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Abstract When querying Knowledge Bases (KBs), users are faced with large sets
of data, often without knowing their underlying structures. It follows that users
may make mistakes when formulating their queries, therefore receiving an un-
helpful response. In this paper, we address the plethoric answers problem, the
situation where the user query produces significantly more results than the user
was expecting. The common approach to solving this problem, i.e. the top-K ap-
proach, reduces the query’s result size by applying various criteria to select only
some answers. This selection is performed without considering the causes produc-
ing plethoric answers, and can therefore miss an underlying issue within the query.

We deal with this problem by proposing an approach that identifies the parts
of the failing query, called Minimal Failure Inducing Subqueries (MFIS), that cause
plethoric answers. As long as the query contains an MFIS, it will fail to reach
a sufficiently low amount of answers. Thus, thanks to these MFIS, interactive
and automatic approaches can be set up to help the user in reformulating their
query. The dual notion of MFIS, called Maximal Succeeding Subqueries (XSS), is
also useful. They provide queries with a maximal number of parts of the original
query that return non plethoric answers. Our goal is to compute MFIS and XSS
efficiently, so that they may be used to solve the plethoric answers problem. We
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show that computing this information is an NP-hard problem. Thus a baseline
exhaustive search method cannot be used for most queries. We propose two al-
gorithms that leverage properties of queries and data to compute MFIS and XSS
efficiently for queries of reasonable size. We show experimentally that our two al-
gorithms clearly outperform a baseline method on generated queries as well as real
user-submitted queries.

Keywords Knowledge bases · RDF data · SPARQL queries · Plethoric answers ·
MFIS · XSS

1 Introduction

A Knowledge Base (KB) is a collection of entities and facts about them. With the
development of the Semantic Web, numerous KBs have been created in academic
and industrial areas. Well known examples of KBs include DBpedia (Lehmann
et al., 2015), and LinkedGeoData (Auer et al., 2009). These KBs store information
using RDF triples (subject, predicate, object) and are queried with the SPARQL

language (Harris and Seaborne, 2013) using triple patterns which are triples con-
taining variables. KBs typically store billions of facts and are often structured
using an ontological schema and rules, such as those provided by RDFS (Brickley
and Guha, 2014) or OWL (Bechhofer et al., 2004).

A new end user querying a KB is often unfamiliar with the KB’s structure and
the data within it. As such, mistakes or misconceptions can manifest in queries,
and cause unexpected or unsatisfactory answers. Mistakes refer to the user incor-
rectly writing their query, for example creating an unwanted Cartesian product
by omitting a triple pattern, or misspelling a term. Misconceptions represent the
difference between a user’s view of a KB, and its reality (Webber and Mays, 1983).
For instance if in a hospital database, the property treats can only link a Doctor

to a Patient, and a user writes a query based on the patients that a Nurse treats,
they will be frustrated to receive no answers. Alternatively, a user may believe
that the property birthPlace uniquely describes a person’s town of birth whereas
in the KB birthPlace is used for the country, county, town, and address of birth.
A query involving birthPlace will overwhelm the user by producing four times as
many answers as expected. The issue of unexpected answers is one of the chal-
lenges to database system usability (Jagadish et al., 2007). There are five types of
unexpected answer problems, each associated with a why-question.

1. The query returns no answers (why-empty).
2. The query returns too few answers (why-so-few).
3. The query returns too many answers (why-so-many).
4. An expected or desired answer is missing from the result (why-not).
5. An unexpected or unwanted answer is included in the result (why-so).

We focus here on the the third problem, also referred to as the plethoric answers
problem, where users struggle to extract useful information from an overwhelming
result. A query’s result is said to be plethoric when it contains more than K an-
swers. This threshold, K, can be user-defined and expressed within the query or set
by default by the SPARQL endpoint. A study of DBpedia queries collected over
two months in 2010 (Saleem et al., 2015) shows that over ten thousand queries
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with non empty answers return more than 100 answers, which is the default limit
for the DBpedia SPARQL endpoint.

State-of-the-art methods to tackle the plethoric answers problem rely mainly
on ordering or categorizing results and selecting an adequately sized subset of
answers to be returned to the user. These methods are called top-K methods.
Solutions vary by the way results are ordered, and the extent of user involvement.
They guarantee that the number of answers will be less than or equal to K. Yet,
if a query is based on a misconception from the user, no ordering or classification
strategy will solve the underlying problem. In this paper, we claim that the first
step to solve the plethoric answers problem should be to understand why the query
produces a plethoric answer. Our failure causes can be directly provided to users, in
an effort to educate them in formulating their queries, or more generally whenever
a user wants to understand why their query produced plethoric answers. They can
also be used as a basis for automatic or interactive query rewriting, in order to
avoid suggesting queries which are known to fail. By pinpointing the parts of the
query that need refining, this method can accelerate the process of query rewriting.
The identification of failure causes has been studied in the context of the empty-
answers problem, using the notion of Minimal Failing Subqueries (MFS). This
notion is not directly relevant to the plethoric answers problem, as the presence
of an MFS does not necessarily cause a query to fail. Therefore a new definition
of failure causes is necessary to deal with plethoric answers.

Drawing on previous work on the empty-answers problem in KBs (Fokou et al.,
2015), we have introduced the basis of a cooperative method to deal with the ple-
thoric answers problem in a previous paper (Parkin et al., 2021). In this paper we
provide an extended presentation of our method with the following contributions.

1. We provide two cooperative notions that can be used to help with query rewrit-
ing: the smallest subqueries that cause plethoric answers (Minimal Failure In-
ducing Subqueries, or MFIS) and the largest subqueries which do not produce
plethoric answers (maXimal Succeeding Subqueries, or XSS). We show that
the enumeration of MFIS and XSS is an NP-hard problem.

2. We propose an algorithm to compute MFIS and XSS, using query properties
to avoid executing some subqueries. This algorithm is further improved using
predicate cardinalities, a data property, when such information is available.

3. We evaluate our algorithms extensively, using three triplestore implementa-
tions, with queries generated for the WatDiv synthetic dataset (Aluç et al.,
2014), and user-submitted DBpedia queries from the Linked SPARQL Queries

Dataset logs (Saleem et al., 2015).

This paper is organized as follows. Section 2 gives a motivating example that
will illustrate our proposal throughout the paper. Section 3 details related work.
We formalize our problem in section 4. Section 5 presents our approaches to calcu-
late MFIS and XSS. Section 6 shows how SPARQL operators can be accounted for.
Section 7 describes the experimental evaluation of our algorithms. We conclude
and introduce future work in section 8.

2 Motivating Example

For our example, we consider a hospital KB, and a user wanting information on
the relationships between doctors, nurses and patients. We show in figure 1b an
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subject predicate object

d1 experience 14
d1 supervises n3

d1 supervises n2

d1 treats p1

d1 treats p2

d2 experience 25
d2 supervises n2

d2 treats p3

d3 supervises n1

n1 type SurgicalNurse
n1 providesCare p1

n1 operativeRole Instrument
n2 type ERNurse
n2 providesCare p2

n2 providesCare p3

n3 type ERNurse
n3 providesCare p2

n3 providesCare p3

(a) Database D

SELECT * WHERE {
?d treats ?p . # t1
?d experience ?e . # t2
?d supervises ?n . # t3
?n providesCare ?pt . # t4
?n service ERNurse } # t5

(b) Query Q = t1t2t3t4t5

?d ?p ?e ?n ?pt

d1 p1 14 n3 p3

d1 p2 14 n3 p3

d1 p1 14 n3 p2

d1 p2 14 n3 p2

d1 p1 14 n2 p2

d1 p2 14 n2 p2

d1 p1 14 n2 p3

d1 p2 14 n2 p3

d2 p3 25 n2 p2

d2 p3 25 n2 p3

(c) Evaluation of Q on D

Fig. 1 A KB, a SPARQL query and its results

example of a user query defined as a conjunction of triple patterns Q = t1∧t2∧t3∧
t4∧ t5 (or t1t2t3t4t5 in short), and in figure 1a a simplified KB D. When executing
Q on our dummy KB (containing only three doctors and four patients), the query
produces 8 results. They are shown in figure 1c. Using a real KB containing a
hundred doctors, with tens of patients each, this query would produce thousands
of results, which would be unmanageable for the user. To illustrate our method, we
set a small threshold of plethoric answers K = 3, so Q is considered failing as its
number of results exceeds this threshold. We can apply a top-K method to reduce
the number of results. Several ordering strategies could be used, such as ordering
doctors alphabetically. In the example, this method would only return information
regarding a single doctor, and information concerning a small number of doctors in
the real-world situation. Our approach will focus on explaining plethoric answers
so that the query can be modified to return fewer answers.

We want to identify failure causes, which are the subqueries that are never
included in a subquery which succeeds. Figure 2 shows the number of results of
each subquery of the initial query from our example. In this particular example,
our solution aims at providing the following concise feedback:

– asking for both patients (variable p) and nurses (variable n) in the same query
produces plethoric answers,

– listing patients (variable pt) nurses care for (predicate providesCare) gives
plethoric results.

Each failure cause must be resolved in order to reach the desired number of
answers. In practice, this feedback is provided to the user as subqueries, that is
to say as subsets of predicates that, when occurring together in the context of the
original query, necessarily produce plethoric answers. These subqueries are called
Minimal Failure Inducing Subqueries (MFIS). In this example, the three MFIS
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1
∅

3 3 3 5 2

t1 t2 t3 t4 t5

3 5 15 6 3 15 6 6 3 4

t1t2 t1t3 t1t4 t1t5 t2t3 t2t4 t2t5 t3t4 t3t5 t4t5

4 15 6 18 5 12 6 3 12 6

t1t2t3 t1t2t4 t1t2t5 t1t3t4 t1t3t5 t1t4t5 t2t3t4 t2t3t5 t2t4t5 t3t4t5

10 5 12 10 6
t1t2t3t4 t1t2t3t5 t1t2t4t5 t1t3t4t5 t2t3t4t5

10
t1t2t3t4t5

Q : Failure (plethoric answers) Q : Success Q : MFIS Q : XSS

Fig. 2 Number of results of each subquery of Q

are t1t3 and t1t5, that together support the first aforementioned feedback, and t4,
that supports the second feedback.

To assist the user in their query reformulation process, our failure causes iden-
tification method also lists the succeeding queries t2t3t5 and t1t2, which are not
themselves subqueries of any other succeeding query. These queries partially meet
the user’s original requirement as far as predicates are concerned. They can be used
as alternative queries, with confidence that they will have no more than K results.

– t2t3t5 lists doctors with their years of experience and the nurses they supervise.
– t1t2 returns doctors with their years of experience and the patients they treat.

To conclude on this example, another way of looking at the plethoric answer
problem is to suppose the existence of an ideal query which an expert user would
have formulated, if they had the same requirements as the novice user. In this
case, an ideal query could be replacing variable p by pt in the first triple pattern
(or vice versa). This means that the user did not intend to consider two distinct
patients in their query. This ideal query returns three answers in our example,
which fits the requirement. This modification adds an extra constraint to triple
pattern t4, fixing that failure cause, and to triple pattern t1 fixing the other two
failure causes. Subquery t2t3t5, listed as an alternative query, is incidentally the
common part between the original and reformulated queries.

The interpretation of failure causes, and their presentation to a user along with
alternative queries in an interactive query refining system is planned for future
work, and is not further studied in this paper. We focus here on the computation
of the failure causes, for use in a query rewriting system.

3 Related Work

Existing approaches dealing with the plethoric answers problem can be divided
into two main categories: those focusing on data and those focusing on queries.
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Data-oriented methods suppose that the query submitted by the user is correct,
and seek to present results in an organised fashion, so that certain information
is easily visible. Top-K methods are the most widely used type of data-oriented
methods. They order results based on user preferences and return only the top
K answers. Ilyas et al. present top-K query processing techniques for relational
database systems (Ilyas et al., 2008). In the absence of user preferences, alterna-
tive data-oriented strategies have been proposed. Regret-minimization strategies
combine features from top-K and skyline methods (Xie et al., 2020). They return
a set of K answers which maximizes the minimal satisfaction of any user with any
preference function. Finally, grouping methods aggregate results into categories,
and the common features of each category are provided to the user (Chakrabarti
et al., 2004; Ozawa and Yamada, 1995). Data-oriented methods can be useful to
sort through large result sets, providing the initial query correctly matches the
user’s requirement. However, if the original query contains an underlying issue,
these methods are not appropriate, as they do not attempt to fix the query.

Query-oriented methods modify the user’s query, so that it returns fewer an-
swers. There are several query modification techniques. In the field of fuzzy queries,
intensification strategies are used to strengthen patterns present in the user’s query
to make them more restrictive (Bosc et al., 2006; Moises and Pereira, 2014). Alter-
natively, new patterns are added to the query (Bosc et al., 2010). They are chosen
based on a measure of correlation between predicates so that they are semanti-
cally close to the original query and reduce the number of answers. In the field
of knowledge graphs, recent work on the why-not and why-so problems – where
an expected answer is missing or an unexpected answer appears in the response
– can be extended to the plethoric answers problem (Song et al., 2019). Exact
algorithms and heuristics are proposed to refine a user’s query. A final approach,
which is most similar to ours, considers subqueries of the original query, to find the
parts with few enough answers (Vasilyeva et al., 2016). However, this algorithm
does not consider failure causes, and uses no inference rules to avoid exploring
parts of the subqueries search space. Query-based solutions are more appropriate
to address an underlying issue in the original query. However, as none of the ex-
isting approaches study the cause of plethoric answers, the query intensification is
done blindly. So patterns causing multiple results may be missed or take several
attempts to find.

While failure causes have not previously been considered for the plethoric an-
swers problem, they have been used for other unexpected answer problems. Wang
et al. have proposed failure causes for the why-not problem (Wang et al., 2019).
They use a divide-and-conquer approach, first studying a query’s triple patterns
and then its SPARQL operators. A failure cause shows users which triple pattern
or operator causes an answer to be absent. Godfrey (Godfrey, 1997) proposed
using failure causes (called MFS) and alternate subqueries (called XSS) for the
empty answer problem. He suggested providing this information directly to the
user, who would be left to interpret it. Another use of MFS in the empty answer
problem is as part of an interactive query rewriting framework (Jannach, 2006;
McSherry, 2004). At each step in the query relaxation users choose the parts to be
relaxed. MFS have also been used in automatic query relaxation to accelerate the
process, by pruning the search space of queries which necessarily fail (Bosc et al.,
2009; Fokou et al., 2016; Jannach, 2006). We propose extending the definitions
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of MFS and XSS, to deal with the plethoric answers problem in the context of
RDF KBs.

4 Formalization

We describe the formalism and semantics of RDF and SPARQL necessary for this
paper, using the notations and definitions provided by Pérez et al. (Pérez et al.,
2009).

4.1 Basic Notions

Data Model We consider three pairwise disjoint infinite sets: I the set of IRIs, B
the set of blank nodes, and L the set of literals. We denote by T the union I∪B∪L.
An RDF triple is a triple (subject, predicate, object) ∈ (I ∪ B) × I × T . An RDF

database (or triplestore) stores a set of RDF triples. We additionally consider V a
set of variables disjoint from T .

Conjunctive Queries A triple t (subject, predicate, object) ∈ (I ∪ L ∪ V ) × (I ∪
V ) × (I ∪ L ∪ V ) is called a triple pattern. We denote by s(t), p(t), o(t), and
var(t) the subject, predicate, object and variables of t. In the first part of this
paper, we will study RDF queries defined as conjunctions of triple patterns Q =
SELECT ∗ WHERE t1 AND · · ·AND tn, which we write as Q = t1 ∧ · · · ∧ tn, or,
with conjunction symbols omitted, t1 · · · tn for short. The variables of a query are
var(Q) =

⋃
var(ti).

To study parts of an initial query, we define a partial order on queries based on
the subset partial ordering of their graph patterns. Given Q = t1 · · · tn, Q′ = ti · · · tj
is a subquery of Q, denoted by Q′ ⊆ Q, iff {ti, · · · , tj} ⊆ {t1, · · · , tn}. Then Q is a
superquery of Q′. Direct subqueries of a query Q are Q′ | Q′ ⊂ Q∧@Q′′, Q′ ⊂ Q′′ ⊂ Q.

Query Evaluation A mapping µ from V to T is a partial function µ : V → T .
Abusing notation, for a triple pattern t, we denote by µ(t) the triple obtained
by replacing the variables in t according to µ. The domain of µ, dom(µ), is the
subset of V where µ is defined. Two mappings µ1 and µ2 are compatible when
∀x ∈ dom(µ1) ∩ dom(µ2), µ1(x) = µ2(x), i.e. when µ1 ∪ µ2 is also a mapping.
For two sets of mappings Ω1 and Ω2, the join of Ω1 and Ω2 is: Ω1 ./ Ω2 =
{µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}. For an RDF database D
and a triple pattern t, the evaluation of t over D is defined as [[t]]D = {µ | dom(µ) =
var(t) ∧ µ(t) ∈ D}. For a conjunctive query Q = t1 · · · tn, the evaluation of Q over
D is defined as [[Q]]D = [[t1]]D ./ · · · ./ [[tn]]D.

SPARQL operators In section 6, we will extend the proposed method to more
complex queries. We introduce here the formalization of SPARQL queries including
operators, the associated complete definition of subqueries will be given in section
6. SPARQL graph patterns are defined recursively starting with triple patterns

1. A triple pattern is a graph pattern.
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2. If P1 and P2 are graph patterns, then expressions (P1 OPTIONAL P2), (P1

AND P2), and (P1 UNION P2) are graph patterns, where AND, UNION and
OPTIONAL are SPARQL operators.

3. If P is a graph pattern and R is a built-in condition, then (P FILTER R) is
a graph pattern, where FILTER is a SPARQL operator. A built-in condition
contains elements of V ∪ I ∪ L, constants, logical connectives, inequality and
equality symbols as well as unary predicates such as bound. For a graph pattern
P FILTER R, we assume var(R) ⊆ var(P ).

Four types of SPARQL queries are defined in the W3C standard: SELECT, ASK,
DESCRIBE, and CONSTRUCT. In this paper we consider only SELECT queries,
in the form of SELECT S WHERE P, where P is a graph pattern and S ⊆ var(P ).

4.2 Notions of MFIS and XSS

In the plethoric answers problem, for a given threshold K, a failing subquery of a
query Q is a query that returns more than K answers. Conversely, a succeeding
subquery of a query Q is a query that returns no more than K answers. We
introduce a Boolean property of query failure:

FAILK(Q) = |[[Q]]D| > K

As the evaluation of the empty query ∅ returns a single answer mapping no vari-
ables (Harris and Seaborne, 2013), it succeeds (if K > 0).

To deal with the empty answers problem, Godfrey introduced Minimal Failing

Subqueries (MFS) (Godfrey, 1997). They are the smallest subqueries that fail, i.e.
return no answers. In the empty answer problem, the failure condition is monotonic
with respect to the partial order on queries defined in section 4.1, meaning that
if a query fails, all its superqueries fail, and if a query succeeds, all its subqueries
succeed. With this monotonic property, the MFS are the smallest parts of a query
that will cause a failure. This is useful information for query rewriting, so that
these parts can be changed.

In the plethoric answers problem, there is no such monotony. A failing query
can have a successful superquery. In our running example consider t2t5, which fails,
but has a succeeding superquery t2t3t5. Therefore, the notion of MFS cannot be
used directly as a failure cause in the context of plethoric answers, so we introduce
the new notion of failure inducing subquery.

Definition 1 A Failure Inducing Subquery (FIS) of a query Q is one of its failing
subqueries whose superqueries all fail. The set of FIS of a query Q is:

fisK(Q) = {Q∗ | Q∗ ⊆ Q ∧ FAILK(Q∗) ∧ ∀Q′ ⊆ Q,Q∗ ⊂ Q′ ⇒ FAILK(Q′)}

To present information concisely, we consider the minimal failure causes.

Definition 2 A Minimal Failure Inducing Subquery (MFIS) of a query Q is one of
its failure inducing subqueries such that none of its subqueries are FIS. The set of
MFIS of a query Q is:

mfisK(Q) = {Q∗ ∈ fisK(Q) | @Q′ ⊂ Q∗, Q′ ∈ fisK(Q)}
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Note that if the failure condition is monotonic, MFIS and MFS are strictly
equivalent notions. MFIS are therefore a more general notion that can be used to
describe failure causes for other types of unexpected answers problems.

MaXimal Succeeding Subqueries (XSS) were also used by Godfrey (Godfrey,
1997) to deal with the empty answers problem. They represent the queries that
succeed that are most similar to the original query, and can be used as alternative
queries. The notion of XSS does not rely on the monotny of the failure property,
so is applicable to the plethoric answers problem.

Definition 3 A maXimal Succeeding Subquery (XSS) of a query Q is one of its
succeeding subqueries whose strict superqueries are all FISs. The set of XSS of a
query Q is:

xssK(Q) =
{
Q∗
∣∣∣ Q∗ ⊆ Q ∧ ¬FAILK(Q∗) ∧ ∀Q′ ⊆ Q

(
Q∗ ⊂ Q′ ⇒ Q′ ∈ fisK(Q)

)}
Despite using concepts introduced by Godfrey (Godfrey, 1997), our work differs

in two key aspects. First, we consider a problem in RDF KBs where Godfrey uses
relational databases. Second, we are studying the too many answers problem,
while he considers the empty answers problem. As our problem does not have
a monotonic failure condition, the algorithms employed by Godfrey cannot be
used here.

Problem Statement We are concerned with efficiently computing mfisK(Q) and
xssK(Q) for an RDF query Q and a given threshold K in a KB D.

4.3 Complexity of the MFIS and XSS enumeration problem

The enumeration of MFIS and XSS is hard, first of all because of the potential
number of elements to enumerate.

Property 1 The maximum number of MFIS (or XSS) of a query with n triple
patterns is ( n

bn/2c), and is reached when all subqueries with a size of n/2 are MFIS.

Proof We prove this using Sperner’s theorem (Sperner, 1928). An antichain is a
family of sets in which no set is a strict subset of another. From the MFIS and XSS
definitions, it follows that the set of MFIS (resp. the set of XSS) is an antichain,
as no MFIS (resp. XSS) can be a subquery of another MFIS (resp. XSS).

The theorem states that the maximum size of an antichain is bounded by
( n
bn/2c), where n is the maximum number of elements in a set. This maximum size

is reached when the antichain consists of all elements of size bn/2c. ut

Using the Stirling approximation for a factorial, the maximum number of MFIS

is approximated by ( n
bn/2c) ≈

√
2
πn ∗ 2n.

We now show that the enumeration of n MFIS of a query with n triple patterns
is NP-hard. To that end, we construct a polynomial reduction from the problem
of enumerating n MFS, which has been shown to be NP-hard (Godfrey, 1997).

Property 2 The enumeration of n MFIS of a query of size n is NP-hard.
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Proof We borrow the abstraction provided by Godfrey, which uses a set S =
{e1, ...en}, and a Turing machine T with the following properties

– T is defined over 2S , the parts of S.
– T halts and returns yes or no for any input in its domain.
– T runs in polynomial time for any input in its domain.

Furthermore, if for an input A, T returns yes on A implies that for any B ⊆ S,
where A ⊆ B, T returns yes on B, T is called upward closed.

The set of Minimal Elements in a Lattice is defined by Godfrey as MEL =
{A ⊆ S | T returns yes on A ∧ ∀B ⊂ A (T returns no on B)} for an upward closed
Turing machine T . This is an abstraction of the MFS of a query. For non upward
closed Turing machines, we propose Generalised Minimal Elements in a Lattice:

GMEL = {A ⊆ S | ∀B (A ⊆ B ⇒ T returns yes on B)∧
∀C ⊂ A (∃D (C ⊆ D ⇒ T returns no on D))}

This is an abstraction of the MFIS of a query. Godfrey showed that the enu-
meration of MEL is an NP-hard problem. We show that the enumeration of GMEL

is also NP-hard using a reduction from MEL to GMEL.
Consider an MEL enumeration problem involving a set S, and an upward closed

Turing machine T . The associated GMEL enumeration problem also uses S and T ,
so the transformation is polynomial. We show that, for an upward closed Turing
machine, A ∈ MEL ⇐⇒ A ∈ GMEL.

If A ∈ MEL, then T returns yes on A. Consider B,A ⊆ B, T returns yes on
B because of the upward closure of T . Consider C ⊂ A, from the definition of an
MEL, T returns no on C, so ∃D,C ⊆ D (e.g. C = D) where T returns no on D.
Therefore A ∈ GMEL and then A ∈ MEL⇒ A ∈ GMEL.

If A ∈ GMEL, then T returns yes on A. Consider B ⊂ A, if T returns yes on B

then from the upward closure of T , ∀C,B ⊆ C T returns yes on C, which contradicts
A ∈ GMEL. So T returns no on B and A ∈ MEL. Therefore, A ∈ GMEL⇒ A ∈ MEL

In conclusion the enumeration of GMEL is NP-hard. ut

5 Computing MFIS and XSS

The complexity of the plethoric answers problem means that no polynomial algo-
rithm can compute the MFIS and XSS exactly. While approximation algorithms
could be more efficient, they would not provide all failure causes, and therefore
would only partially solve the plethoric answers problem. In order to correctly
modify queries, we need to know every MFIS. When calculating the MFIS, our
algorithm will also determine the XSS, without needing to execute any additional
queries. As the XSS are alternative queries, the user could be provided with only
the most useful XSS. For now, our algorithms will return all MFIS and XSS to
the user if there are several. In future work, we will consider ordering XSS to
choose the most relevant ones. In this section, we discuss our strategies for MFIS
and XSS computation. First, a baseline algorithm is presented in section 5.1, then
improved versions are introduced by leveraging various properties. In section 5.2,
we present some general properties which can be used for any queries. Then, in
section 5.3 we introduce a new piece of information regarding the data, predicate
cardinality, which further improves the algorithm but is only usable if cardinalities
are available. Finally, we discuss the complexity of our algorithms in section 5.4.
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5.1 Baseline

A baseline approach to calculate all MFIS and XSS is to execute every subquery of
the original query, as is shown in figure 2 from the motivating example. In this first
algorithm, which we call Base, the lattice of subqueries is explored in a Breadth-

First order, meaning that we start by executing the query with the largest number
of triple patterns. The order of query evaluation is: t1t2t3t4t5, t1t2t3t4, t1t2t3t5,
t1t2t4t5, t1t3t4t5, t2t3t4t5, t1t2t3, ... When studying a query, we execute it, store
its status (success or failure), then check the status of its superqueries. Failing
queries whose superqueries fail replace their superqueries in the set of MFIS, and
queries that succeed whose superqueries fail are added to the set of XSS. For an
original query with n triple patterns, Base requires 2n − 1 query executions (the
empty query ∅ is not executed), which is time-consuming for queries with many
triple patterns. In our example 31 queries are executed.

To make the search for MFIS and XSS more efficient, we want to reduce the
number of queries executions. Various properties which may be leveraged are pre-
sented in the next two sections.

5.2 General properties

A first basic improvement is pruning the search space to avoid considering areas
that are irrelevant to the search for MFIS and XSS. We use the following property
which is immediately deduced from the definitions of FIS and XSS.

Property 3 (query success) If a subquery Q′ succeeds, and Q′′ ⊂ Q′, then Q′′ is
neither an MFIS nor an XSS.

Proof Consider Q, Q′ a succeeding subquery of Q, and Q′′ ⊂ Q′. Suppose Q′′ is an
MFIS. Therefore Q′′ is also an FIS. From the definition of an FIS, all superqueries
of Q′′ fail. In particular, Q′ fails. This contradicts the hypothesis, so Q′′ is not an
MFIS. Suppose Q′′ is an XSS. From the definition of an XSS, all strict superqueries
of Q′′ are FIS. In particular Q′ is an FIS so Q′ fails. Likewise, Q′′ is not an XSS. ut

Thanks to this property, only subqueries of failing queries will be studied in all
our improved algorithms. Next, we propose a deduction rule which will allow us
to declare that a query fails without needing to execute it.

5.2.1 Variable-based property

Since we are running a breadth-first-search, a query is always studied after all its
superqueries, so we can use properties deducing failure of a query from the failure
of its superqueries. We consider removing from a query a triple pattern that does
not reduce the number of variables. The intuition is that if the removal of a triple
pattern from a query does not remove any variables, then the number of answers
cannot decrease. Consider triple pattern t5: ?n service Emergency from our running
example. Adding this triple pattern to a query (which already contains the variable
n) adds a constraint on n, so can only reduce the number of answers.

Property 4 (variable-based) Given a query Q and triple pattern t, if var(Q ∧ t) =
var(Q) then Q ∧ t fails⇒ Q fails.
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Var/Full(Q, D, K)
inputs : A failing query Q = t1 ∧ ... ∧ tn

An RDF database D
A threshold K

outputs: MFIS and XSS of Q
1 mfis ← ∅, xss ← ∅, fis ← ∅, queryStatus ← ∅
2 list ← {lattice(Q)}// lattice of subqueries of Q, by decreasing number of triple

patterns
3 while list 6= ∅ do
4 Q′ ← first query of list in BFS ordering
5 list← list− {Q′}
6 parents fis ← true
7 superqueries ← superQueries(Q)
8 foreach Q′′ ∈ superqueries do
9 parents fis ← parents fis ∧ ((Q′′) ∈ fis)

10 if parents fis then
11 if Q′ /∈ queryStatus then
12 queryStatus [Q′] ← FAILK(Q′)

13 if queryStatus [Q′] then // if Q′ fails
14 fis← fis ∪ {Q′}
15 mfis← mfis− superqueries
16 mfis← mfis ∪ {Q′}
17 foreach Q′′ ∈ subQueries(Q′) do
18 if var(Q′′) = var(Q′) then
19 queryStatus [Q′′] ← true

20 else if cardinalitymax(t, Q′) = 1 ∧ s(t) ∈ var(Q′ − t) then
21 queryStatus [Q′ − t] ← true

22 else // Q′ is successful, and therefore an XSS
23 xss← xss ∪ {Q′}

24 return mfis, xss

Algorithm 1: Enumerate the MFIS and XSS of a query Q

This property is used if multiple triple patterns connect the same variables, if
a triple pattern contains only one variable, or if removing a triple pattern creates
a Cartesian product. Its proof is provided in appendix A. Using properties 3 and
4, we devise a new algorithm: Var.

5.2.2 The Var algorithm

The Var algorithm is given in algorithm 1 (lines 20 and 21 do not apply, they will
be used in the next algorithm). In this algorithm, the two main data structures
are a list (list) of subqueries to evaluate and a map (queryStatus) storing the result
of their evaluations: failure or success (lines 11-12). From the list, we consider
queries from the lattice of subqueries in a breadth-first order (lines 2-5). The first
improvement over the baseline method is that, according to property 3, every
direct superquery of Q′ has to be an FIS for further consideration (lines 6-10). On
query failure, the sets fis and mfis are updated (lines 14-16). The subquery Q′ being
considered replaces its direct superqueries in the mfis set as they can no longer be
minimal (lines 15-16). We then consider every direct subquery of Q′ (lines 17-21),
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∅

t1 t2 t3 t4t4
t5

t1t2 t1t3t1t3 t1t4 t1t5t1t5 t2t3 t2t4 t2t5 t3t4 t3t5 t4t5

t1t2t3 t1t2t4 t1t2t5 t1t3t4 t1t3t5 t1t4t5 t2t3t4 t2t3t5 t2t4t5 t3t4t5

t1t2t3t4 t1t2t3t5 t1t2t4t5 t1t3t4t5 t2t3t4t5

t1t2t3t4t5

Q : Failure

Q : Sucess

Q : MFIS

Q : XSS

use of variable property

use of cardinality property

Q : not executed (unknown)

Q : not executed (failure)

Q : executed for Var, not Full

Fig. 3 Lattice of subqueries of Q for the Var and Full algorithms

checking if property 4 is applicable (line 18) to predict its status without having to
evaluate it. If, instead, the query Q′ succeeded, it is added to the xss set (line 23).

We show in figure 3 the lattice of subqueries of query Q from the motivating
example and show which subqueries are executed by Var. Queries avoided because
they have a succeeding superquery have an unknown status. Here queries t2t3, t2t5,
t3t5, t2, t3 and t5 are not executed because t2t3t5 succeeds. Queries avoided by
using the variable-based property are known to fail. For example, t1t2t3t5 fails, and
has the same variables as t1t2t3, so t1t2t3 must fail according to property 4. Overall,
Var executes 9 queries, which is a clear improvement over Base (31 queries).

5.3 Cardinality-based Properties

In the last section, we have used query-based properties to avoid executing certain
subqueries. To avoid extra query executions, we introduce a data property called
cardinality. We consider triple patterns that add a piece of information to each
answer but do not overall change the number of answers. Consider triple pattern
t2: ?d experience ?e in the running example. If this pattern is removed from a query,
as each person has at most one experience value, each answer will lose a piece of
information, but no two answers will become identical. So the number of answers
can only increase. To formalise this notion, we draw upon the concept of predicate
cardinality (Dellal, 2019). We start by introducing the definitions of three types
of cardinality (global, class, and Characteristic Set), then present properties that
can be used to avoid query executions and finally give the complete algorithm in
section 5.3.3.

5.3.1 Definitions

Cardinality is a measure of the number of occurrences of a predicate per subject
in a dataset. The definitions of minimum and maximum cardinality of a predicate
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p for a set of subjects S are (Dellal, 2019):

cardinalitymin(p, S) = min
s∈S

count(s, p) = min
s∈S

|{(s, p, o) | (s, p, o) ∈ D}|

cardinalitymax(p, S) = max
s∈S

count(s, p) = max
s∈S

|{(s, p, o) | (s, p, o) ∈ D}|

In the following, we focus on maximum cardinalities, and present three methods
for calculating them.

Global Cardinality The simplest form of cardinality is globally computed for all
the subjects of a dataset D: subject(D) = {s | ∃ p, o : (s, p, o) ∈ D}. The global
cardinality of a predicate p is then (Dellal, 2019):

global cardinalitymax(p) = max
s∈subject(D)

count(s, p)

For instance, from the motivating example of figure 1, we can compute the
following global cardinalities:

– global cardinalitymax(experience) = 1,
– global cardinalitymax(providesCare) = 3,
– global cardinalitymax(supervises) = 2.

A drawback of global cardinalities is that they are rarely precise. By group-
ing subjects into classes and calculating cardinalities on each class, we can refine
cardinality values.

Class Cardinality RDFS classes can be used to allocate a type to subjects in a
dataset. The instances of an RDFS class C in a dataset D are defined as:

instances(C) = {s | ∃(s, rdfs:type, C) ∈ D}

Given a class C and a predicate p, the class cardinality of p in C is (Dellal,
2019):

class cardinalitymax(p, C) = max
s∈instances(C)

count(s, p)

Unlike global cardinalities, class cardinalities are context dependent. In order
to use them, we need to define the classes involved. For our application, we are
interested in determining predicate cardinalities in the context of a query. We will
describe the classes used to calculate cardinalities based on information contained
in the query. We start with the notion of predicate domain defined in RDFS. For
a triple pattern t with a variable subject s(t), a mapping of s(t) belongs to the
rdfs:domain of p(t). In KBs, saturation insures compatibility between the rdfs:type

and rdfs:domain properties, by inferring potentially missing triples. The standard
states that if a property has multiple values for rdfs:domain, its domain is their
intersection, and is therefore defined as:

domain(p) =
⋂

C|∃(p,rdfs:domain,C)∈D

C

Within the context of a query Q, the domain of the predicate p(t) of a triple
pattern t can be further refined from every triple pattern of Q sharing the same
subject. We then define the class cardinality of the predicate p(t) as the minimum
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subject predicate object

providesCare rdfs:domain Nurse
operativeRole rdfs:domain SurgicalNurse
SurgicalNurse rdfs:subClassOf Nurse

(a) Data model of D in RDFS

SELECT * FROM {
?p supervises ?s . # t1
?s providesCare ?c . # t2
?s operativeRole ?r } # t3

(b) Example query Q1

SELECT * FROM {
?p supervises ?s . # t1
?s providesCare ?c } # t2

(c) Example query Q2

Fig. 4 Database extension for class cardinalities

cardinality among the classes involved in each triple pattern of Q that share the
same subject, since s(t) must be an instance of every one of those classes.

domain(t, Q) =
⋂

(s,p,o)∈Q∧s(t)=s
domain(p)

class cardinalitymax(t, Q) = min
C⊆domain(t,Q)

class cardinalitymax(p, C)

Example 1 We extend the motivating example with the RDFS triples listed in table
4a and consider two queries Q1 and Q2 transcribed in figures 4b and 4c:

– class cardinalitymax(providesCare,SurgicalNurse) = 2,
– class cardinalitymax(providesCare,Nurse) = 3,
– class cardinalitymax(t2, Q1) = 2,
– class cardinalitymax(t2, Q2) = 3.

All datasets do not use RDFS formalism to define classes. In that case, another
way of grouping subjects has been proposed.

Characteristic Set Cardinalities A Characteristic Set (CS), as defined by Neumann
and Moerkotte (Neumann and Moerkotte, 2011), is the set of predicates of a
subject. For an entity s, occurring in a dataset D the Characteristic Set of s is
SC(s) = {p | ∃o, (s, p, o) ∈ D}. As each subject has exactly one CS, subjects can be
grouped by CS. The set of all CS in a database D is given by SC(D) = {SC(s) |
∃p, o : (s, p, o) ∈ D}. For a CS P , and a predicate p, we define the CS cardinality
of p in P as:

CS cardinalitymax(p, P ) = max
s,SC(s)=P

count(s, p)

Like for class cardinalities, this definition needs adapting to the context of a
query, by identifying the relevant CS. Within a query Q, the CS applicable to a
subject s(t) of a triple pattern t are all the CS which are supersets of the set of
predicates associated with s(t) in Q.

SC(t, Q) =
⋃

P∈SC(D),∀t′∈Q(s(t′)=s(t)⇒p(t′)∈P )

P
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The maximum cardinality of p(t) in Q is retained as an upper bound of the
cardinality of p(t) in each of these CS.

CS cardinalitymax(t, Q) = max
P∈SC(t,Q)

CS cardinalitymax(p(t), P )

Example 2 In our running example, there are seven subjects and four associated
CS: S1 = {experience, supervises, treats} shared by d1 and d2, S2 = {supervises} for
d3, S3 = {type, providesCare, operativeRole} for n1, and S4 = {type, providesCare}
shared by n2, n3 and n4. Using the motivating example, and the queries from
figure 4, we can compute the following CS cardinalities:

– CS cardinalitymax(providesCare, S3) = 1,
– CS cardinalitymax(providesCare, S4) = 3,
– CS cardinalitymax(t2, Q1) = 1,
– CS cardinalitymax(t2, Q2) = 3.

Class and CS cardinalities depend on the query the predicate is contained in.
So when using them on a lattice of queries they cannot be calculated once on the
original query (as is the case for global cardinalities) but must be updated when
each subquery is considered.

5.3.2 Properties

Cardinalities can be used to deduce the success or failure of a query from that of
other queries. The following property and its corollary can be used with global,
class, or CS cardinality. So we use cardinalitymax(t, Q) to refer indifferently to
global cardinalitymax(p(t)), class cardinalitymax(t, Q), or CS cardinalitymax(t, Q).
The proof of this property is provided in appendix A.

Property 5 (cardinality-based) Given a query Q, and a triple pattern t with a fixed

predicate p(t), if s(t) ∈ var(Q) and [[Q∧t]]D
cardinalitymax(t,Q) > K then Q fails.

A corollary, for the special case where the maximum cardinality is exactly 1 is:

Property 6 (1-cardinality-based) Given a query Q, and a triple pattern t with a fixed
predicate p(t), if s(t) ∈ var(Q) and cardinalitymax(t, Q) = 1 then Q ∧ t fails ⇒ Q

fails.

This second property means that removing a triple pattern whose predicate has a
cardinality of 1 cannot reduce the number of answers. So if the first query fails, its
subquery will also fail. When using property 5, it is not sufficient to know whether
Q ∧ t fails, it is necessary to know its exact number of answers.

Properties 3 and 4 rely only on information contained within the original query,
so are applicable to any query in any dataset. However, the cardinality based prop-
erties (5 and 6) require additional information: cardinalities of all the predicates
must be calculated. For KBs likely to be modified often, it would be necessary to
update cardinalities each time the data is changed. This requires either database
administrators to provide cardinality values and keep them updated or users to
regularly run a query on the KB to obtain cardinalities from the data, which is a
costly operation. As such, we provide a variable-only version of our algorithm, Var,
as well as the Full version that includes the 1-cardinality-based property. In section
7, we will show that determining the exact number of answers of a query requires
extra computation, which is why property 5 is not used in the Full version. The
Full algorithm is detailed in the next section.
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5.3.3 Full algorithm

The complete algorithm, Full, is also given in Algorithm 1. The only difference
with Var is the additional use of property 6 (line 20) to predict the status of
a query without executing it. This cardinality-based property, can be based on
global, class or CS cardinality.

Figure 3 also shows the subqueries executed by Full with global cardinalities.
The same queries as for Var are avoided due to properties 3 and 4. Additionally,
some queries are known to fail due to the cardinality property. For example, t2
has maximum cardinality 1 (any subject has at most one experience value), the
subject of t2 (d) is one of the variables of t1t3t4t5, and t1t2t3t4t5 fails. We deduce
that t1t3t4t5 fails using property 6 (line 21). Likewise, Full avoids executing t3t4t5
and t1t3t5. Overall, for our running example, Full executes only 6 queries.

5.4 Algorithm analysis

We complete this section with two algorithm properties. We start by showing that
all the algorithms correctly return the set of MFIS and XSS of a query, then we
analyse the complexity of the algorithms.

Correctness The correctness of our algorithms is proved by induction.

Property 7 Algorithms Base, Var and Full are sound and complete, which means
that they return exactly all MFIS and XSS of an RDF query Q, for a threshold K.

Proof For this proof, we consider an initial query Q with n triple patterns. Each
algorithm builds the lattice of subqueries of Q, and studies the subqueries in a
Breadth-First order. We will therefore break down our analysis into each layer of
the lattice. The k-th layer of the lattice is composed of all the subqueries with k
triple patterns. We will show that for any k ≤ n, once the k-th level of the lattice
has been completed, the three following invariants hold

– fis contains the FIS with k or more triple patterns.
– mfis contains the MFIS with k + 1 or more triple patterns and the fis with

exactly k triple patterns.
– xss contains the XSS with k or more triple patterns.

We wil show that this is true for k=n, and that if it is true for k, it remains true
for k−1. The algorithm terminates once k=0, at which point xss contains the XSS
with 0 or more triple pattern and mfis contains the MFIS with 1 or more triple
pattern, as there are no FIS with 0 triple patterns since the empty query succeeds.

For k=n, there is only one query of size k, the initial query. It is executed by
every algorithm. If it fails, it is an FIS, and is added to fis and mfis, and there are
no XSS of size ≥ k so xss is empty. If it succeeds, it is an XSS, it is added to xss,
and there are no FIS of size ≥ k. The three invariants are true for k = n.

We suppose the invariants are true for a layer k, and prove they remain true
on layer k − 1. A query on layer k − 1 is an FIS if it fails and all its direct
superqueries fail. Base checks failure first then superqueries, the other algorithms
check superqueries first and only if they are all FIS, do they check query failure.
If and only if both conditions are true, all the algorithms add the query to fis and
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mfis. Likewise, a query on layer k − 1 is an XSS if it succeeds and all its direct
superqueries fail. Base checks success first then superqueries, the other algorithms
check superqueries first and only if they are all FIS, do they check query success.
If and only if both conditions are true, all the algorithms add the query to xss.
The use of properties to determine query failure, rather than execution in the
triplestore does not affect the validity of the method, as we have shown previously
that they correctly provide the succes or failure status of the query. Since fis and
xss contained respectively the FIS and XSS with k or more triple patterns at layer
k, and we have added the FIS with k − 1 triple patterns to fis and the XSS with
k − 1 triple patterns to xss, the two invariants are true for layer k − 1. The direct
superqueries of each FIS with k−1 triple patterns are removed from mfis. These are
the FIS with k triple patterns which are not MFIS (because one of their subqueries
is an FIS). Since at layer k, mfis contained the MFIS with k + 1 or more triple
patterns and the FIS with k triple patterns, and we have removed the FIS with k

triple patterns that are not MFIS, and added the FIS with k − 1 triple patterns,
the invariant is true on layer k − 1. ut

Complexity We express the complexity of our algorithms in terms of the number
of query executions that they require, using the size n of the original query. As
Base executes every query of the lattice, it requires 2n − 1 executions. For all
the other algorithms, the worst case is if the properties cannot be used (i.e. the
whole lattice fails for property 3, all triple pattern removals remove variables for
property 4, and no predicate cardinalities are 1 for property 6). Their worst case
complexity is therefore the same as Base (2n − 1). However, the improvement of
our algorithms can be measured in specific cases when the properties can be used.

For property 3 the avoided query executions are the subqueries of XSS. There-
fore the number of query executions avoided depends on the number of XSS of
the query, and how many triple patterns they contain. The more triple patterns
contained in the XSS, the more query executions will be avoided. As the XSS are
not known before the algorithm is executed, we cannot determine in advance how
many query executions will be avoided by property 3. Likewise, the cardinality
property which involves the number of answers to a superquery does not allow us
to determine in advance the number of queries executions avoided.

However, for properties 4 and 6 with global cardinality, we can use the struc-
ture of the query to determine before executing the algorithm how many query
executions will be required. Star queries, where all triple patterns have the same
subject variable, are the most widely used queries (Gallego et al., 2011). We give
the formula for star queries because their simple structure means that triple pat-
terns can be studied one at a time, without considering how they are linked to
the rest of the query. It shows that each triple pattern which allows us to use a
property halves the number of queries to be executed. The star shaped nature of
the initial query is useful here because property 4 or 6 will either apply to a triple
pattern t over the whole lattice, or not apply at all. For the same reason, we use
global cardinalities here, because when using class or CS cardinalities, property 6
can apply to a triple pattern only for some queries in the lattice. For queries with
a more complex structure, it is also possible to determine in advance the number
of queries which will be avoided, but as this depends on the structure of the query,
a formal description is not given.
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Property 8 (star-query complexity) For a star query with n triple patterns, where k
is the number of triple patterns where a variable or global cardinality property can
be used (with k ≥ 1). The number of query executions avoided by use of properties
4 and 6 is:

k∑
i=1

2n−i − 1

Proof We prove the formula recursively.
For k=1, we consider one triple pattern, t, to which one of properties 4 or 6 can

be applied. Both properties imply that for any query Q, if Q∧t fails then Q fails. If
Q∧ t succeeds, then Q is not executed according to property 3. Therefore, whether
Q∧t succeeds or not, the execution of any query Q not containing t can be avoided.
The number of such queries is the number of queries in a lattice of n− 1 elements
minus the empty query, i.e. 2n−1 − 1.

Suppose the property is true for a value k, we will prove it remains true for
k + 1. We call t1, ..., tk the first k triple patterns, and tk+1 the new triple pattern
considered. According to our hypothesis, the number of query executions avoided
by t1, ..., tk is

∑k
i=1 2i − 1. The queries avoided by tk+1, not avoided by t1, ..., tk

are queries containing all the t1, ..., tk, but not tk+1. This amounts to choosing
between 0 and n − k − 1 triple patterns to add to t1, ..., tk to create a query. The
number of such queries is therefore :

∑n−k−1
i=0 (n−k−1

i ) = 2n−k−1 = 2n−(k+1). In

total, the number of query executions avoided is :
∑k+1
i=1 2i − 1. ut

We use Q from the motivating example to illustrate why there is no simple formula
for non star queries. Q contains three triple patterns that a property can be applied
to: t2 for the cardinality property, t3 and t5 for the variable property. However,
due to the shape of the query, we cannot apply property 6 to a query Qa∧t2 unless
s(t2), i.e., d is part of query Qa. So we cannot use this property on query t2t4t5
to avoid executing query t4t5. Likewise to use property 4 on a query Qb ∧ t5, Qb
must contain the variable n. We cannot use this property on query t1t2t5 to avoid
executing query t1t2. In total, 23 query executions can be avoided using properties
4 and 6, rather than the 27 expected, if our formula held for non star queries.

6 Operator Integration

Up to now, our algorithms have been designed with conjunctive queries in mind.
This excludes a large part of SPRAQL queries that contain other operators (Gal-
lego et al., 2011). We detail in this section how our methods can be applied to
queries containing operators acting on a graph pattern level: FILTER, UNION
and OPTIONAL. Operators like DISTINCT or GROUP BY which appear out-
side graph patterns, on a SPARQL query level are perspectives for future work.
The previous definition of subqueries based on triple pattern inclusion cannot
be directly applied when operators are present, so we start by providing a more
general definition for the subqueries of a SPARQL query. We then detail the par-
ticularities of each operator and how they affect the calculation of MFIS and XSS.

Definition 4 Subqueries of a SPARQL query are defined recursively as follows.
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1. The empty query ∅ is a subquery of every query.
2. The only non empty subquery of a triple pattern t is t.
3. If Q = Q1 AND Q2, the subqueries of Q are Q′1 AND Q′2 where Q′1 ⊆ Q1 and

Q′2 ⊆ Q2.
4. If Q = Q1 FILTER(R), the subqueries of Q are queries Q′1 and Q′1 FILTER(R)

where Q′1 ⊆ Q1 providing the resulting query is valid SPARQL (i.e. that the
variables in the filters are included in the triple patterns).

5. If Q = Q1 UNION Q2, the non empty subqueries of Q are queries Q′1, Q′2 and
Q′1 UNION Q′2 where Q′1 ⊆ Q1, Q′2 ⊆ Q2, Q′1 6= ∅ and Q′2 6= ∅.

6. If Q = Q1 OPT Q2, the non empty subqueries of Q are queries Q′1 and
Q′1 OPT Q′2 where Q′1 ⊆ Q1, Q′2 ⊆ Q2, Q′1 6= ∅ and Q′2 6= ∅.

This definition encompasses the previous definition of subqueries for conjunctive
SPARQL queries so the previous algorithms can be used with this new definition.

6.1 FILTER

The FILTER operator is defined by a built in condition, which is a logical state-
ment linking variables, constants, URIs with equality or inequality symbols. The
corresponding semantics are, for a graph pattern P , a built-in condition R, and a
dataset D: [[P FILTER R]]D = {µ ∈ [[P ]]D, µ satisfies R}.

To apply our algorithms to queries containing filters, we can consider the filter
condition in a similar manner as triple patterns. Subqueries are created by remov-
ing either a triple pattern or the filter condition. In order to insure predictable
behaviour when executing a query, the variables included in a built-in condition
must appear in the graph patterns of the query. Therefore, when removing triple
patterns, we must verify that this condition is still met. If not, the query in question
is considered invalid, and is not included in the lattice.

Example 3 Using query Q from the motivating example, we add FILTER ?e ≥ 20,
which we call f1, creating query Q′ = t1t2t3t4t5f1. When creating the lattice, we
consider for instance Q′′ = t1t3t4t5f1. Since the variable e appears in f1, but not
in t1t3t4t5, Q′′ is not a valid SPARQL query, and is not included in the lattice.

The effect of a FILTER condition is to select only answers respecting certain
conditions. As removing a FILTER condition from a query cannot remove any
variables (or the condition that all variables appearing in a built-in condition
must appear in a triple pattern would not be respected), property 4 tells us that
removing a filtering condition from a query cannot reduce its number of answers.
Therefore, finding the MFIS of a query containing a FILTER condition requires at
most the same number of query executions as the query with no FILTER condition.

6.2 OPTIONAL

The formal definition of the OPTIONAL operator for two graph patterns P1 and
P2, and a dataset D is: [[P1 OPT P2]]D = [[P1]]D ./ [[P2]]D ∪ [[P1]]D\[[P2]]D where
Ω1\Ω2={µ ∈ Ω1|∀µ′ ∈ Ω2, µ and µ′ are not compatible}, and ∪ is the multiset
sum operator. While there is no direct relation between the number of answers of
A, B and A OPT B, we can deduce the failure of A OPT B from the failure of A.
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SELECT * WHERE {
{ { ?d treats ?p . # t1

?d type Surgeon } # t2
UNION
{ ?d type Cardiologist } } . # t3

?d supervises ?n } # t4

(a) Q3 in factored form

SELECT * WHERE {
{ ?d treats ?p . # t1

?d type Surgeon . # t2
?d supervises ?n } # t4

UNION
{ ?d type Cardiologist . # t3

?d supervises ?n } } # t4'

(b) Q3 in developed form

Fig. 5 Q3 = (t1t2 ∪ t3)t4 = t1t2t4 ∪ t3t′4

Property 9 |[[A OPT B]]D| ≥ |[[A]]D|

Proof We will show that two distinct answers of query A can be linked to two
distinct answers of A OPT B.

Consider µ1 6= µ2 ∈ [[A]]D. If ∃µ3 ∈ [[B]]D such that µ3 and µ1 are compatible,
then µ1 ∪ µ3 ∈ [[A]]D ./ [[B]]D so µ1 ∪ µ3 ∈ [[A OPT B]]D. Otherwise, µ1 ∈
[[A]]D\[[B]]D so µ1 ∈ [[A OPT B]]D. We will call m1 the one of these mappings
included in [[A OPT B]]D. Likewise, either ∃µ4 ∈ [[B]]D such that µ2 ∪ µ4 ∈
[[A OPT B]]D or µ2 ∈ [[A OPT B]]D. We will call m2 this mapping. Since µ1 6= µ2,
∃v ∈ var(A), µ1(v) 6= µ2(v). From the definition of m1 and m2, m1(v) = µ1(v) and
m2(v) = µ2(v). We then have v ∈ var(A OPT B) and m1(v) 6= m2(v). So we have
two distinct answers m1 6= m2 ∈ [[A OPT B]]D. ut

From this we deduce two properties that provide information on the subqueries
of A OPT B using the MFIS and XSS of A. Their proofs are given in appendix A.

Property 10 (optional MFIS) The MFIS of a query A are MFIS of query A OPT B.

Property 11 (optional XSS) All subqueries of A OPT B which are not subqueries
of a query A∗ OPT B′ where A∗ is an XSS of A fail.

Using these properties, if the MFIS and XSS of A are known, several queries
of the lattice of subqueries of A OPT B do not need to be executed.

Example 4 We transform query Q from the motivating example, adding an optional
part t6t7: ?d degreeFrom ?u . ?d specialty ?s creating query Q′ = t1t2t3t4t5 OPT t6t7.
The MFIS and XSS of Q = t1t2t3t4t5 are determined with the previous algorithm.
The MFIS are t1t3, t1t5 and t4. These are also MFIS of Q′. The XSS of Q are t1t2
and t2t3t5. Therefore the queries that are left to execute to find all MFIS and XSS
of Q′ are restricted to subqueries of t1t2 OPT t6t7, and t2t3t5 OPT t6t7.

6.3 UNION

The definition of the UNION operator for graph patterns P1 and P2, and dataset
D is: [[P1 UNION P2]]D = [[P1]]D ∪ [[P2]]D. The UNION operator in SPARQL is
distributive over the AND, FILTER and OPTIONAL operators. This means that
queries containing UNION operators can be written in different ways. In figure 5
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we present a query in factored form (5a), and in developed form (5b). To avoid the
inconsistency of two forms of the same query leading to different subqueries, we
require that queries always be presented in the same form. As queries in developed
form can also create problems for MFIS interpretation, we will deal with queries
written in factored form. We illustrate this with an example.

Example 5 Consider Q3 = (t1t2 ∪ t3)t4, depicted in figure 5. When writing the
query in developed form, we have created triple patterns t′4 = t4 to distinguish
between the two occurrences of the triple pattern. When creating the subqueries,
t4 and t′4 will be treated independently. As such, it is possible for t4 to be an
MFIS, and at the same time, for t3t

′
4 to succeed, because t3t

′
4 is not considered a

superquery of t4. When we return the MFIS and XSS, this can be confusing, as
t′4 and t4 represent the same triple pattern: ?d supervises ?n which should not be
both a failure cause, and part of a succeeding query.

When executing subqueries in order to find the MFIS and XSS, we can keep
using the properties given in section 5 for subqueries with only AND operators.
Additionnaly, the definition of the UNION operator gives us: |[[P1 ∪ P2]]D| =
|[[P1]]D| + |[[P2]]D|. Like for the OPTIONAL operator, this gives us two more
properties that link the MFIS and XSS of a query written in factored form A ∪B
to the MFIS and XSS of queries A and B. Their proofs are given in appendix A.

Property 12 (union MFIS) The MFIS of a query A are MFIS of query A ∪B.

Property 13 (union XSS) All subqueries of A ∪ B which are not subqueries of a
query A∗ ∪B∗ where A∗ is an XSS of A and B∗ is an XSS of B fail.

If the MFIS and XSS of A and B are known, the additional queries we need to
study are restricted to the subqueries of a union of an XSS of A and an XSS of B.

The complete formalization of subqueries allows us to apply the concepts
of MFIS and XSS to any SPARQL query containing operators AND, FILTER,
UNION and OPTIONAL. To avoid the potential ambiguity caused by SPARQL
distributivity properties, we require queries to be presented in a factored form.
This does not restrict the applicability of the approach, as a simple algorithm can
be used to transform the form of a query. The algorithms previously presented are
still applicable to the conjunctive parts of a query containing other operators, and
we have detailed here how additional specific properties can be used to improve
the computation of MFIS and XSS when SPARQL operators are included.

7 Experimental Evaluation

In this section we experimentally evaluate the Var and Full algorithms, and
discuss some implementation considerations. Both algorithms are compared with
the Base algorithm to show the improvements in execution time brought on by
leveraging the properties presented in section 5. We also verify that the execution
times are acceptable for queries of a reasonable size. Our implementation is avail-
able at https://forge.lias-lab.fr/projects/tma4kb with a tutorial to reproduce
our experiments.

https://forge.lias-lab.fr/projects/tma4kb
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7.1 Experimental Setup

Hardware Our experiments were run on a Ubuntu Server LTS system with Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30GHz and 32GB RAM. The results presented are
the average of five consecutive runs of the algorithms. To prevent a cold start
effect, a preliminary run is performed but not included in the results.

Algorithms The algorithms are implemented in Oracle Java 1.8 64bits and run
using the Jena TDB triplestore. When cardinalities are required, they are pre-
computed before running the algorithms. We set the threshold for plethoric an-
swers K=100, as it is the default limit used by the DBpedia SPARQL endpoint.

As Cartesian products are costly to execute, to determine the number of an-
swers of a query containing a Cartesian product we split it into connected parts
and execute each part separately. The number of results is the product of the
number of results of each part. As each part of the Cartesian product is itself
a subquery which may have been executed later, we store individual results for
future use, which potentially reduces the total number of executed queries. This
is especially noticeable with Base, where fewer than 2n − 1 queries are executed
for queries containing Cartesian products in their lattice of subqueries.

Synthetic Dataset and Queries We have used a dataset of 11M triples, generated
with the WatDiv benchmark. We have considered a total of 21 queries with 7
star-shaped queries, 7 chain queries (subject of triple pattern j+1 is the object of
triple pattern j) and 7 composite queries (any other configuration). These queries
contain 4 to 12 triple patterns. We have based our queries on the queries given in
the WatDiv test cases. In particular, all our chain queries are derived from chain
query IL-1-10, by removing triple patterns to reach from 4 to 10 triple patterns.
Composite queries F1, F2, F4 and C2 and star query C3 from the test case were
also used (queries Q15, Q16, Q18, Q19 and Q3). We created additional composite
and star queries in order to have varied characteristics (number of triple patterns
in the original query and in the MFIS and XSS, and number of MFIS and XSS).

Real Dataset and Queries We have downloaded the DBpedia dataset (the English
3.9 version) which contains 812M triple patterns and used queries from the LSQ
project (Saleem et al., 2015). The queries we used come from a log of queries
submitted by users to DBpedia (version 3.5.1) between April 30, and June 20,
2010. This log records over 500,000 queries of which we have selected 9 queries that
produce large result sets. We selected conjunctive queries with the largest result
sets of each size (4 to 10 triple patterns). They are star-shaped or composite. Some
minor adaptations were made as some queries were not compatible with version
3.9 of DBpedia.

7.2 Comparison of execution methods

In section 5, we have used query properties to reduce the number of executed
queries. Another way to reduce the time to find MFIS and XSS is to reduce
the execution time of each query. As such, we have studied several methods to
submit queries to a triplestore. We begin our experiments by comparing execution
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
All 237 62 3.8E4 1,059 13 1.4E5 1.4E5 5.7E5 6.9E6
Count 199 53 2.0E4 854 13 8.5E4 5.2E4 2.2E5 1.3E6
Limit 22 6 20 12 17 92 135 321 2,921
CountLimit 24 9 28 13 16 87 117 286 2,813
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Fig. 6 Execution time Full algorithm DBpedia

methods in order to subsequently use the fastest execution method to compare
the algorithms. Four execution methods are compared.

– ALL: submit a query as is, receive all the answers from the triplestore, count
them, and determine if there are more than the threshold K.

– COUNT: add the SPARQL operator COUNT to count answers within the
triplestore rather than in the algorithm.

– LIMIT: add the SPARQL operator LIMIT so that the triplestore returns a
maximum of K+1 answers.

– COUNT-LIMIT: add both SPARQL operators COUNT and LIMIT.

In the last two cases, we do not know the exact number of answers returned by
the query, only whether or not there are more than K.

We have used the Full algorithm (global cardinalities) and the DBpedia
dataset and queries for this experiment. Figure 6 presents the execution times
of each method. Unsurprisingly, the methods that return the exact number of
answers (ALL and COUNT) are significantly slower, especially as the query size
increases: for queries Q6 to Q9, there are three orders of magnitude between meth-
ods ALL and LIMIT. The fastest method is the COUNT-LIMIT method. This has
also been verified with the WatDiv dataset. Therefore, the COUNT-LIMIT exe-
cution method is used in the following experiments, unless otherwise specified.

7.3 Algorithm comparison

We compare the performance of three algorithms: Base, Var and Full (using
the 1-cardinality-based property with global cardinalities), first on the generated
dataset, then the real dataset.

Synthetic Dataset and Queries For the WatDiv dataset, figures 7 and 8 give the
number of executed queries and the execution time, for each algorithm and query.

For all the queries tested, we verify that Var and Full execute at most as many
queries as Base. This is a guarantee of the properties presented in section 5. The
improvement is less notable for chain (Q8 to Q14) and composite (Q15 to Q21)
queries. Indeed, as we execute Cartesian products by separating them into their
connected parts, queries that have a succeeding superquery can be executed as part
of a Cartesian product. The number of queries executed if Cartesian products were



A Cooperative Treatment of the Plethoric Answers Problem in RDF 25

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

Minimum 15 31 63 125 255 511 1,023 63 127 255 511 1,023 2,047 4,095

Base 15 31 63 127 255 511 1,023 10 15 21 28 36 45 55 42 34 20 294 139 94 158

Var 8 16 9 39 65 255 257 5 10 16 22 29 37 46 20 34 14 141 58 32 48

Full 2 4 2 12 3 8 9 5 10 12 11 19 22 24 12 5 11 8 13 6 6
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Fig. 7 # Executed queries Watdiv 11M triples

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21

Base 19 46 96 160 234 5.5E4 1,476 3 5 9 46 47 152 164 27 19 34 378 2,065 299 1,056

Var 17 41 24 30 80 5.4E4 311 2 4 8 15 47 150 127 16 25 14 212 1,333 317 666

Full 23 35 23 24 16 2,878 63 4 7 10 14 42 122 102 13 8 16 66 844 204 399
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Fig. 8 Execution time Watdiv 11M triples

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Base 15 12 31 31 63 96 255 511 1,023
Var 8 5 16 8 9 49 118 243 130
Full 8 3 16 8 5 49 118 243 130
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Fig. 9 # Executed queries DBpedia

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Base 36 31 43 40 83 119 221 561 8,134
Var 24 15 32 13 26 69 122 291 2,786
Full 24 9 28 13 16 87 117 286 2,813
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Fig. 10 Execution time Jena DBpedia

executed directly, 2n − 1, is given on Figure 7 in the Maximum bars and shows
that the baseline time would be higher if we executed Cartesian products. Overall
Var and Full execute respectively 46% and 75% fewer queries than Base.

The execution times follow the same general trend. Full is faster than Var,
itself faster than Base. The improvement in execution time is smaller than the
improvement in query executions. Indeed, all query executions are not equal, and
the executions avoided can have short execution times. Overall Var saves 31% of
the Base algorithm execution time, whereas Full saves 44%.
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Real Dataset and Queries We reproduce the experiment on a real dataset – DBpedia
– with user-submitted queries extracted from a query log. We show the number of
executed queries and the run-time of each algorithm in figures 9 and 10.

As in the WatDiv experiments, Var and Full execute at most as many queries
as Base. However, we notice that Full rarely executes fewer queries than Var. This
can be explained by predicate cardinalities in DBpedia, as few of the predicates
used have maximum cardinality 1. The cardinality property cannot be applied
to these predicates. We have noted that only 0.67% of predicates in DBpedia
have maximum cardinality 1, but 66% of predicates have maximum cardinality 2.
Upon further investigation, many predicates that should in theory have maximum
cardinality 1, such as BirthDate, in fact have maximum cardinality 2. This can
be due to errors in the data or uncertain information (Giacometti et al., 2019;
Muñoz and Nickles, 2017). Using a curated dataset would likely improve the benefit
of the cardinality-based pruning. Consequently, Var and Full have very similar
execution times. Var saves around 49% of the baseline time, and Full saves around
52%.

7.4 Cardinality variations

Next, we compare the use of global cardinalities with class or CS cardinalities
for the Full algorithm. As WatDiv does not provide a schema with classes, class
cardinalities are only tested with the DBpedia dataset. The number of executed
queries and execution times are given in figures 11 and 12 for WatDiv and figures
13 and 14 for DBpedia. Class and CS cardinalities rarely reduce the number of
executed queries. For class cardinalities that is only the case for Q5, whose execu-
tion time is nearly halved. For the other queries, the execution times using class
or global cardinalities are very similar. However class cardinalities can only be
used if the dataset uses an RDFS schema, as is the case with DBpedia, but not
for WatDiv. CS cardinalities cause a much longer execution time. This is because
cardinality values are checked over all CS when examining each query. Due to this
additional cost, and despite the theoretical benefits of CS cardinality, global and
class cardinalities are the most appropriate for our algorithm.

We also compare using the 1-cardinality-based property 6 (that only uses maxi-
mum cardinalities of 1), and the cardinality-based property 5 (that can be used for
any cardinality value). This experiment uses the DBpedia dataset and queries and
global cardinalities. We show the number of executed queries in figure 13 (Global

for property 6, and AnyCard for property 5), and the algorithm execution times in
figure 15. Since property 5 requires knowing the exact number of answers of a query,
rather than if it succeeds or fails, we cannot use the most efficient query execu-
tion method (COUNT-LIMIT). We provide the execution times with the COUNT
method for properties 5 (any-cardinality count) and 6 (1-cardinality count), and us-
ing the COUNT-LIMIT method for property 6 (1-cardinality countlimit). Lever-
aging property 5 presents a significant improvement in the number of queries
executed, and in execution time with a reduction of up to an order of magni-
tude. However, this improvement is smaller than the one achieved by using the
COUNT-LIMIT method. So the algorithm using property 5 does not offer sufficient
improvement to compensate it requiring a less effective query execution method.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21
Global 2 4 2 12 3 8 9 5 10 12 11 19 22 24 12 5 11 8 13 6 6
CS 2 4 2 12 3 8 9 5 10 12 11 19 22 24 9 3 11 8 13 6 6
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Fig. 11 # Executed queries Watdiv 11M triples Full

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21
Global 23 35 23 24 16 2,878 63 4 7 10 14 42 122 102 13 8 16 66 844 204 399
CS 463 1,202 2,300 4,711 1.9E4 7.7E4 9.5E4 2 6 453 2,101 3,120 9,484 2.3E4 1,244 1.1E4 3,591 2.6E4 2.5E4 1.8E5 4.6E5
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Fig. 12 Execution time Watdiv 11M triples Full

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Global 8 3 16 8 5 49 118 243 130
Class 8 3 16 8 3 49 118 243 130
CS 8 3 16 8 3 49 118 243 130
AnyCard 4 3 6 4 4 17 59 115 55
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Fig. 13 # Executed queries DBpedia Full

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Global 24 9 28 13 16 87 117 286 2,813
Class 23 9 23 12 10 79 125 371 4,175
CS 8 3.7E4 34 748 1.9E5 1,739 1.1E6 2.3E6 1.7E6
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Fig. 14 Execution time DBpedia Full

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
1-cardinality_Count 199 53 2.0E4 854 13 8.5E4 5.2E4 2.2E5 1.3E6
Any-cardinality_Count 125 66 8,470 475 12 3.0E4 5,908 1.7E4 2.5E5
1-cardinality_CountLimit 24 9 28 13 16 87 117 286 2,813
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Fig. 15 Execution time DBpedia Full

7.5 Impact of the threshold

We have run experiments changing the threshold where answers are considered ple-
thoric. We compare the three algorithms with new thresholds K=10 and K=1000
using the DBpedia queries. The execution times are given in figures 16 and 17. As
the threshold increases, the cost of executing each query grows, so Var and Full
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Base 30 16 58 25 68 80 174 479 8,050
Var 23 8 50 10 22 60 106 244 3,853
Full 21 5 43 9 14 58 106 250 3,983
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Fig. 16 Execution times for K=10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Base 111 140 164 116 225 518 508 1,234 9,767
Var 80 29 52 28 4 277 144 393 770
Full 81 24 47 36 7 274 132 390 765
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Fig. 17 Execution times for K=1000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Base 71 47 118 115 209 342 668 1,383 9,767
Var 17 12 41 21 26 107 268 550 2,975
Full 13 5 28 17 14 111 258 559 2,968
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Fig. 18 Execution time Fuseki

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Base 31 24 452 35 76 544 261 575 1.0E4
Var 13 10 203 12 15 267 125 278 1,497
Full 11 4 229 9 7 263 106 271 1,468
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Fig. 19 Execution time Virtuoso

perform better compared with Base. Queries Q2, Q5, and Q9 have a low execution
time for K=1000, because the initial query succeeds (it has fewer than 1000 an-
swers) so only one query is executed. Discounting these queries for K=1000, Var
saves on average 42% of the Base time for K=10, and 59% for K=1000 (against
49% for K=100). Likewise, Full saves on average 47% of the Base time for K=10,
and 59% for K=1000 (against 52% for K=100).

7.6 Impact of triplestores

In our last experiment, we study the influence that the triplestore has on the
execution times of our algorithms. In addition to Jena TDB, which is a native
triplestore, we have implemented two SPARQL endpoint triplestores : Fuseki and
Virtuoso. We have reproduced the algorithm comparison experiment using DBpe-
dia. The execution times with Fuseki and Virtuoso are given in figures 18 and 19.
They are to be compared with figure 10 which shows the results for Jena TDB.

Jena TDB is generally faster than Fuseki, so our method is better suited to a
native triplestore, rather than its access through a SPARQL endpoint. There is no
clear better solution between Fuseki and Virtuoso, but Virtuoso performs poorly
for queries with large result sets (Q3 and Q6). Overall, even with large queries,
the execution times of our algorithms are reasonable in all three triplestores, so
our methods are usable in practice across various triplestores and dataset sizes.

7.7 Details of execution time

For all of our experiments, we have compared the query execution time to the total
algorithm execution time in order to check our hypothesis that the query execution
time dominates the run time. Figure 20 shows the ratio of query execution time to
total execution time, against the total execution time for the previous experiments.
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Fig. 20 Total execution time against the ratio between query and total execution times
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Fig. 21 Breakdown of execution times

We have only presented the experiments using the CountLimit method. The Limit
method has similar results, and the All and Count methods have long execution
times and a ratio of query execution time to total execution time close to 1.

For the three algorithms, the query execution time is usually between 80% and
100%. When the total execution time is larger, the query execution time represents
a larger portion of the total execution time. For the DBpedia executions, the
average ratio of query execution time to total execution time is 91% ( 92% for
Base, 91% for Var and 90% for Full). For the WatDiv executions, it is 79% (
90% for Base, 79% for Var and 68% for Full). This validates the hypothesis made
in section 5 that the query execution time dominates the total run time.

As we claimed in the cardinality variation experiments, the CS based exper-
iments have a very low ratio of query execution time to total execution time,
and the increased run time compared with global cardinalities is due to longer
computation of the cardinalities, rather than an increase in query execution time.

Finally, in figure 21 we show the detailed breakdown of the algorithm execution
time for some typical and extreme queries from the previous chart. The first three
bars are queries with particularly low query execution time to total execution time
ratios, the next two have a high ratio and high execution time, the last bar is from
a CS algorithm and the others are typical queries. The main parts of the algorithm
that make up the execution time are the use of properties (for the Var and Full
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algorithms lines 18 and 20), the calculation of direct superqueries (line 7) and
direct subqueries (line 17), and the initial calculation of the lattice (line 2). When
the initial query has a large number of triple patterns (such as Q7 with 9, or Q21
with 12) the number of subqueries and superqueries calculated in the algorithms
rises exponentially. Since these queries also have short query execution times, the
algorithm computation time dominates the total run time.

8 Conclusion

In this paper, we have addressed the plethoric answers problem in the context of
RDF queries. We have identified that none of the approaches proposed in the lit-
erature try to identify why the user query produced plethoric answers. Yet, several
approaches developed for other unsatisfactory answers problems have shown that
the first step in a query adjustment process designed to meet the user expectation
should be understanding why the query failed.

Our goal was to fill this gap. We have first shown that the notions defined for
other unsatisfactory answers problem are too restrictive for our context. As such,
we have defined a more general notion, named MFIS. If queries are relaxed by
removing triple patterns, as long as an MFIS is included in the user query, it will
fail. So an MFIS is a reason for the query’s failure.

Having defined the notion of MFIS, our next objective was to develop efficient
approaches to compute them. We have first shown that enumerating the MFIS and
their dual notion, the XSS, is an NP-hard problem. As the complexity is related
to the number of triple patterns in the query, our aim was to develop algorithms
that provide acceptable performance for queries of a reasonable size. We presented
a baseline method to calculate all MFIS and XSS of a failing query, then proposed
improvements based on query and data properties to reduce the number of queries
executions, and therefore reduce the run-time of our algorithms. A complexity
analysis shows that the number of query executions is potentially halved for each
triple pattern of the original query verifying one of the properties.

Experiments on a synthetic dataset as well as a real dataset with user submitted
queries show that our optimized algorithms offer a significant improvement. Our
Var algorithm saves around 40% of the baseline time and can be used for any
query. Our Full algorithm saves around 48% of the baseline time but requires
additional information – predicate cardinalities. We have studied various types
of cardinalities and shown that while more precise cardinalities are theoretically
useful to reduce the number of executed queries, in practice, the time saved by
these methods is less than the extra computation cost they induce.

The next step is using the MFIS and XSS to aid in rewriting queries with
plethoric answers. Query modification can be performed entirely by the user (i.e.
when we provide the user with MFIS and XSS and they interpret them to adapt
their query), entirely automatically, or by means of an interactive approach, where
the user is guided through various changes applied to their query. The challenge
is identifying how the MFIS and XSS can accelerate this process. Our long term
goal is to build a framework to deal with any unexpected answer problem. This
means identifying the similarities between the problems, and the specificities of
each. The definition of MFIS introduced in this paper is a first step toward this
goal as it generalises the notion of failure causes to non monotonic problems.



A Cooperative Treatment of the Plethoric Answers Problem in RDF 31

References
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A Proof of properties 4, 5, 10, 11, 12 and 13

To prove properties 4 and 5 the idea is to find a bound, relative to the threshold K, to the
number of answers to a query based on the number of answers to another query. To that end
we define the following function. It is the set of mappings in the result of the evaluation of
Q ∧ t with their domains restricted to var(Q):

fQ,t :

{
[[Q ∧ t]]D −→ [[Q]]D

µ 7→ µ|var(Q)

We additionally define a constant value A, the maximum number of inverse images of an
element of [[Q]]D by fQ,t, i.e., ∀µ, |{µ′ | fQ,t(µ′) = µ}| ≤ A. The constant A can be used to
draw relationships between the number of answers of two queries:

Lemma 1 If
|[[Q ∧ t]]D|

A
> K then |[[Q]]D| > K and Q fails.

Proof From the definition of A, |[[Q]]D| ·A ≥ |[[Q ∧ t]]D| so |[[Q]]D| ≥
|[[Q ∧ t]]D|

A
. ut

Proof of property 4
We show that if var(Q ∧ t) = var(Q) then A = 1. Suppose A > 1, and consider µ1 6=

µ2 ∈ [[Q ∧ t]]D where fQ,t(µ1) = fQ,t(µ2), i.e. ∀x ∈ var(Q), µ1(x) = µ2(x). Since dom(µ1) =
dom(µ2) = var(Q ∧ t) and from our hypothesis, var(Q ∧ t) = var(Q), then ∀x ∈ dom(µ1) =
dom(µ2), µ1(x) = µ2(x), i.e. µ1 = µ2. So A = 1 and from lemma 1 if Q ∧ t fails Q fails. ut
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To proove the cardinality-based properties, we rely on the following lemma.

Lemma 2 (cardinalities) For a triple pattern t, and a query Q, using either global, class
or CS cardinality cardinalitymax(t, Q) ≥ maxs∈{µ(s(t)),µ∈[[Q]]D} count(s, p(t)).

Proof Call S = {µ(s(t)), µ ∈ [[Q]]D}
In the case of global cardinality, global cardinalitymax(t, Q) = maxs∈subject(D) count(s, p)

and S ⊆ subject(D). Therefore global cardinalitymax(t, Q) ≥ maxs∈S count(s, p(t))
For class cardinality, consider s ∈ S, and a class C such that ∃t1 ∈ Q, s(t1) = s(t) ∧

C ⊆ domain(p(t1)). According to the definition of s, ∃o | (s, p(t1), o) ∈ D, so from the
definition of domain, s belongs to all classes that are domains of p(t1), in particular, s ∈
instances(C). So count(s, p) ≤ maxs∈instances(C) count(s, p) = class cardinalitymax(p, C). As
this is true for all such classes C, count(s, p) ≤ class cardinalitymax(t, Q), for all s ∈ S.
Therefore, class cardinalitymax(t, Q) ≥ maxs∈S count(s, p(t))

For CS cardinality, consider s ∈ S. Call P the CS of s: SC(s) = P . We have count(s, p) ≤
maxs′,SC(s′)=P count(s′, p) = CS cardinalitymax(p, P ). The CS P contains the predicate of

every triple t′ ∈ Q where s(t) = s(t′), so ∀t′ ∈ Q (s(t′) = s(t)⇒ p(t′) ∈ P ).
Therefore, ∃P (∀t′ ∈ Q (s(t′) = s(t)⇒ p(t′) ∈ P ) ∧ count(s, p) ≤ CS cardinalitymax(p, P )), so
count(s, p) ≤ CS cardinalitymax(t, Q) for all s ∈ S. Therefore, CS cardinalitymax(t, Q) ≥
maxs∈S count(s, p(t)) ut

Proof of property 5

We want to prove that A ≤ cardinalitymax(t, Q). Then,
|[[Q∧t]]D|

A
≥ |[[Q∧t]]D|

cardinalitymax(t,Q)
.

So if
|[[Q∧t]]D|

cardinalitymax(t,Q)
> K, then using lemma 1

|[[Q∧t]]D|
A

> K, so Q fails.

Consider µ ∈ [[Q]]D, let a(µ) be the number of inverse images of µ by fQ,t. Let us show
that a(µ) ≤ cardinalitymax(t, Q). Let µ1 be an inverse image of µ by fQ,t. µ1 is entirely de-
fined by the values of µ1(v) for v ∈ var(Q ∧ t). As p(t) is not a variable and s(t) ∈ var(Q),
if o(t) is not a variable, we can apply the previous property with var(Q ∧ t) = var(Q). So
let us consider that o(t) is a variable. Therefore var(Q ∧ t) = var(Q) ∪ o(t). Additionally
∀v ∈ var(Q), µ1(v) = µ(v), so µ1 is entirely described by µ1(o(t)). Then we have a(µ) =
|{(µ(s(t)), p(t), o(t)) ∈ D}| = count(µ(s(t)), p(t)). From lemma 2, cardinalitymax(t, Q) ≥
maxs∈{µ(s(t)),µ∈[[Q]]D} count(s, p(t)) so a(µ) ≤ cardinalitymax(t, Q) and by definition of A,
A ≤ cardinalitymax(t, Q) ut

Proof of properties 10 and 12 We consider C an MFIS of A, and prove that C is an MFIS of
A OPT B (resp. of A∪B). Based on the definition of an MFIS, we know that C fails. Consider
C′ a superquery of C. C′ is of the form A′ or A′ OPT B′ (resp. A′ ∪B′) where C ⊆ A′ ⊆ A
and B′ ⊆ B. As C is an MFIS of A, and we have C ⊆ A′ ⊆ A, A′ fails. Since |[[C′]]D| ≥
|[[A′]]D| according to property 9 (resp according to |[[P1 ∪ P2]]D| = |[[P1]]D|+ |[[P2]]D|) and
|[[A′]]D| > K then |[[C′]]D| > K i.e. C′ fails. So C is an FIS of A OPT B (resp. of A ∪ B).
Suppose that C is not an MFIS of A OPT B (resp. of A ∪ B), i.e. there exists D an FIS of
A OPT B (resp. of A∪B), such that D ⊂ C ⊆ A. So D is also an FIS of A which contradicts
the fact that C is an MFIS of A. Therefore C is an MFIS of A OPT B (resp. of A ∪B). ut

Proof of property 11 Consider a succeeding query of A OPT B, which can be of the form A′

or A′ OPT B′, with A′ ⊆ A and B′ ⊆ B. From property 9 if A OPT B succeeds A′ succeeds.
From the XSS definition, A′ is either an XSS of A or the subquery of an XSS of A. ut

Proof of property 13 Consider a succeeding query of A ∪B, which can be of the form A′, B′

or A′ ∪ B′, where A′ ⊆ A and B′ ⊆ B. As |[[P1 ∪ P2]]D| = |[[P1]]D| + |[[P2]]D|, if A′ ∪ B′

succeeds then A′ and B′ both succeed. From the definition of XSS, this means that A′ either
is an XSS of A or is the subquery of an XSS of A and likewise for B′. ut
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