39(8):1204 – 1214, 2015.

[11] A. Vallero, A. Savino, A. Chatzidimitriou, M. Kaliorakis, M. Kooli,
M. Riera, M. Anglada, G. Di Natale, A. Bosio, R. Canal, A. Gonzalez,
D. Gizopoulos, R. Mariani, and S. Di Carlo. Syra: Early system
reliability analysis for cross-layer soft errors resilience in memory arrays
of microprocessor systems. IEEE Transactions on Computers, 68(5):765–
783, 2019.

[12] Shubu Mukherjee. Architecture Design for Soft Errors. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[13] N.J. Wang and S.J. Patel. Restore: Symptom-based soft error detection
in microprocessors. IEEE Transactions on Dependable and Secure
Computing, 3(3):188–201, 2006.

[14] S. Mirkhani, M. Lavasani, and Z. Navabi. Hierarchical fault simulation
using behavioral and gate level hardware models. In Proceedings of the
11th Asian Test Symposium, 2002. (ATS ’02)., pages 374–379, 2002.

[15] Cadence. https://www.cadence.com/en US/home.html.
[16] Synopsys zo1x. https://www.synopsys.com/verification/simulation/

z01x-functional-safety.html.
[17] Marco Ottavi, Dario Asciolla, Tiziano Fiorucci, Elena Grosso, Carla

Marzullo, Alessandro Scaramella, Simone Stramaccioni, Alessia Zibec-
chi, Carla Andreani, Gian Carlo Cardarilli, Carlo Cazzaniga, Luca
Di Nunzio, Rocco Fazzolari, Marco Re, Pedro Reviriego, Gianluca
Furano, and Roberto Senesi. Setup and experimental results analysis
of cots camera and srams at the isis neutron facility. In 2018 13th
International Conference on Design Technology of Integrated Systems
In Nanoscale Era (DTIS), pages 1–4, 2018.

[18] Wang Min. Analysis on bubble sort algorithm optimization. In
2010 International Forum on Information Technology and Applications,
volume 1, pages 208–211, 2010.

[19] Gsl, gnu scientific library. https://www.gnu.org/software/gsl/.
[20] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault

injection: Quantified error and confidence. In 2009 Design, Automation
Test in Europe Conference Exhibition, pages 502–506, 2009.


