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Introduction
This book is a course given to L0 students at UFAZ during the first semester of
the academic years 2019-2020, 2020-2021 and 2021-2022. The Frecnh-Azerbaijani
University called this year the foundation year because it allows to fill the gap that
between the French High School program and Azerbaijan High School’s program.
Its main objective is to give general backgrounds in mathematics to students who
integrate UFAZ, in order to allow them to be able to follow first year’s courses of
the University of Strasbourg. In other words this year corresponds to the ”Termi-
nale” of french program. This book is concerned by the first Semester. It consists
of integration courses and deals with complex numbers, generalities on sequences,
arithmetic and geometric sequences proof by induction, geometry in the plane and
geometry in space. In this book, we follow the following methodology: each chapter
is composed of three parts. In the main part of each chapter we recall the general
results of the topic and give examples that help to understand this subject. To bet-
ter understand the lecture we propose a list of exercises with their corrections. For
students who want to go further we add a list of exercises without any correction
in order to challenger them. We emphasize that most of the problems and exercises
come from the web site APMEP. They were given during the Baccalaureat in the
previous years. We took also some exercises from the list of homework given by
Fuad Aliyev (UFAZ) and Loic Célier (UFAZ).
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INTRODUCTION TO COMPLEX
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The familiar set of real numbers R offers several applications in mathematics.
However it seems to have a lot of deficiencies. Indeed considering the equation

x2 + 1 = 0, (1.0.1)

we observe that there is no x ∈ R which verifies (1.0.1). The main goal of this
chapter is to introduce a set in which we can be able to define solutions to (1.0.1).

1



2 CHAPTER 1. INTRODUCTION TO COMPLEX NUMBERS

Equation (1.0.1) is equivalent to x2 = −1. But we know that −1 cannot be the
square of a real number. To tackle (1.0.1) we suppose that there is a number i, such
that, i2 = −1. This involves x2 = i2. Combining this with (1.0.1) we write

x2 − i2 =
(
x− i

)(
x+ i

)
= 0. (1.0.2)

In this case one finds that the solutions of (1.0.1) are x = i or x = −i.
The new field in which (1.0.1) admits solutions is called the set of complex

numbers and we denote it C.
To study complex numbers in details we proceed as follows. In section 1 we define

the algebraic form of a complex number. In section 2 and 3 we study respectively
the polar form and the exponential form of complex numbers. In section 4 we
investigate second order polynomial equations. The section 5 is devoted to some
general results on complex numbers. We end this chapter by a list of problems.

1.1 Algebraic Form of a Complex Number

As indicated in the introduction, the objective of this section is to investigate the
algebraic form of complex numbers. It is presented in this way. In subsection 1
we deal with the sum , the multiplication and the division of complex numbers. In
subsection 2 and 3 we tackle conjugates and modulus of complex numbers

Definition 1.1.1. We have i2 = −1

Definition 1.1.2. We say that , z is a complex number if there are two reals
numbers a and b, such that,

z = a+ i b. (1.1.1)

The real numbers a and b are respectively called the real part and the imaginary
part of z. We denote a := Re(z) and b := Im(z).

Remark 1.1.3. In the formula (1.1.1),

1. when b = 0, then, z = a is a real number

2. when a = 0, z = i b is called a purely imaginary number.

Example 1.1.4. We consider the complex numbers z1 = 3 and z2 = 5 i.
We can see that z1 is real and z2 is purely imaginary number.

Definition 1.1.5. The formula (1.1.1) is called the algebraic form of the complex
number z.

Example 1.1.6. Let z = 4− 3i. Then, we have Re(z) = 4 and Im(z) = −3.

Example 1.1.7. We consider the complex number z = −3 + i. In this case, we
have Re(z) = −3 and Im(z) = 1.

Exercise 1.1.8. Determine the real and the imaginary part of the following complex
numbers

1. z1 = −2i, 2. z2 = 2− 4i, 3. z3 = −1, 4. z4 = 10 + 30i, z5 = −3− 5i.



1.1. ALGEBRAIC FORM OF A COMPLEX NUMBER 3

If we take the horizontal line passing through 0 as the real axis and the vertical
line that passes through 0 as the imaginary axis, we can represent the complex
number z = a+ ib in this way

Re

Im

•a+ i b

a

b

Let z = a + i b be a complex number. We associate to z the unique point M (a, b)
in the plane. Reciprocally to any point M (xM , yM ) in the plane we can associate
the complex number zM = xM + i yM .

Proposition 1.1.9. There exists a one-to-one correspndance between the set of
all complex numbers and the set of all points in the plane.

Consider two complex numbers z1 and z2. We specify that It is meaningless to
say that z1 is less than z2 or z2 is less than z1. In the set of complex numbers the
only comparison criterion that exists is equality.

Proposition 1.1.10. Let z1 and z2 be two complex numbers. Then, z1 = z2, if
and only if Re(z1) = Re(z2) and Im(z1) = Im(z2).

Proof. if z1 and z2 are two complex numbers such that z1 = z2, then, one has

z1 − z2 =
(
Re(z1)− Re(z2)

)
+ i
(
Im(z1)− Im(z2)

)
= 0.

Therefore Re(z1)− Re(z2) = 0 and Im(z1)− Im(z2) = 0.
Conversly, when Re(z1) = Re(z2) and Im(z1) = Im(z2), we have

z1 = Re(z1) + i Im(z1) = Re(z2) + i Im(z2) = z2.

Example 1.1.11. The complex numbers z1 = 5
2 + 3

2 i and z2 = 2.5 + 1.5i are equal.
But the complex numbers z3 = 1 − i and z4 = 1 + i are different. Because

Im(z3) 6= Im(z4).

In the next subsection we define elementary algebraic operations on the set of
complex numbers.

1.1.1 Sum and Multiplication of Complex Numbers

In this subsection we define sum, multiplication and division of complex numbers.
These operations are a little bit different as in R. Addition and multiplication of
complex numbers are defined as follows:
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Proposition 1.1.12. If z1 = a+i b and z2 = c+i d are complex numbers. Then,

1. z1 + z2 = (a+ c) + i (b+ d)

2. z1 − z2 = (a− c) + i (b− d)

3. z1 · z2 = (ac− bd) + i (ab+ dc).

Proof. Take z1 = a+ i b and z2 = c+ i d. Therefore, we have

z1 + z2 = a+ i b+ c+ i d = (a+ c) + i (b+ d) and

z1 − z2 = a+ i b− c− i d = (a− c) + i (b− d).

To prove 3, we consider again z1 = a+ i b and z2 = c+ i d. One has :

z1 · z2 = (a+ i b)(c+ i d) = ac+ i ad+ i bc+ i2bd = ac+ i ad+ i bc− bd
= (ac− bd) + i (ad+ bc).

Example 1.1.13. For instance, we consider z1 = −2−3i and z2 = 1−4i. Therefore

z1 + z2 = −2− 3i + 1− 4i = −1− 7i, z1 − z2 = −2− 3i− 1 + 4i = −3 + i,

and z1 · z2 = −14 + 5i.

Exercise 1.1.14. Simplify the expressions of the following complex numbers

1. (1 + i)− (3− 2 i) + 3(2 + 5 i)− (1 + 3i)(3− i)), 2. (2 + 3 i)2 + 4− i,

3. (3− 4 i)2 − (2− i)2 + i (6− 3i).

The real and imaginary parts of complex numbers share the following properties

Proposition 1.1.15. If λ ∈ R, z1 ∈ C and z2 ∈ C, we have

1. Re(z1 + z2) = Re(z1) + Re(z2) and Im(z1 + z2) = Im(z1) + Im(z2).

2. Re(λz1) = λRe(z1) and Im(λz1) = λIm(z1).

Remark 1.1.16. As in R, in the set of complex addition and multiplication verify
these properties

• they are commutative : for two complex numbers z1 and z2, we have

z1 + z2 = z2 + z1 and z1 · z2 = z2 · z1.

• multiplication is distributive with respect to addition

z1(z2 + z3) = z1 · z2 + z1 · z3.

At this stage we cannot deal with division. Because to divide two complex
numbers, we need to define the conjugate of the complex number.

1.1.2 Conjugate of a Complex Number

In this subsection we investigate properties of conjugates of complex numbers.
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Definition 1.1.17. The conjugate of the complex number z = a + i b is the
complex number defined by

z = a− i b.

Re

Im

×
z = a+ i b

z = a− i b×

Example 1.1.18. The conjugate of z = 2 − i is z = 2 + i and the conjugate of
z′ = 3 + 5i is z′ = 3− 5i.

Exercise 1.1.19. Determine the conjugates of the following complex numbers

1. z1 = 2 + 4 i, 2. z2 = −1− 7 i, 3. z3 = 3 i, 4. z4 = 21, 5. z5 = −5 i, 6. z6 = −3.

Proposition 1.1.20. If z and z′ are complex numbers. Then,

1. z + z = 2Re(z) and z − z = 2 i Im(z),

2. z + z′ = z + z′ and z · z′ = z · z′

Proof. To prove 1, we fix z = a+ i b. One deduces that,

z+z = a+i b+a− i b = 2a = 2Re(z) and z−z = (a+i b)−(a− i b) = 2i b = 2i Im(z).

For 2, we should point out that if we define the complex number z′ = c+ i d we
obtain

z + z′ = a+ ib+ c+ id = (a+ c) + i(b+ d) = a+ c− ib− id = (a− ib) + (c− id)

= z + z′.

For the last identity of 2. we have

z · z′ = (ac− bd)− i (ad+ bc) = a(c− i d) + i2bd− i bc = a(c− id)− ib(c− id)

= (a− ib) · (c− id) = z · z′.

Theorem 1.1.21. If z is a complex number, then, zn =
(
z
)n
.

Lemma 1.1.22. If z1 and z2 are two complex numbers, then,

1. z1 · z2 + z1 · z2 = 2 Re(z1 · z2),

2. z1 · z2 − z1 · z2 = 2 i Im(z1 · z2).
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Proof. Take z1 = a+ i b and z2 = c+ i d. We observe that

z1.z2 + z1.z2 = ac− i ad+ i bc+ bd+ ac+ i ad− i bc+ bd = 2ac+ 2bd.

Since, Re(z1 · z2) = ac+ bd, one concludes that

z1 · z2 + z1 · z2 = 2 Re(z1 · z2).

The proof of the second identity is the same by taking z1 · z2 − z1 · z2.

Using conjugates of complex numbers we are in a position to define division of
complex numbers.

1.1.3 Division of Complex Numbers

The objective of this subsection is to study divisions of complex numbers. To this
end we remind the following properties

Lemma 1.1.23. For any nonzero complex number z we have(
1

z

)
=

1

z
·

Proof. Take z = a+ ib 6= 0. Multiplying in the numerator and the denomitor by z,
we obtain

1

z
=

a− ib

a2 + b2
⇒
(

1

z

)
=

a+ ib

a2 + b2
·

Let z = a+ ib be a nonzero complex number. Then, we have

1

z
=

z

z · z
=

a+ ib

a2 + b2

This completes the proof of the lemma.

Lemma 1.1.24. If z and z′ are complex numbers such that z′ 6= 0, then,( z
z′

)
=

z

z′
·

Proof. We consider two complex numbers z and z′, such that, z′ 6= 0. Then, com-
bining proposition 1.1.20 and lemma 1.1.23, we have( z

z′

)
= z ·

(
1

z

)
= z · 1

z′
=

z

z′
·

Consider two complex numbers z and z′. We suppose that z′ 6= 0. To determine
the division of z by z′, we multiply the numerator and the denominator of this
fraction by z′.
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Proposition 1.1.25. If z = a + ib and z′ = c + id are two complex numbers,
such that, z′ 6= 0, then,

z

z′
=

(ac+ bd) + i (bc− ad)

c2 + d2
· (1.1.2)

Proof. Take z = a+ i b and z′ = c+ i d 6= 0. Therefore, we have

z

z′
=
a+ i b

c+ i d
=

z · z′

z′ · z′
=
a+ i b

c+ i d
× c− i d

c− i d
=

(ac+ bd) + i (bc− ad)

c2 + d2
·

Example 1.1.26. We consider z1 = 7 + 2i and z2 = 3− 5i, then, we have

7 + 2i

3− 5i
=

7 + 2i

3− 5i
· 3 + 5i

3 + 5i
=

21 + 35i + 6i + 10i2

32 − (5i)2
=

11 + 41i

34
·

Example 1.1.27. we have

1 + i

2i− 1
=

(1 + i)(−1− 2i)

4 + 1
=

1− 3i

5
·

Exercise 1.1.28. Simplify the expression of the following complex numbers

1.
2 + i

3− 5 i
, 2.

1

5− 6 i
, 3.

3 i

4 + 3 i
, 4.

1 + i

2i
, 5.

3− 2i

−1− i
, 6.

7 + i

3− 4i
, 7.

−1− 2i

1− i
·

1.1.4 Modulus of a complex number

This subsection is devoted to modulus of complex numbers. We begin by defining
modulus of complex numbers. In a second time we study the properties of modulus
of complex numbers.

Let z = a + i b be the complex number represented in the plane by the point
M (a , b) as in the figure below.

O Re

Im

b× •
M (z = a+ i b)

|z|

a

×

We defined the modulus of the complex number z = a+ i b as the distance between
the point O(0, 0) [the origin] to the point M (a, b). We denoted the modulus by |z|.

Definition 1.1.29. The modulus of the complex z = a + i b is the nonnegative
real number |z| defined by

|z| =
√
a2 + b2. (1.1.3)
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Example 1.1.30. For instance we consider the complex numbers z1 = 3 + 4i and
z2 = 1− i. Then, we have

|z1| = |3 + 4 i| =
√

32 + 42 =
√

9 + 16 =
√

25 = 5

|z2| = |1− i| =
√

12 + (−1)2 =
√

1 + 1 =
√

2.

Exercise 1.1.31. Determine the modulus of the following complex numbers

z1 = −1− 5 i, z2 = 3 + 2 i, z3 = −1− i, z4 = −3 i, z5 = 12, z6 = −3 + 4 i.

Remark 1.1.32. We point out that, if z1 and z2 are two complex numbers, then,∣∣z2 − z1

∣∣ =
∣∣z1 − z2

∣∣.
Now we consider a complex number z = a + i b. Multplying z by its conjugate

z yields
z · z = (a+ i b)(a− i b) = a2 + i ab− i ab+ b2 = a2 + b2.

This proves the following lemma

Lemma 1.1.33. For any complex number z, we have

z · z = |z|2.

From this Lemma we deduce that two things: first we see that z · z ∈ R+.
Secondly we have |z| = |z|.

Theorem 1.1.34. if z and z′ are complex numbers such that z′ 6= 0, then

1. |z · z′| = |z| · |z′|

2. |zn| = |z|n

3.

∣∣∣∣1z
∣∣∣∣ =

1

|z|

Proof. To prove 1, we define z = a+ i b and z′ = c+ i d. In this case one has

|z · z′|2 = (ac− bd)2 + (ad+ bc)2 = a2c2 + b2d2 + a2d2 + b2c2

= a2(c2 + d2) + b2(c2 + d2) = (a2 + b2)(c2 + d2) = |z|2 · |z′|2

To prove 2 we use 1 and an induction argument.
To establish 3, we consider the complex number z′ = c+ i d 6= 0. One has∣∣∣∣ 1

z′

∣∣∣∣ =

∣∣∣∣ c− i d

c2 + d2

∣∣∣∣ =
|c− i d|
|z′|2

=

√
c2 + d2

|z′|2
=
|z′|
|z′|2

=
1

|z′|
·

Exercise 1.1.35. Determine the modulus of these complex numbers

(3 + i)(−2− i),
−2

4− 5i
, (−1 + i)6,

(2− i)3

(3 + 2 i)2
, (1− i)(2 + i)(3− 5 i), 3 i, −3.
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Proposition 1.1.36. If z and z′ are two complex numbers such that z′ 6= 0, then∣∣∣ z
z′

∣∣∣ =
|z|
|z′|
·

Proof. We take two complex numbers z and z′ such that z′ 6= 0. One sees that∣∣∣ z
z′

∣∣∣ = |z| · 1

|z′|
=
|z|
|z′|
·

Lemma 1.1.37. For any natural numbers n, m and any complex numbers z and
z′ such that z′ 6= 0, we have ∣∣∣∣ znz′m

∣∣∣∣ =
|z|n

|z′|m
·

Lemma 1.1.38. For any complex numbers z1 and z2, we have

1. |Re(z1)| ≤ |z1|

2. |Im(z1)| ≤ |z1|

3. |z1 + z2| ≤ |z1|+ |z2|.

The inequality 3 is called the triangular inequality.

Proof. We define z1 = a + i b and z2 = c + i d. Then, the real and the imaginary
part of z1 verify the following identities∣∣Re(z1)

∣∣ = |a| =
√
a2 ≤

√
a2 + b2 = |z1|∣∣Im(z1)

∣∣ = |b| =
√
b2 ≤

√
a2 + b2 = |z1|.

To establish the last inequality we proceed in this way: we write

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1 · z1 + z1z2 + z1 · z2 + z2 · z2

= |z1|2 + |z2|2 + 2Re(z1z2) ≤ |z1|2 + |z2|2 + 2|z1| · |z2| = (|z1|+ |z2|)2

Considering the square root of the inequality above, we obtain the point 3.

1.2 Polar Form of a Complex Number

In this section we define the polar forms of a complex number. To do so we need at
first to define the argument of a complex. Using arguments of a complex numbers
we will be able to define the polar form of a complex number. We emphasize that
here the expression polar form and trigonometric form have the same meaning.

Indeed if M (a , b) is the point in the plane associated to the complex number
z = a+ i b and θ is the angle between the real axis and the line OM : see the figure
below:
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O Re

Im

•
M (z = a+ i b)

θ = arg(z)

The angle θ is called an argument of the complex number z.

Definition 1.2.1. An argument of the complex z is given by the measure of angle
θ between the real axis and the line OM. We denote

θ := arg(z).

Remark 1.2.2. We draw the readers attention that an argument of the complex
number z is determined up on a multiple of 2π. This means that if θ is an argument
of the complex number z, then

θ + 2kπ with k ∈ Z,

is also another argument of the complex number z.

To determine an argument of a complex number z = a+ i b one may follow the
following steps.

Step 1: We compute the modulus of the complex number z,

|z| =
√
a2 + b2

Step 2: if z = 0, we have arg(z) = 2 k π, for some k ∈ Z

Step 3: Now we assume that z 6= 0 and we define θ := arg(z). In this case one
has

cos(θ) =
Re(z)

|z|
=

a

|z|
and sin(θ) =

Im(z)

|z|
=

b

|z|
· (1.2.1)

Step 4: We determine the argument of z by using one of the following functions
arccos,arcsin and arctan .

Example 1.2.3. Let z = −1 +
√

3. We deduce that |z| =
√

1 + 3 =
√

4 = 2. If we
denote θ := arg(z), one obtains

cos(θ) = −1

2
and sin(θ) =

√
3

2
·

This implies that

arg(z) = π − π

3
·
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Example 1.2.4. We define z = −1− i and θ := arg(z). Then, we obtain |z| =
√

2
and

cos(θ) =
−
√

2

2
and sin(θ) =

−
√

2

2
·

Therefore we have

arg(z) = π +
π

4
·

Using the argument of the complex number z and its modulus we can express
the complex number z in terms of cos and sin. This expression wil be called the
polar or Trigonometric form.

Definition 1.2.5. The polar or trigonometric form of z which has argument θ
is

z = |z|
(

cos(θ) + i sin(θ)
)
. (1.2.2)

Example 1.2.6. Define the polar or trigonometric forms of the complex numbers

z1 = 1 + i, z2 = 1 + i
√

3, z3 = −1, z4 =
√

3 + i.

Solution. 1. We consider z1 = 1+i, then |z1| =
√

1 + 1 =
√

2. Defing θ := arg(z1)
one obtains

cos(θ) =
1√
2

=

√
2

2
and sin(θ) =

1√
2

=

√
2

2
·

This leads to
θ =

π

4
+ 2 k π,

with some k ∈ Z. Hence the polar form of z1,

z1 =
√

2
(

cos
(π

4

)
+ i sin

(π
4

))
.

2. For z2 = 1 + i
√

3, one has |z2| =
√

1 + 3 = 2. Taking θ := arg(z2), we have

cos(θ) =
1

2
and sin(θ) =

√
3

2
·

Therefore we obtain,

θ =
π

3
+ 2kπ, where k ∈ Z.

We conclude that the trigonometric form of z2 is

z2 = 2
(

cos
(π

3

)
+ i sin

(π
3

))
.

3. We consider the complex number z3 = −1. We can see |z3| = 1. Now we fix
θ := arg(z3). This means that

cos(θ) = −1 and sin(θ) = 0.

In this case
θ = π + 2kπ, with k ∈ Z.

The polar form of z3 is
z3 = cos(π).
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4. Let z4 =
√

3 + i. We have |z4| = 2. Setting θ := arg(z4) the following properties
hold:

cos
(
θ
)

=

√
3

2
and sin

(
θ
)

=
1

2
·

Therefore one has

θ =
π

6
+ 2kπ, with k ∈ Z.

Hence the trigonometric form is

z4 = 2
(

cos
(π

6

)
+ i sin

(π
6

))
.

Exercise 1.2.7. Determine the polar form of the following complex numbers

− 1− i, 1− i
√

3,
√

3− i, −
√

3 + i, −2 + 2 i, (1 + i)(
√

3− i), −3i, 2.

Before going further we remind the following trigonometric properties.

Lemma 1.2.8. For every real numbers θ and φ we have

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ) (1.2.3)

cos(θ − φ) = cos(θ) cos(φ) + sin(θ) sin(φ) (1.2.4)

sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ) (1.2.5)

sin(θ − φ) = sin(θ) cos(φ)− cos(θ) sin(φ). (1.2.6)

Using the previous lemma we can prove the following properties.

Proposition 1.2.9. If z and z′ are two complex numbers such that z′ 6= 0, then
we have

1. arg
(

1
z′

)
= arg

(
z′
)

= −arg(z′),

2. arg(z · z′) = arg(z) + arg(z′),

3. arg
(
z
z′

)
= arg(z)− arg(z′).

Proof. We consider two complex numbers z and z′ such that z′ 6= 0. We define
θ1 := arg(z) and θ2 := arg(z′). One has

z′ = |z′|
(

cos(θ2) + i sin(θ2)
)

and z′ = |z′|
(

cos(θ2)− i sin(θ2)
)
.

The identities cos(−θ2) = cos(θ2) and sin(−θ2) = − sin(θ2) imply that

z′ = |z|
(

cos(−θ2) + i sin(−θ2)
)
.

Thus, we conclude that arg(z′) = −θ2. Therefore, one deduces that

arg
( 1

z′

)
= arg

(
z′

|z′|2

)
= arg(z′) = −arg(z′).
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To prove 2, we recall that z = |z|
(

cos(θ1) + i sin(θ1)
)
. This involves

z.z′ = |z| |z′|
(

cos(θ1) cos(θ2) + i sin(θ1) cos(θ2) + i cos(θ1) sin(θ2)− sin(θ1) sin(θ2)
)

= |z||z′|
[

cos(θ1) cos(θ2)− sin(θ1) sin(θ2) + i
(

sin(θ1) cos(θ2) + cos(θ1) sin(θ2)
)]

= |z||z′|
[

cos(θ1 + θ2) + i sin(θ1 + θ2)
]
.

This means that , arg(z · z′) = θ1 + θ2.
To establish the last identity we write

arg
( z
z′

)
= arg

(
z · 1

z′

)
= arg(z) + arg

(
1

z′

)
= arg(z)− arg(z′).

Example 1.2.10. Define the polar form of the following complex numbers:

(1 + i)(
√

3− i) and
1 + i√
3− i

·

Solution. We define z1 = 1+i and z2 =
√

3−i. In this case, |z1| =
√

2, arg(z1) = π
4 ,

|z2| = 2 and arg(z2) = −π6 . Using the proposition above we conclude that

z1 · z2 = 2
√

2
(

cos
(
π/12

)
+ i sin

(
π/12

))
z1

z2
=

√
2

2

(
cos

(
5π

12

)
+ i sin

(
5π

12

))
.

Exercise 1.2.11. For each of the following complex numbers define its polar form

(1− i)(2 + 2
√

3 i),
−
√

3− i

−1− i
, −

√
3− i,

1 + i

5− 5i
,

1

3i
,

2 i√
3 + i

,
1− i

√
3

2
·

In General one can prove the following lemma wich is a generalization of the
second point in the proposition above.

Lemma 1.2.12. For every complex numbers z1, z2, · · · , zn, we have

arg(z1 · z2 · · · · · zn) = arg(z1) + · · ·+ arg(zn) =

n∑
k=1

arg (zk) .

Let n be some positive integer and z = a + ib be any complex number. We
define the complex number Z = zn. A hard and complicate way to treat Z is to use
Newton’s binomial formula. Another method to tackle Z is to consider exponential
forms of complex numbers. Using the exponential form of z we can easily treat the
case zn. Before going further we reimind Euler’s formula.

Lemma 1.2.13. For every real number θ, we have

exp
(

i θ
)

= cos(θ) + i sin(θ), (1.2.7)

where exp denotes exponential function.

We will see that the exponential form of a complex number is more adapted to
calculate powers of complex numbers.
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1.3 Exponential Form of a Complex Number

In this section we investigate the exponential form of a complex number. Using the
exponential we will be able to calculate easily power of complex numbers.

Definition 1.3.1. The exponential form of z that has argument θ is defined by

z = |z| exp
(
i θ
)
. (1.3.1)

Using Euler’s formula we observe that for every real number θ we have

exp
(
− i θ

)
= cos(−θ) + i sin(−θ) = cos(θ)− i sin(θ) = exp

(
i θ
)
.

Lemma 1.3.2. Let z be a complex number with argument θ. Then, the exponen-
tial form of the conjugate of z is

z = |z| exp
(
− i θ

)
.

Proposition 1.3.3. For every real number θ, we have

cos(θ) =
1

2

(
exp(i θ)+exp(−i θ)

)
and sin(θ) =

1

2 i

(
exp(i θ)−exp(−i θ)

)
. (1.3.2)

To prove this proposition we have to write

exp(i θ) = cos(θ) + i sin(θ)

exp(−i θ) = cos(θ)− i sin(θ).

Hence, one sees that

exp(i θ) + exp(−i θ) = 2 cos(θ) and exp(i θ)− exp(−i θ) = 2 i sin(θ).

The most important theorem of this section is De Moivre’s theorem which runs in
this way:

Theorem 1.3.4 (De Moivre’s Theorem). For any complex number that has ar-
gument θ and any positive integer n we have

zn = |z|n
(

cos(n θ) + i sin(n θ)
)

(1.3.3)

Proof. Since θ is an argument of z, we have z = |z| exp(i θ). Elevating z to the
power n we obtain

zn = |z|n
(

exp(i θ)
)n

= |z|n exp(n i θ) = |z|n
(

cos(n θ) + i sin(n θ)
)

This completes the proof.

To determine the expression of the complex number zn we proceed in three
steps:
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Step 1: we have to determine the modulus of the complex number z: |z|

Step 2: we define an argument of the complex number z: arg(z)

Step 3: we apply De Moivre’s theorem in order to obtain the polar form of zn :

zn = |z|n
(

cos(nθ) + i sin(nθ)
)
.

Example 1.3.5. Determine the polar form of the following complex numbers

1.
(
1 + i

)5
2.
(

1− i
√

3
)7

.

Solution. We define z1 = 1+i. In this case one obtains |z1| =
√

2 and arg(z) = π
4 ·

This implies that

z5
1 = 4

√
2

(
cos

(
5π

4

)
+ i sin

(
5π

4

))
.

We take z2 = 1 − i
√

3. This means that |z2| =
√

1 + 3 = 2 and arg(z2) = −π3 ·
Hence one has

z2 = 27

(
cos

(
−7π

3

)
+ i sin

(
−7π

3

))
.

Exercise 1.3.6. Using De Moivre’s theorem determine the polar forms of the fol-
lowing complex numbers(
−
√

3 + i
)5

,
(
− 1− i

√
3
)11

,
(
− 3− 3 i

√
3
)8

,
(

1− i
)3

,
(
−
√

3− i
)6

.

Readers may remember that we have introduced complex numbers in order to
be able to define solutions to all second order polynomial equations.

1.4 Second Order Polynomial Equations

This section deals with second order polynomial equations. We start by treating
second order polynomial equations with real coefficients. In the second part we
investigate second order polynomial equation with complex coefficients.

1.4.1 Equation With Real Coefficients

This subsection is devoted to second order equations with real coefficient. We
remind that a second polynomial equation is an equation in the form

az2 + bz + c = 0 (1.4.1)

where a, b and c are real numbers such that a 6= 0.
To tackle 1.4.1, first we calculate ∆ = b2 − 4ac. According to the sign of ∆, we

distinguish three cases:
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Theorem 1.4.1. If a, b and c are three real numbers such that a 6= 0 and we
define

∆ = b2 − 4a c,

then,

when ∆ > 0, equation (1.4.1) has two real solutions

z1 =
−b−

√
∆

2a
or z2 =

−b+
√

∆

2a
· (1.4.2)

when ∆ = 0, equation (1.4.1) has only one real solution, which is defined by

z0 =
−b
2a
· (1.4.3)

when ∆ < 0, equation (1.4.1) has two solutions

z1 =
−b− i

√
−∆

2a
or z2 =

−b+ i
√
−∆

2a
(1.4.4)

Example 1.4.2. Find the solutions of the following equations, z2 + 4z+ 3 = 0 and
z2 − 5 z + 4 = 0.

Solution. To determine solutions of the equations above we proceed as follows:
1. if we consider the equation z2 + 4z + 3 = 0, one has

∆ = b2 − 4ac = 16− 12 = 4 > 0.

Therefore, we have two real solutions which are

z1 =
−4−

√
4

2× 1
=
−6

2
= −3 or z2 =

−4 +
√

4

2× 1
=
−2

2
= −1·

2. For the equation z2 − 5 z + 4 = 0 we have ∆ = 25 − 16 = 9 > 0. Then, one
obtains

z1 =
5−
√

9

2× 1
=

2

2
= 1 or z2 =

5 +
√

9

2× 1
=

8

2
= 4·

Example 1.4.3. Determine the solutions of the following equations z2−2z+1 = 0
and z2 + 6 z + 9 = 0.

Solution. We seek for z ∈ C solution to z2− 2z+ 1 = 0. We have ∆ = b2− 4ac =
4− 4 = 0. Consequently, there is only one real solution

z0 =
−(−2)

2
=

2

2
= 1.

2. We consider the equation z2 +6 z+9 = 0. Then, ∆ = 62−4×9 = 36−36 = 0.
Therefore we have one real solution

z0 =
−6

2
= −3.
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Example 1.4.4. Find a complex number z solution to these equations
z2 + z + 1 = 0 and −z2 + 3 z − 4 = 0.

Solution. Let z be a complex number.
1. Consider the equation z2 + z + 1 = 0. Then, ∆ = b2 − 4ac = 1 − 4 = −3.

Then there are two solutions that are complex numbers

z1 =
−1− i

√
3

2× 1
=
−1− i

√
3

2
or z2 =

−1 + i
√

3

2× 1
=
−1 + i

√
3

2
·

2. Define the equation −z2 +3 z−4 = 0. Then, ∆ = 9−16 = −7 < 0. Therefore
one obtains two solutions which are complex numbers

z1 =
−3− i

√
7

2× (−1)
=

3 + i
√

7

2
or z2 =

−3 + i
√

7

2× (−1)
=

3− i
√

7

2
·

Exercise 1.4.5. Find the solutions of the following second order polynomial equa-
tions

z2 + 3 z + 2 = 0, z2 + 6 z + 8 = 0, z2 + 7 z + 9 = 0, z2 + 4 z + 2 = 0.

Exercise 1.4.6. Solve the following equations

z2 + 2 z + 1 = 0, z2 − 4 z + 4 = 0, z2 − 6 z + 9 = 0, z2 − 8 z + 16 = 0.

Exercise 1.4.7. Determine the solutions of the following equations

z2 + z + 5 = 0, z2 + 2 z + 4 = 0, z2 + 3 z + 5 = 0, z2 + 5 z + 7 = 0.

Remark 1.4.8. When ∆ < 0, the solutions z1 and z2 are two conjugate complex
numbers.

In the following subsection we will see how to study second order polynomial
equations with complex coefficients.

1.4.2 Equations With Complex Coefficients

As we pointed it out above, this subsection deals with second order equations with
coefficients in C. To explain how to solve equations of the form az2 + bz + c = 0,
with a, b and c are in C we start by this elementary case z2 = −x, for some positive
real number x. Equation z2 = −x is equivalent to

z2 =
(

i
√
x
)2

⇐⇒ z2 − (i
√
x)2 = 0 ⇐⇒

(
z − i

√
x
)(
z + i

√
x
)

= 0

⇐⇒ z = i
√
x or z = −i

√
x.

This leads to the following result.

Proposition 1.4.9. Any complex number has two square roots z1 and z2.

Proof. We fix the complex a+ ib for two real numbers a and b. Let z = x+ i y be a
complex number such that,

z2 = a+ i b. (1.4.5)

To determine the solutions of this equation we proceed in four steps
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Step 1: We specify that the identity (1.4.5) is equivalent to

x2 − y2 + 2ixy = a+ i b.

This leads to the following system x2 − y2 = a,

2xy = b.

Step 2: We emphasize that |z|2 = |x+ i y|2 = x2 + y2 =
√
a2 + b2. This holds the

following identities

x2 − y2 = a, x2 + y2 =
√
a2 + b2 and 2xy = b.

Consequently one deduces that

x2 =

√
a2 + b2 + a

2
and y2 =

√
a2 + b2 − a

2

Step 3: From step 2, we deduce that

x = ±

√√
a2 + b2 + a

2
and y = ±

√√
a2 + b2 − a

2

Step 4: Now we use the sign of b = 2xy to determine the exact values of x and y.

Example 1.4.10. Find the square roots of the following complex numbers

1. 8 + 6 i, 2. 3− 4 i.

Solution. 1.Let z = x+ i y be a square root of 8 + 6 i. Then we have z2 = 8 + 6 i.
We obtain x2 − y2 = 8 , 2x y = 6, and x2 + y2 =

√
82 + 62 = 10. We have

x2 =

√
82 + 62 + 8

2
= 9 and y2 =

√
82 + 62 − 8

2
= 1.

Therefore x = ±3 and y = ±1. Since x · y = 3 > 0, then, x and y have the same
sign. Hence

case 1: when x = 3, we have y = 1. In this case z1 = 3 + i

case 2: when x = −3, the real number y = −1 then z2 = −3− i.

2. We define z = x+ i y such that z2 = 3− 4 i. Then, z2 = (x+ i y)2 = 3− 4 i.
This involves x2 − y2 = 3, 2xy = −4 and x2 + y2 = 5. Thus we obtain

x2 =

√
32 + 42 + 3

2
= 4 y2 =

√
32 + 42 − 3

2
= 1.

That is x = ±2 and y = ±1. Now we use the sign of xy = −2 < 0 to determine x
and y.
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case 1: when x = 2, we have y = −1. Then, z1 = 2− i

case 2: when x = −2, we obtain y = 1. In this case we have z2 = −2 + i.

Exercise 1.4.11. Find the square roots of the following complex numbers

− 1 + 3 i, 2 + i, 7 + 5 i, 4− 2 i, 8− 7 i, −2 + i, 4− 9 i, −1− i, 3 i.

Let a, b and c belong to C such that a 6= 0. We consider the following second
order polynomial equation

az2 + bz + c = 0, (1.4.6)

Equation (1.4.6) can be rewritten in this way

az2 + bz + c = a

(
z2 + 2

b

2a
z +

b2

4a2
− b2

4a2
+
c

a

)
= a

[(
z +

b

2a

)2

− b2 − 4ac

4a2

]
= 0

Here, we define the complex number ∆ = b2 − 4a c. If α ∈ C is a square root of ∆
one may have(

z +
b

2a

)2

−
( α

2a

)2

= 0⇔
(
z +

b

2a
− α

2a

)(
z +

b

2a
+

α

2a

)
= 0.

Therefore, we have

z1 = −b+ α

2a
or z2 = −b− α

2a
·

Lemma 1.4.12. Let a, b and c be three complex numbers such that a 6= 0 and
∆ = b2 − 4 a c. We asume that the complex number α is a square root of ∆ and
we consider equation (1.4.6). Then,

when ∆ = 0. Equation (1.4.6) has one solution

z =
−b
2a
·

when ∆ 6= 0. Equation (1.4.6) has two solutions which are defined

z1 = −b+ α

2a
or z2 = −b− α

2a
.

Example 1.4.13. Find the solutions of the equation z2 + 2i z − 4− 4 i = 0.

Solution. To find the solution to z2 + 2i z − 4− 4 i = 0 we proceed as follows

Step 1: We define ∆ = (2i)2 − 4× (−4− 4 i) = −4 + 16 + 16 i = 12 + 16 i.

Step 2: We must find α that is a square root of ∆. We set (x + i y)2 = 12 + 16 i.
We know that |12 + 16 i| = 20. Then,

x2 =

√
122 + 162 + 12

2
= 16 and y2 =

√
122 + 162 − 12

2
= 4.

That is, x = ±4 and y = ±2. Using the identity 2xy = 16 we have α = 4 + 2 i
or α = −4− 2 i.
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Step 3: Therefore, we obtain

z1 = −b+ α

2a
= −2 i + 4 + 2 i

2
= −2− 2 i or

z2 =
−b+ α

2a
= −2i− 4− 2i

2
=

4

2
= 2

Exercise 1.4.14. Find the solution of the following equations

i z2 + (1 + i)z + 2 + 3 i = 0, 3z2 + 5 iz + 3 + 2 i = 0, z2 + (2 + 3i)z + 1 = 0.

Fix some natural n ≥ 3. For every complex number z we are woundering if these
equations zn = 1 and zn = a+ i b have solutions.

In the next section we will tackle the previous equations. We just precise that,
the solutions of the first one are called the nth roots of the unit and the solutions
of the second one are called nth roots of the complex number z.

1.5 Nth Roots of a Complex Numbers

In this section we study nth roots of unit and nth roots of a general complex number.

1.5.1 The nth Roots of the Unit

Let z be a complex number. We consider the equation zn = 1. We assume that
arg(z) := θ and r := |z|. We define z = r ei θ. In this case, we have

zn = rn ein θ = 1.

On the other hand we know that 1 = e2 i kπ, for some integer k. Hence

rn exp(in θ) = exp(2 i kπ).

This is equivalent to say that r = 1 and n θ = 2 kπ. Consequently we have

θ =
2 k π

n
.

We conclude that the solutions of equation zn = 1 are given by

zk = exp

(
2 i k π

n

)
, k ∈ N. (1.5.1)

We observe that z0 = zn = 1. Then, we will just consider k between 0 and n − 1.
This leads to these expressions

z1 = exp

(
2 iπ

n

)
, z2 = exp

(
4 iπ

n

)
, · · · , zn−1 = exp

(
2(n− 1) iπ

n

)
.

Proposition 1.5.1. If z is a complex number and n some natural number, then,
the equation zn = 1 has n solutions that are the elements of this set

Un =

{
zk = exp

(
2 ikπ

n

)
; 0 ≤ k ≤ n− 1

}
. (1.5.2)
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Example 1.5.2. Find the solution of the following equations z3 = 1 and z4 = 1

Solution. 1.To find solutions of the equation z3 = 1, we define θ := arg(z) and
r := |z|. Then, r3e3iθ = e2ikπ. This implies r = 1 and θ = 2kπ

3 · for 0 ≤ k ≤ 2
Therefore

z0 = 1, z1 = exp

(
2iπ

3

)
= −1

2
+

√
3

2
i, z2 = exp

(
4iπ

3

)
= −1

2
−
√

3

2
i.

2. Now we consider the equation z4 = 1. Setting θ := arg(z) and r = |z|, we get
θ = 2 k π

4 . Then, for k such that 0 ≤ k ≤ 3, one has

z0 = 1, z1 = exp

(
iπ

2

)
= i, z2 = exp (iπ) = −1, z3 = exp

(
6iπ

4

)
= −i.

Exercise 1.5.3. Determine the solutions of the following equations

z5 = 1, z8 = 1, z21 = 1, z7 = 1, z9 = 1, z8 = 1, z11 = 1.

The solutions to the equation zn = 1 share the following properties.

Lemma 1.5.4. We consider the equation zn = 1. Then,

1. the sum of all elements of Un is equal to 0

2. if we denote by Mk the point in the plan which is associated to zk, then the
points Mk belong to the circle with center O and radius 1

3. The points Mk form a regular polygon that is inscribed in the circle of center
O and radius 1.

1.5.2 The nth Roots of a Complex Number

In this section we deal with the equation zn = a+ i b for some real numbers a and
b. To determine the solutions of this equation, we define ρ := |z| and ω := arg(z).
Assuming that the comlex number a+ i b = r exp(i θ), we write

zn = ρn exp(n iω) = a+ ib = r exp(i θ).

Therefore the following identities hold ρn = r and nω = θ + 2 k π, for some integer
k. This means that

ρ = n
√
r and ω =

θ + 2 k π

n
·

Then,the solutions of the equation zn = a+ i b are defined by:

zk = n
√
r exp

(
θ + 2 kπ

n
i

)
, k ∈ N. (1.5.3)

Proposition 1.5.5. Let a and b be two real numbers. We define r :=
∣∣a + i b

∣∣
and θ := arg

(
a + i b

)
. Then, the equation zn = a + i b has n solution, which are

given by the following formula

zk = n
√
r exp

(
θ + 2 kπ

n
i

)
= n
√
r

[
cos

(
θ + 2 kπ

n

)
+ i sin

(
θ + 2 kπ

n

)]
.

Here k is a positive integer such that, 0 ≤ k ≤ n− 1.
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Example 1.5.6. Find the solution of the following equation z9 = 1 + i

Solution. To find the solution to the equation z9 = 1+i we specify that |1+i| =
√

2

and θ = arg(1+i) =
π

4
· Using the formula (1.5.3), one deduces that for every integer

k, such that 0 ≤ k ≤ 8,

zk =
9

√√
2 exp

(
θ + 2iπk

9
i

)
=

9

√√
2 exp

(
π/4 + 2iπk

9
i

)
,

Remark 1.5.7. When θ = 0, that correspond to the case a+ ib = 1 we obtain the
nth roots of unit.

Exercise 1.5.8. Determine the solutions of the following equations

z7 = −i, z5 = 1 + i
√

3, z3 = −1− i, z6 = −
√

3− i, z10 =
√

3− i, z4 = i.

1.6 General Properties of Complex Numbers

In this section we just remind some important properties on complex numbers.
Let z1 and z2 belong to C. Then, |z1| = |z1−z2+z2| ≤ |z1−z2|+|z2|. On the other

hand, we have |z2| = |z2− z1 + z1| ≤ |z2− z1|+ |z1| Therefore |z1| − |z2| ≤ |z1− z2|
and |z2| − |z1| ≤ |z1 − z2|. Consequently we obtain

∣∣|z1| − |z2|
∣∣ ≤ |z1 − z2|.

Lemma 1.6.1. If z1 and z2 are two complex numbers, then,∣∣∣ |z1| − |z2|
∣∣∣ ≤ |z1 − z2| (1.6.1)

Inequality (1.6.1) is called the second triangular inequality.

Lemma 1.6.2. Let z = x+ i y be a complex number. Then,

|ez| = ex and arg(ez) = y.

Proof. We consider a complex number z = x+ i y. Then,

ez = ex+i y = ex × eiy = ex
(
cos(y) + i sin(y)

)
.

Since ex ≥ 0 and |eiy| =
√

cos(y)2 + sin(y)2 = 1. One deduces that |ex+i y| = ex.
We saw above that exp(z) = exp(x)× exp(i y). Then,

arg(exp(z)) = arg(exp(x)× exp(i y)) = arg(exp(x)) + arg(exp(i y)).

As we know that exp(x) is a positive real number. Then, arg(exp(x)) = 0 + 2 k π.
Hence arg(exp(z)) = arg(exp(i y)) = y.

Lemma 1.6.3. If z is a complex number that satisfies |z| = 1 then, there exists
a real number θ, such that,

z = exp(i θ).
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Proof. Let z = x + i y, such that |z|2 = x2 + y2 = 1. Therefore, there exists a real
number θ, such that x = cos(θ) and y = sin(θ). In this case one has

z = cos(θ) + i sin(θ).

Using Euler’s formula we establish that z = cos(θ) + i sin(θ) = exp(i θ).

1.7 Exercise Session

Most of the exercises proposed here were given in the Bacalaureat in France in the
previous years. They was taken from the web site apemp. We modify the little some
statement in order to adapt them to our situation.

Exercise 1.7.1. In the complex plane, we define i as the complex number that
has modulus 1 and argument π

2 ·

1. Prove that
(
1 + i

)6
= −8i.

2. Now we consider the equation (E) : z2 + 8i = 0.

a. Deduce from 1. a solution of (E).

b. Give the algebraic form of the other solution.

3. Deduce from 1. and 2. a solution of the equation z3 = −8i.

Comments. We make the following comments on the exercise.

• To determine the exponent of a complex number, it is better to use the expo-
nential form of the complex number.

• Let z1 be a complex number. For some complex number ω we define the
equation

z2 = ω

and we assume that z1 is a solution of this equation. To find another solution
to z2 = ω, we write

z2 − z2
1 = 0⇔

(
z − z1

)(
z + z1

)
= 0.

Hence the second solution is given by −z1.

Solution. Let z be a complex number. The exponential form of z is given by
z = |z| ei arg(z).

1. In particular if we take z0 = 1 + i, we have

•
∣∣z0

∣∣ =
√

2.

• Defining θ := arg(z0), we obtain cos(θ) =
√

2
2 and sin(θ) =

√
2

2 ·
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• From this we deduce that θ = π
4 + 2kπ, for some k ∈ Z·

Since for every k ∈ Z, exp(2kπi) = 1, one has z0 =
√

2 exp
(

iπ4

)
. This implies

z6
0 =

(√
2
)6

exp

(
i
6π

4

)
= 8 exp

(
i
3π

2

)
= 8

(
cos

(
3π

2

)
+ i sin

(
3π

2

))
= −8i

2. We consider the equation (E) z2 + 8i = 0 and we define the complex number

z1 =
(
1 + i

)3
.

a. Then, from 1. we deduce that

z2
1 =

((
1 + i

)3)2

=
(
1 + i

)6
= −8i.

Therefore the complex number z1 =
(
1 + i

)3
is a solution of (E). Straight-

forward calculations show that

z1 = 2
√

2 exp

(
i
3π

4

)
= −2 + 2i.

b. Using the second point in the comment above, one finds that

z2 −
(
− 2 + 2i

)2
=
(
z + (−2 + 2i)

)(
z − (−2 + 2i)

)
= 0

This involves z = 2− 2i or z = −2 + 2i.

We conclude that the solutions of (E) are z1 = −2 + 2i and z2 = 2− 2i.

3. Let z3 =
(
1 + i

)2
. Applying 1, we obtain z3

3 =
(
1 + i

)6
= −8i. Consequently

z3 =
(
1 + i

)2
is a solution of the equation z3

3 = −8i. Moreover we have

z3 =
(
1 + i

)2
= 1 + 2i− 1 = 2i

Exercise 1.7.2. We consider the complex number z = −
√

2 +
√

2 + i
√

2−
√

2.

1. Determine the algebraic form of z2.

2. Find the exponential form of z2.

3. Deduce from 2. the exponential form of z.

4. Define the polar form of z and deduce from this the exact values of cos
(
π/8

)
and sin

(
π/8

)
.

Comments. As comments we just remind the following properties

• If a and b are two real numbers then,(
a+ ib

)2
= a2 − b2 + 2iab(

a− ib
)2

= a2 − b2 − 2iab
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• Let z be a complex number with argument θ, then, we have

– exponential form of z: z = |z| exp
(
i θ
)

– polar form of z: z = |z|
(

cos(θ) + i sin(θ)
)
.

– an identification of the polar and algebraic forms gives

cos(θ) =
Re(z)

|z|
and sin(θ) =

Im(z)

|z|
·

• If the exponential form of ω2 = |ω|2 exp
(
i θ1

)
, then, ω = ±|ω| exp

(
i θ12
)

Solution. We consider the complex number z = −
√

2 +
√

2 + i
√

2−
√

2.

1. Using the first point of the comments we obtain

z2 =

(
−
√

2 +
√

2 + i

√
2−
√

2

)2

= 2 +
√

2−
(
2−
√

2
)
− 2 i

√(
2 +
√

2
)(

2−
√

2
)

= 2
√

2− 2i
√

2

2. From the algebraic from one can easily deduce that |z2| = 4 and arg(z2) = −π4 ·
This implies that

z2 = 4 exp
(
−i
π

4

)
3. The third point of the comments combines with 2 imply that

z = 2 exp
(
−i
π

8

)
or z = −2 exp

(
−i
π

8

)
Remarking that −1 = eiπ, we write −e−iπ/8 = ei(π−π/8). Then, we have

z = 2 exp
(
−i
π

8

)
or z = 2 exp

(
i
(
π − π

8

))
As we know that cos(θ) is negative, we conclude that z = 2 exp

(
i
(
π − π

8

))
·

In this case we obtain

z = 2
(

cos
(
π − π

8

)
+ i sin

(
π − π

8

))
.

4. Since we know that cos
(
π − π

8

)
= − cos

(
π
8

)
and sin

(
π − π

8

)
= sin

(
π
8

)
, we

have

cos
(π

8

)
=

√
2 +
√

2

2
and sin

(π
8

)
=

√
2−
√

2

2
·

Exercise 1.7.3. Let U be the point associated to the complex number 1 and V
the point associated to i. We consider a complex number z 6= 0 and define the
complex

z′ =
1

z
·

1. Prove that arg(z′) = arg(z) + 2kπ for some integer k.
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2. Determine the set of all point M with affix z in the plane suh that

1

z
= z.

3. Establish that
z′ − 1

z′ − i
= −i

(
z − 1

z − i

)
·

4. Let M be the point associated to the complex number z. Prove that when M
belongs to the line (UV ), z−1

z−i is a real number.

5. Deduce from the previous questions arg
(
z′−1
z′−i

)
·

Comments. As a comment, we remind the following properties.

• For any complex number z, we have arg
(
z
)

= −arg(z)

• If z1 and z2 are two compex numbers, we have

– z1 + z2 = z1 + z2 and z1 − z2 = z1 − z2

– for z2 6= 0 one has (
z1

z2

)
=
z1

z2

– for any real numbers a and b, such that z2 6= b(
z1 − a
z2 − b

)
=
z1 − a
z2 − b

=
z1 − a
z2 − b

– z2 6= i, then for any real number a we have(
z1 − a
z2 + i

)
=
z1 − a
z2 + i

=
z1 − a
z2 − i

– arg(z1 · z2) = arg(z1) + arg(z2)

– for any complex number z2 6= 0

arg

(
z1

z2

)
= arg(z1)− arg(z2)

• arg(i) = π
2 ·

• For any complex number z, we have z · z =
∣∣z∣∣2.

• If ~u and ~v are two vectors, we define the oriented angle between ~u and ~v by(
~u,~v
)
.

• If A is the point associated to zA and B is associated to zB, then, we can

associte to the vector
−−→
AB the complex number z−−→

AB
= zB − zA.
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• We adopt the following notations:

– the vector ~u is associated to the complex number 1

– the vector ~v is associated to the complex number i

• the argument of the complex number z−−→
AB

is defined by the angle
(
~u,
−−→
AB
)

:

arg
(
z−−→
AB

)
=
(
~u,
−−→
AB
)
.

• For any complex number zA which is associated to the point A, we have

arg(zA) =
(
~u,
−→
OA
)

• If
−−→
AB (z−−→

AB
) and

−→
AC (z−→

AC
) are two non-zero vectors then, one has

arg

(
z−→
AC

z−−→
AB

)
= arg

(
z−→
AC

)
− arg

(
z−−→
AB

)
=
(
~u,
−→
AC
)
−
(
~u,
−−→
AB
)

=
(−−→
AB,

−→
AC
)
.

Solution. Let z be a nonzero complex number. Then,

1. we have arg(z′) = arg(1) − arg(z). As we know that arg(1) = 2kπ for some
integer k and arg(z) = −arg(z). Therefore, one obtains

arg(z′) = 2kπ − (−arg(z)) = 2kπ + arg(z).

2. Let M be the point that is associated to the complex number z. We assume

that z satisfies 1
z = z. This involves z · z =

∣∣z∣∣2 = 1. If we set z = x+ iy, we
obtain

x2 + y2 = 1 (1.7.1)

Equation (1.7.1) is the equation of a circle with center O and radius 1. We
conclude that the set of all complex number such that, 1

z = z is the circle with
center O and radius 1.

3. If z is a complex number that is different to 1 and i, we have

z′ − 1

z′ − i
=

z − 1

iz − 1
=

z − 1

iz + i2
=

z − 1

i
(
z + i

) =
1

i
· z − 1

z − i
= −i

(
z − 1

z − i

)
·

4. In this question we assume that M (z) belongs to the line (UV ) and is different
to the points U and V . In this case, we can associate to the complex number

z − 1 the vector
−−→
UM and

−−→
VM to the complex z − i. One deduces that

arg

(
z − 1

z − i

)
=
(−−→
VM,

−−→
UM

)
.

Since M , U and V belong to the line (UV ), then,
(−−→
VM,

−−→
UM

)
= 0 + kπ, for

some integer k. Hence z−1
z−i is a real number.
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5. Using questions 3. and 4. we have

arg

(
z′ − 1

z′ − i

)
= arg

(
−i

(
z − 1

z − i

))
= arg(−i)+arg

((
z − 1

z − i

))
= −π

2
+kπ,

for some integer k.

Exercise 1.7.4. Find the solutions of the following equations

1. z2 + z + 1 = 0, 2. z2 + 5z + 4 = 0, 3. z2 + 6z + 9 = 0, 4. z4 + 4z2 + 3 = 0.

Comments. Here we remind the method to solve second order polynomial equa-
tions.

• To find the solution of the equation az2 + bz+ c = 0, where a 6= 0, we proceed
as follows: We compute the discriminant

∆ = b2 − 4ac

Case 1: ∆ > 0. We have two real solutions

z1 =
−b−

√
∆

2a
or z2 =

−b+
√

∆

2a
·

Case 2: ∆ = 0. We have one real solution

z0 =
−b
2a
·

Case 3: ∆ < 0. We have two solutions which are complex numbers:

z1 =
−b− i

√
−∆

2a
or z2 =

−b+ i
√
−∆

2a
·

• To deal with equations of the form az4 + bz2 + c = 0, we make the following
substitution Z = z2. In this case the equation becomes

aZ2 + bZ + c = 0.

We find Z by proceeding as in the previous point and we deduce z.

Solution. In this exercise we deal with equations of degre 2.

1. We consider the equation z2 + z + 1 = 0. Then, ∆ = 1− 4 = −3 < 0. In this
case, we have two solutions which are complex numbers

z1 =
−1− i

√
3

2
or z2 =

−1 + i
√

3

2
·

2. We are looking for z, such that, z2 + 5z + 4 = 0. To find z we define
∆ = 25 − 16 = 9 > 0. Therefore, we have two real solutions which are given
by

z1 =
−5− 3

2
= −4 or z2 =

−5 + 3

2
= −1·
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3. We define the equation z2 + 6z + 9 = 0. Hence, ∆ = 0. This implies that the
unique real solution is given by

z0 =
−6

2
= −3·

4. Now we consider the equation z4 + 4z2 + 3 = 0. We use the following substi-
tution Z = z2. The previous equation becomes

Z2 + 4Z + 3 = 0. (1.7.2)

To determine Z, we set ∆ = 16 − 12 = 4 > 0. Then (1.7.2) has two real
solutions

Z1 =
−4− 2

2
= −3 or Z2 =

−4 + 2

2
= −1·

To find z we have to point out that

Z1 = −3⇔ z2
1 = 3i2 ⇔ z1 = ±i

√
3 and Z2

2 = −1⇔ z2
2 = i2 ⇔ z2 = ±i.

S =
{
−i
√

3 ; i
√

3 , −i ; i
}

Exercise 1.7.5. Find the solutions of the following equations

1. z6 = 8, 2. z4 = 1− i, 3. z7 = 1− i
√

3,

Comments. In this exercise we have to tackle exponent of complex numbers:

zn = a+ ib

• As we pointed it out in exercise 1.7.1, to compute powers of complex numbers,
the exponential form is more adapted.

• We have to determine the exponential form of the complex number a+ib which
is |a+ ib| exp

(
i θ
)
, where arg(a+ ib) = θ + 2 iπ.

• Identifying |a+ ib| exp
(
i θ
)

to zn = |z|n exp(inω), where ω = arg(z), we will
be able to determine the n solutions z0, z1, · · · , zn−1 of the equation zn = a+ib

Solution. Let z be a complex number which satisfies zn = a + ib. Therefore, we
have

• θ = arg(a+ ib)

• r = |a+ ib|

• ω = arg(z)

• a+ ib = r exp(iθ)

• z = |z| exp(iω)
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From this we deduce that,

zn = |z|n exp
(
inω

)
= r exp(i (θ + 2kπ)).

This identity is equivalent to |z|n = r and nω = θ + 2kπ. We have

|z| = n
√
r and ω =

θ + 2kπ

n
·

Consequently, for every integer k, such that, 0 ≤ k ≤ n− 1, we have

zk = n
√
r exp

(
i
θ + 2kπ

n

)
·

1. We consider the equation z6 = 8. In this case we have |z| = 6
√

8 =
√

2 and
θ = 0. We conclude that

zk =
√

2 exp

(
i

2kπ

6

)
=
√

2 exp

(
i
kπ

3

)
,

for 0 ≤ k ≤ 5. This involves

z0 =
√

2

z1 =
√

2
(

cos(π/3) + i sin(π/3)
)

=

√
2

2
+ i

√
6

2

z2 =
√

2
(

cos(2π/3) + i sin(2π/3)
)

= −
√

2

2
+ i

√
6

2

z3 =
√

2
(

cos(π) + i sin(π)
)

= −
√

2

z4 =
√

2
(

cos(π + π/3) + i sin(π + π/3)
)

= −
√

2

2
− i

√
6

2

z5 =
√

2
(

cos(2π − π/3) + i sin(2π − π/3)
)

=

√
2

2
− i

√
6

2
·

2. For the equation z4 = 1 − i, we have |z| =
4
√√

2 = 8
√

2 and θ = −π4 · Then,
for 0 ≤ k ≤ 3, we have

zk =
8
√

2 exp

(
i

(
− π

16
+
kπ

2

))
·

3. Now we consider the equation z7 = 1 − i
√

3. Then, |z| = 7
√

2 and θ = −π3 .
From this we deduce that

zk =
7
√

2 exp

(
i

(
− π

21
+

2kπ

7

))
,

for 0 ≤ k ≤ 6.
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Exercise 1.7.6. Find the solution of the following equation z3 + 3z2 + 4z = 0.

Comments. To find the solution of an equation of the form a3z
3+a2z

2+a1z+a0 =
0, we proceed as follows:

• We find a particular solution z0 of the equation.

• We write this equation in the form (z − z0)(az2 + bz + c) = 0.

• We determine the solutions of the equation az2 + bz + c = 0.

Solution. We consider the equation z3 + 3z + 4z = 0. If we replace z by 0, we
obtain 0 + 3 · 0 + 4 · 0 = 0. Therefore z0 = 0 is a solution to the equation. Now we
have to write the equation in the form

z
(
az2 + bz + c

)
= 0.

Now we should find a, b and c. To determine a, b and c, we point out that

z(az2 + bz + c) = az3 + bz2 + cz = z3 + 3z2 + 4z

Identifying the coefficients of the two polynomes we obatin a = 1, b = 3 and c = 4.
Hence we have

z(z2 + 3z + 4) = 0⇐⇒ z = 0 or z2 + 3z + 4 = 0.

For the equation z2 + 3z + 4 = 0, we have ∆ = −7. Consequently,

z1 =
−3− i

√
7

2
or z2 =

−3 + i
√

7

2
·

We conclude that

S =

{
0 ;
−3− i

√
7

2
;
−3 + i

√
7

2

}
·

1.8 Problems

Problem 1.8.1. Let x and y be two real numbers. We define the complex number
z = x+ i y. We suppose that z 6= 1− 3i. and we consider the complex number

Z =
z + 3 + 7 i

z − 1 + 3 i
·

1. Determine the algebraic and the trigonometric form of Z.

2. Let M (x, y) be the point of the plane associated to z. Find the set of all points
M in the plane such that,

a. Z is a real number
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b. Z is a purely imaginary number.

Problem 1.8.2. Find the solutions of the following equations

1. 3− 2 iz + i = 0, 2.
z − 1

z + 1
= i, 3.

(3− 2 i)

z + 2
= i− 5, 4.

z + 1

z − 1
= 1 + i,

5. 2z = i− 1, 6. (2 z + 1− i)(z + i− 2) = 0, 7. 3(z − z) + 5z = 3z − 2 i.

Problem 1.8.3. Let z belong to C. We define the function P (z) = z3 +z2 +2z−4.

1. Check that P (z) = (z − 1)(z2 + 2z + 4).

2. Find the solutions of the equation P (z) = 0.

Problem 1.8.4. Let f(z) = z4 − 8z3 + 26z2 − 8z + 25 be a complex function.

1. Check that for every z ∈ C, f(z) = (z2 + 1)(z2 − z + 25)

2. Find the solutions to the equation z4 − 8z3 + 26z2 − 8z + 25 = 0.

Problem 1.8.5. Compute the following complex numbers

1.
(
1− i

)7
, 2.

(
i−
√

3
)n

, 3.
(
1 + i

)2019
, 4.

(
− 1−

√
3
)5
, 5.

(√
3− i

)3
.

Problem 1.8.6. Find the solutions of the following equations

1. (1 + i)z2 − z − (1− i) = 0, 2. 2z2 − 2z + 5 = 0, 3. z4 + 5z + 4 = 0,

4. z4 − 2z2 cos(θ) + 1 = 0, 5. z3 =
√

3− i.

Problem 1.8.7. Consider the complex number Z = (1 + i)
(√

3− i
)
.

1. Determine the algebraic and the trigonometric form of Z.

2. Deduce from 1 the exact values of cos
(
π
12

)
and sin

(
π
12

)
·

Problem 1.8.8. Let z be a complex number which is different to 1. We define the
complex number z′ = 1 + z + z2 + z3 + z4.

1. Prove that

z′ =
1− z5

1− z
·

2. Taking z = exp
(

2iπ
5

)
, determine z′

3. Deduce from 2 the value of 1 + cos
(

2π
5

)
+ cos

(
4π
5

)
+ cos

(
6π
5

)
+ cos

(
8π
5

)
4. Show that cos

(
2π
5

)
+ cos

(
8π
5

)
= 4 cos2

(
π
5

)
− 2.

5. Establish that cos
(

4π
5

)
+ cos

(
6π
5

)
= −2 cos

(
π
5

)
.

6. Deduce from the previous questions that cos
(
π
5

)
is a solution to the equation

4x2 − 2x− 1 = 0.

7. Solve the equation 4x2− 2x− 1 = 0 and determine the exact value of cos
(
π
5

)
.
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Problem 1.8.9. We consider the polynomial function P (z) = z4 − 6z3 + 23z2 −
34z + 26.

1. a. Prove that P (u) = P (u).

b. Show that if P (u) = 0, then P (u) = 0.

2. Now we take z = 1 + i.

a. Compute P (1 + i).

b. Deduce from 2.a) another solution to the equation P (z) = 0.

c. Find the solutions of the equation P (z) = 0.

Problem 1.8.10. Find a necessary and sufficient conditions on α and β, such that

1 + exp(iα) + exp(iβ) = 0.

Problem 1.8.11. Define the trigonometric form of the following complex numbers

1. 1 + cos(θ) + i sin(θ) with α, β ∈]− π/2, π/2[

2. eiα + ei β

3. eiα − ei β

4. (1 + i tan(α)) (1− i tan(β)), with α, β ∈]− π/2, π/2[

Problem 1.8.12. Compute the following complex numbers

1. (1− cos(θ) + i sin(θ))
n
, 2. (1− i)n, 3.

(
i−
√

3
)n

, 4. (1 + i)2019

5. (1− i tan(θ))
n
, with θ ∈]− π/2, π/2[.

Problem 1.8.13. Let z belong to C. We define the function P (z) = z3+z2+2z−4.

1. Check that P (z) = (z − 1)(z2 + 2z + 4).

2. Find the solutions of the following equation P (z) = 0.
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In this chapter we deal with functions with domain the set of natural numbers
N or a subset of N. These particular functions are called sequences. In other words
a sequence can be defined as a function which goes from N into R. That is, we have
f : N → R or f : D → R, with D ⊂ N. Usually we denote f(n) the image of n
by the function f . Since the set N is countable, the range of N which is denoted
by f(N) is also countable. In this case we can enumerate the elements of f

(
N
)
.

This allows to use the notation fn instead of f(n). In this situation the set f(N) is
represented by

(
fn
)
n∈N.

We specify that the real number fn is called the nth term of the sequence
(fn)n∈N. The readers should make the difference between fn and (fn)n∈N. By
(fn)n∈N we mean all the terms of the sequence while fn designates the nth term

35
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of the sequence.Sequences have several applications in Physic, Chemistry,Biology,
Ecology, · · · · In this chapter we will essentially be concerned by induction and
convergence of sequences.

The remain of this chapter is organized as follows. In section 1 we give a list of
definitions. In section 2 we introduce and study induction. The section 3 is devoted
to limits and convergence.

Before going further, we draw the readers attention that we will sometimes start
counting from 0 instead of 1. This means that the expressions f0 or u0 would be
sometimes used and would represent the first term of the sequence.

2.1 Generalities on Sequences

In this section we will attempt to precise the definitions which will be needed for the
sequel. We start by specifying the definition of explicitly and recursively defined
sequences. Because at this stage, we think that it is so important to make the
difference between these two types of sequences. We should however mention that in
this chapter the terms recursively defined sequence and sequence defined by induction
are equivalent. They have the same meaning. In the list of definitions we will give
the definition of increasing and decreasing sequences. Another important property
which plays an important role in the study of sequences is boundedness, therefore
we will define in this section the different type of boundedness that can exist for a
sequence.

Definition 2.1.1. A sequence (un)n≥n0
is explicitly defined if it is in the form

un = f(n), (2.1.1)

for some real function f : R −→ R and any natural number n ≥ n0.

We emphasize that the natural number n0 can be 0 if the first term of the
sequence is u0. It can be 1 if the first term is u1, · · · · We will specify later on what
we mean by the first term of a sequence. This definition means that the term un
depends directly on n.

Example 2.1.2. The following sequences are explicitly defined:

• ∀n ∈ N, un = 2n, • ∀n ≥ 1, vn =
1

n
, • ∀n ∈ N, wn = n+ 1.

Definition 2.1.3. A sequence (un)n≥n0
is recursively defined if its first term un0

is given and for all n ≥ n0 we have

un+1 = f(un). (2.1.2)

for some natural number n0 and some real function f : R −→ R.

We usually use the following representation for recursive sequenses un0 ∈ R

un+1 = f(un), ∀n ≥ n0.
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In this definition one can observe that the term un+1 depends on the previous one:
un. The relation of dependance is defined by the function f .

Example 2.1.4. The following sequences are recursively defined :

•

 u0 = 3

un+1 = un + 2, ∀n ≥ 0,
•


v1 = 2

vn+1 =
vn

vn + 1
, ∀n ≥ 1.

Definition 2.1.5. The initial term or the first term of a sequence (un) is the
term that has the smallest index.

As it was pointed out that a sequence is a particular function, we should be able
to determine the image of any natural number which is in the domaine. That can
be possible but it is not always easy. For the sake of clarity we distinguish the case
of explicitly defined sequences to the case of recursively defined sequences.

2.1.1 Computation of the Terms of a Sequence

In this subsection, we illustrate how to proceed if we want to determine the terms
of a sequences.

For Explicitely defined Sequences

We remind briefly that a sequence is explicitly defined if there exists some n0 ∈ N,
such that for all n ≥ n0, un = f(n), for some real function f.

To obtain un0
we have to calculate

un0 = f(n0).

Let n1 > n0 be some positive integer. In order to compute un1
, we use the following

formula

un1 = f(n1).

Example 2.1.6. For instance we consider the sequence un = 2n + 3. Then, we
have

• u0 = 2 · 0 + 3 = 3, • u1 = 2 · 1 + 3 = 5, • u2 = 2 · 2 + 3 = 7,

• u10 = 2 · 10 + 3 = 23, • u100 = 2 · 100 + 3 = 203.

Exercise 2.1.7. For each of the following sequences determine u0, u2, u10 and u25

1.∀n ∈ N, un = 3n+ 1, 2.∀n ∈ N, un = (2n+ 1)2 + 5,

3.∀n ∈ N, un = 3n+1 − 2n, 4.∀n ∈ N, un =
1

n+ 3
,

5.∀n ∈ N, un = n3 − 2n+ 1.
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For Recursively Defined Sequences

Let (un)n≥n0
be recursively defined by un0

= a ∈ R and for any natural number
n ≥ n0, un+1 = f(un), for some real function f . Here, the initial term un0 is given.
it is equal to a. In order to calculate un0+1 we use the term un0 in the formula
above. We get

un0+1 = f(un0
) = f(a).

We emphasize that the function f must be defined at a. Otherwise the expression
f(a) does not make a sense. To obtain the term un0+2, we use the term un0+1

as follows: un0+2 = f(un0+1). It is important to notice that, if we want to calcu-
late un0+k we must compute all the terms un0

, un0+1, un0+2, ..., un0+k−2, un0+k−1.
Clearly if we want to get un0+10 for example we must calculate all the terms from
un0 to un0+9.

Example 2.1.8. We consider the following sequence u0 = 2

∀n ≥ 0, un+1 = 2un + 1.

Here n0 = 0. To determine u1, u2, u3 and u4 we proceed as follows:

• u1 = 2u0 + 1 = 2 · 2 + 1 = 5, • u2 = 2u1 + 1 = 2 · 5 + 1 = 11,

• u3 = 2u2 + 1 = 2 · 11 + 1 = 23, • u4 = 2u3 + 1 = 2 · 23 + 1 = 47.

Example 2.1.9. As a second example we define the following sequence,
u1 = 1

∀n ≥ 1, un+1 =
un

un + 1
·

In this example, the initial term is u1, then n0 = 1. To compute u2 and u3 we set :

• u2 =
u1

u1 + 1
=

1

1 + 1
=

1

2
, • u3 =

u2

u2 + 1
=

1

2
1

2
+ 1

=

1

2
3

2

=
1

3
·

Exercise 2.1.10. Compute the five first terms of each of the following sequences

1.

 u0 = 1

∀n ≥ 0, un+1 = 3un − 3,
2.

 u1 = 0

∀n ≥ 1, un+1 = 2u2
n + 1,

3.


u0 = 1

∀n ≥ 0, un+1 =
2un + 1

un
·

In the next section we investigate bounded sequences.
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2.1.2 Bounded Sequences

Sometimes the values taken by the sequence cannot exceed some real number M. In
this case we say the sequence is bounded above. If the values of the sequence cannot
go under some valuem, we say that the sequence is bounded below. When the values
of a sequence is locate in an interval [m,M ], such that, m < M ,we say that the
sequence is bounded. To clarify these notions we introduce these definitions.

Definition 2.1.11. A sequence (un)n≥0 is bounded above , if there exists a real
number M such that, ∀n ≥ 0,

un ≤M.

Example 2.1.12. Let n ≥ 1 be a natural number. We define the sequence un = 1
n ·

We can observe that sequence (un)n≥1 is bounded above. Indeed, ∀n ≥ 1, we have

un ≤ 1.

Definition 2.1.13. A sequence (un)n≥0 is bounded below, if there exists m ∈ R,
such that, for every n ≥ 0

m ≤ un.

Example 2.1.14. We consider the sequence un = n2, for any natural number n.
The sequence (un) is bounded below. Because ∀n ≥ 0,

0 ≤ un = n2

Definition 2.1.15. A sequence (un)n≥0 is said to be bounded, if, it is bounded
above and below.

Definition 2.1.15 means that, there exist real numbers m and M , such that,

∀n ≥ 0, m ≤ un ≤M (2.1.3)

Example 2.1.16. We define the sequence un = (−1)n, ∀n ∈ N. We know that,
∀n ≥ 0, we have

−1 ≤ un ≤ 1.

Therefore,
(
un
)
n≥0

is bounded.

2.1.3 Monotonic Sequences

Since a sequence is a function, we need to know its variations. Here we mean by
variations of a sequence the fact that the sequence is increasing or decreasing.

Definition 2.1.17. A sequence (un)n≥0 is increasing, if for all n ≥ 0, we have,

un ≤ un+1.

Example 2.1.18. Consider the sequence un = n2, for all n ≥ 0. Then, the sequence
(un) satisfies un = n2 ≤ (n+ 1)2 = un+1. Therefore it is increasing.
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Definition 2.1.19. We say that a sequence (un)n≥0 is decreasing, if for all n ≥ 0
we have,

un ≥ un+1.

Example 2.1.20. The sequence un = 1
n , ∀n ≥ 1 is a decreasing sequence. Indeed

for any n ≥ 1, we have

un =
1

n
≥ 1

n+ 1
= un+1.

Now, we focus on the inequalities un ≤ un+1 and un ≥ un+1. They are respec-
tively equivalent to un+1 − un ≥ 0 and un+1 − un ≤ 0.

This means that the variations of the sequences (un) depends on the sign of the
difference un+1 − un.

Theorem 2.1.21. Let
(
un
)
n≥0

be a real sequence. Then,

1. if un+1 − un ≥ 0, the sequence
(
un
)
n≥0

is increasing

2. if un+1 − un ≤ 0, the sequence
(
un
)
n≥0

is decreasing.

Proof. The proof of this theorem is quite simple. If for all natural number n ≥ 0,
un+1 − un ≥ 0, then we have un+1 ≥ un. Therefore

(
un
)
n≥0

is increasing.

On the other hand if for every natural number n,we have un+1 − un ≤ 0, then,
un+1 ≤ un. We conclude that

(
un
)
n≥0

is decreasing.

Remark 2.1.22. When the inequalities are strict we say that the sequence is strictly
increasing or strictly decreasing.

Example 2.1.23. We define the following sequence

3.

 u0 = 2

∀n ≥ 0, un+1 = un + 3n+ 2.

Let n be any natural number. Then, we have un+1 − un = 3n + 2 ≥ 0. Therefore
the sequence (un) is increasing.

Exercise 2.1.24. Study the variations of the following sequences.

1.

 u0 = 0

∀n ≥ 0, un+1 =
√
un + 2,

2.

 u0 = 3

∀n ≥ 0, un+1 =
√
un + 5,

3. ∀n ≥ 1, un = 7 +
5

n2
·

Let n0 be a natural number. We consider the property P (n) for any natural
number n ≥ n0. We would like to show that for each n ≥ n0 the property P (n) is
true. But we know that the set

{
n ∈ N ; n ≥ n0

}
is infinite. It seems to be a waste

of time to want to check P (n) for any n ≥ n0. Nevertheless, proceeding intelligently
we can prove that P (n) is true for any n ≥ n0. Our strategy will runs in this way,
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1. we check that P (n0) is true

2. we verify that P (n) is true, implies that P (n+ 1) is true.

This procedure is called induction. In the next section we will study the different
forms of induction.

2.2 Proof by Induction

This section is devoted to induction. We will see that there are two forms of
induction: first form and second form. We summarize briefly the general ideas of
the different forms of induction before studying them in details

First Form: We consider the property P (n) depending on the positive integer n
satisfying n ≥ n0 for some integer n0.

• We check that P (n0) is true.

• After this we assume that the property P (k) is true and we prove P (k+1).

Second Form: Let n0 be a natural number. For any n ≥ n0, we define the prop-
erty P (n).

• We check that P (n0) is true.

• Secondly we assume that the property P (k′) is true for any natural num-
ber less than or equal to k and we prove that P (k + 1) is true.

2.2.1 First Form of Induction

In this subsection, we describe the first form of proof by induction. We fixed a
natural number n0. We define the property P (n), ∀n ≥ n0. To prove P (n) we
proceed in three steps:

Step 1: We set n = n0 and we check that P (n0) is true.

Step 2: We assume P (k) for some positive integer k.

Step 3: Now we prove that P (k + 1) holds

Conclusion: We conclude that for all natural number n ≥ n0, P (n) is true.

To make more understandable the procedure of induction we proceed by examples

Example 2.2.1. Prove by induction that ∀n ≥ 1,

1 + 2 + 3 + ...+ n =
n (n+ 1)

2
·

We define

P (n) : ∀ n ≥ 1, 1 + 2 + 3 + ...+ n =
n (n+ 1)

2
·

To establish P (n) for n ≥ 1, we proceed in three steps.

Step 1: We consider n = 1, then , 1 = 1 (1+1)
2 = 1. Therefore P (1) is true.
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Step 2: We assume P (k) for some k ≥ 2. In other words we suppose that

1 + 2 + 3 + ...+ k =
k (k + 1)

2
·

Step 3: Now we want to prove P (k + 1). This is equivalent to establish that

1 + 2 + 3 + ...+ k + (k + 1) =
(k + 1) (k + 2)

2
·

For any natural number k ≥ 2 we have,

1 + 2 + 3 + ...+ k + (k + 1) =
k (k + 1)

2
+ (k + 1) =

k (k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
·

Conclusion: Therefore, For all n ≥ 1, we have 1 + 2 + 3 + ...+ n = n (n+1)
2 ·

Example 2.2.2. Prove that for any natural number n, 2n > n. We define

P (n) : ∀ n ≥ 0, 2n > n.

To establish this property we proceed as follows:

Step 1: We fix n = 0. Therefore we have 20 = 1 > 0. The property is true for 0.

Step 2: Now we assume that the property holds for some natural number k ≥ 2.
That is, 2k > k.

Step 3: Now we want to establish that the property holds for k+ 1. In other words
we have 2k+1 > (k + 1).

We know by definition that 2k+1 = 2k · 2. Since we have assumed that 2k > k,
one deduces that 2k+1 > 2k. As we took k > 2, then, 2k > k + 2 > k + 1.
Therefore we can see that 2k+1 > k + 1. Hence, P (k + 1) is true

Conclusion: We conclude that for all n ≥ 0, we have 2n > n.

Example 2.2.3. To prove that for every n ≥ 4, n! ≥ n2, we define the property

P (n) : ∀ n ≥ 4, n! ≥ n2

and we use a proof by induction

Step 1: We consider n = 4. On one hand we have 4! = 24. On the other hand, we
see that 42 = 16. Then, 4! ≥ 42. Consequently P (4) is true.

Step 2: Now, we assume P (k) for some natural number k ≥ 5. This involves
k! ≥ k2.

Step 3: We have to establish P (k + 1). That is, we should prove that

(k + 1)! ≥
(
k + 1

)2
.

As we assumed k ≥ 5, using step 2, one obtains k! ≥ k2 ≥ (k+1). Multiplying
by (k + 1) in both sides of the previous inequalities, we find that

k! (k + 1) = (k + 1)! ≥ (k + 1)2.

Hence P (k + 1) is true.
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Conclusion: We conclude that for any n ≥ 4 we have n! ≥ n2.

Exercise 2.2.4. Prove by induction the following properties.

1. P (n) : ∀n ≥ 1, 1 + 4 + 9 + ...+ n2 = n (n+1)(2n+1)
6 ·

2. P (n) : ∀n ≥ 1, 1 + 8 + 27 + ...+ n3 = n2 (n+1)2

4 ·

3. P (n) : ∀n ≥ 1, 1 + 16 + 81 + ...+ n4 = n (n+1)(6n3+9n2+n−1)
30 ·

Exercise 2.2.5. We consider the sequence defined by
u0 = 1

2

un+1 =
√

1+un

2 , ∀n ≥ 0.

Prove that for all n ≥ 0, 0 ≤ un ≤ 1.

2.2.2 Second Form of Induction

We start by precising that the second form of induction is stronger than the first
one. Because it requires in step 2 of the proof by induction, to assume that the
property is true for every k′ ≤ k in order to be able to establish P (k + 1). Appart
from this additional constraint the process remains the same.

We consider the proposition ∀n ≥ n0, P (n). To prove P (n), we proceed as in
the preceding subsection. At first, we check P(n0). Secondly we assume P (k′) for
0 ≤ k′ ≤ k for some positive integer k. We establish that this implies P (k + 1).
This can be clearly summarize in the following steps

Step 1: We fix n = n0 and we check P (n0)

Step 2: We consider some natural number k and for n0 ≤ k′ ≤ k we assume P(k′)

Step 3: In this step we establish that P (k + 1).

Conclusion: We conclude that for every n ≥ n0, the property P (n) is true.

Example 2.2.6. We consider the following sequence u0 = 1

∀n ≥ 0, un+1 =
√

2 + un.

Establish that P (n) : ∀n ≥ 0, 0 ≤ un ≤ 2.

Step 1: If we take n = 0 we obtain 0 < u0 = 1 < 2. Hence, P (0) is true.

Step 2: We assume that the property holds for any positive integer less than k for
some natural number k. That is for every k′ such that 0 ≤ k′ ≤ k we have

0 ≤ uk′ ≤ 2.
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Step 3: Now we have to establish that 0 ≤ uk+1 ≤ 2.

Since 0 ≤ uk ≤ 2, we have 2 ≤ 2 + uk ≤ 4 This implies that

0 ≤
√

2 ≤
√

2 + uk ≤
√

4 = 2.

The property is true for k + 1.

Conclusion: We conclude that for any n ≥ 0, we have 0 ≤ un ≤ 2.

Exercise 2.2.7. We consider the following sequence u0 = 2

∀n ≥ 0, un+1 = 4un − 1.

Establish that for all n ≥ 0, un = 5
3 4n + 1

3 ·

If there is no risk of ambiguity we will adopt from now on, the following no-
tations: we will write (un) instead of (un)n≥n0

or (un)n≥0, in order to simplify
notations. But when the situation seems to be confused, for the sake of clarity we
will specify the indices. Moreover throughout this chapter we will be concerned by
real sequences.

Let (un) be a sequence. As (un) is a function, we can be attempted to study
the behaviour of (un) when n approaches +∞. Since we cannot reach +∞, in this
case we say that we are looking for the limit of the sequence at +∞. Below, we aim
to specify the nature of (un) in accordance with the value of the limit.

We notice that the limit of a sequence holds only at +∞.

2.3 Study of Limits of Sequences

This section is devoted to limits. Here we define what we mean by limit of a
sequence. According to the value of the limit, we can say whether the sequence is
convergent or divergent.

2.3.1 Definitions of Limits of Sequences

Consider a real number `. The expression ` is the limit of (un) when n goes to +∞
means that when n is large enough the terms un, un+1, un+2, · · · are as close as
we want to `. In other words there exists a natural number N , such that, for any
n ≥ N , we can make the positive real number |un−`| as small as we want. This can
be reformulated by saying that for all positive real ε > 0 small enough (the positive
real number ε > 0 can be chosen as small as possible), there exists N ∈ N, such
that, for any n ≥ N we have |un − `| ≤ ε. This leads to the following definition.

Definition 2.3.1. A real number ` is the limit of the sequence (un), if for all
ε > 0, there exists a natural number N , such that, for every n ≥ Nwe have∣∣un − `∣∣ ≤ ε.
In this case we write

lim
n→+∞

un = `.
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This definion can be rewriten as follows: there exists N ∈ N such that, for any
n ≥ N the term un belongs to a neighborhood of `. We interpret this by saying
that for any n ≥ N the term un is approximately equal to `. Using the absolute
value we write

lim
n→+∞

|un − `| = 0.

Definition 2.3.2. We say that the sequence (un) converges to the real number
`, if

lim
n→+∞

un = `.

In this case the sequence (un) is called a convergent sequence. If the limit ` is
+∞ or −∞, we say that (un) is a divergent sequence. We will see below another
characterization of divergent sequences.

Example 2.3.3. For all n ≥ 1, we define the sequence un = 1
n · Then, we have

lim
n→+∞

un = lim
n→+∞

1

n
= 0.

Therefore, the sequence (un) converges to 0.

The following example shows a sequence which is divergent.

Example 2.3.4. We consider the sequence un = 2n, for every n ≥ 0. One sees
that

lim
n→+∞

un = lim
n→+∞

2n = +∞.

Hence, the sequence (un) is divergent.

Definition 2.3.5. A sequence (un) converges to +∞, if for any real number
A > 0, there exists some natural number n, such that,

un > A.

Remark 2.3.6. This definition means that the sequence (un) cannot be bounded
above.

Example 2.3.7. We take the sequence un = n2, ∀n ≥ 0. Then

lim
n→+∞

n2 = +∞.

This sequence goes to +∞ when n goes to +∞.

Definition 2.3.8. A sequence (un) converges to −∞, if for any real number A,
one can find some natural number n such that,

un < A, ∀ n ≥ N.

Remark 2.3.9. A sequence which converges to −∞ cannot be bounded below.

Example 2.3.10. For any n ≥ 0, we consider the sequence un = −n. Then,

lim
n→+∞

−n = −∞.

Hence, the sequence (un) converges to −∞.
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2.3.2 General Theorems on Convergence

The main purpose of this subsection is to give a list of some of the most usefull
theorems in the study of convergence sequences. In the first result we will be
concerned by the uniqueness of the limit. From this theorem, we deduce that if a
sequence has more than one limit, then, this sequence is divergent. Other theorems
like monotonic convergence theorem, sandwich theorem and others will be stated.

In the previous subsection we established that a sequence is convergent if it has
a finite limit. One may wonder now if this limit is unique. The answer to this
question, we will the contents of the following theorem

Theorem 2.3.11. If `1 and `2 are two real numbers and (un) a sequence such
that

lim
n→+∞

un = `1 and lim
n→+∞

un = `2,

then, `1 = `2.

Remark 2.3.12. This theorem clarifies the fact that any convergent sequence has
a unique limit.

Proof. Let (un) be a convergent sequence. We assume

lim
n→+∞

un = `1, and lim
n→+∞

un = `2.

Since (un) is convergent we deduce that `1 and `2 are finite. Therefore, we have

lim
n→+∞

un − un = lim
n→+∞

un − lim
n→+∞

un = `1 − `2 = 0.

Consequently we obtain `1 = `2.

As a consequence of this lemma, we have the following corollary.

Corollary 2.3.13. Any real sequence (un) that has more than one limit is di-
vergent.

Example 2.3.14. An example of such sequence is given by un = (−1)n for n ≥ 0.
For any n ≥ 0 we define  vn = u2n = 1

wn = u2n+1 = −1

It is obvious that

lim
n→+∞

u2n = 1 and lim
n→+∞

u2n+1 = −1.

From this we observe that the sequence (un) has two different limits. Then, the
previous corollary implies (un) is diverges.

Theorem 2.3.15. If (un) and (vn) be two real sequences and N some natural
number such that for every n ≥ N , un ≤ vn then

lim
n→+∞

un ≤ lim
n→+∞

vn.
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Proof. We consider two real sequences (un) and (vn) and we suppose that there
exists a natural number N , such that, for avery n ≥ N , we have un ≤ vn. We define
wn = un − vn and we assume that

lim
n→+∞

wn = ` > 0.

The fact that (wn) converges to a strictly positive real number ` means that
for some n large enough (n → +∞) we have wn > 0. That is, there exists a
natural number N0 ≥ N such that for every n ≥ N0 one has wn > 0. This involves
un − vn > 0, which is absurd. Hence, we have

lim
n→+∞

wn = lim
n→+∞

(un − vn) = lim
n→+∞

un − lim
n→+∞

vn ≤ 0.

This completes the proof.

As a consequence of this theorem we can state the following corollary.

Corollary 2.3.16. If (un) is a real sequence, and N some natural number, such
that, for every n ≥ N , 0 ≤ un, then,

0 ≤ lim
n→+∞

un.

In the corollary of theorem 2.3.11 we have shown that a sequence which has
two different limits diverges. The following theorem, will show that a divergent
sequence can have a unique limit. In this case this limit is equal to +∞ or −∞.

Theorem 2.3.17. Any increasing sequence which is not bounded above converges
to +∞.

Proof. We consider an increasing sequence (un) which is not bounded above. Hence,
for all real number A > 0, we can find a natural number N , such that, uN > A.
Since (un) is an increasing sequence, we deduce that for all n ≥ N , un > A.
Therefore using definition 2.3.5 we have

lim
n→+∞

un = +∞.

This proves the theorem.

Theorem 2.3.18. Any decreasing sequence which is not bounded below converges
to −∞.

Proof. We take a decreasing sequence (un). We assume that (un) is not bounded
below. Therefore for any real number B < 0 there exists N ∈ N such that uN < B.
Since (un) is a decreasing sequence, we have un < B, for all n ≥ N. From definition
2.3.8 we deduce that

lim
n→+∞

un = −∞.
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In many situations, we are not able to give the exact value of the limit when
a sequence converges. In these cases the best option which offers to us is just
to say that the sequence converges without specifying its limit. The monotonic
convergence theorem is one of such result that will allow us to say that a sequence
is convergent without giving its limit.

Theorem 2.3.19 (Monotonic Covergence Theorem). Let (un) be a real sequence
sequence. We assume that (un) is increasing and bounded above or decreasing
and bounded below. Then, (un) is convergent

Proof. To prove the theorem we use the property that if (A) and (B) are two
propositions such that (A⇒ B) then,

(nonB⇒ nonA).

Now we consider an increasing sequence (un) which is not bounded above. Ap-
plying theorem 2.3.17 one deduces,

lim
n→+∞

un = +∞.

Then the first part of the theorem holds.
If (un) is a decreasing sequence that is not bounded below, then by theorem

2.3.17 we have
lim

n→+∞
un = −∞.

The second part of the theorem holds. This completes the proof.

Example 2.3.20. We consider the following sequence u0 = 1

∀n ≥ 0, un+1 =
√

2 + un.

1. Establish that ∀n ≥ 0, 0 ≤ un ≤ 2.

2. Prove that (un) is an increasing sequence.

3. Is the sequence (un) convergent ?

Solution. We consider the previous sequence and we aim to prove that P (n) : ∀n ≥
0, 0 ≤ un ≤ 2

1. To this end we proceed by indution

Step 1: We fix n = 0 then we have 0 < u0 = 1 < 2. This implies P (0).

Step 2: We assume now that the property holds for all positive integer less
than or equal to some natural number k. That is, for every k′ such that
k′ ≤ k, one has 0 ≤ uk′ ≤ 2.

Step 3: Now we have to prove P (k+ 1). In other words we want to establish
that

0 ≤ uk+1 ≤ 2.

Since 0 ≤ uk ≤ 2, we have

2 ≤ 2 + uk ≤ 4⇒ 0 ≤
√

2 ≤
√

2 + uk ≤ 2.

Then the property is true for k + 1
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Conclusion: For any n ≥ 0, 0 ≤ un ≤ 2.

2. To prove that the sequence (un) is increasing, we must compute un+1 − un.
For all n ≥ 0,

un+1 − un =
√

2− un − un =
2 + un − u2

n

un +
√
un + 2

.

We study the sign of the second order polynomial function −u2
n + un + 2. To

this end we define the function f(x) = −x2 +x+ 2. One deduces the following
sign table:

x −∞ −1 2 +∞
−x2 + x+ 2 − 0 + 0 − .

For more details on the sign of second order polynomial functions see appendix.
Since ∀n ≥ 0, 0 ≤ un ≤ 2, one obtains un+1 − un ≥ 0. Therefore (un) is an
increasing sequence.

3. As (un) is increasing and bounded above, hence it is convergent.

Example 2.3.21. We consider the sequence (un) defined by u0 = 2

∀ n ≥ 0, un+1 =
√

2un − 1.

1. Prove ∀n ≥ 0, 1 ≤ un

2. Study the variations of the sequence (un).

3. Deduce from the two previous questions that (un) converges.

Solution. 1. We define the property P (n) : ∀n ≥ 0, 1 ≤ un. To prove P (n) we
proceed in this way.

Step 1: We set n = 0. Then, we have u0 = 2 > 1. Then, P (0) holds.

Step 2: We consider some natural number k and we assume that the property
is satisfied by any positive integer k′ ≤ k. Therefore, ∀ k′ such that
k′ ≤ k, we have 1 ≤ uk′ .

Step 3: Now we have to prove that 1 ≤ uk+1. We recall that we assumed in
the previous step that for all k′ ≤ k, uk′ ≥ 1. Then 1 ≤ uk. Multiplying
by 2 in the previous inequality, one gets 2 ≤ 2uk. Thus one obtains
1 ≤ 2uk − 1. Considering the square root in the previous inequality, we
obtain

1 ≤
√

2uk − 1 = uk+1.

Therefore P (k + 1) is true.

Conclusion: For any n ≥ 0, un ≥ 1.

2. We know that to study the variations of a sequence, we have to find the sign
of un+1 − un. For any n we have

un+1 − un =
√

2un − 1− un =
−u2

n + 2un − 1

un +
√

2un − 1
=

−(un − 1)2

un +
√

2un − 1
≤ 0·
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This provides

un+1 − un ≤ 0.

Therefore (un) is a decreasing sequence.

3. Since (un) is decreasing and bounded below, it is convergent.

Exercise 2.3.22. Let (un)n≥0 and (vn)n≥0 be two real sequences, such that, u0 > 0,
v0 > 0. For every natural number n ≥ 1 we define

un+1 =
√
un vn

vn+1 =
un + vn

2
·

1. Establish that for all n ≥ 1, un ≤ vn.

2. Prove that (un) is an increasing sequence and (vn) is a decreasing sequence.

3. Deduce from the two previous questions that (un) and (vn) are convergent
sequences and they have the same limit.

Exercise 2.3.23. We consider the sequence (un) u0 = 0

∀n ≥ 0, un+1 =
√

3un + 4.

1. Prove , for all n ≥ 0, 0 ≤ un ≤ 4

2. Prove (un) is an increasing sequence.

3. Is (un) a convergent sequence ?

In reality, in the case of the monotonic convergence theorem we can prove a
more precise result. Refining a little bit our reasoning we can define the limit of a
sequence.

Theorem 2.3.24. If (un)n≥0 is an increasing sequence which is bounded above,
then, we have

lim
n→+∞

un = sup
n≥0

un.

Proof. We consider an increasing and bounded sequence (un) as in the theorem.
Since, any subset of real numbers which is bounded above admits a least upper
bound, then , supn≥0 un is defined. Let us now denote M := supn≥0 un. Then, for
every n ≥ 0, un ≤M.

Take ε > 0. According to the definition of the supremum, there exists a natural
number N , such that M − ε ≤ uN ≤M. Using the fact that (un) is increasing, one
deduces that for all n ≥ 0,

M − ε ≤ uN ≤ un ≤M.
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On the other hand we have M + ε ≥ M for any ε > 0. This yields the following
property: for all ε > 0, there exist a natural number N , such that, for avery n ≥ N ,
we have

M − ε ≤ un ≤M + ε.

This can be rewritten in this way:for all ε > 0, there exist a natural number N ,
such that, for avery n ≥ N ,

∣∣un −M ∣∣ ≤ ε. This prove that

lim
n→+∞

un = sup
n≥0

un.

This proves the theorem.

Theorem 2.3.25. If (un)n≥0 is a decreasing sequence which is bounded below ,
then,

lim
n→+∞

un = inf
n≥0

un.

Proof. Take the decreasing and bounded below sequence (un). Then, the real num-
ber m := infn≥0 un is defined and for every n ≥ 0, m ≤ un. Let ε > 0. There exists
some natural number N , such that, m ≤ uN ≤ m + ε. As the sequence (un) is
decreasing, we have for all n ≥ N ,

m ≤ un ≤ uN ≤ m+ ε.

This implies that, for every ε > 0, there exists a natural number N , such that for
every n ≥ N , m− ε ≤ un ≤ m+ ε. From this we deduce that for every ε > 0, there
exists a natural number N , such that for every n ≥ N , we have

∣∣un−m∣∣ ≤ ε. Hence
we have

lim
n→+∞

un = m = inf
n≥0

un.

This completes the proof.

When the sequence (un) is only bounded, and there is no information on its
variations, we cannot say that the sequence is convergent. But what we know is we
can extract a convergent sequence from (un).

Theorem 2.3.26. Any bounded real sequence amits a convergent subsequence.

Another useful theorem to study convergence is the sandwich theorem.

Theorem 2.3.27 (Sandwich Theorem). If (un), (vn) and (wn) are three se-
quences such that vn ≤ un ≤ wn for every n ≥ N for some natural number N.
Moreover we suppose that

lim
n→+∞

vn = lim
n→+∞

wn = `,

then,
lim

n→+∞
un = `.
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Proof. We consider three sequences (un), (vn) and (wn), such that, vn ≤ un ≤
wn for every n ≥ N for some natural number N. Moreover we assume that,
limn→+∞ vn = limn→+∞ wn = `. Therefore we have

` ≤ lim
n→+∞

un ≤ `.

That is,
lim

n→+∞
un = `.

This completes the proof.

Example 2.3.28. To determine the limit of the following sequence

un =
cos(n)

n

∀n ≥ 1 we use the properties of the function cosinus. For all n ≥ 1, −1 ≤ cos(n) ≤
1. This means that

−1

n
≤ cos(n)

n
≤ 1

n
·

As we know that, limn→+∞
−1

n
= limn→+∞

1
n = 0, we conclude that

lim
n→+∞

cos(n)

n
= 0·

Exercise 2.3.29. Find the limits of the following sequences:

1.∀n ≥ 1, un =
(−1)n

n
, 2.∀n ≥ 1, un =

cos(n)

n2
, 3.∀n ≥ 0, un =

2n sin(5n2)

n2 + 1
·

To establish that a sequence is bounded we can use the following theorem.

Theorem 2.3.30. Any convergent sequence is bounded.

Proof. Take the sequence (un) which converges to `. There exists a natural number
N such that for every n ≥ N , un − ` is bounded by 1. In other words, |un − `| < 1
for n ≥ N. Let n be a natural number, such that, n ≥ N then we have

|un| = |(un − `) + `| ≤ |un − `|+ |`| < (1 + |`|).

Now, we define the positive real number

M := max
(
|u0|, |u1|, · · · , |uN−1|, 1 + |`|

)
.

Then, for every n ∈ N, we have |un| ≤M. Therefore, the sequence (un) is bounded.

Example 2.3.31. To establish that the sequence un = 2n+3
n+1 is bounded, we point

out that

lim
n→+∞

un = lim
n→+∞

2n+ 3

n+ 1
= 2.

Then, the sequence (un) is convergent. Therefore it is bounded.
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Example 2.3.32. To prove that the sequence vn = 4n+1+1
5n is bounded we show that

lim
n→+∞

vn = lim
n→+∞

4n+1 + 1

5n
= 0.

We deduce that the sequence (vn) is convergent. Hence it is bounded.

Since we defined the limit of a sequence, we want to know if the set of convergent
sequences is stable by the elementary algebraic operations.

2.3.3 Elementary Operations on Limits

This subsection deals with the addition, multiplication and division of limits of
convergent sequences.

Proposition 2.3.33. If (un) and (vn) are two convergent sequences, such that,

lim
n→+∞

un = `, and lim
n→+∞

vn = `′,

then,
lim

n→+∞
(un + vn) = lim

n→+∞
un + lim

n→+∞
vn = `+ `′.

From this proposition, we deduce that

lim
n→+∞

(un − vn) = lim
n→+∞

un − lim
n→+∞

vn = `− `′

for two real numbers ` and `′.

Proof. Let (un) and (vn) be two convergent sequences. We suppose that

lim
n→+∞

un = ` and lim
n→+∞

vn = `′.

Given ε > 0, there exist two real numbers N1 and N2, such that, for every n ≥ N1,
|un − `| ≤ ε

2 and for every n ≥ N2, |vn − `′| ≤ ε
2 .

Considering N = max(N1, N2), and n ≥ N we have

|un − `| ≤
ε

2
and |vn − `′| ≤

ε

2
·

Hence

|un + vn − (`+ `′)| = |(un − `) + (vn − `′)| ≤ |un − `|+ |vn − `′| ≤ ε.

We conclude that
lim

n→+∞
un + vn = `+ `′.

This completes the proof.

Proposition 2.3.34. If (un) is a real sequence, such that,

lim
n→+∞

un = `,

then, for any real number λ, we have

lim
n→+∞

λun = λ `.
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Proof. To prove this proposition, we consider a real convergent sequence (un), such
that,

lim
n→+∞

un = `.

Let λ ∈ R. If λ = 0 the result holds.
Now we assume that λ 6= 0. The convergence of (un) to ` implies that, for all

ε > 0, there exist some N ∈ N, such that, for every n ≥ N , we have

|un − `| ≤
ε

|λ|
.

Now we consider a natural n ≥ N. Straightforward computations show that∣∣λun − λ `∣∣ = |λ| |un − `| ≤ |λ|
ε

|λ|
= ε.

Therefore,
lim

n→+∞
λun = λ `.

The proposition is proved.

Now, we want to investigate the limit of the product of two convergent sequences.

Proposition 2.3.35. If (un) and (vn) are tw real sequences, such that,

lim
n→+∞

un = `, and lim
n→+∞

vn = `′,

then,
lim

n→+∞
(un · vn) = lim

n→+∞
un · lim

n→+∞
vn = ` · `′.

Proof. To prove the proposition we consider the following identity:

un vn − ` `′ =
(
un − `

)(
vn − `′

)
+ `
(
vn − `′

)
+ `′

(
un − `

)
.

Given ε > 0, we can find two natural numbers N1 and N2, such that,

for every n ≥ N1, |un − `| ≤ ε
for every n ≥ N2, |vn − `′| ≤ ε·

From this we deduce that for every n ≥ N = max(N1, N2), we have

|un vn − ` `′| ≤ |un − `| |vn − `′|+ |`| |vn − `′|+ |`′| |un − `| ≤ ε2 + |`|ε+ |`′|ε.

Consequently, limn→+∞ un vn = ` `′.

Remark 2.3.36. We insist on the fact that (un) and (vn) should be convergent, if
we want to be sure to get a limit for un + vn or for vn · vn. Otherwise the existence
of the limit of un + vn or unvn is not guaranteed.

Such pathological cases will be investigated below. From the previous propo-
sition readers can easily conclude that the set of convergent sequences has the
property of a vector space.

In the theorem below we study the cases when ` and `′ are not necessarily real
numbers. They can be also +∞ or −∞.
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Theorem 2.3.37. Let (un) and (vn) be two real sequences, such that,

lim
n→+∞

un = ` and lim
n→+∞

vn = `′.

Then, one of the following cases holds

Case 1: if ` and `′ are real number, we have

lim
n→+∞

un + vn = `+ `′

Case 2: if ` is a real number and `′ = ±∞, we have

lim
n→+∞

un + vn = `±∞ = ±∞

Case 3: if ` = ±∞ and `′ is a real number , we have

lim
n→+∞

un + vn = ±∞+ `′ = ±∞

Case 4: if ` = +∞ and `′ = +∞, we have

lim
n→+∞

un + vn = +∞

Case 5: if ` = −∞ and `′ = −∞, we have

lim
n→+∞

un + vn = −∞

Case 6: if ` = +∞ and `′ = −∞, we have

lim
n→+∞

un + vn = +∞−∞ = undefined

Case 7: if ` = −∞ and `′ = +∞, we have

lim
n→+∞

un + vn = −∞+∞ = undefined.

Proposition 2.3.38. Let (un) and (vn) be two sequences and ` a real number,
such that,

lim
n→+∞

un = ` and lim
n→+∞

vn = +∞.

Then,

lim
n→+∞

un · vn = +∞ if ` > 0

lim
n→+∞

un · vn = −∞ if ` < 0

lim
n→+∞

un · vn = undefined if ` = 0.
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Proposition 2.3.39. Let (un) and (vn) be two sequences and ` a real number,
such that,

lim
n→+∞

un = ` and lim
n→+∞

vn = −∞.

Then,

lim
n→+∞

un · vn = −∞ if ` > 0

lim
n→+∞

un · vn = +∞ if ` < 0

lim
n→+∞

un · vn = undefined if ` = 0.

The same results hold when ` = ±∞ and `′ a real number.

Proposition 2.3.40. Let (un) and (vn) be two sequences, such that,

lim
n→+∞

un = ±∞ and lim
n→+∞

vn = ±∞.

Then,
lim

n→+∞
un · vn = ±∞.

After addition and multiplication it is important to investigate the limit of di-
vision of sequences. But for division of sequences we should be careful, because the
limit of the sequence which is in the denominator should be different to 0. Below we
aim to determine the limit of un/vn, where (un) and (vn) are two real sequences.
To this end we proceed by steps in order to make the presentation clear.

In our first result we will establish that when, the limit ` of a sequence (un) is
such that ` 6= 0, then the sequence un 6= 0, for all n greater than or equals to some
natural number N.

Proposition 2.3.41. If (un) is a real sequence and ` ∈ R∗, such that,

lim
n→+∞

un = `.

Then, there exists some natural number N , such that, for every n ≥ N ,

|un| > 0.

Proof. Since (un) converges to `, for every ε > 0, there exists a natural number N0

such that for every n ≥ N0, |un − `| ≤ ε. In particular if we fix ε = 1
2`, we can find

some natural number N1, such that, for every n ≥ N1, |un − `| < 1
2 |`|. Let n be a

natural number greatter than N1, then, we have

|`| = |(`− un) + un| ≤ |un − `|+ |un| <
1

2
|`|+ |un| =⇒

1

2
|`| < |un|.

This proves the proposition.

Using this proposition we can prove the following theorem.
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Theorem 2.3.42. If (un) is a real sequence and ` ∈ R∗, such that,

lim
n→+∞

un = `. Then, lim
n→+∞

1

un
=

1

`
· (2.3.1)

Proof. We take a real sequence (un) and we consider a real number ` 6= 0, such
that,

lim
n→+∞

un = `.

Using Proposition 2.3.41 , we can find some natural number N0, such that for every
natural number n greater than or equal to N0, we have, 1

2 |`| < |un|.
The fact that (un) converges to `, means that for every ε > 0, there exists

N1 ∈ N, such that, for every n ≥ N1,

|un − `| ≤
1

2
|`|2ε.

Now, we take a natural number n ≥ max(N0, N1). One has∣∣∣∣ 1

un
− 1

`

∣∣∣∣ =

∣∣∣∣un − `un `

∣∣∣∣ =
|un − `|
|un| |`|

=
1

|un| |`|
· |un − `|·

Since 1
2 |`| < |un|, one deduces that 1

|un| <
2
|`| · Therefore we have∣∣∣∣ 1

un
− 1

`

∣∣∣∣ ≤ 2

|`|2
|`|2

2
ε = ε·

This completes the proof.

Theorem 2.3.43. Let (un) and (vn) be two real sequences. We consider ` ∈ R
and `′ ∈ R∗,such that,

lim
n→+∞

un = ` and lim
n→+∞

vn = `′.

Then,

lim
n→+∞

un
vn

=
`

`′
· (2.3.2)

Proof. As `′ 6= 0, applying theorem 2.3.42, we have limn→+∞ 1/vn = 1/`′. From
this we deduce that

lim
n→+∞

un
vn

= lim
n→+∞

un · lim
n→+∞

1

vn
=

`

`′
·

We specify that in the preceding theorems we assumed that the limit of the
sequence which is in the denominator is a nonzero real number and the limit of the
numerator is a real number. This simplify a lot the computations of limits. In the
case where ` and `′ can be infinite the study of limit of division of sequences is more
complicate. To give an overview of this difficulty we state the following theorem.



58 CHAPTER 2. INTRODUCTION TO SEQUENCES

Theorem 2.3.44. Let (un) and (vn) be two real sequences, ` and `′ two real numbers
or ±∞, such that,

lim
n→+∞

un = ` and lim
n→+∞

vn = `′.

Then, one of the following cases holds

Case 1: if ` ∈ R∗ and `′ = 0, we have

lim
n→+∞

un
vn

= ±∞

Case 2: if ` = 0 and `′ = 0, we have

lim
n→+∞

un
vn

= undefined

Case 3: if ` = ±∞ and `′ = ±∞, we have

lim
n→+∞

un
vn

= undefined

Case 4: if ` ∈ R and `′ = ±∞, we have

lim
n→+∞

un
vn

= 0.

Example 2.3.45. We consider the following sequences un = 2n and vn = n2 + 1.
We know that limn→+∞ un = +∞ and limn→+∞ vn = +∞. Therefore

lim
n→+∞

un
vn

= undefined.

In order to determine this limit we write

un
vn

=
2n

n2
(

1 +
1

n2

) =
2

n
(

1 +
1

n2

) ·
Since limn→+∞ 1 +

1

n2
= 1. We deduce

lim
n→+∞

un
vn

= lim
n→+∞

2

n
= 0.

We have also

lim
n→+∞

un − vn = undefined.

To determine this limit we write un − vn = n2
(
− 1 + 2

n + 1
n2

)
. Using this formula

we obtain

lim
n→+∞

(
− 1 +

2

n
+

1

n2

)
= −1, and lim

n→+∞
n = +∞.

Hence limn→+∞ un − vn = −∞.



2.4. EXERCISE SESSION 59

Exercise 2.3.46. Find the limits of the following sequences

1. un =
4n2 + 3n− 1

2n+ 1
, 2. un = 2− n+ (−1)n, 3. un =

1−
(

1

4

)n+1

1− 1

4

·

Exercise 2.3.47. Determine the limits of the following sequences

1. un =
3

2
√
n+ 17

, 2. un =
4n2 + 1

n (2n+ 1)
, 3. un =

4n − 3n

4n + 2n
, 4. un =

√
3n+ 1

3 +
√
n
,

5. un
√
n+ 1−

√
n, 6. un =

√
n2 + n− n, 7. un = −1 +

cos(n)

n
·

Exercise 2.3.48. Compute the limits of the following sequences

1. un =
√
n2 + n+ 1−

√
n, 2. un

n sin(n)

n2 + 1
, 3. wn =

1

n
+ (−1)n.

2.4 Exercise Session

The aim of this section is to explain the methodology to use if we face some problems
related to sequences. It is a good exercise for students to check whether they
understand the lecture or not.

Exercise 2.4.1. For every natural number n, we define the sequence (un)
u0 =

1

2

un+1 =
√
un , ∀n ≥ 0.

1. Compute the four first terms of (un).

2. Prove that for every natural number n, 1
2 ≤ un ≤ 1.

3. Study the variations of (un).

4. Prove that (un) converges and specify its limit.

Comments. If we deal with sequences, we should be careful with the initial term
( first term ). Because the initial term is not necessarily the term with index 1. It
depends on the context. The following recommandations can be useful

• To prove any proposition with sequences, think in term of induction.

• To study variations of a sequence (un) you should define the sign of

un+1 − un.
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• If we know the variations of a sequence we use the monotonic convergence
theorem to determine its limit.

Solution. We consider the sequence (un) defined above.
1. Since u0 = 1

2 and for any n ≥ 0, un+1 =
√
un, we have

u1 =
√
u0 =

√
1

2
=

√
2

2
,

u2 =
√
u1 =

√√
2

2
,

u3 =

√√√√√√2

2
·

2. To prove that for any natural number n, we have 1
2 ≤ un ≤ 1, we proceed by

induction.

Step 1: We take n = 0. By definition of (un) we have u0 = 1
2 < 1. Then, the

property is true for n = 0.

Step 2: Now, we assume that the property is true for some natural number k. This
means that 1

2 ≤ uk ≤ 1.

Step 3: In this step, we have to prove that the property is true for k + 1.

Indeed, since 1
2 ≤ uk ≤ 1, one has

√
2

2 ≤
√
uk ≤ 1. As we know that 1 <

√
2,

therefore, 1
2 ≤ uk+1 ≤ 1. The property is true for k + 1.

We conclude that for every natural number n, we have 1
2 ≤ un ≤ 1.

3. Let n ∈ N. Then, we have

un+1 − un =
√
un − un =

un − u2
n√

un + un
=
un(1− un)
√
un + un

·

As we know that 1
2 ≤ un ≤ 1 one deduces that un

(
1− un

)
≥ 0 and

√
un + un ≥ 0.

Hence un+1 − un ≥ 0. The sequence (un) is increasing.
4. The sequence (u)n≥0 is increasing and bounded above. Applying the monotonic
convergence theorem, we conclude that (un) is convergent.

Now, we denote its limit by `. The limit ` satisfies

lim
n→+∞

un = lim
n→+∞

un+1 = `.

On the other hand we know that

lim
n→+∞

un = lim
n→+∞

√
un = ` =

√
`.

This means that
√
` = `. This identity is equivalent to `2 = `, which implies that

`
(
`− 1

)
= 0. This involves ` = 0 or ` = 1.

Using comparison theorem we have 1
2 ≤ limn→+∞ un ≤ 1. This leads to the

following inequalities 1
2 ≤ ` ≤ 1. We conclude that the limit ` = 1.
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Exercise 2.4.2. The aim of this exercise is to define the positive real number√
2. To this end we define the real sequence (un)

u0 = 1,

un+1 =
1

2

(
un +

2

un

)
, ∀n ≥ 0.

1. Show that for any n ≥ 1, we have
√

2 ≤ un.

2. Establish that (un)n≥1 is a decreasing sequence and deduce from this, that
for every n ≥ 1

un +
√

2 ≤ 3

2
+
√

2.

3. Prove that for any n ≥ 0, we have

un −
√

2

un +
√

2
=

(
1−
√

2

1 +
√

2

)2n

.

4. Prove that (un) converges and determine its limit.

Comments. The comments are the same are in the previous exercise.

• To study the variations of a sequence we have to determine the sign of

un+1 − un.

• To prove any property of sequences think about induction.

• If q is a real number such that 0 ≤ q < 1, then

lim
n→+∞

qn = 0.

Solution. We consider the sequence (un).

1. To prove that
√

2 ≤ un, for every n ≥ 1, we proceed as follows: at first we fix
n = 1. In this case, we have u1 = 1

2

(
1 + 2

)
= 3

2 · Then,
√

2 ≤ u1.

Secondly we assume that there exists some natural number k, such that,
√

2 ≤ uk.
Cosequently, we have

uk+1 −
√

2 =
1

2

(
uk +

2

uk

)
−
√

2 =
u2
k − 2

√
2uk + 2

2uk
=

(
uk −

√
2
)2

2uk
≥ 0.

This means that uk+1 ≥
√

2. We conclude that for any n ≥ 1 we have
√

2 ≤ un.
2. For any natural number n ≥ 1, we have

un+1 − un =
1

2

(
un +

2

un

)
− un =

2− u2
n

2un
≤ 0.
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Because
√

2 ≤ un for any n ≥ 1. As we have established that (un) is decreasing for
every n ≥ 1, one deduces that un ≤ u1 = 3

2 . This implies that

un +
√

2 ≤ 3

2
+
√

2

3. Let n be a natural. It is obvious that when n = 0

u0 −
√

2

u0 +
√

2
=

1−
√

2

1 +
√

2
·

Then P (0) is true.
Now, we assume that the property holds for some natural number k. In this case,

we have

uk −
√

2

uk +
√

2
=

(
1−
√

2

1 +
√

2

)2k

·

The next step consist of proving that the property is true for k+ 1. Indeed, we have

uk+1 −
√

2

uk+1 +
√

2
=

1
2

(
uk + 2

uk

)
−
√

2

1
2

(
uk + 2

uk

)
+
√

2
=
uk

(
uk −

√
2
)
−
√

2
(
uk −

√
2
)

uk

(
uk +

√
2
)

+
√

2
(
uk +

√
2
) =

(
uk −

√
2
)2

(
uk +

√
2
)2

Using our assumption we conclude that

uk+1 −
√

2

uk+1 +
√

2
=

(
uk −

√
2
)2

(
uk +

√
2
)2 =

(
1−
√

2

1 +
√

2

)2k·2

=

(
1−
√

2

1 +
√

2

)2k+1

·

The property is true for k + 1. We conclude that for any n ≥ 0

un −
√

2

un +
√

2
=

(
1−
√

2

1 +
√

2

)2n

.

4. Combining 2. and 3. we obtain

un −
√

2 ≤

(
1−
√

2

1 +
√

2

)2n

·
(

3

2
+
√

2

)
.

Since 1 +
√

2 > 1−
√

2, we obtain 1−
√

2
1+
√

2
< 1. Using Sandwich theorem, we obtain

0 ≤ lim
n→+∞

un −
√

2 = lim
n→+∞

(
1−
√

2

1 +
√

2

)2n

·
(

3

2
+
√

2

)
= 0.

From this we deduce that the limit of (un) is
√

2.

Exercise 2.4.3. We consider the sequence (un) defined by
u0 = 1,

un+1 =
1

10
un (20− un) , ∀n ≥ 0.
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1. Prove that for any n ≥ 0, we have 0 ≤ un ≤ un+1 ≤ 10.

2. Show that (un) converges and specify its limit.

Comments. To study a sequence in the form un+1 = f(u) for some real function
f which is not affine, we to follow these steps.

• We have to determine the fixed points of f. We recall that a fixed point x0 is
a real number in the domain of f that satisfies f(x0) = x0.

• We study the variations of the function f

• We identify the intervals which are stable by f. In other words we have to find
the intervals [a , b] such that f

(
[a , b]

)
⊂ [a , b].

• If the sequence admits a limit it should be a fixed point of f.

• To study the variations of (un) we can use the variations of the function f

We remind also that the limit of a sequence which we know the variations, is given
by the monotonic convergence theorem. To prove any property of sequences use a
proof by induction.

Solution. Let x be in [0 , 20]. We define the function

f(x) =
1

10
x
(
20− x

)
.

The function f is differentiable and f ′(x) = 2 − 1
5x. Therefore f is increasing in

[0 , 10] and decreasing in [10 , 20]. Moreover we observe that f(0) = 0 and f(10) =
10. The real numbers 0 and 10 are the fixed points of f. One can easily check that

f
(
[0 , 10]

)
= [0 , 10].

Then the interval [0 , 10] is stable by f. This means that if 0 ≤ x ≤ 10, then,
0 ≤ f(x) ≤ 10.
1. Let n be a natural number to prove that 0 ≤ un ≤ un+1 ≤ 10, we proceed in two
steps

Step 1: we prove that for every n ≥ 0, 0 ≤ un ≤ 10.

If we fix n = 0, we obtain 0 < u0 = 1 < 10. The property is true for 0.

Now we assume that 0 ≤ uk ≤ 10 for some natural number k. Here we can
see that

uk+1 =
1

10
uk
(
20− uk

)
≥ 0.

Because 0 ≤ uk ≤ 10, which implies that 20− uk ≥ 0. On the other hand, we
have

uk+1−10 =
1

10
uk
(
20−uk

)
−10 = − 1

10

(
u2
k−20uk+100

)
= − 1

10

(
uk−10

)2 ≤ 0.

This means that uk+1 ≤ 10.

We conclude that for every natural number n, we have 0 ≤ un ≤ 10.
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Step 2: we consider n ∈ N and we aim to prove that un ≤ un+1.

We have u1 = 19
10 > 1 = u0. The property is true for n = 0.

We suppose that uk−1 ≤ uk for some natural number k. Applying f one obtains

f(uk−1) ≤ f(uk).

This is due to the fact that f is increasing in [0 , 10]. The definition of the
sequence (un) implies that uk ≤ uk+1.

Combining step 1and step 2 we conclude that 0 ≤ un ≤ un+1 ≤ 10, for any natural
number n.
2. Since (un) is increasing and bounded above, then, the monotonic convergence
theorem implies that (un) converges. To determine the limit of (un), we emphasize
that the limit ` satisfies

lim
n→+∞

f(un) = lim
n→+∞

un = `.

As we know that limn→+∞ un = `, one has

lim
n→+∞

f(un) = f(`).

This leads to the identity f(`) = `. The real number ` is a fixed point. In this case
there are two possibilities ` = 0 or ` = 10. We claim that ` cannot be 0, because
1 ≤ un for any n ≥ 0 and (un) is increasing. Finally we have ` = 10.

Exercise 2.4.4. Let (un) be the sequence, such that, u0 = 13 and for any n ≥ 0,

un+1 =
1

5
un +

4

5
·

We associate to (un) the sequence (sn) defined by

sn =

n∑
k=0

uk = u0 + u1 + · · ·+ un.

1. Prove that for every n ≥ 0, we have un = 1 + 12
5n ·

2. Deduce from 1. the limit of (un).

3. Study the variations of the sequence of (sn).

4. Find the explicit form of (sn).

5. Determine the limit of (sn).

Comments. Let (un) be a real sequence. To establish any properties think at first
in terms of induction.

If q is any real number then,

1 + q + · · ·+ qn =

n∑
k=0

qk =
1− qn+1

1− q
·
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Solution. 1. To prove that un = 1 + 12
5n , we proceed as follows: We start by fixing

n = 0. In this case we have u0 = 1 + 12 = 13. Then, u0 satisfies the property.
Now, we assume that uk = 1 + 1

5k · From this we deduce that

uk+1 =
1

5
uk +

4

5
=

1

5

(
1 +

12

5k

)
+

4

5
=

1

5
+

12

5k+1
+

4

5
= 1 +

12

5k+1
·

Hence uk+1 satisfies the property. We conclude that for every n ≥ 0, we have

un = 1 +
12

5n
·

2. Since the sequence
(

12
5n

)
tends to 0 we deduce from 1 that

lim
n→+∞

un = 1.

3. Let n be an arbitrary natural number. We define

sn+1 − sn =

n+1∑
k=0

uk −
n∑
k=0

uk = un+1 +

n∑
k=0

uk −
n∑
k=0

uk = un+1 > 0.

The sequence (sn) is strictly increasing.
4. Using the expression of un one has

sn =

n∑
k=0

uk =

n∑
k=0

(
1 +

12

5k

)
= (n+ 1) + 12

n∑
k=0

1

5k

Using the second point of comments, we obtain

12

n∑
k=0

1

5k
= 12 ·

1−
(

1

5

)n+1

1− 1

5

= 15 ·

(
1−

(
1

5

)n+1
)

= 15− 3 ·
(

1

5

)n
.

This involves,

sn = (n+ 1) + 15− 3 ·
(

1

5

)n
..

5. Emphasizing that

lim
n→+∞

15− 3 ·
(

1

5

)n
= 15,

one concludes that

lim
n→+∞

sn = lim
n→+∞

(n+ 1) + 15 = +∞.

Exercise 2.4.5. We consider the sequence (un) defined by u0 = 6 and

un+1 = 1.4un − 0.05u2
n, ∀n ≥ 0.

1. Prove that 0 ≤ un ≤ un+1 ≤ 8, for all n ≥ 0.

2. Deduce from 1 that the sequence (un) converges and determine its limit.
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Comments. We make the same comments as in exercise 2.4.3.

Solution. 1. Let x be a real number which belongs to [0 , 14]. We define the real
function

f(x) = 1.4x− 0.05x2.

The function f is differentiable and f ′(x) = 1.4 − 0.10x. This implies that the
function f is increasing in [0 , 14]. We have

f(0) = 0, f(8) = 8 and f
(
[0 , 8]

)
⊂ [0 , 8].

Thus, we can say that 0 and 8 are fixed points and the interval [0 , 8] is stable by f.
Now, we take n = 0, one has 0 < u0 < u1 < 8. The property is true for 0.
If we assume that there exist k ∈ N∗ such that, 0 ≤ uk−1 ≤ uk ≤ 8, then,

f(0) ≤ f(uk−1) ≤ f(uk) ≤ f(8).

This means that 0 ≤ uk ≤ uk+1 ≤ 8. The property is true for k + 1. We conclude
that for all n ≥ 0, we have 0 ≤ un ≤ un+1 ≤ 8.
2. The sequence (un) is increasing and bounded above, then, it is convergent. The
limit ` of (un) satisfies the following identity f(`) = `. Using the fact that un > 0
for every n ∈ N, we have ` = 8.

2.5 Problems

Problem 2.5.1. The aim of this exercise is to define the positive real number
√

2.
To this end we define the real sequence (un)

u0 = 1,

un+1 =
1

2

(
un +

2

un

)
, ∀n ≥ 0.

1. Establish that (un) is a decreasing sequence which is bounded below.

2. Prove that (un) converges and determine its limit.

3. Establish that the limit of (un) satisfies `2 = `.

Problem 2.5.2. We define the real sequence (un)
u0 =

5

2
,

un+1 =
1

2

(
un +

5

un

)
, ∀n ≥ 0.

1. Establish that (un) is a decreasing sequence which is bounded below.
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2. Prove that for any n ≥ 0, we have

un −
√

5

un +
√

5
=

(
u0 −

√
5

u0 +
√

5

)2n

.

3. Prove that (un) converges and determine its limit.

Problem 2.5.3. We consider the real number a > 1 and we consider the real
sequence (un) defined by

u0 =
a

2
,

un+1 =
1

2

(
un +

a

un

)
, ∀n ≥ 0.

1. Establish that (un) is a decreasing sequence which is bounded below.

2. Prove that for any n ≥ 0, we have

un −
√
a

un +
√
a

=

(
u0 −

√
a

u0 +
√
a

)2n

.

3. Prove that (un) converges and determine its limit.

Problem 2.5.4. Let a and b be two real numbers such that 0 < a < b. We define
the sequences (un) and (vn) by u0 = a, v0 = b and all n ≥ 0,

un+1 =
1

2
(un + vn) ,

vn+1 =
√
un+1 vn, ∀n ≥ 0.

1. Prove that for every n ≥ 0, we have 0 ≤ un ≤ vn.

2. Establish that (un) is an increasing sequence and (vn) is a decreasing sequence.

3. Show that (un) and (vn) are convergent sequences.

Problem 2.5.5. We consider the sequence (vn) defined by v0 = 20092 − 1 and for
every n ≥ 0,

vn+1 = (vn + 1)
5 − 1.

1. Prove that 5 is a divisor of v0.

2. Using Newton’s binominial formula establish that

vn+1 = vn

[
v4
n + 5

(
v3
n + 2v2

n + 2vn + 1
)]
.

3. Prove that for every n ≥ 1, vn is divisible by 5n+1.

Problem 2.5.6. Let (wn) be the sequence, such that, w0 = 1
2 and for all n ≥ 0, we

have

wn+1 =
4wn − ln(wn)

5
·
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1. Prove that for every n ≥ 0, we have 0.5 ≤ wn ≤ wn+1 ≤ 1.

2. Deduce from 1. that (wn) converges.

Problem 2.5.7. Let (xn) be the sequence given by
x0 = 1

xn+1 =
1

3
xn + n− 2, ∀n ≥ 0.

1. Compute x1, x2 and x3.

2. Prove that for every n ≥ 4, xn ≥ 0.

3. Deduce from 2. that for every n ≥ 5 , we have xn ≥ n− 3.

4. Find the limit of (xn)

Problem 2.5.8. We consider the sequence (tn) defined by t0 = 1,

tn+1 = tn − ln
(
t2n + 1

)
, ∀n ≥ 0.

1. Prove that for every n ≥ 0, we have 0 ≤ tn ≤ 1.

2. Study the variations of (tn) and deduce that (tn) converges.

3. Determine the limit of (tn).

Problem 2.5.9. We consider the sequence define as follows: for every n ≥ 1,

un =

(
1 +

1

n

)n
.

To determine the limit of this sequence we define the sequence

vn = n ln

(
1 +

1

n

)
, ∀n ≥ 1.

1. Study the variations of (vn).

2. Prove that for all n ≥ 1, we have 0 ≤ vn ≤ 1.

3. Now we agree that the limit of (vn) is 1. Using the property an = en ln(a), for
any natural number n and some real number a > 0, prove that

lim
n→+∞

(
1 +

1

n

)n
= e.

Problem 2.5.10. Let (un) and (vn) be the sequences defined by

un =

(
1− 1

n

)n
and vn =

(
1 +

a

n

)n
,

for any natural number n ≥ 1 and for some real number a > 0. We admit that

lim
n→+∞

n ln

(
1− 1

n

)
= −1 and lim

n→+∞
n ln

(
1 +

a

n

)
= a
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Establish that

lim
n→+∞

un =
1

e
and lim

n→+∞
vn = ea.

Problem 2.5.11. Study the following sequences

1.


u0 = −1

un+1 =
u2
n

2un + 3
, ∀n ≥ 0,

2.∀n ∈ N, un =
n+ 1

n+ 2

3.∀ n ≥ 0, un+1 = n2 − 3n+ 12, 4.

 u0 = 2

un+1 = −u2
n + 2un + 1, ∀n ≥ 0.

Problem 2.5.12. Investigate the behavior of the following sequences

1.


u0 = 3

un+1 =
1

2−√un
, ∀n ≥ 0,

2.


u0 = a

un+1 = r + un −
un√

1 + u2
n

, ∀n ≥ 0

and r ∈ ]0 , 1[.

Problem 2.5.13. Study the following sequences

1.


u0 ∈ R+

un+1 =
√

(n+ 1) + un, ∀n ≥ 0,
2.


u0 ∈ R

un+1 = a un −
1

n+ 1
, ∀n ≥ 0.

Problem 2.5.14. We consider the sequence
(
un
)
n≥1

defined by

un =

2n∑
k=n

1

k
=

1

n
+

1

n+ 1
+ · · ·+ 1

2n
· (2.5.1)

1. Prove that for every n ≥ 1,

un+1 − un =
−3n− 2

n(2n+ 2)(2n+ 1)
·

2. Deduce from 1. the variations of (un).

3. Establish that the sequence (un) is convergent.

Problem 2.5.15. For every natural number n we define the sequence (un) in this
way 

u0 = 0

un+1 =
1 + un
1 + en

, ∀n ≥ 0,

1. Show that for every n ∈ N, we have 0 ≤ un ≤ α, where α is a real number
which satisfies

α =
1 + α

1 + eα
·
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2. Deduce from 1. that (un) converges and its limit verifies the following identity

` =
1 + `

1 + e`
·

Problem 2.5.16. Let (un) be the sequence defined by
u0 = 4

un+1 = un −
ln
(

1+un

)
1+un

, ∀n ≥ 0,

1. Prove that for any n ≥ 0, 0 ≤ un ≤ 4.

2. Study the variations of the sequence (un).

3. Prove that the sequence (un) converges and determine its limit.
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In the previous chapter we studied sequences in their general setting. We did
not take care of simplifying the theory. In this chapter we will be concerned by
some particular sequences: arithmetic and geometric sequences. We will show how
it is easy to study variations and convergence of such sequences.

This chapter is organized as follows. In section 1 we study arithmetic sequences.
The section 2 deals with geometric sequences. Combing the section 1 and 2 we
define and investigate arithmetico-geometric sequences

3.1 Arithmetic Sequences

This section is devoted to arithmetic sequences. Here we will especially deal with
variations and convergence of arithmetic sequences.

71
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Definition 3.1.1. We say that (un)n≥n0
is an arithmetic sequence with initial

term un0
and common difference d, if it is in the form un0 ∈ R,

un+1 = un + d, ∀n ≥ n0.

Example 3.1.2. As an example we consider the sequence (un) defined as follows u0 = 2

un+1 = un + 3, ∀n ≥ 0.

The sequence (un) is arithmetic with initial term u0 = 2, and common difference
d = 3.

Now, we consider a general sequence (un)n≥n0
. According to the definition above

to establish that (un) is an arithmetic sequence we have to proceed in this way

• we compute un+1 − un for every n ≥ n0

case 1: when un+1 − un = d is a constant real number then, the sequence
(un) is arithmetic with initial term un0

and common difference d.

case 2: when un+1 − un is not a constant real number, (un+1 − un depends
on n) then the sequence (un) is not an arithmetic sequence.

Example 3.1.3. We define the real sequence (un) u0 = 3

un+1 = un − 2, ∀n ≥ 0.

To establish that (un) is arithmetic, we have to compute un+1 − un. Let n be a
natural number. We have

un+1 − un = un − 2− un = −2.

Therefore, (un) is an arithmetic sequence with initial term u0 = 3 and common
difference d = −2.

Example 3.1.4. We consider the real sequence (un) defined by

un = n+ 2n, for all n ≥ 0.

To establish whether (un) is arithmetic, we point out that for any natural number
n we have

un+1 − un = (n+ 1) + 2n+1 − n− 2n = 1 + 2n.

Since un+1 − un depends on n, it is not a constant real number. Hence (un) is not
an arithmetic sequence.
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Example 3.1.5. For every n ≥ 0, we define un = 3n + 2. Then, (un) is an
arithmetic sequence.

Indeed, for all n ≥ 0,

un+1 − un = 3(n+ 1) + 2− 3n− 2 = 3n+ 3 + 2− 3n− 2 = 3.

Therefore (un) is an arithmetic sequence with initial term u0 = 2 and common
difference d = 3.

To simplify notations we will sometimes write (un) is arithmetic instead of (un) is
an arithmetic sequence.

Exercise 3.1.6. Establish whether the following sequences are arithmetic. In the
case they are arithmetic precise the initial term and the common difference.

1.

 u0 = 3

un+1 = −2 + un, ∀n ≥ 0,
2.

 u0 = 1

un+1 = 2 + un, ∀n ≥ 0,

3. un = 8n−1 + 2n, ∀n ≥ 0, 4. ∀n ≥ 0, un = −n+ 9.

3.1.1 Variations of an Arithmetic Sequence

Let n0 be some natural number. We consider an arithmetic sequence (un) defined
for all n ≥ n0. We denote by d its common difference. Then, it holds that

un+1 − un = d.

Consequently the variations of (un) depend on the sign of d.

Theorem 3.1.7. If (un) is an arithmetic sequence with common difference d,
then,

1. (un) is an increasing sequence when d > 0,

2. (un) is a decreasing sequence when d < 0,

We specify that when d = 0, we obtain un+1 = un. Therefore the sequence (un)
is constant.

Proof. Since (un) is an arithmetic sequence with initial term un0 and common
difference d, we have, un+1 − un = d, for all n ≥ n0. Therefore

• if d > 0, we have un+1 − un > 0. Hence, (un) is an increasing sequence

• if d < 0, one obtains un+1 − un < 0 for all n ≥ n0. Then (un) is a decreasing
sequence

• if d = 0, we have, un+1 = un, for all n ≥ n0. Therefore (un) is constant.
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Example 3.1.8. We consider the arithmetic sequence (un) defined by u0 = 1

un+1 = un + 1.

In this example (un) is an arithmetic sequence with initial term u0 = 1 and the
common difference d = 1 > 0. Then, (un) is an increasing sequence.

Example 3.1.9. Let us consider the sequence: u0 = 2

un+1 = un − 3.

Here, (un) is an arithmetic sequence with common difference d = −3 < 0. There-
fore, (un) is a decreasing sequence.

Exercise 3.1.10. Study the variations of the following sequences.

1.

 u0 = 3

un+1 = 4 + un, ∀n ≥ 0,
2.

 u0 = 2

un+1 = −3 + un, ∀n ≥ 0,

3.

 u2 = 0

un+1 = 5 + un,∀n ≥ 0,
4. for all n ≥ 0, un = 7− 3n,

5.∀n ≥ 0, un = 3n− 2.

3.1.2 Explicit Expression of an Arithmetic Sequence

We fix a natural number n0. For every natural number n ≥ n0, we define the
arithmetic sequence (un), with initial term un0 and common difference d for some
real number d. Using the recursive formula of (un), we obtain

un0+1 = un0 + d,

un0+2 = un0+1 + d = un0 + 2,

un0+3 = un0+2 + d = un0 + 3 d.

Repeating the process n times we obtain the following theorem

Theorem 3.1.11. If (un) is an arithmetic sequence with initial term un0
and

common difference d, then,

un = un0
+ (n− n0) d, ∀ n ≥ n0. (3.1.1)

Proof. We consider the proposition P (n) : ∀n ≥ n0, un+1 = un0
+ (n− n0) d.

Step 1: We fix n = n0. Therefore, one has un0
= un0

+ (n0 − n0) d = un0
. This

implies P (n0) is true.

Step 2: We assume P (k) for some k ≥ n0. This means that, uk = u0 + (k − n0) d.
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Step 3: We need to prove that P(k + 1) is true. In other words we should prove
that uk+1 = un0 + (k − n0 + 1) d. We remind that (un) is an arithmetic
sequences with common difference d. The recursive expresion of (un) involves

uk+1 = uk + d = un0
+ (k − n0) d+ d = un0

+ (k − n0 + 1) d.

The property is true for k + 1.

Conlusion: We conclude that, ∀n ≥ n0, un = u0 + (n− n0) d.

Example 3.1.12. If (un) is an arithmetic sequence with initial term u1 = 8 and
common difference d = 3, then, u1 = 8

un+1 = 3 + un, ∀n ≥ 1.

Applying theorem 3.1.11 one has

un = u1 + (n− 1) d = 8 + 3 (n− 1) = 5 + 3n.

Example 3.1.13. We consider the arithmetic sequence (vn) with initial term v5 = 4
and common difference d = −6. Then, v5 = 4

vn+1 = −6 + vn, ∀n ≥ 5.

In this case, we have vn = v5 + (n− 5) d = 4− 6 (n− 1) = 10− 6n.

If the initial term of an arithmetic sequence is u0, we will be able to simplify
(3.1.1). In this case the following corollary holds.

Corollary 3.1.14. For any arithmetic sequence (un) with initial term u0 and
common difference d, we have

un = u0 + nd. (3.1.2)

The proof of this corollary is quite simple, Because we have just to take n0 = 0
in the proof of the theorem 3.1.11.

Example 3.1.15. For instance, we consider the sequence u0 = 9

un+1 = un + 2, ∀n ≥ 0.

In this example the initial term is u0 = 9 and the common difference d = 2. Using
corollary (3.1.2), we obtain un = u0 + nd = 9 + 2n.
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Formulas (3.1.1) and (3.1.2) are interesting when there are some given terms
and we seek for the common difference of an arithmetic sequence. Indeed assume
that, we aim to define the arithmetic sequence (un), such that, there are two given
terms un1

and un2
, with n2 > n1. To define the expression of (un) we have to find

the common difference. Thus we proceed as follows:

Step 1: Using theorem (3.1.1), we have un2
= un1

+ (n2 − n1) d. This involves

d =
un2
− un1

n2 − n1
·

Step 2: For every n ≥ n1, we write

un+1 = un +
un2 − un1

n2 − n1
·

Example 3.1.16. we consider the arithmetic sequence (un) which satisfies u3 = 23
and u8 = 7. Determine the expression of (un).

To define the expression of (un) we need to obtain the common difference d of
the sequence. Applying theorem (3.1.1) we obtain

u8 = u3 + (8− 3) d = 23 + 5 d = 7.

This involves 5 d = −16. Therefore d = −16
5 . Using the value of d, we obtain u3 = 23

un+1 = un − 16
5 , ∀n ≥ 0.

Exercise 3.1.17. Let (un) be an arithmetic sequence with initial term u5 = 8 and
common difference d = 3. Determine u100, u1000 and u200.

Exercise 3.1.18. We consider an arithmetic sequence (un) which satisfies u2 = 10
and u10 = 12. Find the common difference, u5, u7 and u20.

Exercise 3.1.19. For every n ≥ 0 we define un = 7− 5n.

1. Find u0, u1 and u2 and prove that (un) is an arithmetic sequence.

2. Determine the common difference of (un) and compute u11.

3.1.3 Sum of the n First Terms of an Arithmetic Sequence

In this subsection we deal with the sum of the n first terms of an arithmetic se-
quence.To make the presentation clear and in order to deal easily with sums of
several terms of sequences, we introduce the following notations

un0 + · · ·+ un =

n∑
k=n0

uk.

Now we take an arithmetic sequene (un) with initial term, u0 and common
difference d. We attempt to determine the sum u0 + u1 + · · ·+ un.
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Theorem 3.1.20. If (un) is an arithmetic sequence with initial term u0 and
common difference d, then

u0 + u1 + · · ·+ un =

n∑
k=0

uk =
(n+ 1)(u0 + un)

2
· (3.1.3)

Proof. Let (un) be an arithmetic sequence with initial term u0, and common dif-
ference d. We have

u0 + u1 + · · ·+ un = u0 + u0 + d+ · · ·+ u0 + nd

= (n+ 1)u0 + d (1 + · · ·+ n)

= (n+ 1)u0 + d
n(n+ 1)

2
=

(n+ 1) [u0 + (u0 + nd)]

2
·

Since un = u0 + nd, we obtain

u0 + u1 + · · ·+ un =
(n+ 1) (u0 + un)

2
·

This proves the lemma.

Example 3.1.21. We take the arithmetic sequence u0 = 3

un+1 = un + 2, ∀n ≥ 0.

Using corollary (3.1.14) one can write un = 3 + 2n. From this we deduce

u0 + u1 + · · ·+ u10 =
(10 + 1) (u0 + u10)

2
=

11 · 26

2
= 143.

Really the previous theorem is a particular case of the following one.

Theorem 3.1.22. Let (un) be an arithmetic sequence with initial term up and
common difference d. Then,

up + up+1 + · · ·+ un =

n∑
k=p

uk =
(n− p+ 1) (up + un)

2
· (3.1.4)

To prove the theorem we use the same argument as in the preceding theorem.
Indeed, we have

up + up+1 + · · ·+ un = up + up + d+ · · ·+ up + (n− p) d
= (n− p+ 1)up + d (1 + 2 + · · ·+ (n− p))

= (n− p+ 1)up +
(n− p+ 1) (n− p) d

2

=
(n− p+ 1) (up + up + (n− p) d)

2
=

(n− p+ 1) (up + un)

2
·
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Example 3.1.23. For instance, we consider the sequence u5 = 1

un+1 = 3 + un, ∀n ≥ 5.

To determine the sum u5 + u6 + · · · + u11 we define u11 = 1 + 3 · 11 = 34. Then,
applying theorem 3.1.22 we get

u5 + u6 + · · ·+ u11 =
(11− 5 + 1) (1 + 34)

2
=

7× 35

2
=

245

2
·

To end this section we investigate limits of arithmetic sequences.

Let (un) be an arithmetic sequence with initial term un0
and common difference

d. Theorem 3.1.1 implies that un = un0
+ nd. From this, we deduce that

lim
n→+∞

un = +∞, when d > 0

lim
n→+∞

un = −∞, when d < 0.

This proves the following theorem

Theorem 3.1.24. If (un) is an arithmetic sequence with common difference d,
then

lim
n→+∞

un = ±∞.

Another interesting particular sequence is the geometric sequence.

3.2 Geometric Sequences

This section is devoted to geometric sequences. In the first time, we define geometric
sequences. After defining geometric sequences we study their variations and limits.

Definition 3.2.1. We say that (un)n≥n0 is a geometric sequence with initial
term un0

∈ R, if there exists some real number q, such that, for every natural
number n ≥ n0,

un+1 = q un.

Definition 3.2.2. The real number q in the definition 3.2.1 is called the common
ratio of the sequence (un).

Example 3.2.3. As an example we consider the sequence (un) defined by u0 = 2

un+1 = 3un, ∀n ≥ 0.

The sequence (un) is geometric with initial term u0 = 2 and common ratio q = 3.
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Example 3.2.4. Let (vn) be the sequence given by v0 = −1

vn+1 = 2 vn, ∀n ≥ 0.

We can see that the sequence (vn) is geometric with initial term v0 = −1 and
common ratio q = 2.

Example 3.2.5. For every n ≥ 0, we set wn = 3n. Then, the sequence (wn) is
geometric with initial term w0 = 1 and common ratio q = 3.

Indeed we have w0 = 30 = 1. Let n be a natural number, then,

wn+1 = 3n+1 = 3× 3n.

Since wn = 3n, therefore, wn+1 = 3wn.

Exercise 3.2.6. Say whether the following sequences are geometric

1.

 u0 = −3

un+1 = −4 vn, ∀n ≥ 0,
2.

 v1 = 7

vn+1 = −3 vn, ∀n ≥ 1.

3. ∀ n ≥ 0, wn =
1

3n
, 4. xn = an, ∀ n ≥ 0.

Given a sequence (un), we want to prove whether (un) is geometric. From
definition 3.2.1, we know that a geometric sequence is entirely determined by its
common ratio q. According to the definition above, one maye think that the best
way to find the common ratio is to compute the quotient un+1

un
· We agree that this

method works but it leads sometimes to long and complicated calculations. To
illustrate such complicate calculations and the disadvantages of this method we
consider the following example: u0 ∈ R

un+1 = a un + b, ∀n ≥ 0,

for some real numbers a ∈ R\{0 ; 1} and b ∈ R∗. For every natural number n ≥ 0,
we define

vn = un −
b

1− a
·

Then, (vn) is a geometric sequence.
To prove this , we take n ∈ N, and we assume that vn 6= 0. Then, we have

vn+1

vn
=
un+1 − b

1−a

un − b
1−a

=
aun + b− b

1−a

un − b
1−a

=
aun + b−ba−b

1−a

un − b
1−a

=
aun − ba

1−a

un − b
1−a

=
a
(
un − b

1−a

)
un − b

1−a
= a·

The sequence (vn) is geometric with initial term u0 − b
1−a and commom ratio a.

What we wanted to point out in this example is the long and complicated calcu-
lations on which this method can lead. The second inconvenience is, the fact that
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we should always be careful with the denominator. We need always to check if it is
not zero.

In view of these disadvantages, we favor a second method, which in our opinion
is easier to use. This method runs in this way: Let (un) be a sequence. To establish
that (un) is geometric we proceed as follows:

Step 1: We write the expression of un+1

Step 2: we perform computations and substitutions in the expression of un+1 in
order to obtain un+1 = q un for some constant real number q.

To clarify this method we use the following examples

Example 3.2.7. We consider the real sequence defined by u0 = 2

un+1 = 2un + 1, ∀n ≥ 0,

and we define the sequence vn = un + 1. Then, the sequence (vn) is geometric. To
prove this proposition we proceed in two steps

Step 1: For any n ∈ N, we have vn+1 = un+1 + 1

Step 2: Substuting un+1 by 2un + 1, we obtain

vn+1 = 2un + 1 + 1 = 2un + 2 = 2
(
un + 1

)
.

As we know that vn = un+1, one has vn+1 = 2vn. Hence the sequence (vn) is
geometric with initial term v0 = u0 + 1 = 2 + 1 = 3 and common ratio q = 2.

Example 3.2.8. We define the sequence u0 = 1

un+1 = 3un − 4, ∀n ≥ 0,

and we define the sequence vn = un − 2. Then we can prove that the sequence (vn)
is geometric.

Step 1: For every n ≥ 0 we write vn+1 = un+1 − 2

Step 2: Replacing un+1 by 3un − 4 in step 1 one has

vn+1 = 3un − 4− 2 = 3un − 6 = 3
(
un − 2

)
.

Therefore vn+1 = 3vn. Consequently the sequence (vn) is geometric with initial
term v0 = u0 − 2 = 1− 2 = −1 and common ratio q = 3.
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3.2.1 Explicit Expression of a Geometric Sequence

Now we consider a geometric sequence (un) with initial term u0 and common ratio
q. Then, the sequence (un) is in the form u0 ∈ R

un+1 = q un, ∀n ≥ 0.

From the recursive formula of (un), we deduce that,

u1 = q u0,

u2 = qu1 = q · qu0 = q2u0

u3 = qu2 = q · q2u0 = q3u0.

Continuing this recursive procedure one can establish the following theorem

Theorem 3.2.9. If (un) is a geometric sequence with initial term u0 and common
ratio q, then for every n ≥ 0,

un = u0 · qn. (3.2.1)

Proof. Let (un) be a geometric sequence with initial term u0 and common ratio q.
We define the following proposition: P(n) : ∀n ≥ 0, un = qn u0. Our objective
now, is to prove P(n).

Step 1: Fixing n = 0, we obtain u0 = u0 · q0 = u0. The property is true for n = 0.

Step 2: We assume that the property holds for some natural number k. This
means that

uk = u0 · qk.

Step 3: Now we want to prove that uk+1 = u0 · qk+1.

Since (un) is geometric with common ratio q, one defines uk+1 = q uk. Using
our assumption we obtain

uk+1 = q × qk u0 = u0 · qk+1.

Therefore, the property is satisfied by uk+1

Conclusion: We conclude that un = u0 · qn. for any n ≥ 0.

Example 3.2.10. Let (un) be the sequence defined by u0 = 5

un+1 = −2un,∀n ≥ 0.

Since u0 = 5 and q = −2 we obtain un = 5 · (−2)n.
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Example 3.2.11. We consider the sequence u0 = 2

un+1 = 7un,∀n ≥ 0.

We have u0 = 2 and q = 7. Using theorem 3.2.9, one gets un = 2 · 7n.

Exercise 3.2.12. Determine the explicit forms of the following sequences:

1.

 u0 = −3

un+1 = 5un,∀n ≥ 0,
2.


u0 = 3

2

un+1 =
2

3
un,∀n ≥ 0.

Let p be some natural and (un) a geometric sequence with initial term up and
common ratio q. We want to determine the explicit form of (un). Applying the
recursive form of (un), one has

up+1 = up · q,
up+2 = up+1 · q = up · q2,

up+3 = up+2 · q = up · q3,

up+4 = up+3 · q = up · q4.

Proceeding recursively, we establish this theorem.

Theorem 3.2.13. Let (un)n≥p be a geometric sequence with initial term up and
common ratio q. Then, ∀n ≥ p,

un = up · qn−p. (3.2.2)

Proof. Let (un) be a geometric sequence with initial term up and common ratio q.
To prove the theorem we need to check the following proposition:

P(n) : ∀n ≥ p, un = up · qn−p.

Step 1: Fixing n = p,we have up = up ·qp−p = up ·q0 = up. Therefore the property
is true for n = p

Step 2: We suppose that the property is true for some integer k ≥ p. This means
that uk = up · qk−p

Step 3: Now we need to establish the property for k + 1. In other words we have
to prove that uk+1 = up · qk+1−p. Using the definition of a geometric sequence
one has uk+1 = uk · q. Since uk = up · qk−p we deduce that

uk+1 = up · q × qk−p = up · qk+1−p.

The property is true for k + 1.

Conclusion: We conclude that for all n ≥ p, un = up · qn−p.
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Example 3.2.14. Consider the following geometric sequence u3 = −2

un+1 = 5un, ∀n ≥ 3.

In this example, the initial term of the sequence is u3 = −2 and the common ratio
is q = 5. Using theorem 3.2.13, we obtain

un = u3 · qn−3 = −2 · 5n−3.

Example 3.2.15. We take the geometric sequence u5 = 3

un+1 = − 1
2 un, ∀n ≥ 3.

As we have, u5 = 3 and q = −1/2 one has

un = u5 · qn−5 = 3 ·
(
−1

2

)n−5

·

Exercise 3.2.16. Determine the explicit form of each of the following sequences

1.


w7 = 2

wn+1 =
wn
3
, ∀n ≥ 7,

2.


u1 = 1.5

un+1 =
2

3
un, ∀n ≥ 1.

3.2.2 Sum of the n First Terms of a Geometric Sequence

Now we want to define the sum of the n first terms of a geometric progression. To
this end we remind this important result. Let q be a real number. We define

Tn = 1 + q + q2 + · · ·+ qn =

n∑
k=0

qk. (3.2.3)

We observe that if q = 1, qn = 1. Hence, Tn = n + 1. When q 6= 1 the sum Tn
satisfies the following property.

Lemma 3.2.17. For any real number q 6= 1 we have

Tn =
1− qn+1

1− q
· (3.2.4)

Proof. We remind that this lemma can be proved by induction. But here we present
another method to prove it. We define

q Tn = q + q2 + · · · qn + qn+1.
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Hence, we have

(1− q)Tn = Tn − q Tn = 1 + q + · · ·+ qn − q − q2 − · · · − qn − qn+1

= 1 +

n∑
k=1

qk −
n∑
k=1

qk − qn+1 = 1− qn+1.

Since q 6= 1, we can divide by 1− q. Therefore,

Tn =
1− qn+1

1− q
·

This completes the proof.

Using this lemma we can define the sum of the n first terms of a geometric
sequence.

Theorem 3.2.18. Let (un) be a geometric sequence with initial term u0 and
common ratio q 6= 1. Then ,

Sn = u0 + u1 + · · ·+ un =

n∑
k=0

uk = u0 ·
1− qn+1

1− q
· (3.2.5)

Proof. Let (un) be a geometric sequence with initial term u0 and common ratio q.
Then,

u0 + u1 + · · ·+ un = u0 + u0 · q + · · ·+ u0 · qn = u0

(
1 + q + q2 + · · ·+ qn

)
= u0 · Tn = u0 ·

1− qn+1

1− q
·

This proves the theorem.

Example 3.2.19. We consider the following geometric sequence (un) u0 = 6

un+1 = 4un, ∀n ≥ 0.

To compute u0 + u1 + · + u21 we specify that the initial term of the sequence (un)
is u0 = 6 and the common ratio is q = 4. This provides

S21 = u0 ·
1− q21+1

1− q
= 6 · 1− 422

1− 4
= 2(422 − 1).

Combining theorem 3.2.13 and lemma 3.2.17 we can prove the following general
theorem:

Theorem 3.2.20. For any geometric sequence (un) with initial term up and
common ratio q 6= 1, we have

n∑
k=p

uk = up ·
1− qn−p+1

1− q
· (3.2.6)
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Proof. Since (un) is a geometric sequence with initial term up and common ratio q
we have un = up · qn−p. This involves

up + up+1 + · · ·+ un = up(1 + q + · · ·+ qn−p) = up ·
1− qn−p+1

1− q
·

Example 3.2.21. As an example, we consider the sequence u2 = 2

un+1 = 3un, ∀n ≥ 2.

In this example the initial term is u2 = 2 and the common ratio is q = 3. Hence
one obtains

u2 + u3 + · · ·+ u11 = u2 ×
1− 311−2+1

1− 3
= 2× 1− 310

−2
= (310 − 1).

Generally speaking the sum of the first terms of a geometric sequence is given
by the formula

Sum=(initial term)×1− qnumber of terms

1− q
·

To end this section, we investigate limits of a geometric sequences.

3.2.3 Limits of Geometric Sequences

In this section we deal with convergence and divergence of geometric sequences. To
this end we start by reminding the following lemma

Lemma 3.2.22. Let q be a real number. Then,

1. when |q| < 1,
lim

n→+∞
qn = 0

2. when |q| > 1,
lim

n→+∞
qn = ±∞.

Consider a geometric sequence with initial term u0 and common ratio q. In this
case we know that the expression of un is given by un = u0 · qn. Therefore

lim
n→+∞

un = u0 · lim
n→+∞

qn.

Theorem 3.2.23. If (un) is a geometric sequence with common ratio q, Then,
(un) converges if and only if

|q| < 1.
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We can reformulate his theorem in this way: if (un) is a geometric sequence with
common ration q, then,

1. when |q| < 1, we have
lim

n→+∞
un = 0

2. when |q| > 1, we have
lim

n→+∞
un = ±∞.

Example 3.2.24. We consider the two following geometric sequences u0 = 2

un+1 = 8un, ∀n ≥ 0
and


v0 = 1

vn+1 =
3

7
un, ∀n ≥ 0,

The sequence (un) is geometric with common ratio q = 8. Then, |q| = 8 > 1. Since
u0 > 0 one has

lim
n→+∞

un = +∞.

The sequence (vn) is geometric and we have q = 3
7 < 1. Then

lim
n→+∞

vn = 0.

We can define sequences which have similar properties to both arithmetic and
geometric sequences. They are called arithmetico-geometric sequences.

3.3 Arithmetico-geometric sequences

In this section we study arithmetico-geometric sequences. First we emphasize the
link between arithmetico-geometric sequences and previous ones. After these pre-
cisions we deal with limits of such type of sequences.

Definition 3.3.1. We say that a sequence (un) is arithmetico-geometric if there
exist a ∈ R\{0 ; 1} and b ∈ R∗ such that the initial term un0 is given and for any
n ≥ n0

un+1 = a un + b.

Example 3.3.2. The sequence (un) defined by u0 = 1

un+1 = 4un + 3, ∀n ≥ 0,

is an arithmetico-geometric sequence.

Remark 3.3.3. We point out that in defintion 3.3.1,

• when b = 0 and a ∈ R\{0 ; 1} the sequence (un) is geometric.

• when a = 1 and b 6= 0 the sequence (un) is arithmetic.
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Throughout this section we suppose that a 6= 1.

Definition 3.3.4. We say that x0 ∈ R is a fixed point of the real function
f : R −→ R. if x0 is solution to the equation

f(x0) = x0.

Example 3.3.5. Consider the function f(x) = 2x+ 4. We have

f(−4) = 2× (−4) + 4 = −4.

Therefore x0 = −4 is a fixed point for the function f.

Exercise 3.3.6. Determine the fixed points of the following functions:

1. f(x) = 3x+ 2, 2. f(x) = −2x+ 5, 3. f(x) = −x+ 2.

Let x be some real number. We define f(x) = a x + b, with a 6= 1. The fixed
point of f verifies the identity f(x) = x. This yields

x =
b

1− a
·

We take the following arithmetico-geometric sequence u0 ∈ R

un+1 = a un + b, ∀n ≥ 0.

and for any natural number n ≥ 0 we define the sequence

vn = un −
b

1− a
·

Staightforward calculations show that

vn+1 = un+1 −
b

1− a
= a un + b− b

1− a
= a un +

b− a b− b
1− a

= a un −
a b

1− a

= a
(
un −

b

1− a

)
= a vn.

This implies the following theorem.

Theorem 3.3.7. Let a and b be two nonzero real numbers such that a 6= 1. We
consider the sequence (un) defined by u0 ∈ R

un+1 = a un + b, ∀n ≥ 0.

For any natural number n ≥ 0 we define the sequence

vn = un −
b

1− a
·

Then, (vn) is a geometric sequence with initial term v0 = u0−
b

1− a
and common

ratio a.
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Example 3.3.8. As an example we consider the sequence u0 = 2

un+1 = 2un + 3, ∀n ≥ 0.

We define the function f(x) = 2x+ 3. The fixed point of this function is given by
x = −3. Then, the sequence

vn := un + 3

is geometric with initial term v0 = u0 + 3 = 5 and common ratio q = 2.

Example 3.3.9. Let (un) be the sequence given by u0 = −2

un+1 = −2un + 1, ∀n ≥ 0.

We define the function f(x) = −2x+1. Then x = 1
2 is a fixed point of f . Therefore

the sequence vn := un− 1
2 is geometric with initial term v0 = u0− 1

2 = −2− 1
2 = − 5

2
and common ratio q = −2.

Let (un) be as in theorem 3.3.7. We consider the real sequence (vn) defined by

vn = un −
b

1− a
,

for all n ≥ 0. In the theorem 3.3.7 we have demonstrated that the sequence (vn)
is geometric with initial term v0 = u0 − 1

1−a and common ratio a. Then, using
theorem 3.2.9 one obtains

vn =
(
u0 −

b

1− a

)
· an·

Substituting in the expression of (un) we find that un = vn + 1
1−a . That is,

un =
(
u0 −

b

1− a

)
an +

b

1− a
· (3.3.1)

Theorem 3.3.10. Let (un) be the arithmetico-geometric sequence defined by u0 ∈ R

un+1 = a un + b, ∀n ≥ 0,

for some real number a 6= 1. Then the explicit form of (un) is defined by (3.3.1).

Example 3.3.11. Let (un) be defined by u0 = 2

un+1 = 2un + 3, ∀n ≥ 0.

Therefore we have

un =
(

2− 3

1− 2

)
2n +

3

1− 2
= 5 · 2n − 3
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Example 3.3.12. We consider the sequence (un) u0 = 1

un+1 = 3un + 2, ∀n ≥ 0.

Hence we have

un =
(

1− 2

1− 3

)
3n − 1 = 2 · 3n − 1

Exercise 3.3.13. Determine the explicit form of the following sequences

1.

 u0 = −7

un+1 = −5un + 2, ∀n ≥ 0,
2.

 u0 = 4

un+1 = 8un − 6, ∀n ≥ 0.

To end this section we study limits of arithmetico-geometric sequence.

3.3.1 Limits of Arithmetico-Geometric Sequences

This subsection is devoted to limits of arithmetico-geometric sequences. In other
words we want to know if wether an arithmetico-geometric sequence is convergent
or divergent. To determine these limits we rely on the theorem 3.2.23. Indeed,
a glance on the formula (3.3.1) allows to distingish that the expression of (un) is
composed by a geometric sequence plus a constant term. Thus using the theorem
3.2.23 , one can find the limit of the arithmetico-geometric sequence (un).

Let (un) be as in the theorem 3.3.10. We remark that if (un) is such that
u0 = b

1−a , then, for every natural number n we have

un =
b

1− a
·

In this case the sequence (un) is constant. Consequently

lim
n→∞

un =
b

1− a
·

Now, we suppose that u0 6= b
1−a and for every n ≥ 0 we define the geometric

sequence
((
u0 − b

1−a
)
· an
)
. Hence, theorem 3.2.23 implies that

1. if |a| < 1

lim
n→+∞

((
u0 −

b

1− a

)
· an
)

= 0

2. if |a| > 1

lim
n→+∞

((
u0 −

b

1− a

)
· an
)

= ±∞.

From this lemma, we deduce the following theorem
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Theorem 3.3.14. Let (un) be an arithmetico-geometric sequence defined by u0 ∈ R

un+1 = a un + b, ∀n ≥ 0.

for some real number a 6= 1. Then

1. if |a| < 1,

lim
n→+∞

un =
b

1− a
,

2. if |q| > 1,
lim

n→+∞
un = ±∞.

Proof. Let (un) be as theorem 3.3.14. Using (3.3.1) we obtain the following expres-
sion

un =
(
u0 −

b

1− a

)
an +

b

1− a
·

Using the discussion above we obtain the teorem .

Example 3.3.15. For instance we consider the following sequences

1.

 u0 = 1

un+1 = 3un + 1, ∀n ≥ 0,
2.

 v0 = 6

vn+1 = 0.5un + 2, ∀n ≥ 0.

For (un), we have a = 3. We observe |a| = 3 > 1. Therefore

lim
n→+∞

un = ±∞.

Since u0 −
b

1− a
= 1− 1

1− 3
= 1 +

1

2
=

3

2
, we have

lim
n→+∞

un = +∞.

The sequence (un) is divergent.

For the sequence (vn), we have a = 0.5 and
b

1− a
= 4. Since |a| = 0.5,

lim
n→+∞

vn =
b

1− a
=

2

1− 0.5
= 4.

3.4 Exercise Session
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Exercise 3.4.1. We consider the sequence (un) defined by u0 = 1 and for any
natural number n ≥ 0

un+1 = 2un + 12.

For any natural number n we define the sequence vn = un + 12.

1. Establish that
(
vn
)

is a geometric sequence.

2. Define the explicit expression of the term vn for any natural number n ≥ 0.

3. Deduce from this the expression of the term un for every n ≥ 0.

4. Investigate the limit of (un).

Comments. Let (un) be an arithmetico-geometric sequence.

• To study an arithmetico-geometric sequence un+1 = aun + b, we should find
the fixed point of the function f(x) = ax+ b.

• To prove that
(
vn
)

is a geometric sequence, write the expression of vn+1 in-
stead of divided of vn+1 by vn.

Solution. We consider the sequences (un) and (vn) as above.
1. For any natural number n we have

vn+1 = un+1 + 12 = 2un + 12 + 12 = 2un + 24 = 2
(
un + 12

)
= 2 vn

Then, the sequence
(
vn
)

is geometric with initial term, v0 = u0 + 12 = 13 and
common ratio q = 2.
2. Since

(
vn
)

is a geometric such that v0 = 13 and q = 2, we have

vn = 13 · 2n, ∀n ≥ 0.

3. From 2. we deduce that for every n ≥ 0,

un = vn − 12 = 13 · 2n − 12.

4. Since q = 2 > 1, one has

lim
n→+∞

13 · 2n = +∞.

Hence we have
lim

n→+∞
un = +∞.

The sequence
(
un
)

diverges.

Exercise 3.4.2. In Sahelian countries the lakes are facing drought problems.
The ” lac Rose” in Senegal is not an exception to this rule. Indeed, each year
the ” lac Rose ” loses 2% of its surface. We assume that the surface of this lake
3, 000, 000m2 in 2021.

1. Determine the surface of this lake in 2022 and 2023.

2. We denote by un the surface of the lake in the year 2021 + n. Determine
the expression of the term un for any natural number n.
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3. Specify the nature of the sequence
(
un
)
.

4. Define the explicit form of the term un for any natural number n.

5. Specify the year from which this lake can disappear if no backup policy is
taken.

Comments. Let u be any quantity and a a real number, such that, 0 ≤ a ≤ 100.

• If u increases of a%, then, to find the new value of u we have to multiply u
by
(
1 + a

100

)
·

• If u decreases of a%, then, to find the new value of u we have to multiply u
by
(
1− a

100

)
·

• Here we consider that the year 2021 corresponds to the year 0 of the study.
Then, the surface in 2021 is denoted u0.

• Hence in 2022, we have u1 =
(
1− 2

100

)
u0 = 0.98u0·

• In 2023, (the year 2 of the study), we have u2 = 0.98u1

• If un is the surface of the lake in 2021+n, the surface in 2021+n+1 is given
by un+1. Then, we have

un+1 = 0.98un.

• If (un) is a geometric sequence, with initial term u0 and common ratio q, then

un = u0 · qn.

Solution. According to the exercise we specify that u0 = 3 · 106 m2.
1. From the comments we deduce that u1 = 0.98u0 = 0.98 · 3 · 106 = 294 · 104 m2.
and u2 = 0.98u1 = 2881 · 102 m2.
2. If un is the surface of the lake in 2021 + n, then, in 2021 + n+ 1, the surface of
the lake will be un+1. In this case we obtain

un+1 = 0.98 un.

3. As we can see it (un) is a goemetric sequence with initial term u0 = 3 · 106 and
common ratio q = 0.98.
4. Let n be a natural number. Then, we have un = u0 · (0.98)

n
.

5. Since
lim

n→+∞
un = 0,

we can imagine that for n greater enough the lake will disappear.
Now we assume that the lake disappear when its surface is less than 100 m2.

Hence, one has

3 · 106 (0.98)
n ≤ 100 ⇐⇒ (0.98)

n ≤ 100

3 · 106
=

1

3 · 104

n ln (0.98) ≤ − ln
(
3 · 104

)
= − ln(3)− 4 ln(10) =⇒ n ≥ − ln(3)− 4 ln(10)

ln(0.98)
·

Consequently, we have n = 511. We conclude that, if any preservation policy is not
taken, the lake will disappear in 2532.
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Exercise 3.4.3. Aysel is very commited to ecological issues. To come to UFAZ,
she decided to rent a bike. It is mentioned in the contract that she should pay 150
manat in 2021 and each year there is an increase of 36 manat.

1. How much should she pay in 2022 and in 2023.

2. We denote by un the price to pay in 2021 + n. Determine the expression of
the sequence (un).

3. Specify the nature of the sequence (un) and determine the explicit form of
the term un for any n ∈ N.

4. It is supposed that Aysel should finish her studies in 2026, determine the
amount she paid for the bike during her studies.

Comments. To clarify this exercise

• We suppose that 2021 is the year 0 for the contract. Then, u0 = 150.

• In this case the amount to pay , is

– u1 in 2022

– u2 in 2023

– un in 2021 + n.

• On the other hand, we know that for 2022 she has payed 150 + 36. Generally
speaking in 2021 + n for any n ≥ 1, she will pay the equivalent of the rent of
2021 + n− 1 plus 36. Hence un = un−1 + 36.

• To find the amount to pay during her studies, we sum, what she payed during
the six years.

Solution. Let (un) be as in the exercise. Then, we have u0 = 150.

1. In 2022 she should pay u1 = 150 + 36 = 186 and in 2023 she will pay

u2 = 186 + 36 = 222.

2. Let (un) be the price to pay for the year 2021 + n. Then, in 2021 + n+ 1 she
has to pay un+1. In this case we obtain

un+1 = un + 36.

3. As we can observe it, the sequence (un) is arithmetic with initial term u0 = 150
and common difference d = 36. Hence for any natural number n, we have,

un = u0 + nd = 150 + 36n.

4. At the end of her studies, she should pay

s5 = u0 + u1 + u2 + u3 + u4 + u5 =
(5 + 1)(u0 + u5

2
=

6 · (150 + 330)

2
= 1440.
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Exercise 3.4.4. We consider the sequence (un) defined by
u0 = 2

un+1 =
1

4
un, ∀ n ≥ 0

1. Precise the nature of the sequence (un).

2. Define the explicit form the term un, for all n ≥ 0.

3. Find the limit of (un).

4. Determine the sum s10 = u0 + u1 + · · ·+ u10.

Comments. • To establish that a sequence (un) is geometric we consider an
arbitrary natural number n and we write the expression un+1. Performing
elementary calculations we should obtain

un+1 = q un.

• If (un) is a geometric sequence with initial term u0 and common ration q, we
have

un = u0 · qn.

• From the previous point, we deduce that

– when |q| > 1, then

lim
n→+∞

un = ±∞

– when |q| < 1, then

lim
n→+∞

un = 0.

• If (un) is a geometric sequence with initial term u0 and common ratio q 6= 1,
the sum sn of the terms u0, u1, · · · , un, is equal to

sn = u0 ·
1− qn+1

1− q
·

Solution. 1. The sequence (un) is geometric wih initial term u0 = 2 and common
ratio q = 1

4 ·
2. Let n ∈ N one has

un = u0 · qn = 2 ·
(

1

4

)n
·

3. Since q = 1
4 < 1 we deduce that

lim
n→+∞

un = lim
n→+∞

2 ·
(

1

4

)n
= 0·

The sequence (un) is convergent.
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4. Let n be a natural number which is greater than or equal to 1. Therefore,

sn = u0 + u1 + · · ·+ un = u0 ·
1− qn+1

1− q
= 2 ·

1−
(

1
4

)n+1

1− 1
4

=
8

3

(
1−

(
1

4

)n+1
)
·

Taking n = 10, we obtain

s10 =
8

3

(
1−

(
1

4

)11
)
·

Exercise 3.4.5. Let (un) be the arithmetic sequence with initial term u0 = 3 and
common difference 7.

1. Define the recursive and the explicit forms of the sequence (un).

2. Investigate the variations of (un).

3. Define the sum s11 = u0 + u1 + · · ·+ u11.

Comments. Let (un) be an arithmetic sequence with initial term u0 = a and
common difference d. Then,

• the recursive form of (un) is defined by u0 = a,

un+1 = un + d, ∀ n ≥ 0

• the explicit form of (un) is

un = u0 + nd = a+ nd.

• if d > 0, the sequence (un) is increasing

• if d < 0, the sequence (un) is decreasing.

• the sum of the n first terms of (un) is given by the formula

sn = u0 + u1 + · · ·+ un =

(
n+ 1

)(
u0 + un

)
2

·

Solution. Now, we consider the arithmetic sequence (un) with initial term u0 = 3
and common difference d = 7.

1. The recursive form of (un) is given by the following formulas u0 = 3,

un+1 = un + 7, ∀ n ≥ 0.

2. The explicit form of (un) is defined by

un = 3 + 7n, for all n ≥ 0.
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3. Since the common difference d = 7 > 0 we obtain

un+1 − un = 7 > 0.

Hence the sequence (un) is strictly increasing.

4. Here we have u0 = 3 and u11 = 3 + 7× 11 = 80. Therefore,

s11 = u0 + u1 + · · ·+ u11 =

(
11 + 1

)
·
(
u0 + u11

)
2

=
12 · 83

2
= 498.

3.5 Problems

Problem 3.5.1. In Senegal the climate change is of a major concern. That is
why, populations are taking some local initiatives. Young peoples of the association
”Ndiarignou Garab” (the usefulness of trees in wolof ) decide to take care of the
forest which is near to their village. This forest is composed out of 50000 big trees
in 2010. Their strategy consist of cutting 5% of the old trees and replant 3000 young
trees each year.

We denote by un the number of thousands of big trees which are in the forest in
the ongoing year 2010 + n. We agree that in 2010, we have u0 = 50.

1. Compute u1, u2 and define the expression of un for any natural number n.

2. For every natural number n we define the sequence (vn), in this way

vn = un − 60.

a. Establish that (vn) is a geometric sequence (Hint: specify its common ration
and its initial term).

b. Determine the explicit expression of vn for any natural number n.

3. Deduce from 2. the explicit expression of un for any n ∈ N

4. Study the convergence of (un).

5. Can the number of the trees of the forest exceed 60000 ?

Problem 3.5.2. We consider the sequence
(
Pn
)

defined by
P0 = 4

Pn+1 = −2

3
Pn + 5, ∀n ≥ 0.

1. Compute P1 and P2.

2. We define the sequence
(
Qn
)

by Qn = Pn − 3 for every n ∈ N.
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a. Prove that
(
Qn
)

is a geometric sequence

b. Determine the explicit form of Qn for every n ∈ N.

3. Deduce from 2.b. the expression of Pn for any natural number n.

4. Determine the limit of
(
Pn
)
.

Problem 3.5.3. Let (vn) be the sequence given by v0 = 3 and for every

vn+1 =
1

2
vn.

1. Determine the explicit form of (vn).

2. Study the convergence of the sequence (vn).

Problem 3.5.4. Let (an) and (bn) be two sequences, such that, a0 = 0, b0 = 12
and for every n ≥ 0, 

an+1 =
2 an + bn

3

bn+1 =
an + 3 bn

4
·

1. For every natural number n we define the sequence (un) by

un = bn − an.

a. Prove that (un) is a geometric sequence.

b. Define the explicit form of un for any n ∈ N.
c. Determine the limit of (un).

2. a. Establish that (an) is an increasing sequence.

b. Study the variations of the sequence (bn).

c. What can you say about the limits of (an) and (bn).

3. Now, we consider the sequence (vn) which is given by

vn = 3an + 4bn.

Prove that (vn) is a constant sequence

4. Specify the limits of the Sequences (an) and (bn).

Problem 3.5.5. We consider the sequence (un) given by u0 = 2 and for every
natural number n,

un+1 =
1

3
un +

23

27
·

1. Establish that if (un) is convergent its limit should be ` = 23
18 , (Hint: define

vn = un −
23

18

and prove that (vn) is geometric.)
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2. Show that for any n ∈ N we have un ≥ 23
18 ·

3. Study the variations of (un) and prove that it is convergent.

4. Determine its limit.

5. For every natural number n ≥ 1, prove that

n+1∑
k=2

1

10k
=

1

10

(
1− 1

10n

)
·

Problem 3.5.6. Let (un) be the sequence which satisfies u1 = 2
5 and for every

n ≥ 1,

un+1 =
1

5
un +

2

5
·

1. Prove that (un) is bounded above by 1
2 ·

2. Establish that (un) is an increasing sequence.

3. Justify that (un) converges and specify its limit.

Problem 3.5.7. Let (un) be the sequence defined by
u0 = 5

un =

(
1 +

2

5

)
un−1 +

6

n
, ∀n ≥ 1·

We consider the arithmetic sequence (vn) with initial term v0 = 16 and common
difference 8.

1. Justify that

sn =

n−1∑
k=0

vk = 4n2 + 12n.

2. Establish that un = 4n2 + 12n+ 5 (hint: Define dn = un+1 − un.)

Problem 3.5.8. For every n ≥ 1, we define the sequence

un =
1

n

[
1 + e

1
n + e

2
n + · · ·+ e

n−1
n

]
.

1. Show that,

1 + e
1
n + e

2
n + · · ·+ e

n−1
n =

1− e

1− e
1
n

·

2. Deduce from 1 that

un =
(
e− 1

)
· 1

n
(

e
1
n − 1

) ·
3. Prove that the sequence (un) converges to e− 1.
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Problem 3.5.9. We consider the sequence (un) defined by u0 = 1 and for all n ≥ 0,

un+1 =
1

3
un + 4.

For any n ≥ 0 we set vn = un − 6.

1. Prove that (vn) is a geometric sequence.

2. For any natural number n define the explicit form of vn.

3. Deduce from 2 that

un = −5

(
1

3

)n
+ 6.

4. Determine the limit of (un).

Problem 3.5.10. Let (un) be the sequence defined by u0 = −1, u1 = 1
2 and for

every natural number n,

un+2 = un+1 −
1

4
un.

1. For any natural number n we define the sequence (vn) as follows:

vn = un+1 +
1

2
un.

a. Find v0

b. Prove that (vn) is a geometric sequence and define the explicit form of vn
for any natural number n.

2. We consider the sequence (wn) defined by wn = un

vn
·

a. Prove that wn+1 = wn + 2 and define the explicit form of the term wn for
all natural number n.

3. Prove that

un =
2n− 1

2n
·

4. For any natural number n, we set sn =
∑n
k=0 uk. Prove that

sn = 2 · 2n+ 3

2n
·

Problem 3.5.11. We consider the sequence (un) defined by
u0 = 5

un+1 =
4un − 1

un + 2
, ∀n ≥ 0.

1. Establish that for every n ≥ 0, un − 1 > 0.

2. For every natural number n, we define the sequence (vn) by

vn =
1

un − 1
·
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(a) Show that (vn) is an arithmetic sequence.

(b) Define the explicit form of the term vn for all n ∈ N.
(c) Deduce from c the limit of (un).

Problem 3.5.12. Study the following sequences

1.

 u0 = 3

un+1 = 1.5un − 3, ∀n ≥ 0,
2.

 v0 = 2

vn+1 = 3vn − 2, ∀n ≥ 0,

3.

 w0 = 1

wn+1 = −wn + 2, ∀n ≥ 0,
4.

 x0 = 2

xn+1 = −2xn + 4, ∀n ≥ 0.

Problem 3.5.13. Study the following sequences

1.


u0 = 2

un+1 =
1

3
un, ∀n ≥ 0,

2.∀n ≥ 0, un = 3n+1,

3.

 t0 = 3

tn+1 = 2 tn, ∀n ≥ 0,
4.∀n ≥ 0, un =

(
−2

3

)n
·

Problem 3.5.14. Let (un) be the sequence defined by u0 = 60

un+1 = 0.98 un + 2, ∀n ≥ 0.

For any natural number n we define the sequence

vn = un − 100.

1. Prove that the sequence (vn) is geometric. Specify its initial term and its
common ratio.

2. Define the expression of vn for every natural number n.

3. Deduce from 2 the expression of un and study the convergence of (un).

4. Does it exist a natural number n, such that, un ≥ 100 ?

Problem 3.5.15. Let (un) be the sequence whose six first terms are given by the
following list 2, 8, , 14, 20, 26, 32, · · · · We denote the first term of (un) by u0.

1. Find u0 and u1.

2. Specify the nature of the sequence (un) and define its recursive form.

3. Define the expression of the term un for every natural number n.

4. Determine the value of

s25 = u0 + u1 + · · ·+ u25.
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This chapter deals with geometry in the plane. We started with the plane
because, we thought that, it is more familiar to students. Another pedagogical
reason is that in the plane the represention of transformations are simplest and
most of the time we can draw them. The study of the geometry of the plane will
be done through vectors. To define a vector we need to know its direction. Here,
we mean by direction a set of parallel lines. For instance we have the horizontal
direction, the vertical direction or the oblique direction.

We start by giving the general definition of a vector. As we did it for complex
numbers, we will define elementary operations on the set of vectors. We define sums
of vectors and multiplication of a vector by a real number. In addition of these two
operations, we will introduce the concept of collinearity.
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Another practical way to study a set is to define transformtions on this set
and study their actions. Thus we will consider some transformations on the set of
vectors. One of the transformations we consider here is the dot product. Given to
vector ~u and ~v, what is ~u ·~v. Using this dot product we investigate orthogonality of
vectors.

In chapter 1 we establish that every complex number can be associated to a
unique point in the plane. Using this representation we will study the complex
plane.

To make the presentation clear we adopt the following notations

• The line which passes through the points A and B is denote by (AB).

• The segment line which has end points A and B is noted [AB].

4.1 Generalities on Vectors

The objective of this section is to give general defintions of vectors. It is important
to define rigorously what we mean by vector. This section will clarify the confusion
that students make between direction and sense. Indeed usually students under-
stood commonly by direction what we call the sense. Therefore, it is necessary to
specify that these two notions are different.

In this course we characterize the direction of a line (d) by this angle, between
the line (d) and a horizontal line. From now on we adopt the following definition.

Definition 4.1.1. The direction of a line (D) is the measure of the angle θ that
it makes with any horizontal line.

Remark 4.1.2. Let (D) be a line in the plane. We denote by θ the angle between
this line and a horizontal line. Then,

• When the angle θ is zero or π, we say that the line is horizontal

• when θ is equal to π/2 or −π/2, the line is called a vertical line.

Now, we are in a position to define rigorously what we mean by a vector.

Definition 4.1.3. A vector u denoted by ~u is defined by its

• direction,

• orientation (or sense),

• norm (length or magnitude).

The orientation is the sense of displacement. The norm is the magnitude or the
length of the vector.
Notation: A vector ~u can be represented geometrically by an arrow in the plane
as follows

−→u
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The original point of the arrow is call the origin of the vector. The point at the tip
of the arrow is the end point of the vector. For instance, the vector with origin A

and end point B is denoted
−−→
AB. It is represented as below

B

A −−→
AB

Notation: The norm of the vector
−−→
AB is denoted

∥∥∥−−→AB∥∥∥.
From definition 4.1.3 we deduce that:

Lemma 4.1.4. Two vectors ~u and ~v are equal if they have the same direction,
the same sense and the same norm. In this case we write ~u = ~v

−→u

−→v

Definition 4.1.5. The vector ~u, such that, the origin and the end point coincide

is called the null or the zero vector. We denote it
−→
0 .

We point out that, the zero vector does not have any specific direction and its
norm is 0. If ~u is any vector in the plane , the null vector satisfies

−→u +
−→
0 =

−→
0 +−→u = −→u .

Now take two vectors ~u and ~v in the plane such that ~u+ ~v = ~0. This identity is
equivalent to ~v = −~u.

As we can see it, the vectors ~u and −~u have same direction and same norm but
opposite senses.

Lemma 4.1.6. For any vector ~u in the plane there exists a vector ~v in the plane
such that

~u+ ~v = ~0.

The vector ~v is called the opposite vector of ~u. It is denoted −~u.

This lemma implies the following definition:

Definition 4.1.7. Two vectors −→u and −→v are said to be opposite if they have the
same direction, the same norm and opposite sense (orientation). In this case we
write ~v = −~u

−→u

−→v
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Definition 4.1.8. Any vector ~u which has norm 1, is called a unit vector.

In the next section we will show how to perform addition of vectors. We define
also the vector obtain by multiplying a ~u by a real number k.

4.2 Elementary Operations on Vectors

This section is composed of two subsections. In the first one we define the sum of
vectors. In the second subsection we define the multiplication of a vector by a real
number.

4.2.1 Sum of Vectors

In this subsection we define the sum of vectors. We also show how to represent by
a drawing this vector.

Definition 4.2.1. The sum of two vectors ~u and ~v denoted ~u+~v is the vector with
origin the origin point of −→u and end point the end point of −→v . It is represented
in this way

−→u +−→v

−→u
−→v

We gather some properties of the sum of vectors in the following theorem.

Theorem 4.2.2. Let ~u, ~v, ~w be three vectors in the plane. Then,

1. −→u +−→v = −→v +−→u

2. (~u+ ~v) + ~w = ~u+ (~v + ~w).

The property 1 means that addition of vectors is commutative. The second
property means that addition of vectors is associative.

4.2.2 Multiplication by a Real Number

Definition 4.2.3. Let −→v be a vector in the plane and λ a real number. We define
the vector λ · −→v as the vector with norm |λ|‖ ~v‖ which has the same direction as
~v and

• same sene when λ is positive

• opposite sense when λ is negative.
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Example 4.2.4. Let ~u be a vector in the plane. We define the vectors

~v1 = 1.5 ~u and ~v2 = − 0.5 ~u.

−→u−→v 2

+

−→v 1

From this definition, we deduce that 0 ·~u is the vector with norm 0. This means
that 0 · ~u = ~0. The vector 1 · ~u = ~u is a vector wich has the same norm, the same
direction and same sense as ~u. This involves 1 · ~u = ~u. In the same way we have
k (`~u) = k · ` · ~u

Definition 4.2.5. Two vectors −→u and −→v are collinear if there exists a real
number k such that

−→v = k −→u .

Example 4.2.6. The following vectors are collinear:

−→u

−→v

The multiplication of a vector by a real number has the following properties.

Theorem 4.2.7. Let ~u and ~v be two vectors, k and ` two real numbers. Then,

1. k (~u+ ~v) = (k ~u+ k ~v)

2. (k + `) ~u = k ~u+ ` ~u.

At this level one may ask how to check whether two vectors are collinear. The
first thing on which we will think is to use a ruler in order to verify if the vectors are
parallel. In the next section we will show that there is an easiest way to establish
that two vectors are collinear. The goal of the next section is to allows us to do
geometry without using compass and rulers. To be able to do this, we will associate
to any point and vector in the plane an ordered couple of real numbers. In this case
we say that we define coordinates. We will think in terms of coordinates instead of
vectors. To define coordinates we need to specify a frame.

4.3 Basis in the Plane

The concept of basis is one of the most important in this course. Because it allows
us to do analysis in the plane. Using a basis we can give coordinates to each vector
and each point. We remind that any two non-collinear vectors ~u and ~v define a
plane. In this case any vector of the plane can be written as a combination of these
two vectors. The vectors ~u and ~v are called the direction vectors of the plane. This
leads to the following definition:
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Definition 4.3.1. Any couple of non-collinear vectors ~e1 and ~e2 define a basis
of the plane.

Theorem 4.3.2. Let (~e1 , ~e2) be a basis of the plane. We consider the vector −→v
in the plane. Then, there exist two real numbers x and y, such that,

−→v = x~e1 + y ~e2. (4.3.1)

The real numbers x and y are called the coordinates of the vector ~v in the basis
(~e1, ~e2) and we write

~v (x , y) or ~u

(
x
y

)
.

To perform calculations on vectors it is better to use coordinates.

Lemma 4.3.3. Let ~u (x , y) and ~v (x′ , y′) be two vectors in the plane and k a
real number.Then,

1. the coordinates of the vector ~u± ~v are (x± x′, y ± y′)

2. the coordinates of the vector k · ~u are (k x, k y).

Example 4.3.4. We consider the vectors −→u (2 , 1) and −→v (0 , 3). Then , we have

~u+ ~v (2 , 4), ~u− ~v (2 , −2), and 3 ~u (6 , 3).

Exercise 4.3.5. Let ~u (3 , 0) and ~v (−1 , 5) be two vectors in the plane. Find the
coordinates of the following vectors: ~u+ ~v, ~u− ~v, −~v and −3 ~u.

Sometimes, to simplify calculations we use some particular basis. We specify
the definition of some of them below

Definition 4.3.6. A basis
(
~e1 , ~e2

)
of the plane is said to be orthogonal if the

vectors
~e1 ⊥ ~e2.

By the symbol ⊥ we mean that the two vectors are perpendicular.

Example 4.3.7. The basis defined by the vectors ~e1 (2, 0) and ~e2 (0, 3) is orthogonal.

Definition 4.3.8. A basis (~e1, ~e2) is orthonormal if and only

~e1 ⊥ ~e2 and ‖~e1‖ = ‖~e2‖ = 1.

Example 4.3.9. An example of orthonormal basis is given by the following vectors

~e1 (1, 0) and ~e2 (0, 1).

Definition 4.3.10. The orthonornal basis defined by the vectors

~i (1 , 0) and ~j (0 , 1)

is called the canonical or the standard basis of the plane.
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From now on, we suppose that the point O is the origin of a frame and has
coordinates (0 , 0). Now we equip the plane with the orthonormal basis (~i , ~j). Let

A be a point in the plane. We define the vector
−→
OA. Hence we can find two real

numbers xA and yA such that ,

−→
OA = xA~i+ yA~j.

Thus, the real numers xA and yA are the coordinates of the vector
−→
OA. In this case,

we define the real numbers xA and yA as the coordinates of the point A. After this
update, we consider another point B in the plane with coordinates (xB , yB), then,

we define the coordinates of the vector
−−→
AB as follows

Definition 4.3.11. If A (xA , yA) and B (xB , yB) are two points in the plane,

the coordinates of the vector
−−→
AB are defined by

−−→
AB

(
xB − xA
yB − yA

)
(4.3.2)

Example 4.3.12. We consider the points A (3 , 1) and B (3 , 5). Then, we have

−−→
AB (3− 3 , 5− 1) = (0 , 4).

Exercise 4.3.13. Let A (1 , 0), B (1 , 2), C (5 , 6) and D (5 , 6) be four points in

the plane. Find the coordinates of the following vectors
−−→
AB,

−→
AC,

−−→
AD,

−−→
BC,

−−→
BD,−−→

CD and
−−→
CB.

Our first application of coordinates will be to define the norm of a vector.

Definition 4.3.14. If A (xA , yA) and B (xB , yB) are two points in the plane,

the norm of the vector
−−→
AB is∥∥−−→AB∥∥ =

√
(xB − xA)2 + (yB − yA)2. (4.3.3)

Example 4.3.15. We consider the points A (2 , 1) and B (3 , 0). Then, we have

‖
−−→
AB‖ =

√
(3− 2)2 + (0− 1)2 =

√
12 + (−1)2 =

√
2.

Exercise 4.3.16. Let A (2 , 6), B (3 , 0), C (1 , 1) and D (0 , −2) be four points in

the plane. Determine the norm of the following vectors
−−→
AB,

−→
AC,

−−→
AD,

−−→
BC,

−−→
BD

and
−−→
CD.

Lemma 4.3.17. If −→u (x , y) and −→v (x′ , y′) are two vectors in the plane, then,
−→u = −→v if and only if

x = x′ and y = y′.

In other words two vectors are equal if they have the same coordinates.
Now we are in a position to use coordinates to characterize the collinearity of

vectors.
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Lemma 4.3.18. Let ~u (x , y) and ~v (x′ , y′) be two vectors in the plane. Then,
the vectors ~u and ~v are collinear if and only if

x y′ − x′ y = 0 (4.3.4)

Proof. Since ~u (x , y) and ~v (x′ , y′) are collinear vectors, there exists some real
number k such that ~v = k~u. That is, (x′ , y′) = k (x , y). This means that

x y′ = k x y and x′ y = k x y.

Therefore
x y′ − x′ y = k x y − k x y = 0.

Conversely we assume x y′ − x′ y = 0. Then, x 6= 0 and y 6= 0. Otherwise the
following cases can hold:

Case 1: x = 0 and y 6= 0. In this case one may have x′ = 0 or y′ = 0.

• If we have x′ = 0 and y′ 6= 0 then the vectors ~u (0, y) and ~v (0, y′) are
collinear.

• if x′ 6= 0 and y′ = 0 then y = 0. This involves ~u (0, 0) and ~v (x′, 0) are
collinear.

Case 2: x 6= 0 and y = 0. Hence

• when x′ = 0 then y′ = 0. The vectors ~u and ~v are collinear.

• when y′ = 0 then ~u (x, 0) and ~v (x′, 0) are collinear.

We see that we can take x 6= 0 and y 6= 0. Using (4.3.4) one has x′

x = y′

y . Taking

k = x′

x one obtains ~v = k~u.

Example 4.3.19. Let ~u (2 , 1) and ~v (6 , 3) be two vectors in the plane. Then one
has

x′

x
=

6

2
= 3 =

y′

y
=

3

1
= 3.

Therefore ~v = 3 ~u. Consequently ~u and ~v are collinear.

Exercise 4.3.20. Say whether the vectors ~u and ~v are collinear

1. ~u (2 , 5) and ~v (7 , 2), 2. ~u (1 , 3) and ~v (0.5 , 1.5), 3. ~u (11 , 33) and ~v (1 , 3).

Using vectors we have the following characterization of a parallelogram.

Proposition 4.3.21. If A, B, C and D are four points in the plane, then, the
quadrilateral ABCD is a parallelogram if and only if

−−→
AB =

−−→
DC.

Now we take the points A (xA, yA),B (xB , yB),C (xC , yC) and D (xD, yD). Using
the fact that two vectors are equal if they have the same coordinates. Then, we
obtain
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Lemma 4.3.22. The quadrilateral ABCD is a parallelogram if and only if

xB − xA = xC − xD and yB − yA = yC − yD.

Example 4.3.23. We consider the points A (2 , 3), B (0 , 1), C (−5 , 0) and
D (−3 , 2) in the plane. Then, we have

−−→
AB

(
−2
−2

)
and

−−→
DC

(
−2
−2

)
.

This implies the quadrilateral ABCD is a parallelogram.

Exercise 4.3.24. Let A (3 , 0), B (0 , −6), C (−9 , −12) and D (−6 , −6) be four
points in the plane. Prove that ABCD is a parallelogram.

Another way to define a parallelogram is to use the midpoint of a segment line.

Lemma 4.3.25. If A (xA, yA) and B (xB , yB) are two points in the plane then,
the coordinates of the midpoint I of the segment line [AB] are given by

xI =
xA + xB

2
and yI =

yA + yB
2

· (4.3.5)

Example 4.3.26. We consider the points A (0 , 1) and B (5 , 2). The coordinates
of the midpoint of the segment line [AB] are

xI =
0 + 5

2
=

5

2
and yI =

1 + 2

2
=

3

2
·

Exercise 4.3.27. Find the coordinates of the midpoint of the segment line [AB]

1. A (3 , 5) and B (6 , 1),

2. A (0 , 7) and B (2 , 3),

3. A (−3 , −1) and B (−2 , 1).

Proposition 4.3.28. The quadrilateral ABCD is a parallelogram if and only if
the segment lines [AC] and [BD] have the same midpoint.

One knows that a rectangle is a particular parallelogram which has four right
angles. This means that the consecutive sizes are arthogonal. There are several
methods to establish that two vectors are orthogonal. At our level the simplest way
consists of using the scalar product.

4.4 Scalar Product in the Plane

This section deals with the scalar product which is also called the dot product. It is
organised as follows: in the first subsection we define the angle between two vectors.
In the second subsection we study the scalar product and some of its properties.
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4.4.1 Angle Between Two Vectors

In this subsection we explain briefly what we mean by an angle between two vectors.
Indeed take two nonzero vectors in the plane ~u and ~v. We assume they are

positioned so that their initial points coincide.

Definition 4.4.1. We define the oriented angle θ between ~u and ~v as follows:

~v

~u

θ

And we denote (~u,~v) = θ.

Example 4.4.2. The angle between the vectors −→w 0 and −→w 1 is

−→w 1
−→w 0

θ0

Remark 4.4.3. We point out that here we define the angle θ as the smallest coun-
terclockwise angle. The angle (~v, ~u) is equal to −θ.

The oriented angles share the following properties

Theorem 4.4.4. If ~u, ~v and −→w are three vectors then,

1.
(
~u , ~v

)
+
(
~v , −→w

)
=
(
~u , −→w

)
2.
(
~u , ~v

)
= −

(
~v , ~u

)
3.
(
~u , ~v

)
+
(
~v , ~u

)
=
(
~u , ~u

)
= 0

Since we know the definition of an angle between two vectors, we are in a position
to define the scalar or the dot product of two vectors.

4.4.2 Scalar Product of Two Vectors

This subsection investigate the scalar product of two vectors in the plane. We start
by giving the general definition of the scalar product. In a second time we study
some properties of the dot product.

Definition 4.4.5. The scalar product or dot product of the vectors ~u and ~v is
the real number ~u · ~v defined as follows:

~u · ~v = ‖~u‖ · ‖~v‖ cos(θ). (4.4.1)

Where θ is the angle between the vectors ~u and ~v.
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If we suppose the angle θ = (~u,~v) = 0, one has cos(θ) = 1. In this case the
following lemma holds:

Lemma 4.4.6. If the angle between the vectors −→u and −→v is 0 then,

~u · ~v = ‖~u‖ · ‖~v‖.

When we take θ = (~u,~v) = π, we have cos(θ) = −1, hence we obtain

Lemma 4.4.7. If the angle between −→u and −→v is π then

~u · ~v = −‖~u‖ · ‖~v‖

If the angle (~u,~v) = π
2 , one has ~u · ~v = 0.

Lemma 4.4.8. Let ~u and ~v be two vectors in the plane. Then,

~u · ~v = 0 if and only if ~u ⊥ ~v. (4.4.2)

Proof. Let ~u and ~v be two orthogonal vectors in the plane. Therefore we have

cos
(
(~u , ~v)

)
= cos

(
± π/2

)
= 0.

We conclude that
~u · ~v = ‖~u‖ · ‖~v‖ cos

(
± π/2

)
= 0.

Conversly we consider two nonzero vectors ~u and ~v, such that, ~u · ~v = 0. As we
supposed that ~u and ~v are two nonzero vectors, we have ‖~u‖ 6= 0 and ‖~v‖ 6= 0. This
yields cos

(
(~u , ~v)

)
= 0. Hence the angle (~u , ~v) = ±π/2. The vectors ~u and ~v are

orthogonal.

Using the definition of the dot product we have ~0 · ~u = 0× ‖~u‖ cos(0) = 0.
Now we set θ := (~u , ~v). Since the function cos is even, we have cos(−θ) = cos(θ).

One deduces ,

~u · ~v = ‖~u‖ ‖~v‖ cos(θ) = ‖~u‖ ‖~v‖ cos(−θ) = ~v · ~u.

This means that the scalar product is commutative. In the same way we can prove
the distributivity of the scalar product with respect to addition of vectors. In other
words we have

~u · (~v + ~w) = ~u · ~v + ~u · ~w.

Let ~u be a vector in the plane, then the angle (~u , ~u) = 0. Hence, ~u · ~u = ‖~u‖2.
This involves

Lemma 4.4.9. For any vector ~u in the plane we have

‖~u‖ =
√
~u · ~u·
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Proposition 4.4.10. If ~u and ~v are two vectors in the plane and k a real number
then,

~u · (k~v) = (k ~u) · ~v = k (~u · ~v).

In the following definition, we use coordinates to define the scalar product of
two vectors.

Definition 4.4.11. The scalar product of the vectors ~u (u1, u2) and ~v (v1, v2) is
defined by

−→u · −→v = u1 v1 + u2 v2. (4.4.3)

Example 4.4.12. We consider the vectors ~u = (2,−6) and ~v = (5, 2). Then,

~u · ~v = 2 · 5 + (−6) · 2 = 10− 12 = −2.

Exercise 4.4.13. Find the scalar product −→u · −→v

1. ~u (1 , 2) and ~v (−4 , 2),

2. ~u (−3 , 0) and ~v (−6 , 7),

3. ~u (0 , −5) and ~v (−1 , 0)

Exercise 4.4.14. Let −→u (−1 , 3) and −→v (6 , 2). Prove that the vectors −→u and −→v
are orthogonal.

Theorem 4.4.15. If ~u and ~v are two nonzero vectors such that θ = (~u,~v), then

cos(θ) =
~u · ~v∥∥~u∥∥∥∥~v∥∥ · (4.4.4)

Example 4.4.16. Find the angle between the vectors ~u = (1 , −2) and ~v = (−3 , 6).
Using (4.4.4) we have

cos
(
θ
)

=
~u · ~v∥∥~u∥∥ ∥∥~v∥∥ =

1 · (−3) + (−2) · 6√
12 + (−2)2 ·

√
(−3)2 + 62

=
−15

15
= −1.

Thus, θ = arccos
(
− 1
)

= π.

Exercise 4.4.17. Find the angle between the following vectors

1. ~u (−1 , 2) and ~v (0 , −3),

2. ~u (−2 , 1) and ~v (1 , 0),

3. ~u (−4 , 0) and ~v (1 , −3).

Now, we know how to characterize orthogonal vectors, we can state Pythagor’s
theorem.
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Theorem 4.4.18. If ~u and ~v are two orthogonal vectors, then∥∥~u+ ~v
∥∥2

=
∥∥~u∥∥2

+
∥∥~v∥∥2

. (4.4.5)

Proof. By definition we have∥∥~u+ ~v
∥∥2

=
(
~u+ ~v

)
·
(
~u+ ~v

)
=
∥∥~u∥∥2

+
∥∥~v∥∥2

+ 2~u · ~v.

As the vector ~u is orthogonal to ~v, one has ~u · ~v = 0. Hence (4.4.5) holds.

Using the scalar product, we can also prove the following theorem

Theorem 4.4.19. Let ~u and ~v be two vectors in the plane. Then, ~u and ~v are
orthogonal if and only if ∥∥~u+ ~v

∥∥ =
∥∥~u− ~v∥∥. (4.4.6)

Proof. We assume that ~u ⊥ ~v. Then, we have ~u · ~v = 0. Therefore, we have∥∥~u+ ~v
∥∥2

=
(
~u+ ~v

)
·
(
~u+ ~v

)
=
∥∥~u∥∥2

+
∥∥~v∥∥2

+ 2~u · ~v =
∥∥~u∥∥2

+
∥∥~v∥∥2∥∥~u− ~v∥∥2

=
(
~u− ~v

)
·
(
~u− ~v

)
=
∥∥~u∥∥2

+
∥∥~v∥∥2 − 2~u · ~v =

∥∥~u∥∥2
+
∥∥~v∥∥2

.

This implies (4.4.6).
Coversely if (4.4.6) holds, we have∥∥~u+ ~v

∥∥2
=
(
~u+ ~v

)
·
(
~u+ ~v

)
=
∥∥~u∥∥2

+
∥∥~v∥∥2

+ 2~u · ~v =
∥∥~u∥∥2

+
∥∥~v∥∥2∥∥~u− ~v∥∥2

=
(
~u− ~v

)
·
(
~u− ~v

)
=
∥∥~u∥∥2

+
∥∥~v∥∥2 − 2~u · ~v =

∥∥~u∥∥2
+
∥∥~v∥∥2

.

Hence
∥∥~u+ ~v

∥∥2 −
∥∥~u− ~v∥∥2

= 4~u · ~v = 0. This means that ~u is orthogonal to ~v.

When ~u and ~v are two vectors which are not necessarily orthogonal, one can
establish this theorem.

Theorem 4.4.20. If ~u and ~v are two vectors, then we have

1.
∥∥~u+ ~v

∥∥2
+
∥∥~u− ~v∥∥2

= 2
∥∥~u∥∥2

+ 2
∥∥~v∥∥2

2.
∥∥~u+ ~v

∥∥2 −
∥∥~u− ~v∥∥2

= 4~u · ~v

Proof. The proof is quite simple. Indeed we have∥∥~u+ ~v
∥∥2

=
∥∥~u∥∥2

+
∥∥~v∥∥2

+ 2~u · ~v and
∥∥~u− ~v∥∥2

=
∥∥~u∥∥2

+
∥∥~v∥∥2 − 2~u · ~v.

This implies that
∥∥~u+ ~v

∥∥2
+
∥∥~u− ~v∥∥2

= 2
∥∥~u∥∥2

+ 2
∥∥~v∥∥2

and∥∥~u+ ~v
∥∥2 −

∥∥~u− ~v∥∥2
= 4~u · ~v

This completes the proof.
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4.5 Transformations in the Plane

In this section we study some elementary transformations in the plane. We will
specially be concerned by translation, homothety and rotation.

Definition 4.5.1. Let −→u be a vector in the plane. We consider two points A
and A′. We say that A′ is the image of A in the translation with vector −→u , if

~u =
−−→
AA′. We denote

A′ = τ~u(A).

−→u

A A’

From this definition one can deduce the following theorem

Theorem 4.5.2. Let A, B, C and D be four points in the plane such that
C = τ−−→

AB
(D). Then, ABCD is a parallelogram.

The second transformation we study is the homothety. We specified that a
homothety is sometimes called a dilatation. We recall that a homothety or dilation
is defined by its center and its ratio.

Definition 4.5.3. Let A, A′ and I be three points in the plane. We say that A′

is the image of A in the homothety with center I and ratio k 6= 0, if

−→
IA′ = k

−→
IA.

We denote A′ = hI , k(A).

−→
IA

−→
IA′A A’

I

If we fix k = 1 in the definition 4.5.3, we see that the image A′ of A coincide
with A. In this case the homothety is the identity.

One can make the following precisions : when the real number k > 1, the
homothety is called a dilation or an expansion. When 0 < k < 1, we say that we
have a contraction.

Theorem 4.5.4. Let A , A′ and I be three points in the plane. We consider a

nonzero real number k, such that, A′ = hI , k(A). Then, the vectors
−→
IA and

−→
IA′

are collinear.

The last transformation, we introduce here is the rotation. Informally speaking,
a rotation means turning around a fixed object. Rigorously a rotation is defined by
its center and its angle.
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Definition 4.5.5. Let A, A′ and I be three points in the plane and θ ∈ R. We
say that A′ is the image of A in the rotation with center I and angle θ if

IA = IA′ and
(−→
IA ,

−→
IA′
)

= θ.

We denote
A′ = RI,θ(A).

When the center of the rotation I = O we denote Rθ instead of RO,θ.

Theorem 4.5.6. Let A, A′ and I be three points in the plane and θ a real number.
We assume

A′ = RI , θ(A).

Then, A and A′ belong to the circle with center I and radius R = IA.

Another way to check whether two vectors are collinear in the plane is to con-
struct a matrix with these two vectors and to compute the determinant of this
matrix. If the determinant of A is 0, then the two vectors are collinear (linearly
dependant). Otherwise they are not collinear (linearly independant). In the next
section we introduce determinant of matrices

4.6 Determinant of 2× 2 and 3× 3 Matrices

We start this section by giving an elementary definition of 2× 2 and 3× 3 matrices.
After these definitions we introduce properly the concept of determinant. In short
we can say that the determinant is a function that assigns to any matrix a numerical
values.

Definition 4.6.1. A 2 × 2 matrix A is an array of two rows and two columns.
We denote

A =

[
a b
c d

]
.

By the expression n× p matrix, we mean an array of n rows and p columns.

Example 4.6.2. We define the following 2× 2 matrices

A =

[
1 2
3 −1

]
, B =

[
−1 0
9 5

]
, C =

[
0 0
0 0

]
, D =

[
−3 0
4 2

]
, E =

[
1 0
0 1

]
The matrix C is called the null or zero matrix and the matrix E is the identity

matrix .

Definition 4.6.3. The determinant of a 2× 2 matrix A =

[
a b
c d

]
is defined by

det(A) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc. (4.6.1)
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We point out that in this course we will only consider determinants of square
matrices.

Example 4.6.4. We consider the matrix A =

[
3 −2
4 1

]
. Then,

det(A) =

∣∣∣∣3 −2
4 1

∣∣∣∣ = 3 · 1− (−2) · 4 = 3− (−8) = 11

Exercise 4.6.5. Compute the determinant of the following matrices[
5 2
1 −1

]
,

[
2 0
10 5

]
,

[
−1 −2
−2 0

]
,

[
2 1
0 −1

]
,

[
−1 0
0 −1

]
,

[
9 2
−1 4

]
.

Definition 4.6.6. A 3× 3 matrix A is an array of three rows and three columns

A =

a1 a2 a3

b1 b2 b3
c1 c2 c3

 .

Example 4.6.7. As an example, we consider the following 3× 3 matrices

A =

1 0 3
2 1 5
0 0 9

 , B =

−1 2 −3
2 7 6
0 −2 10



Definition 4.6.8. The determinant of the 3 × 3 matrix A =

a1 a2 a3

b1 b2 b3
c1 c2 c3

 is

defined by∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ (4.6.2)

Example 4.6.9. We have∣∣∣∣∣∣
1 −2 0
2 2 −4
3 −4 −1

∣∣∣∣∣∣ = 1

∣∣∣∣ 2 −4
−4 −1

∣∣∣∣− (−2)

∣∣∣∣2 −4
3 −1

∣∣∣∣+ 0

∣∣∣∣2 2
3 −4

∣∣∣∣
= 1 · (−18) + 2 · 10 + 0 · (−14) = 2.

Exercise 4.6.10. Find the determinant of the following matrices0 2 −1
3 2 1
0 0 2

 ,
 3 1 9

4 1 2
−1 2 1

 ,
2 0 0

0 −3 0
0 0 6

 ,
 1 3 5
−1 0 0
0 1 3

 ,
1 0 0

0 1 0
0 0 1

 .
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Theorem 4.6.11. Let A be a matrix such that, two rows are collinear. Then,

det(A) = 0.

Theorem 4.6.12. Let A be a matrix such that two columns are collinear.Then,

det(A) = 0.

Definition 4.6.13. The area of the parallelogram ABCD is defined by

Area(ABCD) =
∥∥∥−−→AB∥∥∥ · ∥∥∥−−→AD∥∥∥ · ∣∣∣ sin(θ)

∣∣∣. (4.6.3)

where θ =
(−−→
AB ,

−−→
AD

)
Theorem 4.6.14 (Area of a parallelogram). The area of the parallelogram
ABCD is

Area(ABCD) =
∣∣∣x−−→
AB
· y−−→
AD
− y−−→

AB
· x−−→

AD

∣∣∣. (4.6.4)

Now we consider a vector ~u (u1 , u2) in the plane. We can associate to ~u the
unique complex number z~u = u1 + iu2. This complex number is called the affix of
the vector ~u. In this case we say that we have defined a complex plane.

4.7 Introduction to Complex Plane

This section is devoted to the complex plane. We take a vector ~u and the complex
number z~u associated to ~u. If A (xA , yA) is also a point in the plane, we can
associate to A the unique complex number zA = xA + i yA. This means that to any
vector or point in the plane we can associate a unique complex number, which is
called the affix of the vector or the point.

Definition 4.7.1. If A (zA) and B (zB) are two points in the complex plane, the

affix of the vector
−−→
AB is

z−−→
AB

= zB − zA.

Example 4.7.2. Let A (1 + i) and B (2 + 2 i) be two points in the complex plane.
Then,

z−−→
AB

= zB − zA = 2 + 2 i− (1 + i) = 1 + i.

Exercise 4.7.3. Let A (3− i), B (2 i), C (−2+3 i) and D (1−5 i) be four points in

the complex plane. Find the affix of the following vectors
−−→
AB,

−−→
AD,

−−→
CD,

−−→
DB,

−−→
DA.

From now on, we denote by ~i (1, 0) the unit vector on the x-axis and ~j (0, 1)
the unit vector on the y-axis. We observe that the angle (~i,~j ) = π/2. Take ~u (z~u)
a vector in the complex plane. The angle (~i , ~u) is the angle between the x-axis
and the vector ~u. By definition this angle is equal to the argument of the complex
number z~u. That is, one has (~i , ~u) = arg(z~u).
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Proposition 4.7.4. Let ~u (z~u) and ~v (z~v) be two vectors in the complex plane.
Then,

(~u,~v) = arg

(
z~v
z~u

)
= arg(z~v)− arg(z~u).

Example 4.7.5. Let ~u (
√

3 + i) and ~v (1 + i) be two vectors in the complex plane.
Then , (

~i , ~u
)

= arg(z~u) = arg
(√

3 + i
)

=
π

6
and

(
~i , ~v

)
= arg

(
1 + i

)
= −π

4
·

From this we deduce that(
~u , ~v

)
= arg

(
1 + i√
3 + i

)
=
π

4
− π

6
=

3π

12
− 2π

12
=

π

12
·

Exercise 4.7.6. We consider the vectors ~u (−2+2 i), ~v (1+i
√

3) and −→w (−1+i
√

3).
Determine the measure of the following angles (~u,~v), (~u , −→w ), (−→w , ~v).

In section 4.5 we defined some transformations. Since we know that the complex
numbers and the plane are the same, we redefine these transformations in terms of
complex numbers. In other words we study these transformations by using their
affixes.

Lemma 4.7.7. Let ~u (z~u) be a vector in the plane. We consider two points
M (zM ) and M ′ (zM ′), such that, M ′ = τ~u(M). Then,

z~u = zM ′ − zM .

This lemma allows to express the affix of M ′ as a function of the affix of the
vector ~u and the point M. In other words we have

zM ′ = z~u + zM .

Lemma 4.7.8. Let A (zA), B (zB) , C (zC) and D (zD) be four points in the
complex plane. Then, ABCD is a parallelogram if and only if

zB − zA = zC − zD.

Proof. The quadrilateral ABCD is a parallelogram if and only if .z−−→
AB

= z−−→
DC

. This
is equivalent to zB − zA = zC − zD.

Lemma 4.7.9. If I (zI), M (zM ) and M ′ (zM ′ are three points in the plane and
k ∈ R such that, M ′ = hI , k(M), then,

zM ′ =
(
1− k

)
zI + k zM . (4.7.1)

Proof. We consider I, M and M ′ as in the lemma. Therefore

z−−→
IM ′

= k z−−→
IM
.

This is equivalent to say that zM ′ − zI = k (zM − zI). This leads to the identity
(4.7.1).
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Lemma 4.7.10. Let M (z), M1 (z1), M2 (z2) and O (0) be four points points in
the complex plane. We consider two real numbers k and θ. Then,

1. when M2 = τ−−→
OM

(M1), we have z = z2 − z1

2. when M2 = hO,k(M1), z2 = k z1.

3. when M2 = Rθ(M1), z2 = ei θ z1

Proof. We consider M , M1 and M2 as in the lemma. The identity M2 = τ−−→
OM

(M1)

is equivalent to
−−→
OM =

−−−−→
M1M2. This means that zM − zO = zM2

− zM1
. Since

zM = z, zM1 = z1, zM2 = z2 and zO = 0, we have z = z2 − z1.
To prove 2 we just need to use the definition of a homothety. Indeed M2 =

hO,k(M1) means that
−−−→
OM2 = k

−−−→
OM1. From this one deduces z2−zO = k (z1−zO).

This implies z2 = k z1.
For 3 we remind that M2 = Rθ(M1), means that OM2 = OM1. There is η ∈ C,

such that, |η| = 1. and z2 = η z1. Consequently one can find a real number θ such
that, η = ei θ. Therefore, we have z2 = ei θ z1.

Most of the readers can be confused. Because we are doing geometry in the
plane without saying anything on lines. We preferred to start by explaining points
and vectors. To reassure readers we introduce the next section which is devoted to
lines.

4.8 Lines in The Plane

The main objective of this section is to define the equation of a line. To this end,
we introduce the notion of direction vectors. Using a direction vector one can define
the general equation of a line. To end this section we define a set of parametric
equations of a line.

We have already known that a line can be determine by two points. And gener-
ally speaking a line has equation y = ax+ b, where a is the slope of the line and b
is obtained when x = 0. Now we consider the line (AB) which passes through the
points A (xA, yA) and B (xB , yB). We suppose that its equation is y = ax+ b. We
can find a and b by replacing x and y by the coordinates of A and B. This involves
the following linear system  yA = a xA + b

yB = a xB + b,

where the unknowns are a and b. In this case , if xB 6= xA, one can establish that

a =
yB − yA
xB − xA

·

Getting a we deduce that

b = yA −
yB − yA
xB − xA

xA.

Example 4.8.1. Define an equation of the line that passes through the points
A (3, 2) and B (1, 4).
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Since we know that the equation of a line is in the form y = ax+ b we have

a =
4− 2

1− 3
=

2

−2
= −1 and 2 = −1× 3 + b.

Therefore b = 5. We conclude that the equation of the line is y = −x+ 5.

Exercise 4.8.2. Determine an equation of the line that passes through the points
A and B

1. A (1 , −1) and B (2 0),

2. C (0 , −2) and D (5 , 3),

3. E (0 , 5) and F (−1 , 0).

Definition 4.8.3. A direction vector of the line (D), is any vector ~u which is
parallel to (D).

Definition 4.8.4. The general cartesian equation of a line (D) is defined by

a x+ b y + h = 0. (4.8.1)

Definition 4.8.5. A direction vector of (D) is defined by ~u (−b , a).

Example 4.8.6. We consider the line (D) with general equation

2x+ 3 y + 4 = 0.

The vector ~u (−3 , 2) is a direction vector of (D).

Exercise 4.8.7. Find a direction vector for each of the following lines

1. x+ 2 y + 5 = 0,

2. 4x− 2y + 6 = 0,

3. 3x− 7 y = 0,

4. −y + 7 = 0.

Using direction vectors we can easily establish that two lines are parallel if they
have the same direction. Let ~u be a direction vector of the line (D) and ~v a direction
vector of the line (D′). Then, (D) and (D′) are parallel if and only if ~u and ~v are
collinear.

Proposition 4.8.8. Let (D): a x+ b y+ h = 0 and (D′) : a′ x+ b′ y+ h′ = 0 be
two lines in the plane. Then, (D) and (D′) are parallel if and only if

a b′ − a′ b = 0.

Example 4.8.9. We consider the lines (D) and (D′) with respective equations
2x+ 3 y + 1 = 0, 6x+ 9 y + 2 = 0.
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• The vector ~u (−3 , 2) is a direction vector of (D)

• The vector ~v (−9 , 6) is a direction vector of (D′).

Therefore we have

6× 3− 2× 9 = 0,

then (D) and (D′) are parallel.

Exercise 4.8.10. Say whether the following lines are parallel

1. (d) : 3x+ y + 2 = 0 and (d′) : 6x+ 2y + 1 = 0

2. (d1) : x+ 3y = 0 and (d2) : 3x+ 5y + 2 = 0

3. (d1) : −2x− y = 0 and (d2) : −10x− 5y + 3 = 0

Now we consider a line passing through a point A (xA, yA) with direction vector

~u (a , b). Let M (x, y) be another point of this line. The vectors
−−→
AM and ~u are

collinear. Therefore we have (x− xA) b− a(y− yA) = 0. This can be rewritten as a
determinant of the matrix ∣∣∣∣∣∣

x− xA a

y − yA b

∣∣∣∣∣∣ = 0.

Lemma 4.8.11. Let (D) be a line passing through A (xA, yA) with direction
vector ~u (a , b). Then, for every point M (x , y) ∈ (D) we have∣∣∣∣∣∣

x− xA a

y − yA b

∣∣∣∣∣∣ = 0. (4.8.2)

Let (D) be a line passing through A(xA, yA) with direction vector ~u (a, b). We

consider the point M (x , y) in (D). We see that the vectors
−−→
AM and ~u are collinear.

This means, there is a real number k such that, (x− xA , y − yA) = k (a , b). This
is equivalent to the following system: x = xA + k a

y = yA + k b, k ∈ R.
, (4.8.3)

The system (4.8.3) is called parametric equations of the line (D).

Definition 4.8.12. A parametric equation of the line (D) which passes through
A (xA, yA) with a direction vector ~u (a, b) is defined by x = xA + k a

y = yA + k b,
k ∈ R.
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Example 4.8.13. Let (D) be the line that passes through B (2, 3) with direction
vector ~u (2, 6). A set of parametric equations of (D) is x = 2 + 2 k

y = 3 + 6 k, k ∈ R

Exercise 4.8.14. Define a set of parametric equations for each of the following
lines which passes through A with direction vector ~u

1. A (2 , 1) and ~u (3 , 5),

2. A (−3 , 5) and ~u (7 , 10),

3. A (−4 , −9) and ~u (8 , 0).

4.9 Exercise Session

Exercise 4.9.1. Let A(−7/2; 2), B(−2; 5) , C(5; 13/2) and D(3; 5/2) be four points
in the plane.

1. Determine the coordinates of the vectors
−−→
AB and

−−→
CD.

2. Establish that the quadrilateral ABCD is a trapezoid.

3. Let I be the point of the plane such that

−→
IA =

3

4

−→
ID.

Find the coordinates of the point I

4. Prove that the vectors
−→
BI and

−→
CI are collinear.

Solution. 1. Using the definition of coordinates of a vector, we obtain

−−→
AB

(
xB − xA
yB − yA

)
=

(
3
2
3

)
and

−−→
CD

(
xD − xC
yD − yC

)
=

(
−2
−4

)
.

2. From 1 we deduce that

x−−→
AB
· y−−→
CD
− y−−→

AB
· x−−→

CD
=

3

2
· (−4) + 3 · 2 = 0.

Therefore, the vectors
−−→
AB and

−−→
CD are collinear. Since, the vector

−−→
AB and

−−→
CD do

not have the same norm, we conclude that the quadrilateral ABCD is a trapezoid.
3.Let us define I as the point with coordinates

(
xI , yI

)
. The identity

−→
IA =

3

4

−→
ID
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is equivalent to (
− 7

2 − xI
2− yI

)
=

3

4

(
3− xI
5
2 − yI

)
.

This leads to the following system
−7

2
− xI =

9

4
− 3

4
xI

2− yI =
15

8
− 3

4
yI

From this we deduce that xI = −23 and yI = − 1
2 · We conclude that I

(
− 23 ; − 1

2

)
.

4. From 3. we deduce that

−→
IB

(
21
9

2

)
and

−→
CI

(
−28
−6

)
.

This holds that

6 · 21− 28 · 9

2
= 0.

Hence the vectors
−→
IB and

−→
CI are collinear. Consequently the point I belongs to the

line (BC).

Exercise 4.9.2. Let ABC be a triangle. We consider the points H and G, such
that,

−−→
AH = −3

4

−−→
AB +

1

2

−→
AC

−−→
BG = −7

4

−−→
AB +

3

2

−−→
BC.

We consider the frame
(
A ;
−−→
AB ,

−→
AC
)
.

1. Determine the coordinates of A, B and C in the frame
(
A ;
−−→
AB ,

−→
AC
)
.

2. Determine the coordinates of H and G in this frame.

3. Are the vectors
−→
AG and

−−→
AH collinear?

Solution. 1. We consider the plane equiped with the frame
(
A ;
−−→
AB ,

−→
AC
)
. Since

A is the origin of this frame the coordinates of A in this frame are A
(
0 ; 0

)
. Ob-

serving that the vector
−−→
AB has coordinates

(
1 ; 0

)
in this frame, we deduce that

B
(
1 ; 0

)
. In the same way, pointing out that the vector

−→
AC has coordinates

(
0 ; 1

)
in this frame, we conclude that C

(
0 ; 1

)
.

2. From the identity
−−→
AH = −3

4

−−→
AB +

1

2

−→
AC,

we deduce that H
(
− 3

4 ; 1
2

)
.

Now, we consider the relation

−−→
BG = −7

4

−−→
AB +

3

2

−−→
BC.
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Using Chasles relation, we obtain

−−→
BA+

−→
AG = −7

4

−−→
AB +

3

2

−−→
BA+

3

2

−→
AC

This implies that

−→
AG = −7

4

−−→
AB +

−−→
AB − 3

2

−−→
AB +

3

2

−→
AC

= −9

4

−−→
AB +

3

2

−→
AC·

This means that in this frame G has coordinates

(
−9

4
;

3

2

)
.

4. As we can see it
−→
AG = 3

−−→
AH. Then, they are collinear.

Exercise 4.9.3. We consider four points A, B, C and D with affix

zA = 1 + i, zB = −1 + i, zC = −1− i and zD = 1− i.

Let R be the rotation of center C and angle −π/3. We denote E = R(B) and
F = R(D).

1. Define the expression of the rotation R.

2. a. Prove that zE = −1 +
√

3.

b. Determine zF .

c. Establish that
zA − zE
zA − zF

d. Deduce from c. that the vectors
−→
AE and

−→
AF are collinear.

Solution. 1. Let M(z) be a point in the plane. We consider its image M ′(z′) in
the rotation with center C(zC = −1− i) and angle −π/3. Then, we have

z′ − zC = exp
(
−i
π

3

)
(z − zC).

This leads to the following formula

z′ = −1− i + exp
(
−i
π

3

)
(z + 1 + i). (4.9.1)

2.

a. From (4.9.1) we that

zE = −1− i + exp
(
−i
π

3

)
(−1 + i + 1 + i) = −1− i + 2i exp

(
−i
π

3

)
= −1 +

√
3.

b. Since F is the image of D in the rotation with center C and angle −π/3, we have

zF = −1− i + exp
(
−i
π

3

)
(1− i + 1 + i) = −1− i + 2 exp

(
−i
π

3

)
= (−1−

√
3)i.
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c. From the expressions of zE and zF , we deduce that

zA − zE
zA − zF

=
1 + i + 1−

√
3

1 + i + (1 +
√

3)i
=

(2−
√

3) + i

1 + (2 +
√

3)i
=

[
(2−

√
3) + i

] [
1− (2 +

√
3)i
]

1 + 4 + 4
√

3 + 3

=
(1−

√
3) + i− (4− 3)i + (2 +

√
3)

8 + 4
√

3
=

4

8 + 4
√

3
=

1

2 +
√

3
∈ R.

d. From c we can see that there exists a real number k such that

zA − zE = k(zA − zF ).

This implies that −→
EA = k

−→
FA.

Therefore, the vectors
−→
AE and

−→
AF are collinear.

d’. Another way to prove d is to point out that,
zA − zE
zA − zF

∈ R is equivalent to say

that

arg

(
zA − zE
zA − zF

)
= 0 + kπ

for some integer k. Hence, the points A, E and F belong to the same line.

Exercise 4.9.4. Let M0 be the point of the plane which is associated to the complex
number z0 = 1. For every natural number n ≥ 1, we define the point Mn which is
associated to the complex number zn. To any point Mn in the plane we associated
the point Mn+1 with affix

zn+1 =

√
2

4

(
− 1 + i

)
zn. (4.9.2)

Establish that for any n ≥ 1

zn =

(
1

2

)n
exp

(
i

3nπ

4

)
. (4.9.3)

Solution. Using the definition (4.9.2) we obtain

z1 =

√
2

4

(
− 1 + i

)
z0 =

√
2

4

(
− 1 + i

)
.

To prove (4.9.3) we proceed by induction.

Step1 For n = 1 we have

z1 =

(
1

2

)
exp

(
3π

4
i

)
=

(
1

2

)(
−
√

2

2
+ i

√
2

2

)
=

√
2

4

(
− 1 + i

)
.

The property is true for n = 1

Step 2 We assume that the property is true for some natural number k > 1. In
other words we have

zk =

(
1

2

)k
exp

(
i
3kπ

4

)
.
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Step 3 Our goal now is to prove that the property holds for k + 1. We want to
establish that

zk+1 =

(
1

2

)k+1

exp

(
i
3(k + 1)π

4

)
.

Using (4.9.2) we have

zk+1 =

√
2

4

(
− 1 + i

)
zk.

One deduces from Step 2 that

zk+1 =

√
2

4
(−1 + i)zk =

1

2
exp

(
3π

4
i

)
·
(

1

2

)k
exp

(
3kπ

4
i

)
=

(
1

2

)k+1

exp

(
3(k + 1)π

4
i

)
.

The property is true for k + 1.

Conclusion For all n ≥ 1

zn =

(
1

2

)n
exp

(
i
3nπ

4

)
.

• We point out that the property holds also for 0. Hence we can start our
induction with 0 instead of 1.

• Since, the distance OMn = |zn|, one deduces that

OMn =

(
1

2

)n
.

• On the other hand we have

arg(zn) =
3nπ

4
·

Exercise 4.9.5. Let A, B, S and Ω be four points in the plane that are respectively
associated to the complex numbers a = −2 + 4i, b = −4 + 2i, s = −5 + 5i and
ω = −2 + 2i. We define the points C and D, such that

−→
SC = 3

−→
SA and

−→
SD = 3

−→
SB.

1. Prove that zC = 4 + 2i and zD = −2− 4i.

2. Establish that the points A, B, C and D belong to the same circle.

Solution. 1. The vectorial identity
−→
SC = 3

−→
SA is equivalent to

zC − zS = 3(zA − zS)⇐⇒ zC = 3zA − 2zS .

This gives
zC = −6 + 12i + 10− 10i = 4 + 2i.
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In the same way we can establish that the identity
−→
SD = 3

−→
SB is equivalent to

zD − zS = 3(zB − zS)⇐⇒ zD = 3zB − 2zS .

One obtains
zD = 3zB − 2zS = −12 + 6i + 10− 10i = −2− 4i

2. A look on the affix of the points A, B, C and D allows us to emphasize that

OA = OB = OC = OD =
√

20.

Therefore, these points are on the circle with center O and radius R =
√

20.

4.10 Problems

Problem 4.10.1. Prove that for all points A, B, C and D in the plane we have

−→
OA−

−−→
OB +

−→
AC =

−−→
BC.

Problem 4.10.2. Let ABCD be a parallelogram and M be a point in the plane.
Prove that −−→

MA−
−−→
MB +

−−→
MC −

−−→
MD = ~0.

Problem 4.10.3. We consider the segment line [AB] such that AB = 8cm. Find

the point M in the plane, such that,
−−→
MA+ 3

−−→
MB = ~0.

Problem 4.10.4. We consider the points A (1;−1), B (−1,−2) and C (−2, 2) in
the plane.

1. Find the coordinates of the point G, such that,
−→
GA+ 2

−−→
GB +

−−→
GC = ~0

2. Find the coordinates of the point D satisfying
−−→
BD =

−−→
BA+

−−→
BC.

Problem 4.10.5. We consider the real plane equiped with the frame
(
O, ~i ; ~j

)
. Let

−−→
AB =~i+2~j,

−−→
BC = −4~i−~j and

−−→
CD = −5~i−3~j be three vectors in the plane. Prove

that ABCD is a trapezoid.

Problem 4.10.6. Find the scalar product between the vectors −→a and
−→
b

a. −→a = 4~i−~j and
−→
b = −~i− 7~j

b. −→a
(
2 , 1

)
and
−→
b
(
1 , −3

)
c. −→a

(
3 , −2

)
and
−→
b
(
1 , 1

)
d. −→a

(
5 , 0

)
and
−→
b
(
− 1 , −2

)
Problem 4.10.7. Determine the angle between the vectors −→a and

−→
b
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a. −→a
(
1 , 2

)
and
−→
b
(
2 , 4

)
b. −→a

(
1 , 2

)
and
−→
b
(
− 2 , 1

)
Problem 4.10.8. Let (d) be the line with direction vector ~u (1 , 2) that passes
through A (1 , 5). Define a set ofparametric equations for the line (d).

Problem 4.10.9. Let ABCD be a parallelogram. We consider the points I and E
such that

−−→
AB = 2

−→
AI and

−→
IE =

1

3

−→
ID.

1. Find α and β in R, such that,
−→
AC = α

−−→
AB + β

−−→
AD.

2. Prove that
−→
AE =

2

3

−→
AI +

1

3

−−→
AB.

3. Deduce from this, there exist α1 and α2 in R, such that,
−→
AE = α1

−−→
AB+α2

−−→
AD.

4. Prove that A, E and C belong to the same line.

Problem 4.10.10. Let M be a point of the complex plane with affix z. Find the
set of all points M such that

1.

∣∣∣∣z − 3

z − 5

∣∣∣∣ = 1,

2.

∣∣∣∣z − 3

z − 5

∣∣∣∣ =

√
2

2
·

Problem 4.10.11. Let M be a point of the complex plane with affix z. Find the
set of all points M such that

1. |z| = 3,

2. |z − i| = 5,

3. |z − 2 i| = |z + 2− 3 i|.

Problem 4.10.12. Let A (−2− 2 i), B (2), C (2 + 4 i), D (−2 + 2 i), E (4 + 6 i) and
F (−2 i) be six points of the complex plane

1. Show that ABCD is a parallelogram.

2. Prove that the triangle CDE is isosceles.

Problem 4.10.13. Let A, B, C and D be four points in the plane such that

zA = −i, zB = 3, zC = 2 + 3 i and zD = −1 + 2i.

1. Give the algebraic form of the complex number

Z =
zC − zA
zD − zB

·

2. Determine an argument of Z.
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3. Determine the area of the parallelogram ABCD.

Problem 4.10.14. Let A (8), B (8i), C
(
8 exp

(
− iπ/3

))
and D

(
8 i exp

(
2iπ/3

))
be four points of the complex plane.

1. Give the algebraic form of zC and zD.

2. Show that A, B, C and D belong to a same circle. Give the radius of this
circle.

3. Let z1 be the affix of the vector
−→
AC, z2 be the affix of the vector

−−→
BD, z3 be

the affix of the vector
−−→
AB and z4 be the affix of

−−→
DC.

a. Prove that z2 = z1

√
3.

b. Calculate |z3| and |z4|.
c. Prove that ABCD is a trapezoid.

Problem 4.10.15. We consider three points A, B and C which have affix

zA = 2, zB = 1 + i
√

3 and zC = 1− i
√

3.

1. Define the exponential form of zB and zC .

2. Specify the nature of the quadrilateral OBAC.

3. Determine the set of all points M with affix z such that∣∣z∣∣ =
∣∣z − 2

∣∣.
4. For any complex number z 6= zA we associate to M the pint M ′ with affix z′

defined by

z′ =
−4

z − 2
·

a. Find z the solution to the equation

z =
−4

z − 2
·

b. Deduce from this the points B′ and C ′ which are associated to B and C.

c. We define G as the center of gravity of the triangle OAB. Determine the
point G′ which is associated to G

Problem 4.10.16. The complex plane is equiped with the frame (O ; ~u ; ~v) . We
consider the points A and B with affix zA = a and zB = b+ i, where a and b are in
R. The point C with affix c is the image of B in the rotation of center A and angle
π
3 ·

1. Specify the relation between a and b.

2. Prove that the point C belongs to the line
(
O ; ~u

)
.

3. Determine the affix of C.
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4. Now, we fix a =
√

3, b = 0 and c = −i and we consider the point D with affix

zD = 2 +
√

3− 2i
√

3.

a. Precise the nature of the triangle ABC.

b. Compute
d− a
c− a

and specify the nature of the triangle ACD.

c. Find the affix of the point E image of D in the rotation of center A and
angle π

3 ·

d. The point F is the image of D in the translation of vector
−→
AC. Determine

the affix of F.

e. What can you say for the triangle BEF.

Problem 4.10.17. Let A and B be two points which are associated to the complex
numbers zA = i and zB = exp

(
−i 5π

6

)
.

1. Let R be the rotation of center O and angle 2π
3 · We denote by C = R

(
B
)
.

(a) Determine the expression of R.
(b) Prove that zC = exp

(
−iπ6

)
.

(c) Define the algebraic forms of zB and zC .

2. Let zD =
√

3
2 + 1

2 i. We define the pont E, such that,
−→
AE = 2

−−→
AD.

(a) Establish that zE =
√

3

(b) Determine the exponential form of the complex number

zD − zC
zE − zC

·

(c) Specify the nature of the triangle CDE.
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In the previous chapter we studied vectors in the plane and we pointed out that
to any vector ~u in the plane, we can associate two real numbers x and y. The real
numbers x and y are called the coordinates of the vector ~u. The aim of this chapter
is to continue the study of vectors in 3-dimensional space. The idea is at first to
extend the notion of coordinates, scalar product, orthogonality, collinearity,· · · · We
will also define new operations : the vector or cross product and mixed product.

We remind that to locate a point or a vector in space we associate to this
vector or point three real numbers x, y and z. These real numbers represent their
coordinates. We denote ~u (x , y , z) for the vector ~u. When it comes to a point A
we write A (xA , yA , zA).

These coordinates will allow us to simplify computations. They will give us the
possibilty to compute easily area and volume of domains.

We make the following update. Throughout this chapter all definitions which
do not use coordinates are the same in plane as well as in 3-dimensional space.

This chapter is organized in this way. In section 1 we explain how to get coordi-
nates by using a basis. In section 2 we define the scalar product in three dimension.
Using the scalar product we will characterize lines in space. This will be done in

131



132 CHAPTER 5. INTRODUCTION TO GEOMETRY IN SPACE

section 3. The section 4 is devoted to the cross product. Using the cross product we
will study planes in section 5. To end this chapter we introduce the mixed product.
Mixted product whose application will allow to determine volumes of some figures.

5.1 Basis in Space

It is well known that the notion of coordinates is related to a basis. Then changing
a basis can change the coordinates of a vector ~u. The main objective of this section
is to explain how to define a basis in the 3-dimensional space. In a second time
we study possible relations between these bases. Before going further we introduce
some preliminary definitions.

Definition 5.1.1. Three vectors in space ~u, ~v and ~w are coplanar if they belong
to the same plane.

Otherwise the vectors ~u, ~v and ~w do not live in the same plane. In this case we
say that they are non-coplanar vectors.

Lemma 5.1.2. If three vectors ~u, ~v and ~w are coplanar then, there exist two real
numbers α and β, such that,

~w = α~u+ β ~v. (5.1.1)

Proof. When ~w is collinear to ~u, we take β = 0. We obtain ~w = α~u+ 0 · ~v. When
~w is collinear to ~v we fix α = 0. In this case one has ~w = 0 · ~u+ β ~v.

When the three vectors are collinear, we have nothing to prove.
Now we assume that ~u and ~v are not collinear. The ordered couple

(
~u,~v
)

is
a basis of the plane defined by the vectors ~u and ~v, which contain the vector ~w.
Therefore there are two real numbers α and β in R, such that ~w = α~u+ β ~v. This
compltes the proof of the lemma.

Definition 5.1.3. A basis of the space is a set of three non-coplanar vectors(
~u , ~v , ~w

)
.

In other words any three vectors which are not in the same plane define a basis
of the space.

Definition 5.1.4. We say that the basis
(
~u,~v, ~w

)
is orthogonal if

~u ⊥ ~v, ~u ⊥ ~w and ~v ⊥ ~w.

Definition 5.1.5. The basis
(
~u,~v, ~w

)
is orthonormal if it is orthogonal and the

vectors ~u, ~v and ~w satisfy

‖~u‖ = ‖~v‖ = ‖~w‖ = 1.
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Example 5.1.6. The family
{
~i
(
1, 0, 0

)
; ~j
(
0, 1, 0

)
; ~k
(
0, 0, 1

)}
defines an or-

thonormal basis.

Now we fix a basis (~u,~v, ~w) of the space. To any vector −→χ in the space we
associate three real numbers x, y and z such that

−→χ = x~u+ y ~v + z ~w. (5.1.2)

Definition 5.1.7. The real numbers x, y and z in (5.1.2) are called the coordi-
nates of −→χ in the basis (~u,~v, ~w).

One may think that only orthonormal bases allow to define coordinates. Here
we draw readers attention on the fact that we can define coordinates in any type of
basis. However the use of orthonormal bases make the calculations simplest.

To make the presentation clear we mostly consider orthonormal bases. The
reason of this is Lemma 5.2.8, in section 2. This lemma claims that we can always
transform any basis to an orthonormal basis. This process is called Gram-Schmidt
process.

Definition 5.1.8. Any vector ~u in space with norm ‖~u‖ = 1 is called a unit
vector.

Remark 5.1.9. We can define unit vectors in any direction, not only in the direc-
tion of the axis. A unit vector which has the same direction as the nonzero vector
~u can be defined by

~u

‖~u‖
·

Example 5.1.10. Le ~v (1 , 1 , 0) be a vector in space. Then, the vector

~e~v

(
1√
2
,

1√
2
, 0

)
is a unit vector which has same direction as ~v.

Example 5.1.11. We consider the vector ~u (1 , −1 , 2). We define vector

~eu

(
1√
6
,
−1√

6
,

√
2√
3

)
.

The vector ~eu is a unit vector which has same direction as ~u.

From now on, we fix the following notations. The unit vectors along the x-axis,
y-axis and z-axis are respectively denoted ~i (1, 0, 0), ~j (0, 1, 0), and ~k (0, 0, 1).

It follows immediately that each vector in space can be expressed uniquely in
terms of vectors ~i, ~j, and ~k.

Now we take a vector ~u
(
x, y, z

)
. The vector ~u can be written in this way

(x, y, z) = (x, 0, 0) + (0, y, 0) + (0, 0, z) = x (1, 0, 0) + y (0, 1, 0) + z (0, 0, 1)

This leads to the following representation

~u = x~i+ y~j + z ~k.
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Example 5.1.12. The vector ~u = (3,−3, 9)is represented as follows

~u = 3~i− 3~j + 9~k.

Exercise 5.1.13. Write the following vectors as combinations of the vectors ~i, ~j
and ~k

1. ~a
(
0, 2, 1

)
,

2. ~b
(
2, 6, 0

)
,

3. ~u
(
4, 0, 5

)
,

4. ~v (−2 , 1 , 0),

5. ~w (−7 , −1 , 5).

We consider the frame
(
O ; ~i , ~j , ~k

)
. Throughout this book we fix the coordi-

nates of the point O as (0, 0, 0). Now we take another point A in the space. Since
−→
OA is a vector there are three real numbers xA, yA and zA, such that,

−→
OA = xA~i+ yA~j + zA ~k.

The real numbers xA, yA and zA are called the coordinates of point A and we denote
A
(
xA, yA, zA

)
.

Definition 5.1.14. If A
(
xA, yA, zA

)
and B

(
xB , yB , zB

)
are two points in the

space, the coordinates of the vector
−−→
AB are

−−→
AB

xB − xAyB − yA
zB − zA



Definition 5.1.15. If A
(
xA, yA, zA

)
and B

(
xB , yB , zB

)
are two points in the

space, the distance between A and B or the norm of the vector
−−→
AB is∥∥∥−−→AB∥∥∥ =

√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2 .

Example 5.1.16. Take the points A
(
1, 3, 2

)
and B

(
5 , 0, 4

)
. Then, we have∥∥∥−−→AB∥∥∥ =

√
(5− 1)2 + (0− 3)2 + (4− 2)2 =

√
16 + 9 + 4 =

√
29.

Exercise 5.1.17. We consider the points A
(
1, 2, 0

)
, B

(
3, 2, 3

)
, C

(
0, 0, 1

)
and

D
(
5, 6, 9

)
. Find the norm of the vectors

−−→
AB,

−→
AC,

−−→
AD,

−−→
BC,

−−→
BD and

−−→
DC.

One may wonder if Pythagor’s Theorem remained valid. To convince readers
that Pythagore’s Theorem holds, we state the following theorem which only use
definition of a norms.
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Theorem 5.1.18. Let A, B and C be three points in space such that the triangle
ABC is right with hypotenuse [BC]. Then,∥∥∥−−→BC∥∥∥2

=
∥∥∥−−→AB∥∥∥2

+
∥∥∥−→AC∥∥∥2

.

We recall that the reciprocal of Pythagore’s Theorem is sometimes used to es-
tablish orthogonality. Another way to prove orthogonality is to use scalar product.

5.2 Scalar Product in Space

In this section we define the scalar product in the three dimensional space. Using
this scalar product we will study orthogonality and some classical identities.

Definition 5.2.1. The scalar product of the vectors ~u and ~v is defined by

〈~u , ~v〉 = ~u · ~v = ‖~u‖ ‖~v‖ cos(θ),

where θ is the measure of the oriented angle
(
~u , ~v

)
.

The scalar product is also denoted sometimes by
(
~u,~v
)
. However in this course

we reserve the notation
(
~u,~v
)

for angles. We only use ~u · ~v to denote the scalar
product.

Lemma 5.2.2. For any vector ~u in space, we have

‖~u‖2 = ~u · ~u.

Lemma 5.2.3. Two nonzero vectors ~u and ~v are orthogonal if and only if

~u · ~v = 0.

Proof. Let ~u and ~v be two orthogonal vectors. Then the angle
(
~u , ~v

)
= ±π/2. This

implies that cos(~u,~v) = 0. Therefore, we obtain ~u · ~v = 0.
Conversely we assume ~u and ~v are nonzero vectors such that, ~u · ~v = 0. By

definition ~u ·~v = ‖~u‖ ‖~v‖ cos(~u,~v) = 0. Since ~u and ~v are nonzero vectors, we obtain
cos
(
~u , ~v

)
= 0. We conclude that ~u ⊥ ~v.

Lemma 5.2.4. If ~u and ~v are two nonzero orthogonal vectors, then,

‖~u− ~v‖2 = ‖~u‖2 + ‖~v‖2 and ‖~u+ ~v‖2 = ‖~u‖2 + ‖~v‖2.

Proof. Let ~u and ~v be two vectors. Then, we have

‖~u− ~v‖2 = (~u− ~v) · (~u− ~v) = ~u · ~u− 2 ~u · ~v + ~v · ~v = ‖~u‖2 − 2 ~u · ~v + ‖~v‖2.

Since ~u ⊥ ~v, we have ~u · ~v = 0. Therefore

‖~u− ~v‖2 = ‖u‖2 + ‖v‖2.

The proof is the same for ‖~u+ ~v‖.
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For vectors which are not orthogonal, on can prove the following general identity.
It is called the parallelogram identity.

Theorem 5.2.5. For any vectors ~u and ~v, we have

‖~u+ ~v‖2 + ‖~u− ~v‖2 = 2 ‖~u‖2 + 2 ‖~v‖2. (5.2.1)

Proof. Let ~u and ~v be two vectors which are not necessarly orthogonal. Then, we
have

(∗) ‖~u− ~v‖2 = ‖~u‖2 − 2 ~u · ~v + ‖~v‖2 and (∗∗) ‖~u+ ~v‖2 = ‖~u‖2 + 2 ~u · ~v + ‖~v‖2.

Summing (∗) and (∗∗) we obtain (5.2.1).

As we know that any vector is defined by its coordinates, we should have a
definition of the dot product in terms of coordinates.

Definition 5.2.6. The scalar product of ~u
(
u1 , u2 , u3

)
and ~v

(
v1 , v2 , v3

)
is

~u · ~v = u1v1 + u2v2 + u3v3.

Lemma 5.2.7. If ~u
(
u1 , u2 , u3

)
is a vector in space, then,

‖~u‖2 = u2
1 + u2

2 + u2
3.

In the previous section we have said that we will always consider orthonormal
bases. This choce is justified by the following lemma:

Lemma 5.2.8. Any basis (~u,~v, ~w) of the space can be transformed to an or-
thonormal basis (~e1, ~e2, ~e3).

Proof. Let (~u,~v, ~w) be a basis of the space. We assume that there are three vectors
~e1, ~e2 and ~e3 wich satisfy the following properties:

1. (~e1, ~e2, ~e3) is an orthonormal basis

2. the vectorial line defined by ~u is the same as the vectorial line defined by ~e1

3. the plane defined by (~u,~v) is the same as the plane defined by (~e1, ~e2)

4. The vectors (~u,~v, ~w) and (~e1, ~e2, ~e3) define the same space.

Now we have to construct the vectors ~e1, ~e2 and ~e3. We proceed as follows

Step 1: Construction of ~e1. Using assumption 2 we can find λ ∈ R such that

~e1 = λ~u.

This implies that ‖~e1‖ = |λ| ‖~u‖. Since ‖~e1‖ = 1, we get

|λ| = 1

‖~u‖
·

In this case we define

~e1 =
~u

‖~u‖
·
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Step 2: Construction of ~e2. The hypothesis 3 allows to find two real numbers
α and β, such that, ~v = α~e1 + β ~e2. We set ~g2 := β ~e2 = ~v − α~e1. We have

0 = ~g2 · ~e1 = β~e2 · ~e1 = ~v · ~e1 − α~e1 · ~e1.

This involves ~v · ~e1 − α = 0. Therefore α = ~v · ~e1 and ~g2 = ~v −
(
~v · ~e1

)
~e1. The

vector ~g2 is orthogonal to ~e1, but it is not a unit vector. To get a unit vector
we set

~e2 =
~g2

‖~g2‖
·

Step 3: Construction of ~e3. To construct ~e3, we use the assumption 4. There
are three real numbers a, b and c, such that,

~w = a~e1 + b~e2 + c~e3.

We define ~g3 := c~e3 = ~w−a~e1−b~e2. Since (~e1, ~e2, ~e3) is an orthonormal basis
we have ~e3 · ~e1 = 0, ~e1 · ~e2 = 0 and ~e3 · ~e2 = 0. This yields a = ~w · ~e1 and
b = ~w · ~e2. Hence

~g3 = ~w −
(
~w · ~e1

)
~e1 −

(
~w · ~e2

)
~e2.

The vector ~g3 is orthogonal both to ~e1 and ~e2. But ~g3 is not a unit vector.To
obtain a unit vector we consider

~e3 =
~g3

‖~g3‖
·

Therefore the basis (~e1, ~e2, ~e3) is orthonormal.

5.3 Lines in Space

In the previous chapter we studied lines in the plane. We pointed out that a line
can be defined by a point A (xA , yA) on which it passes through and a nonzero real
number a. The real number a is called the slop of the line.We specified that when
a = 0 the line is said to be horizontal.When a = ±∞ the line is called a vertical
line. In the case where a = ±∞, the line has equation x = b, for some real number
b.

In this section, we define lines in space. Making a parallel with the previous
chapter, we will define a line by using a point on which the line passes through and
a direction vector. A direction vector should always be taken as a nonzero vector.
For the sake of clarity we proceed by defining a direction vector at first . Secondly
we introduce vector and parametric equations of a line. We end this section by
defining cartesian or symetric equations.

Definition 5.3.1. A direction vector of the line (d) is any nonzero vector ~u that
is parallel to the line (d).

Example 5.3.2. Below we represent the line (d) and a direction vector ~u

−→u (d)
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Let A (x0 , y0 , z0) be a point in space and (d) a line which passes through A with
direction the nonzero vector ~u (u1 , u2 , u3). We consider another point M (x , y , z)

on this line. The vectors ~u and
−−→
AM are collinear. This means that we can find a

real number t such that ,
−−→
AM = t ~u. From the expressions of the vectors

−−→
AM = (x− x0)~i+ (y − y0)~j + (z − z0)~k and ~u = u1

~i+ u2
~j + u3

~k,

we deduce that

(x− x0)~i+ (y − y0)~j + (z − z0)~k = t u1
~i+ t u2

~j + t u3
~k.

The relation
−−→
AM = t ~u leads to the identity

−−→
OM =

−→
OA+ t ~u, that is equivalent to

−−→
OM =

−→
OA+ t u1

~i+ t u2
~j + t u3

~k. (5.3.1)

Now we set ~r(t) :=
−−→
OM = x~i+y~j+z ~k and ~r0 =

−→
OA = x0

~i+y0
~j+z0

~k. Replacing
in (5.3.1), we obtain

~r(t) = ~r0 + t~u. (5.3.2)

Using coordinates of vectors ~u,
−→
OA and

−−→
OM , one can establish

x~i+ y~j + z ~k = (x0 + t u1)~i+ (y0 + t u2)~j + (z0 + t u3)~k (5.3.3)

The identity (5.3.3) is called vectorial equation of the line (d) which passe through
A (x0 , y0 , z0) with a direction vector ~u.

Definition 5.3.3. The vectorial equation of the line (d) that passes through the
point A (x0 , y0 , z0) with direction vector ~u (u1 , u2 , u3) is given by (5.3.3).

Example 5.3.4. The vectorial equation of the line (d) that passes through the point

A(−1, 2, 0) with direction vector ~v = 2~i−~j + 3~k is:

~r(t) = (−1 + 2 t)~i+ (2− t)~j + 3 t~k.

Exercise 5.3.5. Define the vectorial equation of the line (d) passing through the
point A with direction vector ~u

1. A (2, 4, 5) and ~u (2, 4, 5),

2. A (1, 2, 0) and ~u (1, 0, 5),

3. A (5, 3, 2) and ~u (1, 4, 6).

Proposition 5.3.6. The vector
−−→
AB is a direction vector of the line (AB)

Having a look on the identity (5.3.3), we can give the following interpretation
in terms of coordinates: x = x0 + t u1, y = y0 + t u2 and z = z0 + t u3. This leads
to this system 

x = x0 + t u1,

y = y0 + t u2,

z = z0 + t u3,

t ∈ R (5.3.4)
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Definition 5.3.7. A set of parametric equations for the line (D) that passes
through the point A (x0 , y0 , z0) with direction vector ~u (u1 , u2 , u3) is given by
(5.3.4)

Example 5.3.8. To define a set parametric equations for the line that passes
through A(1, 5,−3) and parallel to the vector ~v (2,−3, 3), we proceed in this way.
We use the definition of a set parametric equations, in order to obtain

x = 1 + 2 t

y = 5− 3 t,

z = −3 + 3 t

t ∈ R

Example 5.3.9. Find a set of parametric equations for the line (AB) that passes
through the points A(1, 5,−3) and B(4,−1, 6).

To define a set of parametric equations, we need to find a direction vector to the

given line (AB). The vector
−−→
AB provides a good choice:

−−→
AB = (3,−6, 9). So the

equations are 
x = 1 + 3k,

y = 5− 6k,

z = −3 + 9k

k ∈ R

Another set of parametric equations can be defined for the line (AB), if we
consider the point B instead of A

x = 4 + 3t

y = −1− 6t, t ∈ R

z = 6 + 9t

Using any nonzero vector which is parallel to
−−→
AB we can define other sets of

parametric equations. This allows to make the following remark:

Remark 5.3.10. In the space there are several possible parametrizations of a line.
In other words, a set of parametric equations for a given line are not unique.

Exercise 5.3.11. Define a set of parametric equations for the line that passes
through A and parallel to the vector ~u

1. A (1, 2, 0) and ~u (5, 0, 0),

2. A (3, 5, 0) and ~u (1, 0, 2),

3. A (1, 5, 4) and ~u (0, 1, 0).

Now we consider the line (d) with parametric equations

x = x0 + t u1, y = y0 + t u2 and z = z0 + t u3.
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Hence the line (d) passes through the point A (x0 , y0 , z0). We fix the vector
~u (u1 , u2 , u3) as a direction vector of (d). Moreover we suppose that the real num-
bers u1, u2 and u3 are non-zero real numbers. Then, one has

t =
x− x0

u1
=
y − y0

u2
=
z − z0

u3
· (5.3.5)

Identity (5.3.5) is called the cartesian or symmetric equations of the line (d).

Definition 5.3.12. A cartesian equations of the line (d) that passes through the
point A (x0 , y0 , z0) with direction vector ~u is given by (5.3.5).

Example 5.3.13. Define a Cartesian equations for the line that passes through
A(3,−2, 2) and B(1, 3,−1)

One know that the vector

~u =
−−→
AB = (1− 3)~i+ (3− (−2))~j + (−1− 2)~k = −2~i+ 5~j − 3~k

is a direction vector of this line. Then, If we use the point A, we obtain these
symmetric equations

x− 3

−2
=
y + 2

5
=
z − 2

−3
·

Similarly, if we use the point B, we get another set of symetric equations

x− 1

−2
=
y − 3

5
=
z + 1

−3
·

Exercise 5.3.14. Define a cartesian equations of the line that passes through the
point A and parallel to ~u

1. A (0, 2, 0) and ~u (1, 2, 5),

2. A (4, 5, 10) and ~u (1, 6, 2),

3. A (1, 0, 4) and ~u (9,−1, 7).

Proposition 5.3.15. Two lines (d) and (d′) are parallel if they have the same
direction and two lines are orthogonal if their directions are orthogonal.

We take two real numbers a and b, one knows that a · b = a× b ∈ R. In section
2 of this chapter, we saw that if ~u and ~v are two vectors the product ~u · ~v is a real
number (scalar). Now one may ask what about the expression ~u×~v. Is ~u×~v a real
number or a vector ? The expression ~u × ~v is called the cross or vectorial product
of the vectors ~u and ~v. In the following section we introducethe vector product.

5.4 Vectorial Product

This section is devoted to the cross or vectorial product. It is denoted ~u × ~v. We
start by giving the definition of the cross product. In a second time we study
properties of the operator ×.
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Definition 5.4.1. If ~u and ~v are two vectors in space we define the cross product
of ~u and ~v denoted ~u× ~v as the unique vector which satisfies

1. ~u× ~v is orthogonal both to the vectors ~u and ~v

2. ~u× ~v has norm ∥∥∥~u× ~v∥∥∥ = ‖~u‖ ‖~v‖
∣∣ sin(θ)

∣∣. (5.4.1)

Notation: In the litterature we can find the following notation of the cross product
of ~u and ~v

~u ∧ ~v.

Remark 5.4.2. From the definition we remark that

• When the angle θ = π/2,then

‖~u× ~v‖ = ‖~u‖ ‖~v‖.

• When the angle θ is equal to 0 + kπ, for some k ∈ Z, we have

~u× ~v = 0.

Lemma 5.4.3. Let ~u and ~v be two nonzero vectors. Then,

~u× ~v = 0 if and only if the vector ~u and ~v are collinear.

As a consequence of this lemma, we have for any vector ~u

~u× ~u = ~u× (−~u) = 0.

Proof. Indeed, if the vectors ~u and ~v are collinear, the angle θ = 0 + kπ, for some
k in Z. Therefore sin(θ) = 0. This implies ~u× ~v = 0.

Conversly we assume ~u × ~v = 0. Since ~u and ~v are nonzero vectors, we deduce
that sin(θ) = 0. This means that the vector ~u and ~v are collinear.

Using coordinates of vectors , we obtain the following definition of the vectorial
product:

Definition 5.4.4. The cross product of the vectors ~u (u1, u2, u3) and ~v (v1, v2, v3)
is

~u×~v =

∣∣∣∣∣∣
~i ~j ~k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ =
(
u2v3−u3v2

)
~i−
(
u1v3−u3v1

)
~j+
(
u1v2−u2v1

)
~k. (5.4.2)

Let ~u and ~v be two vectors such that (~u , ~v) = θ. Then, (~v , ~u) = −θ. Therefore
, sin(~v , ~u) = − sin(~u , ~v). This implies that

~u× ~v = −~v × ~u.
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Since the vector ~0 is collinear to any vector one has ~u×~0 = ~0× ~u = ~0.
We can easily establish the distributivity of the cross product with respect to

addition of vectors. Indeed we take three vectors ~u, ~v and ~w in space. We have

~u× (~v + ~w) = (~u× ~v) + (~u× ~w) and (~u+ ~v)× ~w = (~u× ~w) + (~v × ~w).

On the other hand if ~u, ~v and ~w are three vectors and k a real number then, the
following identities hold

k(~u× ~v) = (k~u)× ~v = ~u× (k~v)

Example 5.4.5. We consider the vectors ~u (1, 3 − 2) and ~v (2, 0, 1). Then, using
(5.4.2), we obtain

~u× ~v = 3~i− 5~j − 6~k and ~v × ~u = −~u× ~v = −3~i+ 5~j + 6~k.

Exercise 5.4.6. Determine the vector ~u× ~v in each of the following case

1. ~u (1, 3, 0) and ~v (7, 0, 1),

2. ~u (1, 3, 4) and ~v (0, 0, 1),

3. ~u (3, 1, 4) and ~v (0, 1, 3).

One can establish without any difficulties the following lemma.

Lemma 5.4.7. For the vectors ~i (1 , 0 , 0), ~j (0 , 1, 0) and ~k (0 , 0 , 1) we have

~i×~j = ~k, ~j × ~k =~i,

~k ×~i = ~j, ~j ×~i = −~k,
~k ×~j = −~i, ~i× ~k = −~j. (5.4.3)

We will just prove the first property. We fix ~i (1 , 0 , 0) and ~j (0 , 1 , 0), then

~i×~j = (0− 0)~i− (0− 0) ~j + (1− 0) ~k = ~k.

The vector ~u× ~v satisfies the following property

Theorem 5.4.8. The vector ~u× ~v is both orthogonal to the vectors ~u and ~v.

Proof. We take ~u = (u1, u2, u3) and ~v = (v1, v2, v3). Using the definition of the
cross product we obtain

~u× ~v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

So we can see that

~u · (~u× ~v) = u1(u2v3 − u3v2) + u2(u3v1 − u1v3) + u3(u1v2 − u2v1) = 0.

In the same way we can establish that ~v · (~u× ~v) = 0.
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Example 5.4.9. We consider the vectors that ~u (0,−1, 1) and ~v (1, 0,−2). Then,
one has

~u× ~v =

∣∣∣∣∣∣
~i ~j ~k
0 −1 1
1 0 −2

∣∣∣∣∣∣ =

∣∣∣∣−1 1
0 −2

∣∣∣∣~i− ∣∣∣∣0 1
1 −2

∣∣∣∣~j +

∣∣∣∣0 −1
1 0

∣∣∣∣~k = 2~i+~j + ~k.

Example 5.4.10. To define a vector that is orthogonal both to vectors ~u (2,−1, 3)
and ~v (1, 4,−2), we consider the vector ~u× ~v. Consequently, we obtain

~u× ~v =

∣∣∣∣∣∣
~i ~j ~k
2 −1 3
1 4 −2

∣∣∣∣∣∣ =

∣∣∣∣−1 3
4 −2

∣∣∣∣~i− ∣∣∣∣2 3
1 −2

∣∣∣∣~j +

∣∣∣∣2 −1
1 4

∣∣∣∣~k = −10~i+ 7 ~j + 9 ~k.

Exercise 5.4.11. Determine a vector which is both orthogonal to ~u and ~v

1. ~u (1, 0, 2) and ~v (−1, 1, 1),

2. ~u (0, 0, 1) and ~v (2, 5, 3),

3. ~u (1, 2, 0) and ~u (−3, 6, 7).

Let ~u and ~v be two vectors. We denote by θ the angle between ~u and ~v. We
assume 0 ≤ θ ≤ π. Then we can prove the following lemma.

Lemma 5.4.12. The angle θ between the nonzero vectors ~u and ~v is

sin(θ) =
‖~u× ~v‖
‖~u‖ ‖~v‖

·

When the real number theta belongs to the interval [−π , 0[, we have to take

sin(θ) = −‖~u× ~v‖
‖~u‖ ‖~v‖

·

A simple method to remember how to construct the cross product of ~u and ~v is
to use the right-hand rule. It is shown in the following figure

~u

~v

~u× ~v

Figure 5.1: Right-Hand Rule

When ~u and ~v are nonzero vectors which are not parallel the direction of the
vector ~u × ~v can be determine as follows: We use the fingers of the right hand so
that the index finger represent the vector ~u, the middle finger represent the vector
~v and the thumb point in the direction of the vector ~u× ~v.
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Theorem 5.4.13. Let ~u and ~v be nonzero vectors in the space. Then,

1. The area of the parallelogram that has adjacent sides ~u and ~v is

Area of Parallelogram = ‖~u× ~v‖.

2. The area of the triangle that has adjacent sides ~u and ~v is

Area of triangle =
1

2
‖~u× ~v‖.

If we denote by θ the angle between the vectors ~u and ~v and we use the formula

sin(θ) =
‖~u× ~v‖
‖~u‖‖~v‖

·

In this case we deduce that

‖~u× ~v‖ = ‖~u‖ ‖~v‖ | sin(θ)|

Proof. 1. We consider the parallelogram that has ~u and ~v as adjacent sides. From
the previous chapter we knew that its area is defined by

Area of Parallelogram = ‖~u‖ ‖~v‖ | sin(θ) | = ‖~u× ~v‖.

2. The proof of 2 is similar to 1.

As a second application, we use the cross product to compute the distance
between a fixed point to a line.

Let us consider a point A in space and a line (D). We agree that if the point A
belongs to the line (D), then the distance between A and (D) is equal to zero. Now
we assume that the line (D) does not contain the point A and we aim to compute
the distance dist

(
A , (D)

)
.

To estimate this distance we draw the line (D′) perpendicular to (D) and passing
through the point A. We denote by B the intersection point of (D) and (D′). See
figure below

A

B

(D)

The distance between the point A and the line (D) is equal to the distance AB.
Now we take a point C in (D) which is different to B. The triangle ABC is a

right triangle with hypothenus the segment line [AC]. We set θ :=
(−−→
CB ,

−→
CA
)
. In

this case we have AB = AC · sin(θ). This means that

∥∥−−→AB∥∥ =
∥∥−→AC∥∥∣∣ sin(θ)

∣∣ =

∥∥−→AC∥∥ ∥∥−−→BC∥∥ ∣∣ sin(θ)
∣∣∥∥−−→BC∥∥ =

∥∥−→AC ×−−→BC∥∥∥∥−−→BC∥∥ ·

This proves the following lemma.



5.5. STUDY OF PLANES IN SPACE 145

Lemma 5.4.14. If (D) is the line that passes through the point B with direction
vector ~u, then, the distance between the point A to the line (D) is

dist
(
A ,
(
D
))

=

∥∥−−→AB ×−→u ∥∥∥∥−→u ∥∥ · (5.4.4)

Example 5.4.15. To determine the distance between the point A(0, 1,−2) to the
line

(d)


x = 1 + t

y = −3− t t ∈ R

z = 2t

we firstly identify a direction vector of (d). A look on the parametric equations,
shows that the vector ~u (1,−1, 2) is a direction vector. The line (d) passes through

the point B(1,−3, 0). This implies
−−→
AB (1,−4, 2). Hence,

−−→
AB × ~u =

∣∣∣∣∣∣
~i ~j ~k
1 −4 2
1 −1 2

∣∣∣∣∣∣ =

∣∣∣∣−4 2
−1 2

∣∣∣∣~i− ∣∣∣∣1 2
1 2

∣∣∣∣~j +

∣∣∣∣1 −4
1 −1

∣∣∣∣~k = −6~i+ 3~k.

Therefore we obtain

dist
(
A,
(
D
))

=

∥∥−−→AB × ~u∥∥∥∥~u∥∥ =

√
36 + 9√

1 + 1 + 4
=

√
45

6
=

√
15

2
·

Exercise 5.4.16. Determine the distance between the point A and the line (D)

1. A (1, 0,−1) and


x = −t

y = 2 + t, t ∈ R,

z = 1 + 2t

2. A (2, 1,−3) and


x = 1 + 3t

y = 2− t, t ∈ R.

z = −2 t

In the next section we study some particular subspaces. We introduce planes.
We do not pretend to do a full study of planes. But we will just list some important
elementary properties of them.

5.5 Study of Planes in Space

This section is an introduction to planes. Since the topic is vaste we will just
enumerate some properties of planes. Indeed we start by studying normal vectors.
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Applying normal vectors we will be able to define cartesian equations of a plane. We
will give another definition of planes by using direction vectors. To end this section
we establish the formula which gives the distance between a point to a plane.

We recall that a vector ~n is orthogonal to a plane if it is orthogonal to any vector
~u, which belongs to this plane.

Definition 5.5.1. Any vector ~n which is orthogonal to a plane P is called a
normal vector to this plane.

In this case, when A and B are two points in P, one has ~n ·
−−→
AB = 0.

One may think that it is complicate to construct normal vectors to a plane. We
reasurre readers that it is easy to get a normal vector.

Indeed if ~u and ~v are two vectors, we deduce from theorem 5.4.8 that

~u ⊥ (~u× ~v) and ~v ⊥ (~u× ~v).

This implies the following lemma

Lemma 5.5.2. Let ~u and ~v be two noncollinear vectors in the plane P. Then,
the vector ~u× ~v is normal to the plane P.

In this paragraph we establish that one can define the equation of a plane by,
considering a point which belongs to the plane and a normal vector to this plane.

Now we consider a plane P which contains the point A (x0, y0, z0). We suppose
that the vector ~n

(
a, b, c

)
is normal to P. We take another point M (x, y, z) in P

which we assume different to A. Therefore,
−−→
AM ⊥ ~n. This involves

~n ·
−−→
AM = 0. (5.5.1)

Identity (5.5.1) is called a vectorial equation of the plane P.
On the other hand we know that

−−→
AM (x− x0, y− y0, z− z0). Using coordinates

in (5.5.1) one has a(x− x0) + b(y − y0) + c(z − z0) = 0. Hence we obtain

ax+ by + cz − (ax0 + by0 + cz0) = 0.

Setting d = −(ax0 + by0 + cz0) the following holds

a x+ b y + c z + d = 0. (5.5.2)

Definition 5.5.3. The identity (5.5.2) is called a cartesian equation of P.

Example 5.5.4. To determine a cartesian of the plane P which contains the points
A(0, 0, 1), B(2, 0, 0), and C(0, 3, 0) we define a normal vector to P. As we we know

that the vectors
−−→
AB(2, 0,−1) and

−→
AC(0, 3,−1) are two non collinear vectors in P,

the vector
−−→
AB×

−→
AC (3, 2, 6) is normal to the plane P. Then, the cartesian equation

of P is
3x+ 2y + 6z + d = 0.

Using the point A(0, 0, 1) we get

3x+ 2y + 6z − 6 = 0.



5.5. STUDY OF PLANES IN SPACE 147

Exercise 5.5.5. In each of the following cases determine a cartesian equation to

1. the plane P which contains the points A (1, 3, 5), B (2, 3, 5) and C (5, 0, 1)

2. the plane P which contains the point A (1, 0, 0) and normal to ~n(1,−2,−1).

Let P be a plane with direction vectors ~u(u1, u2, u3) and ~v(v1, v2, v3) that con-
tains the point A(xA, yA, zA) . We consider another arbitrary point M(x, y, z) in

P. The vector
−−→
AM is a linear combination of the vectors ~u and ~v. Then, there are

k1 and k2 in R, such that
−−→
AM = k1~u + k2~v. This is equivalent to the following

vectorial identity x− xAy − yA
z − zA

 = k1

u1

u2

u3

+ k2

v1

v2

v3


which leads to this system 

x = xA + k1 u1 + k2 v2,

y = yA + k1 u2 + k2 v2,

z = zA + k1 u3 + k2 v3.

(5.5.3)

Definition 5.5.6. The system (5.5.3) is called parametric equations of the plane
P.

Theorem 5.5.7. If P is the plane with direction vectors ~u and ~v that contains
A(xA, yA, zA), then parametric equations of P are defined by (5.5.3).

Example 5.5.8. To determine parametric equations of the plane P that con-
tains A(1, 0,−1) with direction vectors ~u(1,−2, 0) and ~v(−1, 3, 1), we apply (5.5.3).
Hence one obtains 

x = 1 + k1 − k2

y = −2k1 + 3k2

z = −1 + k2.

for some real numbers k1 and k2.

Exercise 5.5.9. Determine parametric equations of the plane P that contains A
and has direction vectors ~u and ~v

1. A(0, 0,−2), ~u(−2, 3, 5) and ~v(3, 4, 1),

2. A(0,−1, 0), ~u(0, 0, 1) and ~v(2, 0, 0).

Let (P) be a plane which is normal to the vector ~n (a, b, c). We consider A, a
point which belongs to (P). We take another point B which does not belong to (P).
Now we aim to calculate the distance between the point B and the plane (P). To

do so we assume that the vector
−−→
AB make an angle θ with the plane (P). To find

the distance dist(B, (P)) between B and P, we draw the line (d) passes through
the point B and orthogonal to P. We denote by C the intersection point between
(d) and (P). Thus we can see that the distance between B and (P) is given by the
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norm of the vector
−−→
BC. This is nothing but the projection of the vector

−−→
AB on the

vector ~n.
Since the triangle ABC is right and 0 ≤ θ ≤ π,one has∥∥−−→BC∥∥ =

∥∥−−→AB∥∥ sin(θ) =

∥∥−−→AB∥∥ · ∥∥~n∥∥ · sin(θ)

‖~n‖
=

∥∥−−→AB × ~n∥∥
‖~n‖

· (5.5.4)

Theorem 5.5.10. If P is the plane that is normal to ~n and contains A, then,
the distance between point B and P is defined by (5.5.4).

Example 5.5.11. To determine the distance between B(1, 0, 3) to the plane P :
3x+ 2y+ 6z− 6 = 0 , we have to identify a normal vector to P. From the cartesian
equation of P, we deduce that the vector ~n (3, 2, 6) is a normal vector. On the other
hand, A (0, 0, 1) ∈ P. Simple calculations show that

−−→
AB (1, 0, 2) and

−−→
AB × ~n (−4, 0, 2).

Therefore, the distance between B to the plane P is

d(B,P) =

∥∥−−→AB × ~n∥∥
‖~n‖

=

√
16 + 4√

9 + 4 + 36
=

√
20

7
·

Exercise 5.5.12. Compute the distance between the point B and the plane P
1. B (0, 3, 2) and 3x+ 2y + 2 = 0,

2. B (1,−1, 1) and 5x+ y + 2 z = 0,

3. B (0, 5, 0) and z + 2 = 0.

Let P be a plane which is normal to the vector n (a, b, c). The plane P has
equation ax + by + cz + d = 0, with some real number d. We consider the point
B (x0, y0, z0) and we assume that B 6∈ P. In order to estimate the distance between
the point B to the plane P, we draw the line (d) orthogonal to P and passes through
the point B. We denote by C (xC , yC , zC) the intersection point between (d) and
P.

The vectors ~n and
−−→
CB are collinear. We suppose they have the same sense.

Therefore −−→
CB · ~n =

∣∣−−→CB · ~n∣∣ =
∥∥−−→CB∥∥∥∥~n∥∥.

As we know that the distance between the plane P and the point B is equal to∥∥−−→CB∥∥, one deduces from the identity above that

dist(B,P) =

∣∣−−→CB · ~n∣∣
‖~n‖

· (5.5.5)

On the other hand we know that
−−→
CB (x0 − xC , y0 − yC , z0 − zC). Substituting

in (5.5.5), we obtain

−−→
CB · ~n = ax0 + by0 + cz0 − (axC + byC + czC) (5.5.6)

Since C ∈ P, we have d = −(axC + byC + czC . Gathering (5.5.5) and (5.5.6) we
obtain

dist(B,P) =

∣∣ax0 + by0 + cz0 + d
∣∣

‖~n‖
· (5.5.7)

This leads to the following theorem
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Theorem 5.5.13. The distance between the point B and the plane P which has
cartesian equation ax+ by + cz + d = 0 is given by (5.5.7).

Example 5.5.14. To find the distance between the point B (−1, 1, 0) and the plane
P : x + z + 2 = 0 we proceed as follows: we define the normal vector ~n (1 , 0 , 1)
and we apply (5.5.7). Thus we obtain

dist
(
B , P

)
=

∣∣− 1 + 0 + 2
∣∣

√
1 + 0 + 1

=

√
2

2

Exercise 5.5.15. Estimate the distance between the point B to the plane P

1. B (0, 0, 3) and x− 2y + 2z − 1 = 0,

2. B (2, 1, 0) and − x+ 2y + 2 z + 1 = 0.

We know that in the plane two lines can coincide, intersect. They can also be
parallel. Here we add that two lines are co-planar if they live in the same plane.

Now we consider two lines which are not co-planar. We assume they are not
parallel and they does not intersect. In this case we say they are skew lines.

Definition 5.5.16. Two lines are called skew lines if they satify these three
properties

• they do not belong in the same plane

• they are not parallel

• they do not intersect.

Example 5.5.17. To specify the positions of the following lines

(L1) :



x = 4 + 2t,

y = −5 + 4t,

z = 1 + 3t

and (L2) :



x = 2 + s,

y = −1 + 3s,

z = 2s

We analyze their parametric equations. Hence, we define the vectors ~v1 (2, 4, 3)
and ~v2 (1, 3, 2) as respective direction vectors of (L1) and (L2).

We can observe that the vectors ~v1 and ~v2 are not collinear. Thus the lines (L1)
and (L2) are not parallel.

Now we assume that (L1) and (L2) intersect. This means that there exist a point
having coordinates which satisfy the following system

4 + 2t = 2 + s,

−5 + 4t = −1 + 3s,

1 + 3t = 2s
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Considering the two first equations we obtain s = −8 and t = −5. Substituting in
the third equation we find 1 + 3(−5) = 2(−8). Then, one gets −14 = −16, which is
absurde. Therefore the lines do not intersect. We conclude that the lines (L1) and
(L2) are skew lines.

In sections 2 and 4 we have defined the dot and the cross product. Now our
purpose is to gather these two operations in a same mathematical expression in this
way : we consider three vectors ~u, ~v and ~w and we define[

~u,~v, ~w
]

=
(
~u× ~v

)
· −→w (5.5.8)

The identity (5.5.8) is called the mixed product of vectors ~u, ~v and ~w. In the next
section we introduce and study the mixed product.

5.6 Some Properties of the Mixed Product

This section deals with the mixed product. Here we only define this operation and
show how to use it to determine volumes of parallelepipeds.

Definition 5.6.1. The mixed product of three vectors ~u, ~v and ~w is defined by[
~u,~v, ~w

]
=
(
~u× ~v

)
· ~w = ‖~u× ~v‖ ‖~w‖ cos(~u× ~v, ~w). (5.6.1)

Using determinant of matrices we reformulate definition (5.6.1) in this way:

Theorem 5.6.2. If ~u (u1 , u2 , u3), ~v (v1 , v2 , v3) and ~w (w1 , w2 , w3) are three
vectors, Then their mixed product is given by

[
~u,~v, ~w

]
=

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ . (5.6.2)

Remark 5.6.3. We point out that

1. the mixed product is not commutative in other words[
~u,~v, ~w

]
6=
[
~v, ~u, ~w

]
6=
[
~w,~v, ~u

]
6=
[
~w, ~u,~v

]
.

2. the out put ( the result ) of a mixed product is a real number.

One may wonder, what is the use of mixed product ? To give an application of
the mixed product we consider three vectors ~u, ~v, and ~w which belong to the same
plane. Since the vectors ~u, ~v,and ~w are coplanar, there exist two real numbers α
and β, such that, ~w = α~u+ β ~v. Therefore,

~w ·
(
~u× ~v

)
= α~u ·

(
~u× ~v

)
+ β ~v ·

(
~u× ~v

)
.

Using the fact that the vector ~u× ~v is orthogonal both to ~u and ~v, we obtain[
~u,~v, ~w

]
= ~w ·

(
~u× ~v

)
= 0.
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Conversely, if
(
~u×~v

)
·−→w = 0, one deduces that −→w ⊥

(
u×~v

)
. Since on the other

hand ~u ⊥
(
~u× ~v

)
and ~v ⊥

(
~u× ~v

)
, we conclude that there exist two real numbers

α and β such that
−→w = α~v + β~v.

This means that the vector ~u, ~v and −→w are coplanar. This proves the following
theorem

Theorem 5.6.4. The vector ~u, ~v and ~w are coplanar if and only if

~w · (~u× ~v) = 0. (5.6.3)

We remind that the mixed product can be used to compute volumes of some
geometrical objects.

Indeed let ABCDEFGH be a solide with basis the parallelogram ABCD. The
volume of the solide ABCDEFGH is given by the following formula

Volume(ABGDEFGH) = Area(ABCD)× height.

In this particular case we have area of ABCD is
∥∥−−→AB × −−→AD∥∥ and the height is

given by
∥∥−→AE∥∥ · | cos(θ)|, where theta is the angle between the vectors

−→
EA and

−−→
EK.

Hence, the volume is given by

Volume(ABGDEFGH) =
∥∥−−→AB ×−−→AD∥∥∥∥AE∥∥ · | cos(θ)| =

∣∣∣(−−→AB ×−−→AD) · −→AE∣∣∣.
This leads to the following theorem

Theorem 5.6.5. The volume of the parallelepiped with adjacent sides −→u , −→v ,
and −→w is

Volume =
∣∣∣(−→u ×−→v ) · −→w ∣∣∣ (5.6.4)

Using coordinates of vectors we can establish the following theorem

Theorem 5.6.6. If ~u (u1, u2, u3), ~v (v1, v2, v2) and ~w (w1, w2, w3) are the adja-
cent sides of a parallelepiped, then

Volume =

∣∣∣∣∣∣det

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ (5.6.5)

Example 5.6.7. To find the volume of the parallelpiped with adjacent sides
~a (1, 0, 2), ~b (−1, 1, 0) and ~c (2, 0, 0). We construct the matrix

A =

 1 0 2
−1 1 0
2 0 0

 .
We have det(A) = 2

∣∣∣∣−1 1
2 0

∣∣∣∣ = 2 · (−2) = −4 Hence, using (5.6.5) we have

Volume =
∣∣det(A)

∣∣ = 4.
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5.7 Exercise Session

The main objective of this section is to give some exercises with their solutions.

Exercise 5.7.1. We consider two vectors ~u (u1, u2, u3) and ~v (v1, v2, v3). Prove
that if ∥∥∥~u− ~v∥∥∥ =

∥∥∥~u+ ~v
∥∥∥.

then, u1v1 + u2v2 + u3v3 = 0.

Solution. We consider the vectors ~u
(
u1 , u2 , u3

)
and ~v

(
v1 , v2 , v3

)
, then,∥∥∥~u+ ~v

∥∥∥2

= u2
1 + v2

1 + u2
2 + v2

2 + u2
3 + v2

3 + 2
(
u1v1 + u2v2 + u3v3

)
,∥∥∥~u− ~v∥∥∥2

= u2
1 + v2

1 + u2
2 + v2

2 + u2
3 + v2

3 − 2
(
u1v1 + u2v2 + u3v3

)
.

Since
∥∥∥~u+ ~v

∥∥∥ =
∥∥∥~u− ~v∥∥∥ we obtain

∥∥∥~u+ ~v
∥∥∥2

=
∥∥∥~u− ~v∥∥∥2

.

The previous identity, involves∥∥∥~u+ ~v
∥∥∥2

−
∥∥∥~u− ~v∥∥∥2

= 4
(
u1v1 + u2v2 + u3v3

)
= 0

Consequently we have
u1v1 + u2v2 + u3v3 = 0.

Exercise 5.7.2. Let ~a, ~b and ~c be three vector, such that,∥∥∥~a∥∥∥ = 3,
∥∥∥~b∥∥∥ = 1 and

∥∥∥~c∥∥∥ = 4.

We assume that the vectors ~a, ~b and ~c satisfy the property

~a+~b+ ~c = ~0.

Prove that
~a ·~b+~b · ~c+ ~c · ~a = −13.

Solution. We consider the vectors ~a, ~b and ~c, such that
∥∥~a∥∥ = 3,

∥∥~b∥∥ = 1 ,
∥∥~c∥∥ = 4

and
~a+~b+ ~c = ~0.

Then, we have∥∥~a+~b+ ~c
∥∥2

=
∥∥~a∥∥2

+
∥∥~b∥∥2

+
∥∥~c∥∥2

+ 2
(
~a ·~b+~b · ~c+ ~c · ~a

)
= 9 + 1 + 16 + 2

(
~a ·~b+~b · ~c+ ~c · ~a

)
= 0.

This implies that

2
(
~a ·~b+~b · ~c+ ~c · ~a

)
+ 26 = 0 =⇒ ~a ·~b+~b · ~c+ ~c · ~a = −13
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Exercise 5.7.3. In each case determine the vectorial equation and a set of para-
metric equations for the line (d) that is parallel to ~u and contains the point A

1. A (−1, 0, 2) and ~u (1, 5, 4)

2. A (−3,−1, 2) and ~u (2, 5,−1)

3. A (1,−2, 6) and ~u (3, 5,−11)

Solution. 1. We consider the point A (−1 , 0 , 2) and the vector ~u =~i+5~j−4~k.
In this case the vectorial equation of the line passing through the point A with
direction vector ~u is :

~r(t) =
−→
OA+ t~u = −~i+ 2~k + t

(
~i+ 5~j − 4~k

)
=
(
− 1 + t

)
~i+ 5 t~j +

(
2− 4 t

)
~k

for some real number t.

A set of parametric equations of this line is given by
x = −1 + t,

y = 0 + 5 t

z = 2− 4 t.

, t ∈ R

2. For the line (d) that passes through the point A (3 , −1 , 2) with direction

vector ~u = 2~i+ 5~j − ~k, we have

~r(t) =
−→
OA+ t~u = 3~i−~j + 2~k + t

(
2~i+ 5~j − ~k

)
=
(
3 + 2 t

)
~i+

(
− 1 + 5 t

)
~j +

(
2− t

)
~k

for some t ∈ R.
A set of parametric equations of this line is defined by this system

x = 3 + 2 k

y = −1 + 5 k

z = 2− k.

, k ∈ R

3. Let (d) be the line that contains A (1 , −2 , 6) with a direction vector ~u =

3~i+ 5~j − 11~k. Then,

~r(t) =
−→
OA+ t~u =~i− 2~j + 6~k + t

(
3~i+ 5~j − 11~k

)
=
(
1 + 3 t

)
~i+

(
− 2 + 5 t

)
~j +

(
6− 11 t

)
~k

where t ∈ R.
A parametric equation of the line passing through A with direction ~u is

x = 1 + 3 `,

y = −2 + 5 `

z = 6− 11 `.

, ` ∈ R
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Exercise 5.7.4. We consider the line (∆) with vectorial equation

~r(t) = 2~i+ 3~j + ~k + t
(
− 3~i+~j + ~k

)
.

Determine the coordinates of the point on the line that is the closest to the origine.

Solution. We consider the point O (0 , 0 , 0).We can observe that the point
A (2 , 3 , 1) is a point of the line;

Then
−→
OA (2 , 3 , 1). The vector ~u (−3 , 1 , 1) is a direction vector of this line.

On the other hand we know that the distance between O and the line (∆) is
defined by the formula

d =

∥∥∥−→OA× ~u∥∥∥∥∥~u∥∥ ·

Straightforward computations show that

−→
OA× ~u =

∣∣∣∣∣∣
~i ~j ~k
2 3 1
−3 1 1

∣∣∣∣∣∣ = 2~i− 5~j + 11~k.

Hence, we conclude that

d =

√
4 + 25 + 121√

9 + 1 + 1
=

√
150√
11

= 5 ·
√

6

11

Exercise 5.7.5. Determine the cross (vectorial) product of the following vectors

1. ~a (4, 9, 1) and ~b (−3,−2, 5)

2. ~a (1,−5,−1) and ~b (2,−3, 3)

3. ~a (2, 3, 0) and ~b (0, 3, 2)

4. ~a (3, 0, 0) and ~b (0, 0, 2)

5. ~a (1, 1, 0) and ~b (1,−1, 0).

Solution. 1. We consider the vectors ~a (4 , 9 , 1) and ~b (−3 , −2 , 5),then

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
4 9 1
−3 −2 5

∣∣∣∣∣∣ =

∣∣∣∣ 9 1
−2 5

∣∣∣∣~i− ∣∣∣∣ 4 1
−3 5

∣∣∣∣~j+

∣∣∣∣ 4 9
−3 −2

∣∣∣∣~k = 47~i−23~j+19~k

2. Let ~a (1 , −5 , −1) and ~b (2 , −3 , 3) be two vectors. We have

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
1 −5 −1
2 −3 3

∣∣∣∣∣∣ = −18~i− 5~j + 7~k

3. For the vectors ~a (2 , 3 , 0) and ~b (0 , 3 , 2), we obtain

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
2 3 0
0 3 2

∣∣∣∣∣∣ = 6~i− 4~j + 6~k.
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4. We take the vectors ~a (3 , 0 , 0) and ~b (0 , 0 , 2). Therefore, we get

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
3 0 0
0 0 2

∣∣∣∣∣∣ = −6~j.

5. We consider the vectors ~a (1 , 1 , 0) and ~b (1 , −1 , 0). One gets,

~a×~b =

∣∣∣∣∣∣
~i ~j ~k
1 1 0
1 −1 0

∣∣∣∣∣∣ = −2~k.

Exercise 5.7.6. Find a unit vector that is orthogonal both to

~u = −2~i+ 4~j + 2~k and ~v = 3~i+ 2~j − 3~k.

Solution. Let ~u (−2 , 4 , 2) and ~v (3 , 2 , −3) be two vectors. We know that the
vector ~u× ~v is orthogonal both to ~u and ~v. Hence,

~u× ~v =

∣∣∣∣∣∣
~i ~j ~k
−2 4 2
3 2 −3

∣∣∣∣∣∣ = −16
(
~i+ ~k

)
is orthogonal to ~u and ~v. To obtain a unit vector that has the same direction as
~u× ~v we define

~e =
~u× ~v∥∥∥~u× ~v∥∥∥ =

−16
(
~i+ ~k

)
16
√

2
= −
√

2

2

(
~i+ ~k

)
.

Exercise 5.7.7. Determine a cartesian equation to the plane P that is normal to
~n (−1; 2; 3) and contains the point M (1; 2; 0).

Solution. Since the vectors ~n (−1 , 2 , 3) is normal to the plane P, a cartesian
equation of this plane can be defined by

−x+ 2y + 3z + d = 0

Since M (1 , 2 , 0) is in the plane P, then the coordinates of M are solution of the
equation above. Therefore

−1 + 4 + 0 + d = 0⇒ d = −3

Finally we obtain the equation

−x+ 2 y + 3 z − 3 = 0.
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5.8 Problems

Problem 5.8.1. Define the scalar product of the following vectors

1. −→u
(
3 , 2 , −5

)
and −→v

(
10 , 1 , 2

)
2. −→u

(
2 , 1 , 5

)
and −→v

(
7 , −9 , −1

)
3. −→u

(
2 , −1 , 1

)
and −→v

(
0 , −1 , 1

)
4. −→u

(
1 , 2 , 3

)
and −→v

(
0 , 2 , 1

)
Problem 5.8.2. We consider the vectors −→a and

−→
b such that

∥∥−→a ∥∥ = 3 and
∥∥−→b ∥∥ =

5. Determine the value of the real number α such that(−→a + α
−→
b
)
⊥
(−→a − α−→b ).

Problem 5.8.3. Let −→u
(
2 , 3 , −1

)
and −→v

(
1 , −2 , 3

)
be two vectors in space. We

consider a vector −→x which satisfies the following conditions

• −→x ⊥ −→u

• −→x · −→v = −6

Determine the coordinates of −→x .

Problem 5.8.4. Let A
(
1 , 2 , 3

)
, B

(
− 3 , 2 , 4

)
and C

(
1 , −4 , 3

)
be the vertices

of the triangle ABC.

1. Show that this triangle is right.

2. Find its area.

Problem 5.8.5. Simplify the following expressions

1. ~i×
(
~j + ~k

)
−~j ×

(
~i+ ~k

)
+ ~k ×

(
~i+~j + ~k

)
,

2.
(
~a+~b+ ~c

)
× ~c+

(
~a+~b+ ~c

)
×~b+

(
~b− ~c

)
× ~a,

3.
(

2~a+~b
)
× (~c− ~a) +

(
~b+ ~c

)
×
(
~a+~b

)
.

Problem 5.8.6. Determine the area of the triangle ABC

1. A (1 , 1 , 1), B (2 , 3 , 4) and C (4 , 3 , 2),

2. A (1 , 2 , 3), B (3 , 2 , 1) and C (1 , −1 , 1).

Problem 5.8.7. Determine the area of the parallelogram which has adjacent sides
the vectors −→u and −→v

1. −→u = 2~i+ 3~j + 5~k, and −→v =~i+ 2~j + ~k,

2. −→u =~i+~j, and −→v = −3~j + ~k.
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Problem 5.8.8. Let ~u (3 , −1 , 2) and ~v (1 , 0 , 2) be two vectors. We define the
vector

−→w = α~i+ 3~j + β~k.

Determine α and β such that −→w be collinear to ~u× ~v.

Problem 5.8.9. Say whether the following vectors are coplanar

1. ~u (1 , 1 , 1), ~v (−2 , 3 , −2) and ~w (3 , −2 , 3),

2. ~a (2 , −1 , 3), ~b (1 , 2 , −3) and ~c (1 , 3 , −2),

3. ~u1 (1 , 5 , 2), ~u2 (−1 , 1 , −1) and ~u3 (1 , 1 , 1),

4. ~u (2 , −1 , 0), ~v (0 , 2 , −1) and ~w (−1 , 0 , 2),

5. ~u (1 , 0 , 1), ~v (−1 , −1 , 0) and ~w (0 , −1 , −1).

Problem 5.8.10. Say whether the following points are coplanar

1. A (1 , 0 , 1), B (2 , 1 , −2), C (1 , 2 , 0) and D (−1 , 1 , −1),

2. A (1 , 2 , −1), B (0 , 1 , 5), C (−1 , 2 , 1) and D (2 , 1 , 3).

Problem 5.8.11. Determine the volume of the pyramid that has triangular basis
with vertices

1. A (1 , 1 , 1), B (3 , 2 , 1), C (5 , 3 , 2) and D (3 , 4 , 5)

2. A (2 , 0 , 0), B (0 , 3 , 0), C (0 , 0 , 6) and D (2 , 3 , 8)

Problem 5.8.12. Determine a cartesian equation of the plane that passes through
the point A (1 , 1 , 2) and parallel to the plane

P : x− 3y + 2z + 1 = 0.

Problem 5.8.13. We define the plane P : x− y + z + 1 = 0 which is tangent to
a sphere S with center A

(
1 , −1 , 3

)
.

1. Determine the radius of the sphere S .

2. Define parametric equations of the line ∆ that passes through the point A and
orthogonal to P.

3. Deduce from 1. and 2. the coordinates of the intersection point of the sphere
S and P.

Problem 5.8.14. Let ABCDEFGH be a cube of edge 1. We consider the orthonor-

mal frame
(
A ;
−−→
AB ;

−−→
AD ;

−→
AE
)

1. Establish that the triangle BDE is equilateral.

2. Let I be the center of gravity of the triangle BDE

a. Determine the coordinates of the point I

b. Show that
−→
AI =

1

3

−→
AG.
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c. What can you deduce from 2. for the points A, I and G?

3. Prove that I is the orthogonal projection of A in the plane
(
BDE

)
.

Problem 5.8.15. In the space we consider three points A
(
2 , 1 , 3

)
, B

(
−3 , −1 , 7

)
and C

(
3 , 2 , 4

)
.

1. Prove that the vectors
−−→
AB and

−→
AC are not collinear. We donote by

(
ABC

)
the plane generated by these two vectors.

2. Let
(
d
)

be the line with parametric equations
x = 2t− 7

y = −3t,

z = t+ 4

t ∈ R

a. Establish that the line
(
d
)

is orthogonal to the plane
(
ABC

)
.

b. Find a cartesian equation to the plane
(
ABC

)
.

3. Let H be the intersection point of the line
(
d
)

and the plane
(
ABC

)
.

a. Prove that
2
−−→
HA+

−−→
HB − 2

−−→
HC =

−→
0 .

b. Determine the set of all points M such that(
−2
−−→
MA−

−−→
MB +

−−→
MC

)
·
(−−→
MB −

−−→
MC

)
= 0.

c. Determine the set of all points M such that,∥∥∥−2
−−→
MA−

−−→
MB + 2

−−→
MC

∥∥∥ =
√

29 .

Problem 5.8.16. Let P be a plane with cartesian equation

2x+ y − 2z + 4 = 0.

We consider the points A
(
3 , 2 , 6

)
, B

(
1 , 2 , 4

)
and C

(
4 , −2 , 5

)
1. Prove that the points A, B and C define a plane.

2. Show that this plane is identic to P.

3. Establish that the triangle ABC is right.

4. Define parametric equations of the line ∆ that passes through the point O and
perpendicular to P.

Problem 5.8.17. Let A
(
3 , 0 , 6

)
and I

(
0 , 0 , 6

)
be two points and

(
D
)

the line
that passes through A and I. We consider the planes

P : 2x+ z − 6 = 0 and Q : y − 2z + 12 = 0.
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1. Prove that the planes P and Q are perpendicular.

2. Establish that the line
(
D
)

is the intersection of P and Q.

Problem 5.8.18. Let P : x + 2y − z + 1 = 0 and P ′ − x + y + z = 0 be two
planes. We consider the point A

(
0 , 1 , 1

)
.

1. Prove that P and P ′ are perpendicular.

2. Let d be the line with parametric equations



x = t− 1

3

y = −1

3
,

z = t

t ∈ R.

Establish that the intersection of P and P ′ is given by d

3. Determine the distance between the point A and the planes P and P ′.

4. Deduce from this that the point A belongs to the line d.
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To determine coordinates of a geometric object in the plane or in space, we
need a coordinate system. In the two preceding chapters we only use the carte-
sian coordinate system. In some problem this latter is not adapted. We will see
that sometimes we need an adequate coordinate system in order to simplify the
calculations.

The main purpose of this chapter is to describe some of such coordinate systems.
Indeed considering the good coordinate system can help us to simplify the expression

161
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of the coordinates. To explain that quickly, we consider a point A in the plane which
is turning around a fixed point B.To follow the trajectory of the movement of the
point A it is better to locate the point A by the angle θ, (θ is the angle between the

vector
−−→
BA and the x-axis) and r =

∥∥−−→BA∥∥. In this case we represent the coordinates
of the point A by the ordered pair (r, θ). This representation is called the polar
coordinates of A.

In this chapter we will define some coordinate systems and study the relations
that can exist between them.

In the first part we study different coordinate systems in the plane. In part 2
we introduce coordinate systems in the space. In the last part we investigate circles
and the spheres.

6.1 Cartesian Coordinate Systems in the plane

We agree that readers are more familar with the cartesian coordinate systems. The
aim of this part is to introduce the polar coordinate system after few reminders on
cartesian systems. The cartesian coordinate system is somtimes called rectangular
coordinates. To define this system in the plane we consider a point fixed point O
and a basis (~e1, ~e2). The ordered triple (O,~e1, ~e2) is called a frame. The point O is
called the origin of the frame. We assume that the point O has coordinates (0, 0)
in this frame. If A is a point in the plane, there are two real numbers xA and yA,
such that, −→

OA = xA ~e1 + yA ~e2.

Definition 6.1.1. The ordered triple
(
O,~e1, ~e2

)
, where O is a fixed and (~e1, ~e2)

a basis of the plane is called a cartesian coordinate system of the plane.

We emphasize that to determine the coordinates of points in the plane we should
define a frame. To do that , we take a fixed point as an origin. ( In most cases we
will consider the point O as an origin). We draw a horizontal line and a vertical
line passing through O and which are perpendicular. These two lines are called
the coordinate axes of the frame They are labeled: x-axis (horizontal) and y-axis
(vertical).

O x− axis

y − axis

Now we take a point A in the plane. To determine the coordinates of the pont
A we draw a vertical line that pass through A. We denote by xA the intersection
of this vertical line and the x-axis. We draw again a horizontal line which passes
through the point A and we denote yA its intersection with the y-axis. The ordered
couple (xA, yA) is called the coordinates of the point A in the cartesian system
(O,~e1, ~e2). We specify that the expression A (xA, yA) is equivalent to

(xA, yA) =

(
xA
yA

)
= xA~e1 + yA~e2.
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O x− axis

y − axis
+A (xA , yA)

~e1

~e2

xA

yA

Throughout this chapter frame and coordinate system have the same meaning. Let
P be a point in the plane with coordinates (xP , yP ) in the frame (O,~e1, ~e2). We
remark that if we change either the origin of the frame or the basis of the frame,
the coordinates of P should change. In the next subsection we investigate how the
change of origin can affect the coordinates of the points and then vectors.

6.1.1 Change of the Origin of a System

We consider the cartesian coordinate system (O,~e1, ~e2) and a point A with coor-
dinates (xA, yA) in the system (O,~e1, ~e2). We decide to define the frame (A,~e1, ~e2)
which has origin A and the same basis as the previous frame. Since A is the origin
of the system (A,~e1, ~e2), then A has coordinates (0, 0) in this system.

LetM be a point in the plane which has coordinates (x, y) in the frame (O,~e1, ~e2)
We suppose that the coordinates of M in the frame (A,~e1, ~e2) are (X,Y ). We aim
now to fine the expressions of X and Y. To do that we use Chasles relation for

the vector
−→
OA. Indeed one has

−−→
OM =

−→
OA +

−−→
AM. We specify that in the system

(O,~e1, ~e2) the vector
−−→
OM has coordinates (x, y) and the coordinates of the vector

−→
OA are (xA, yA). If we restrict our selves in the system (A,~e1, ~e2) we see that the

vector
−−→
AM has coordinates (X,Y ) and the vector

−→
OA has coordinates

(
−xA , −yA).

O

+A

M

~e1

~e2

~e1

~e2

xA

yA

Therefore one deduces that

x~e1 + y ~e2 = (xA ~e1 + yA ~e2) +X ~e1 + Y ~e2).

This is equivalent to write x = xA + X and y = yA + Y . The preceding identities
lead to this linear system  X = x− xA

Y = y − yA.
(6.1.1)

This proves the following result
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Theorem 6.1.2. Let (O,~e1, ~e2) and (A,~e1, ~e2) be two cartesian systems in the
plane, such that, A (xA, yA) in (O,~e1, ~e2). We assume that M has coordinates
(x, y) in (O,~e1, ~e2). Then, the coordinates of M in (A,~e1, ~e2) are given by (6.1.1).

Instead of changing the origin, we can decide to keep the same origin for the
two systems and change the bases in this way : let M be a point in the plane, we
want to find the coordinates of M in the system (O,~e1, ~e2) as well as in the system(
O, ~f1, ~f2

)
, where

(
~f1, ~f2

)
is another basis in the plane. In the next subsection we

will study the effects of these changes on the coordinates of M.

6.1.2 Change of the Basis of a System

Take two coordinate systems with the same origin O (O,~e1, ~e2) and
(
O, ~f1, ~f2

)
. Here

the ordered pairs (~e1, ~e2) and
(
~f1, ~f2

)
stand for bases in the plane. There are four

real numbers a, b, c and d, such that, α = ad − bc 6= 0 and ~f1 = a~e1 + b~e2 and
~f2 = c~e1 + d~e2. If M is a point in the plane with coordinates(x, y) in the system

(O,~e1, ~e2) and (X,Y ) in the system (O, ~f1, ~f2), then we obtain

−−→
OM = x~e1 + y ~e2 = X ~f1 + Y ~f2.

Our main purpose is to determine the expressions of X and Y . So replacing ~f1

and ~f2 by their expressions,on has
−−→
OM = X (a~e1 +b~e2)+Y (c~e1 +d~e2). This leads

to the identity x~e1 + y~e2 = (aX + c Y )~e1 + (bX + d Y )~e2. This provides x = aX + c Y

y = bX + d Y.
(6.1.2)

Multiplying by d the first equation of the system (6.1.2) and by c the second equa-
tion, one gets dx− cy = αX, where we recall that α = ad− bc.

Now, we multiply the first equation of the system (6.1.2) by b and the second
equation by a. This involves, −bx+ ay = αY. Therefore, we obtain X = α−1

(
d x− c y

)
Y = α−1

(
− b x+ a y

)
.

(6.1.3)

Theorem 6.1.3. Let (O,~e1, ~e2) and
(
O, ~f1, ~f2

)
be two coordinate systems, such

that, ~f1 = a~e1 + b~e2 and ~f2 = c~e1 + d~e2 with four real numbers a, b, c and d
which satisfy α = ad − bc 6= 0. We assume that M has coordinates (x, y) in the

system (O,~e1, ~e2). Then, the coordinates of M in the system
(
O, ~f1, ~f2

)
are given

by (6.1.3).

Another way to simplify calculations in geometry is to change the coordinate
system in which we represent the object. Let (O,~e1, ~e2) be a cartesian system. We
consider the point A in the plane. Instead of considering the cartisian coordinates
of A, we decide to locate A by the ordered couple (r, θ). The positive real number

r =
∥∥−→OA∥∥ is the distance between O the origin and the point A. The real number

θ represent the angle that makes the vector
−→
OA with the x-axis. In other words

θ =
(
~e1,
−→
OA
)
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O

×A

r

θ

The coordinate system (r, θ) is called a polar coordinate system.

6.2 Polar Coordinate System

In this section we define polar coordinate systems and study their eventual relations
with the cartesian coordinate system.

Definition 6.2.1. A polar coordinate system is an ordered couple of real numbers
(r, θ), such that, r > 0.

According to this definition it becomes clear that a polar coordinate system
consist of giving onself a fixed point O, called the pole (or origin), a horizontal line
passing through the pole (called polar axis) and an angle θ. See figure below.

O polar-axis

θ

6.2.1 Conversion From Polar to Cartesian Coordinates

For the sake of simplicity, throughout this chapter, we fix O as the pole of all polar
coordinate system which will be considered. Let us consider the following cartesian

coordinate system (O,~e1, ~e2) and a point A (xA, yA). We denote θ =
(
~e1,
−→
OA
)

and

r =
∥∥−→OA∥∥. As represented below

O ~e1

~e2

xA

yA ×A

r

θ
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The polar coordinates of A are defined by A (r, θ). Now we draw the vertical
line that passes through the the point A. The intersection of that line with the
x-axis is the point (xA, 0). On the other hand (0, yA) is the intersection point of the
horizontal line which passes through A and the y-axis. We observe that the triangle
which has vertices the point (xA, yA), (xA, 0) and (0 , 0) is right with hypothenus
the segment line [OA]. This involves xA = r cos(θ) and yA = r sin(θ). Hence, this
holds the following lemma:

Lemma 6.2.2. The cartesian coordinates of the point A which has polar coordi-
nates (r, θ) are  x = r cos(θ)

y = r sin(θ).
(6.2.1)

Example 6.2.3. To define cartesian coordinates of the point A whose polar coor-

dinates are (r, θ) =
(

4, −π3

)
, we point out that, here r = 4 and θ = −π3 · Using

(6.2.1), we obtain

x = 4 cos
(−π

3

)
= 4 · 1

2
= 2 and y = 4 sin

(−π
3

)
= 4 · −

√
3

2
= −2

√
3·

Thus we write A (2,−2
√

3).

Exercise 6.2.4. Find the catesian coordinates of the following points

1. A
(

2,
−π
4

)
,

2. B
(

3,
π

2

)
,

3. C
(

5,
3π

4

)
,

4. D
(

1,
−π
6

)
,

5. E
(

4,
−2π

3

)
.

Now take two different polar coordinate (r, θ) and (r, θ + 2π). The cartesian
coordinates associated to these couples are

(r cos(θ), r sin(θ)) and (r cos(θ + 2π), r sin(θ + 2π)).

The functions cos and sin are 2π-periodic functions. Consequently, (r, θ) and (r, θ+
2π) represent the same point.

Lemma 6.2.5. For every integer k the couples (r, θ) and (r, θ + 2kπ) represent
the same point in the plane.

Remark 6.2.6. The most important fact that emphasize the lemma above, is the
non-uniqueness of polar coordinates for any given point.
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From now on we mean by the expression A (r, θ), the point A which has polar
coordinates (r, θ).

Example 6.2.7. The following polar coordinates
(√

3,−π/3
)

,
(√

3, 5π/3
)

, and(√
3, 11π/3

)
represent the same point.

Lemma 6.2.8. The point A (r, θ) and A′(r,−θ) are symetric with respect to the
x-axis

O

×A

r

×A
′

r

θ

−θ

Proof. Take the point A (r, θ). The associated cartesian coordinates of this point
are (r cos(θ), r sin(θ)). On the other hand we know that the cartesian coordinates
of the point A′ (r,−θ) are (r cos(θ),−r sin(θ)). As we can observe it

xA′ = xA and yA′ = −yA.

This proves the lemma.

Lemma 6.2.9. The points A (r, θ) and A′ (r, π − θ) are symetric with respect to
the y-axis.

Proof. Let A (r, θ) and A′ (r, π − θ) be two points in the plane. Then, the points A
and A′ have respectively cartesian coordinates

(xA = r cos(θ), yA = r sin(θ)) and (xA′ = −r cos(θ), yA′ = r sin(θ)).

This illustrates that xA′ = −xA and yA′ = yA. Hence the points A and A′ are
symetric with respect to the y-axis.

Lemma 6.2.10. We consider the points A and A′ with respective polar coordi-
nates (r, θ) and (r, π+ θ). Then A and A′ are symetric with respect to the origin
O.

Proof. Take A (r, θ) and A′ (r, π+θ). Therefore we have xA′ = −xA and yA′ = −yA.
Because cos(π + θ) = − cos(θ) and sin(π + θ) = − sin(θ). This proves that A and
A′ are symetric with respect to the origin O.

When, two angles θ and θ′ satisfy the identity θ + θ′ = π/2, then, one has

cos(θ′) = sin(θ) ant sin(θ′) = cos(θ).
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Particularly if θ′ = π/2−θ, we obtain cos(π/2−θ) = sin(θ) and sin(π/2−θ) = cos(θ).
At this stage one may ask what kind of geometrical relation could exist between

the points

(cos(π/2− θ), sin(π/2− θ)) and (cos(θ), sin(θ)).

To answer this question we introduce the definition of the first bisector.

Definition 6.2.11. We call first bisector the line that has cartesian equation

y = x.

It is well known that Two points A (x, y) and A′(x′, y′) are symetric with respect
to the first bisector if and only if

x′ = y and y′ = x.

This leads to this theorem.

Theorem 6.2.12. If θ ∈ [0, π/2], then, the points A (r, θ) and A′ (r, π/2− θ) are
symetric with respect to the first bisector.

Proof. We consider the points A (r, θ) and A′ (r, π/2−θ). The cartesian coordinates
associated respectively to A and A′ are

A(r cos(θ), r sin(θ)) and A′(r sin(θ), r cos(θ)).

This completes the proof.

6.2.2 Conversion From Cartesian to Polar

By abuse of notations, in this section we will identify an angle with its measure. We
remind that if we define an angle φ in R, then, this angle φ has a representative θ in
the interval ]− π, π[. The measure θ is called the principal measure of the angle φ.
For the sake of clarity and in order to make the methodology easy to understand,
we may only consider angles in ]− π, π[.

Now take a point A with cartesian coordinates (xA, yA). We aim to determine

the polar coordinates of A. As r =
∥∥−→OA∥∥, we obtain r =

√
x2
A + y2

A. On the other
hand, we have cos(θ) = xA/r and sin(θ) = yA/r. To find the value of θ one can use
as he pleased one of the following functions arctan, arccos or arcsin .

Lemma 6.2.13. For any point A (xA, yA) in the plane, the polar coordinates of
A are  r =

√
x2 + y2,

θ,

where θ is the angle such that

cos
(
θ
)

=
x√

x2 + y2
and sin

(
θ
)

=
y√

x2 + y2
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Example 6.2.14. To find the polar coordinates of A (−1,−
√

3), we proceed as
follows:We compute r2 = 1 + 3 = 4. Therefore r = 2. On the other hand we have

cos(θ) =
−1

2
and sin(θ) =

−
√

3

2
·

Then θ = −2π
3 , (4π/3). Hence, the polar coordinates of A are given by

(r, θ) =
(

2,
−2π

3

)
·

Exercise 6.2.15. Determine the polar coordinates of the following points

1. A (1,−
√

3),

2. B (−1,−1),

3. C (−1,
√

3),

4. D (
√

3,−1),

5. E (
√

2,
√

2).

From the previous chapters, we knew that in the three dimensional espace three
real numbers are necessary to locate a point. Hence a cartesian coordinate system
in the space is defined by (O,~i,~j,~k), where ~i is a unit vector of the x-axis, ~j is a

unit vector of the y-axis and ~k is a unit vector of the z-axis. In the cartesian system
a point P can be represented by an ordred triple (x, y, z).

Our goal now is to to show how to represent a point in a cylindrical coordinate
system and spherical coordinate system.

6.3 Cylindrical Coordinate System

As we reminded it in the preceeding discussion three coordinates are required to
represent a point in space. We define a cylindrical coordinate system in this way

Definition 6.3.1. A cylindrical coordinate system is defined by the ordered triple(
ρ, θ, h

)
, where

•
(
ρ, θ
)

is a polar coordinate systm of the plane xOy

• h is a real number.
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Notation: The point A which has cylindrical coordinates
(
ρ , θ , h

)
is denoted

A
(
ρ , θ , h

)
.

Example 6.3.2. For instance we consider the point A
(√

2, π3 ,−1
)

and B
(
3, π4 , 2).

6.3.1 From Cylindrical to Cartesian coordinate System

Let M be a point and consider the following cartesian coordinate system
(
O,~i,~j,~k

)
.

We define the vector
−−→
OM . Since (O, ρ, θ) is a polar system of the plane xOy, we

have x = ρ cos(θ) and y = ρ sin(θ). As we fix z = h, we deduce the following

representation of the vector the vector
−−→
OM :

−−→
OM = ρ cos(θ)~i+ ρ sin(θ)~j + h~k. (6.3.1)

On the other hand, we know that in cartesian coordinate system
(
O,~i1,~j,~k

)
, we

have −−→
OM = x~i+ y~j + z~k (6.3.2)

Identifying (6.3.1) and (6.3.2) we deduce the relations between cartesian coordinates
of M and the cylindrical coordinates

Lemma 6.3.3. Let A (ρ, θ, h) be a point. Then, the cartesian coordinates of A
are 

x = ρ cos(θ)

y = ρ sin(θ)

z = h.

(6.3.3)

To show an application of this lemma we consider the following example.

Example 6.3.4. To find the cartesian coordinates of A
(√

5,
π

3
, 4
)

, we apply the

lemma to obtain 

x =
√

5 cos
(π

3

)
=

1

2

y =
√

5 sin
(π

3

)
=

√
3

2

z = 4.

Exercise 6.3.5. Define the cartesian coordinates of the following points

1. A
(

1,
π

2
,−3

)
,

2. B (1, 0, 4),

3. C
(

3,
−π
4
, 1
)
,

4. D (2,−π, 5) ,

5. E
(
4, π2 ,−1

)
.

Given a point A with cartesian coordinates (x, y, z), One may wonder, if we can
determine the cylindrical coordinates of the point A.
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6.3.2 From Cartesian to Cylindrical Coordinate System

Let M (x, y, z) be a point in space. We want now to determine its cylindrical
coordinates. This means that we have to find (ρ, θ, h), such that, the system (ρ, θ)
be a polar system for the plane xOy. To this end we proceed as follows:

Step 1: we define h := z.

Step 2: since (r, θ) is a polar system of the plane xOy, we have

ρ =
√
x2 + y2

cos(θ) =
x

ρ

sin(θ) =
y

ρ

h = z.

(6.3.4)

Lemma 6.3.6. The cylindrical coordinates of M (x , y , z) are defined by (6.3.4).

Example 6.3.7. To Determine the cylindrical coordinates of the point A (
√

3, 1, 2),
we start by fixing h = 2 and we compute ρ =

√
3 + 1 = 2. Then, it follows that

cos(θ) =
√

3
2 and sin(θ) = 1

2 · From this we deduce that θ = π
6 · Hence we have

A
(

2, π6 , 2
)
.

Exercise 6.3.8. Determine the cylindrical coordinates of the following points.

1. A (−1, 1, 3),

2. B (1,−
√

3, 6),

3. C (0,−1, 5),

4. D (−1,−1, 4),

5. E (
√

3, 1, 1).

In the three dimensional space we can define another coordinate system called
the spherical coordinate system.

6.4 Spherical Coordinate System

This section is devoted to the spherical coordinate system. First we define spherical
coordinates. Secondly we study the relation between spherical coordinate systems
and previous coordinate systems we have studied.

We consider the frame (O, ~ux, ~uy, ~uz), where ~ux, ~uy and ~uz are respectively the
unit vectors of the axes x − axis, y − axis and z − axis. We denote by xOy the
horizontal plane, defined by the vectors ~ux and ~uy. Let M (x, y, z) be a point. We
denote by P its orthogonal projection in the horizontal plane xOy.
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�

We define

• r =
∥∥−−→OM∥∥ the distance between the points O and M

• θ =
(
~uz,
−−→
OM

)
, as the angle between ~uz and the vectors

−−→
OM. This angle is

always supposed to belong to the interval [0, π].

• ϕ =
(
~ux,
−−→
OP
)
, is the angle between the vectors ~ux and

−−→
OP. The angle ϕ is

in [0, 2π].

To catch the real meaning of the name spherical coordinates, we figure out that the
point M is moving on the sphere of center O and radious r. This is illustrated in
the figure above. The point M can be located by the ordered triple

(
r , θ , ϕ

)
.

Definition 6.4.1. The spherical coordinates of the point M are
(
r, θ, ϕ

)
.

Example 6.4.2. As examples we consider the points

A
(

1,
−π
3
,
π

6

)
and B

(
3,
π

4
,
π

2

)
.

6.4.1 From Spherical To Cartesian Coordinates

Take a point M with spherical coordinates (r, θ, ϕ). We aim now to determine its
cartesian coordinates. To this end we use again the figure above and we denote
by H the orthogonal projection of M on the z-axis. Using the angle θ one has
z = OH = r cos(θ) and HM = r sin(θ).

The quadrilateral OPMH is a rectangle. This implies that

OP = OH = r sin(θ). (6.4.1)
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See figure above. Since P is the orthogonal prejection of M in the plane xOy, then,
M and P share these properties x = xp = xM and y = yP = yM .

On the other hand we know that x = OP cos(ϕ)

y = OP sin(ϕ).

Substituting OP by its expression we obtain
x = r sin(θ) cos(ϕ)

y = r sin(θ) sin(ϕ)

z = r cos(θ).

(6.4.2)

Lemma 6.4.3. The cartesian coordinates of A (r, θ, ϕ) are given by (6.4.2).

Example 6.4.4. To find the cartesian coordinates of the point A
(
3, π6 ,

π
4

)
we Aap-

ply the lemma above. One deduces that the cartesian coordinates of A are defined
by 

x = 3 sin
(
π
6

)
· cos

(
π
4

)
= 3 · 1

2 ·
√

2
2 = 3

√
2

4

y = 3 sin
(
π
6

)
· sin

(
π
4

)
= 3 1

2 ·
√

2
2 = 3

√
2

4

z = 3 cos
(
π
6

)
= 3

√
3

2 = 3
√

3
2 ·

Example 6.4.5. To determine the cartesian coordinates of the point B
(√

2, π3 ,
5π
6

)
·

we write 

x =
√

2 sin
(
π
3

)
· cos

(
5π
6

)
=
√

2 ·
√

3
2 ·
(
−
√

3
2

)
= −3

√
2

4

y =
√

2 sin
(
π
3

)
· sin

(
5π
6

)
=
√

2
√

3
2 ·

1
2 =

√
6

4

z =
√

2 cos
(
π
3

)
=
√

2 1
2 =

√
2

2 ·

Exercise 6.4.6. Define the cartesian coordinates of the following points

1. A
(

1, 0, π3

)
,

2. B
(

2, π3 ,
π
6

)
,

3. C
(

5, π4 ,
π
12

)
,

4. D
(

4, π5 ,
π
6

)
,

5. E (1, 0, 0).

One may ask if the converse operation is possible. In other words is it possible
to define the spherical coordinate of a point or a vector from the cartesian one.
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6.4.2 From Cartesian To Spherical Coordinates

Take the point M (x, y, z). We aim to define the sperical coordinates (r, θ, ϕ) of M

from the cartesian coordinates of M. As we know that r =
∥∥−−→OM∥∥ is the distance

between O and M one has r =
√
x2 + y2 + z2. A glance on the previous figure

allows to observe that

cos(θ) =
z

r
, cos(ϕ) =

x

ρ
and sin(ϕ) =

y

ρ

where ρ =
√
x2 + y2. This involves

θ = arccos
(z
r

)
· (6.4.3)

To find ϕ we can use the functions arccos or arcsin .

Theorem 6.4.7. The spherical coordinates of A (x, y, z) are defined by

r =
√
x2 + y2 + z2

θ = arccos
(
z
r

)
ϕ such that,

cos(ϕ) = x√
x2+y2

and sin(ϕ) = y√
x2+y2

·

Example 6.4.8. We consider the point A (1,−1,
√

2). Then, we have

r =
√

1 + 1 + 2 = 2 and θ = arccos
(√2

2

)
= π/4.

Because the angle θ belongs to [0, π].

On the other hand, we have

ρ =
√

2, cos(ϕ) =

√
2

2
and sin(ϕ) =

−
√

2

2
·

Hence, we obtain ϕ = −π4 ·
We conclude that the spherical coordinates of A are

(
2, π4 ,

−π
4

)
·

Exercise 6.4.9. Define the spherical coordinates of the following points

1. A (−
√

2,
√

2,−1),

2. B (−1, 1,
√

2),

3. C (1,
√

3,
√

3),

4. D (−
√

3, 1,−1).
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6.4.3 From Spherical To Cylindrical Coordinates

Our purpose now is to show the way to convert spherical coordinates to cylindrical
one. This means that we have to define ρ, the angle of a polar system for the
horizontal plane and h. Indeed let A (r, θ, ϕ) be a point. Since z = r cos(θ), we have
h = z = r cos(θ). The angle of the cylindrical system is given by ϕ. It remains now
to determine ρ. To this end, we remind that r2 = ρ2 + z2 = ρ2 + r2 cos2(θ). This
involves

ρ2 = r2 − r2 cos2(θ) = r2
(
1− cos2(θ)

)
= r2 sin2(θ).

Therefore ρ = r| sin(θ)| = r sin(θ), because θ ∈ [0, π]. This leads to the following
theorem

Theorem 6.4.10. The cylindrical coordinates of the point A (r, θ, ϕ) are defined
by (

r sin(θ), ϕ, r cos(θ)
)

(6.4.4)

Example 6.4.11. To determine the cylindrical coordinates of A
(
3, π3 ,

π
6

)
, we pro-

ceed as follows: we define

ρ = r sin
(π

3

)
= 3 ·

√
3

2
=

3
√

3

2
and h = r cos

(π
3

)
= 3 · 1

2
=

3

2
·

Consequently the cylindrical coordinates of A are
(

3
√

3
2 , π6 ,

3
2

)
·

Exercise 6.4.12. Determine the cylindrical coordinates of the following points

1. A (1, π/6, π/5),

2. B (
√

2, π/4, π/12),

3. C (
√

5, π, π/3),

4. D (1,−π/4, π/4).

6.4.4 From Cylindrical To Spherical Coordinates

Here we define the method to transform cylindrical coordinates to spherical ones.
In other words, if A is given with cylindrical coordinates (ρ, ϕ, h), how to define its
spherical coordinates (r, θ, ϕ′) ? To answer this question we just need to set

r2 = ρ2 + h2, ϕ′ = ϕ and θ = arccos

(
h

r

)
·

Theorem 6.4.13. The spherical coordinates of A
(
ρ, ϕ, h

)
are given by(√

ρ2 + h2, arccos
( h√

ρ2 + h2

)
, ϕ

)
(6.4.5)
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Example 6.4.14. To determine the spherical coordinates of A (
√

2, π/6,
√

2), we
define

r =
√
ρ2 + h2 =

√
2 + 2 = 2, θ = arccos

(√2

2

)
= π/4 and ϕ′ = ϕ = π/6.

Therefore, we have A (2, π/4, π/6).

Exercise 6.4.15. Determine the spherical coordinates of the following points

1. A (1, π/2, 1),

2. B (
√

3, π/6, 1),

3. C (
√

2, π/5,−
√

2),

4. D (1, π,−1).

6.5 Circles and Spheres

This section is devoted to circles and spheres. In reality we define equations of
circles and spheres in the different coordinate systems studied before.

6.5.1 Equations of Circles

Let A , B and C be three points in the plane, such that, AB = AC, then the points
B and C belong to the circle with center A and radius R = AB. If M (x, y) is
another point of this circle which is different to B and C, we have AM = R. That
is,
√

(x− xA)2 + (y − yA)2 = R. This yields

(x− xA)2 + (y − yA)2 = x2 − 2xxA + x2
A + y2 − 2 y yA + y2

A = R2.

Setting c = x2
A + y2

A, we have x2 − 2xxA + y2 − 2 y yA + c = R2. We have proved
the following theorem.

Theorem 6.5.1. The equation of the circle with center A (xA, yA) and radius
R ≥ 0 is

x2 + y2 − 2 (xxA + y yA) + c = R2, (6.5.1)

where c = x2
A + y2

A.

We emphasize that when R = 0, the circle is reduce to the point A.

Example 6.5.2. The circle with center O (0, 0) and radius R = 2 has equation

x2 + y2 = 4.

Exercise 6.5.3. Find the equation of circles with center A and radius R

1. A (1, 2) and R = 5,

2. A (0, 4) and R = 3,

3. A (1, 6) and R = 2.

Using polar coordinates system we can characterize a circle in this way.Consider
the point I (x0, y0) and a positive real number R.
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Theorem 6.5.4. The polar parametric equations of the the circle C (I;R) with
center Let I (x0, y0) and radius R > 0 are x− x0 = R cos(θ)

y − y0 = R sin(θ),

for some real number θ ∈ R.

Proof. Consider the point M (x, y) in the plane and the frame (I,~i,~j). We define θ

as the angle between ~i and
−−→
IM and IM = R. Then,we get

−−→
IM = R cos(θ)~i+R sin(θ)~j.

Since
−−→
IM (x− x0, y − y0), we deduce from the uniqueness of coordinates that x− x0 = R cos(θ)

y − y0 = R sin(θ),

This proves the theorem.

Example 6.5.5. For instance take B (1, 2) and R = 2. Then, the polar parametric
equations of the circle C (B; 2) are x− 1 = 2 cos(θ)

y − 2 = 2 sin(θ),

where θ ∈ R.

Exercise 6.5.6. Let A (1, 0), B (2, 3) and C (3, 1) be three points in the plane. Find
the polar parametric equations of the following circles

1. C (A; 3),

2. C (B; 6),

3. C (C; 10).

6.5.2 Equation of Spheres

As we did it for circles, we will try to find the equation of a sphere in the different
coordinate systems studied. Let A (x0, y0, z0) and M (x, y, z) be two points and
R > 0. Denote by S(A;R), the sphere with center A and radius R. We suppose
that M belongs to S(A;R), then AM = R. Since AM and R are positive real
numbers we have AM2 = R2.This provides (x− x0)2 + (y − y0)2 + (z − z0)2 = R2.
Hence

x2 + y2 + z2 − (2xx0 + y y0 + z z0) + d = R2,

where d = x2
0 + y2

0 + z2
0 .
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Theorem 6.5.7. The cartesian equation of the sphere S (A;R) with center
A (x0, y0, z0) radius R is

x2 + y2 + z2 − 2 (x · x0 + y · y0 + z · z0) + d = R,

where d = x2
0 + y2

0 + z2
0 .

Example 6.5.8. The cartesian equation of the sphere S (O, 6) is

x2 + y2 + z2 = 36.

Exercise 6.5.9. We consider the points A (1, 2, 0), B (3, 2, 0), C (0, 1, 5), D (3, 4, 1)
and E (−1, 0, 3). Give the cartesian equations of the spheres

1. S (A; 2),

2. S (B; 5),

3. S (C; 4),

4. S (D; 6),

5. S (E; 3).

Now we consider the points A (x0, y0, z0) and M (x, y, z). We define the vector
−−→
AM . Furthermore we assume, the point M belongs to S(A;R). Using cylindrical
coordinates system we can find R > 0, an angle θ and h ∈ R, such that R2 > h2

and 
x− x0 =

√
R2 − h2 cos(θ)

y − y0 =
√
R2 − h2 sin(θ)

z − z0 = h.

(6.5.2)

The system (6.5.2) is called the parametric equations of the sphere in cylindrical
coordinate system.

Theorem 6.5.10. The parametric equations of the sphere S(A;R) with center
A (x0, y0, z0) and radius R > 0 in a cylindrical coordinate system are given by
(6.5.2).

Using spherical coordinates we can state the following theorem

Theorem 6.5.11. The parametric equations of the sphere S(A;R) with center
A (x0, y0, z0) and radius R in spherical coordinates are

x− x0 = R sin(θ) cos(ϕ)

y − y0 = R sin(θ) sin(ϕ)

z − z0 = R cos(θ),

for some real numbers θ and ϕ
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Proof. We consider the frame (A,~i,~j,~k). Let (R, θ, φ) be the spherical coordinates
of M in this frame. Then we have

x− x0 = R sin(θ) cos(ϕ)

y − y0 = R sin(θ) sin(ϕ)

z − z0 = R cos(θ).

This proves the theorem.

6.6 Problems

Problem 6.6.1. For each of the following points define its polar coordinates

1.
(
1 ; −1

)
2.
(√

2 ;
√

2
)

3.
(√

3 ; −1
)

4.
(
1 ,
√

3
)

5.
(
− 1 , −1

)
6.
(
− 3 , 0

)
7.
(
0 , −5

)
.

Problem 6.6.2. Define the cartesian coordinates of the following points

1.
(

2 ; π3

)
2.
(√

2 ; 3π
2

)
3.
(

3 ; 3π
4

)
4.
(

1 ; −π3
)

5.
(

10 ; 7π
6

)
6.
(

1 ; − 3π
4

)
7.
(

2 ; −π6
)
.

Problem 6.6.3. Determine the cylindrical coordinates of the following points
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1.
(√

2 ;
√

2 ; 4
√

3
)

2.
(√

3 ; 1 ; −1
)

3.
(

1 ; 1 ; 0
)

4.
(
−
√

2 ;
√

2 ; −5
)

5.
(
−
√

3 ; 1 ; 1
)

6.
(
−
√

3 ; −1 ; 2
)

7.
(

1 ;
√

3 ; −2
)
.

Problem 6.6.4. Convert from cylindrical to cartesian coordinates

1.
(

2 ; π3 ; 1
)

2.
(

1 ;π ; 2
)

3.
(

3 ; π4 ; 0
)

4.
(

2 ; −π2 ; 1
)

5.
(√

2 ; −π6 ; 2
)

6.
(√

3 ; π6 ; −1
)

7.
(

1 ; 6π ; −2
)
.

Problem 6.6.5. Find the spherical coordinates of these points

1.
(

1 ;
√

3 ; 1
)

2.
(√

3 ; 1 ; −
√

3
)

3.
(
− 1 ; 0; 1

)
4.
(

1 ; 1 ; 1
)

5.
(

1 ;
√

3 ; −
√

2
)

6.
(√

2 ;
√

2 ; −
√

3
)

7.
(

2
√

3 ; 6 ; −1
)
.
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Problem 6.6.6. Define the cartesian coordinates of the following point

1.
(

3 ; π3 ; π
4

)
2.
(

1 ;−π4 ; π
3

)
3.
(

3 ; π4 ; 0
)

4.
(

2 ; −π4 ; π
4

)
5.
(√

7 ; −π6 ; −π3
)

6.
(√

35 ; π6 ; −π6
)

7.
(

4 ; π3 ; π
6

)
.

Problem 6.6.7. Write the cartesian equation of the circle with center the point A
and radius R :

1. A (2 ; 3) and R = 3

2. A (−1 ; 3) and R =
√

2

3. A (0 ; 1) and R =
√

5

4. A (0 ; 0) and R =
√

7

5. A (−1 ; 0) and R = 5

Problem 6.6.8. Find the center and the radius of the following circles

1. x2 − 6x+ y2 − 8y = 27

2. x2 + y2 + 2y = 7

3. x2 + y2 + 2x = 2

4. x2 + y2 − 2y = 3

5. x2 + y2 + 3x = 3.

Problem 6.6.9. Define the cartesian equation of the sphere with center the point
A and radius R :

1. A (2 ; −1 ; 3) and R = 4

2. A (−1 ; 3 ; 0) and R =
√

3

3. A (0 ; 1 ; −2) and R =
√

17

4. A (0 ; 0 ; 1) and R =
√

6

5. A (−1 ; 0 ; 0) and R = 3

6. A (1 ; 1 ; 1) and R = 7



182 CHAPTER 6. INTRODUCTION TO COORDINATE SYSTEMS

7. A (2 ; −1 ; 3) and R = 5

Problem 6.6.10. Determine the center and the radius of the following spheres

1. x2 + y2 + z2 + 2z = 5

2. x2 + y2 + z2 − 4y = 5

3. x2 + y2 + z2 − 6x− 2y + 2z = 13

4. x2 + y2 + z2 = 3

5. x2 + y2 + z2 + 2
3z = 1.



APPENDIX A

SECOND ORDER POLYNOMIAL
FUNCTIONS

The main objective of this chapter is to remind some properties of second order
polynomial functions. We will define the canonical form of a second order polyno-
mial function. Variations and signs of such function will be studied.

Definition A.0.1. Let f : R −→ R be a real function. The function f is said to be
second order polynomial function if there are a ∈ R∗, b and c in R such that

f(x) = a x2 + b x+ c.

Example A.0.2. The functions f(x) = x2 + 3x + 2, g(x) = 3x2 + 5x + 7 and
h(x) = 9x2 + 4x+ 1 are second order polynomial functions.

In the following section we establish that every second order polynomial can be
written in the form

f(x) = AX2 +B.

A.1 Canonical Form

Let f be a second order polynomial function: f(x) = ax2 + bx+ c, where a, b and
c are real numbers, such that, a 6= 0. We can rewrite f as follows

f(x) = ax2 + 2
b

2
x+ c = a

(
x2 + 2

b

2a
x+

b2

4a2
− b2

4a2
+
c

a

)
= a

(
x2 + 2

b

2a
x+

b2

4a2

)
− b2

4a
+ c = a

(
x−

(
− b

2a

))2

− b2 − 4ac

4a

Setting α = − b

2a
, ∆ = b2 − 4ac and β = −∆

4a
, we obtain f(x) = a(x− α)2 + β.

183
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Definition A.1.1. Let f(x) = ax2 + bx+ c be such that a 6= 0. The canonical form
of f is defined by

f(x) = a(x− α)2 + β

where we set

α := − b

2a
and β = −b

2 − 4ac

4a
·

We can remark that, β = f(α).

Example A.1.2. We consider f(x) = 3x2 + 5x+ 2. We have

α = −5

6
and β = −25− 4× 3× 2

4× 3
=
−1

12
·

Therefore f(x) = 3

(
x+

5

6

)2

− 1

12
·

Example A.1.3. Let f(x) = x2 − 2x+ 1. In this case we have

α = −−2

2
= 1 and β = −4− 4× 1× 1

4× 1
= 0·

Then f(x) = (x− 1)2 + 0 = (x− 1)2.

Exercise A.1.4. Define the canonical form of the following functions

1. f(x) = x2 + 5x+ 1

2. g(x) = x2 + 3

3. i(x) = 4x2 + 9x

4. j(x) = x2 − 6x+ 9.

Let f(x) = ax2 + bx + c be such that, a 6= 0. There exist two real numbers α
and β, , such that, f(x) = a(x− α)2 + β.This, means that the identity f(x) = 0 is
equivalent to a(x− α)2 + β = 0. That is,

(x− α)2 = −β
a
·

Considering the definitions of α and β, one obtains

(x− α)2 =
b2 − 4ac

4a2
·

The denominator of the right hand side part 4a2 > 0. Then, according to the sign
of b2 − 4ac, three cases hold:

Case 1: b2 − 4ac > 0. Then, we have two real roots:

x1 = α−
√

∆

2a
or x2 = α+

√
∆

2a
·

Case 2: b2 − 4ac = 0. Therefore, we have only one real root: x0 = α.
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Case 3:b2 − 4ac < 0. In this case, there no real solutions.

Theorem A.1.5. The equation ax2 + bx + c = 0 with a 6= 0 has real solution if
and only if

β

a
≤ 0.

As we can see it, to find a solution to the equation ax2 + bx + c = 0 we need
to define its canonical form. To this end we must do several calculations. To avoid
these type of computations we establish an easy method which will allow us to find
easily solutions of the equation ax2 + bx+ c = 0.

A.2 Solving 2nd Order Equations

For three real number a, b and c such that a 6= 0, we consider the following equation

ax2 + bx+ c = 0 (A.2.1)

To solve (A.2.1) we define the discriminant ∆:

∆ = b2 − 4ac.

According to the sign of ∆ we have three cases:

Case 1. ∆ > 0. If ∆ > 0 we have two real solutions

x1 =
−b−

√
∆

2a
or x2 =

−b+
√

∆

2a
·

Case 2. ∆ = 0. In this case we have only one real solution

x =
−b
2a
·

Case 3∆ < 0. When ∆ < 0, there is no real solutions.

As an application find the solution of the following equations x2 + 4x + 3 = 0,
x2 − 2x+ 1 = 0 and x2 + x+ 1 = 0.
Solution:

1. We consider the equation x2 + 4x+ 3 = 0. Then, we have

∆ = 16− 12 = 4 > 0.

Thus we have two real solutions

x1 =
−4−

√
4

2× 1
=
−6

2
= −3 or x2 =

−4 +
√

4

2× 1
=
−2

2
= −1.

2. For the equation x2 − 2x+ 1 = 0 we obtain ∆ = 4− 4× 1× 1 = 0. We have
only one real solution x = 1.

3. Concerning the equation x2 + x+ 1 = 0, we get ∆ = b2 − 4ac = −3. Hence,
there is no real solutions.

Exercise A.2.1. Determine the solutions of the following equations
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1. x2 + 5x+ 3 = 0

2. 2x2 + 5x+ 2 = 0

3. x2 − 4x+ 4 = 0

4. x2 + 2x+ 3 = 0

5. x4 + 6x2 + 8 = 0.

Let f(x) = ax2 + bx+ c be such that a 6= 0 and ∆ = b2 − 4ac ≥ 0. Then there

exist real solutions x1 = −b−
√

∆
2a and x2 = −b+

√
∆

2a · We set

S = x1 + x2 = − b
a

and P = x1 · x2 =
c

a
(A.2.2)

Theorem A.2.2. Let f(x) = ax2 +bx+c be such that a 6= 0 and ∆ = b2−4ac ≥ 0.
We consider S and P defined by (A.2.2). Then,

f(x) = a
(
x2 − Sx+ P

)
.

From this, we deduce that, finding the solutions of the equation ax2 +bx+c = 0,
is equivalent to consider the following system

x1 + x2 = − b
a

x1 · x2 =
c

a
·

Lemma A.2.3. Let f(x) = ax2 + bx+ c be such that a 6= 0 and ∆ = b2 − 4ac ≥ 0.
Then, if x1 and x2 denote the real roots of f we have

f(x) = a(x− x1)(x− x2).

In the next section we show how to study the sign of a second order polynomial
function.

A.3 Sign Table of a Function

In the first part of this section we study sign of affine function. In the second part
we investigate sign of second order polynomial functions.

Definition A.3.1. A real function f is affine, if there are two reals numbers a and
b such that, a 6= 0 and

f(x) = ax+ b. (A.3.1)

Example: The functions f(x) = 3x+ 2, g(x) = 5x− 1 are affine.

• When b = 0 in (A.3.1), we say that the function f is linear.

• when a = 0, f is a constant function.

Example A.3.2. The function f1(x) = 6x, g1(x) = −2x, and h1(x) = x are linear.
The functions f2(x) = 2, g2(x) = −5 and h2(x) = 1 are constant.
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Let f be an affine function. Using the definition above we can see that f(x) = 0
implies x = − b

a · According to the sign of the real number a we deduce this sign
table

x −∞ −b/a +∞
ax+ b −sign of a 0 sign of a

Example A.3.3. We consider the function f(x) = 2x + 1. Then, f(x) = 0, is

equivalent to x = −1

2
· We obtain this sign table

x −∞ −1/2 +∞
2x+ 1 − 0 +

The sign table of the function g(x) = −3x+ 7 is

x −∞ 7/3 +∞
−3x+ 7 + 0 −

Exercise A.3.4. Define the sign table of the following functions

1. f(x) = −x+ 2

2. g(x) = 7x

3. h(x) = 6x+ 13

4. j(x) = −5x.

In the following paragraph we study the sign of a second order polynomial
function. To this end we define the discriminant :

∆ = b2 − 4 · a · b. (A.3.2)

According to the sign of ∆, we distinguish three cases:

Case 1: ∆ > 0. When ∆ > 0, we obtain two real roots x1 and x2. Here we assume
x1 < x2. Then we have this sign table

x −∞ x1 x2 +∞
x2 + 6x+ 5 sign(a) 0 −sign(a) 0 sign(a)

where sign(a) is the sign of the real number a.

Example A.3.5. Let f(x) = x2 + 6x+ 5. Then, ∆ = 36− 20 = 16. We obtain two
reals roots, x1 = −5 and x2 = −1· Then, we have

x −∞ −5 −1 +∞
x2 + 6x+ 5 + 0 − 0 +
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Case 2: ∆ = 0. When ∆ = 0, we have only one real root x0 = − b
2a · In this case

the sign table of f is given by

x −∞ −b/2a +∞
ax2 + bx+ c sign(a) 0 sign(a)

Example A.3.6. Let f(x) = −x2 + 2x− 1. One has ∆ = 0. Therefore x0 = 1 and
the sign table of f is

x −∞ 1 +∞
−x2 + 2x− 1 − 0 −

Case 3: ∆ < 0. In this case there are no real roots and the sign table is the fol-
lowing one

x −∞ +∞
ax2 + bx+ c sign(a)

Example A.3.7. As an application, let f(x) = x2 +2x+6. One finds ∆ = 4−24 =
−20. We do not have real roots. Then,

x −∞ +∞
x2 + 2x+ 6 +

Exercise A.3.8. Define the sign of the following functions

1. f(x) = x2 + 3x+ 2

2. g(x) = x2 + 5x+ 2

3. h(x) = x2 + 4x+ 4

4. i(x) = x2 + 7x+ 2

5. j(x) = −x2 + x+ 5

6. k(x) = −x2 + 5x+ 5.

To end this chapter we study variations of second order polynomial functions.

A.4 Variations of 2nd Order Polynomial Function

As we mentioned it above, this section is devoted to variations of polynomial func-
tions of degree 2.

Theorem A.4.1. Let f(x) = ax2+bx+c be such that, a > 0. Then, f is decreasing

in ]−∞ ; α] and increasing in [α ; +∞[, where α = − b

2a
. Hence we have

x −∞ α +∞
+∞ +∞

f ↘ ↗
β
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Using the table above we can prove the following lemma.

Theorem A.4.2. Let f(x) = ax2 + bx + c be such that a > 0. Then f has a
minimum at α which is equal to

f(α) = β.

Example A.4.3. We consider the function f(x) = 3x2 + 2x+ 1. We know that the
domain of this function is Df = R. We have α = − b

2a = − 1
3 and β = − ∆

4a =
2
3 · Since a = 3, the function f is decreasing in

]
−∞ ; − 1

3

]
and increasing in[

− 1
3 ; +∞

[
. Then f has a minimum at x0 = α which is equal to β.

x −∞ −1
3 +∞

+∞ +∞
f(x) ↘ ↗

2
3

Theorem A.4.4. Let f(x) = ax2 +bx+c be such that, a < 0. Then f is increasing
in ]−∞ ; α] and decreasing in [α ; +∞[, where α = − b

2a · Thus we have the following
variational table

x −∞ α +∞
β

f(x) ↗ ↘
−∞ −∞

Since f is increasing in ]−∞ ; α] and decreasing in [α ; +∞[, one deduce that,
f has a maximum at α which is equal to f(α) = β. we deduce this lemma.

Theorem A.4.5. Let f(x) = ax2 + bx + c be such that a < 0. Then f has a
maximum at α. The value of this maximum is f(α) = β.

Example A.4.6. Let f(x) = −2x2 + x+ 1. The domain of f is Df = R. We have
α = − b

2a = 1
4 and β = − ∆

4a = 9
8 · Then,

f(x) = −2

(
x− 1

4

)2

+
9

8
·

The function f is increasing in
]
−∞ ; 1

4

]
and f is decreasing in

[
1
4 ; +∞

[
. Therefore

f has a maximum at α = 1
4 which is 9

8 ·

x −∞ 1

4
+∞

9
8

f(x) ↗ ↘
−∞ −∞

Exercise A.4.7. Study the variations of the following functions and say whether
they have a maximum or a minimum.

1. f(x) = 2x2 + 3x+ 1

2. g(x) = −x2 + 5x+ 1

3. h(x) = x2 − 3x+ 7

4. i(x) = −3x2 + 4x+ 2

5. j(x) = x2 + 2x.
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APPENDIX B

EXAMS

Here we give the three exams given in the academic year 2021-2022 and there
corrections.

Midterm

Exercise 1. Find the solutions of the following equations

(1). 2z2 − 2z + 5 = 0, (2). z2 + 2z − 5 = 0, (3). z2 + z − 1 = 0,

(4). 3z2 − 5z + 3 = 0, (5). z4 + 5z2 + 4 = 0, (6). z4 − 3z2 − 4 = 0.

Exercise 2. Let z = 1+i
√

3 and z′ = 1−
√

3+
(
1+
√

3
)

i be two complex numbers.

1. Find the modulus and the argument of z.

2. Determine the polar form of z.

3. Deduce from question 2 the polar form of z4.

4. Now we define the complex number z1 =
−z
z′ − z

· Give the algebraic form of
z1.

Exercise 3. We consider the complex number z = 1+i
√

3
1−i ·

1. Determine the algebraic and the polar form of z.

2. Deduce from the first question the exact values of cos
(

7π
12

)
and sin

(
7π
12

)
·

Exercise 4. Let z be a complex number which satisfies the equation z2+6z+25 = 0.

1. Find the solutions to the equation z2 + 6z + 25 = 0.

2. We consider the complex numbers a =
(
1 + 2 i

)2
and

b =
(
1− 2 i

)2
. Determine the algebraic forms of a and b.

3. Deduce from question 2 the solutions to the equation

z4 + 6z2 + 25 = 0.

191
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Solution of the Midterm

Exercise 1. (1). We consider the equation 2z2 − 2z + 5 = 0. In this case we have

∆ = 4− 4× 2× 5 = −36 < 0.

This implies that we have two complex solutions

z1 =
2− 6i

4
=

1− 3i

2
or z2 =

2 + 6i

4
=

1 + 3i

2
·

(2). For the equation z2 + 2z − 5 = 0, we have ∆ = 4 + 20 = 24 > 0. Therefore, we
have two real solutions

z1 =
−2− 2

√
6

2
= −1−

√
6 or z2 =

−1 + 2
√

6

2
= −1 +

√
6.

(3). Now, we take the equation z2 + z − 1 = 0. Hence ∆ = 1 + 4 = 5 > 0. One gets
two real solutions

z1 =
−1−

√
5

2
or z2 =

−1 +
√

5

2
·

(4). Let us consider the equation 3z2 − 5z + 3 = 0. The discriminant is given by
∆ = 25− 36 = −11 < 0. This equation has two complex solutions

z1 =
−5− i

√
11

6
or z2 =

5 + i
√

11

6
·

(5). To find solutions to the equation z4 + 5z2 + 4 = 0. We define Z = z2. Then,
we can rewrite the equation in this way:

Z2 + 5Z + 4 = 0.

For this latter we have ∆ = 25− 16 = 9 > 0. Hence

Z1 =
−5− 3

2
= −4 or Z2 =

−5 + 3

2
= −1.

Using the identity Z = z2, we deduce that

z1 = −2i, z2 = 2i, z3 = −i or z4 = i.

(6). We consider the equation z4 − 3z2 − 4 = 0. To deal with this equation, we
define t = z2. This leads to the following equation

t2 − 3t− 4 = 0.

This implies that ∆ = 9 + 16 = 25. Consequently the solutions of the equation
t2 − 3t− 4 = 0 are

t1 =
3− 5

2
= −1 or t2 =

3 + 5

2
= 4·

This ivolves that the solutions of the equation z4 − 3z2 − 4 = 0 are given by

z1 = −i, z2 = i, z3 = −2 and z4 = 2.



193

Exercise 2. We consider the complex number z = 1 + i
√

3.
1. We have |z| =

√
12 + 3 =

√
4 = 2. Since

cos(θ) =
1

2
and sin(θ) =

√
3

2
,

we deduce that θ = π
3 ·

2. In this case the polar form of z is defined by

z = 2
(

cos
(π

3

)
+ i sin

(π
3

))
.

3. Using De Moivre’s Formula, we obtain

z4 = 24
(

cos
(π

3

)
+ i sin

(π
3

))4

= 16

(
cos

(
4π

3

)
+ i sin

(
4π

3

))
.

4. We define the complex number

z1 =
−1− i

√
3

1−
√

3 + i
(
1 +
√

3
)
− 1− i

√
3

=
−1− i

√
3

−
√

3 + i

=

(
− 1− i

√
3
)(
−
√

3− i
)

4
=

√
3 + i + 3i−

√
3

4
= i

The complex number z1 is purely imaginary number.

Exercise 3. We define the complex number z = 1+i
√

3
1−i · Here we fix z1 = 1 + i

√
3

and z2 = 1− i.
1. Then, we have ∣∣z1

∣∣ = 2 and arg
(
z1

)
=
π

3∣∣z2

∣∣ =
√

2 and arg
(
z2

)
= −π

4
·

From this we deduce that ∣∣z∣∣ =

∣∣z1

∣∣∣∣z2

∣∣ =

√
2

2
=
√

2.

On the other hand we have

arg
(
z
)

= arg

(
z1

z2

)
= arg

(
z1

)
− arg

(
z2

)
=
π

3
+
π

4
=

7π

12
·

This means that the polar form of z is

z =
√

2

[
cos

(
7π

12

)
+ i sin

(
7π

12

)]
. (B.0.1)

Using the definition of z, we see that

z =
1 + i

√
3

1− i
=

(1 + i
√

3)(1 + i)

2
=

1 + i + i
√

3−
√

3

2

=

(
1−
√

3
)

+ i
(
1 +
√

3
)

2



194 APPENDIX B. EXAMS

From this, we deduce that the algebraic form of z is given by

z =
1−
√

3

2
+ i

1 +
√

3

2
· (B.0.2)

2. Combining (B.0.1) and (B.0.2) we obtain

√
2

[
cos

(
7π

12

)
+ i sin

(
7π

12

)]
=

1−
√

3

2
+ i

1 +
√

3

2
·

Hence, we have the following identities

cos

(
7π

12

)
=

√
2−
√

6

4

sin

(
7π

12

)
=

√
2 +
√

6

4
·

Exercise 4. The aim of this exercise is to determine the solutions of the equation

z4 + 6z2 + 25 = 0.

1. We consider the equation t2+6t+25 = 0. Then, we have ∆ = 36−100 = −64.
This means that, we have two complex solutions

t1 =
−6− 8i

2
= −3− 4i or t2 =

−6 + 8i

2
= −3 + 4i.

2. Using the definition of a and b, we have

a =
(
1 + 2i

)2
= 1 + 4i− 4 = −3 + 4i = t2

b =
(
1− 2i

)2
= 1− 4i− 4 = −3− 4i = t1

3. If we set t = z2 we can rewrite the equation z4 + 6z2 + 25 = 0 in this way:

t2 + 6t+ 25 = 0.

Therefore, the solutions are given by a and b. From this we deduce

z = ±
(
1− 2i

)
or z = ±

(
1 + 2i

)
.

This leads to the following list of solutions

S =
{

1− 2i ; 1 + 2i ; −1− 2i ; −1 + 2i
}
.
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Substitution Exam

Exercise 1. Find the solutions of the following equations

(1). z2 + 2z + 4 = 0, (2). z2 + 2z + 3 = 0, (3). z2 − z − 1 = 0,

(4). 3z2 − 5z + 3 = 0, (5). z4 + 6z2 + 5 = 0, (6). z4 − 4z2 + 3 = 0.

Exercise 2. Let z = 5 + 5i
√

3 and z′ = 5 + 5i be two complex numbers.

1. Find the modulus and the arguments of z and z′

2. Determine the polar forms of z and z′

3. Deduce from question 2 the polar form of z
z′ ·

4. Find the algebraic for of z
z′ ·

5. Determine the exact values

cos
( π

12

)
and sin

( π
12

)
·

Exercise 3. Let z be a complex number. We consider the equation

z4 + 4 z2 + 16 = 0. (B.0.3)

1. Find the solutions of the equation Z2 + 4Z + 16 = 0.

2. We denote by ω the complex number which has modulus 2 and argument π
3 .

Determine the algebraic form of ω2.

3. Determine the solutions of the equation

z2 = −2 + 2 i
√

3.

4. Prove that if z is a solution of (B.0.3), then, z is also a solution of (B.0.3).

5. Determine the solutions of (B.0.3).
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Solution of the Substitution Exam

Here we propose a solution to the retake exam
Exercise 1.

(1). We define the equation z2 + 2z + 4 = 0. Then, ∆ = 4− 16 = −12 < 0. We
have two solutions which are two complex numbers that are conjugate each other.

z1 =
−2− 2i

√
3

2
= −1− i

√
3 or z2 =

−2 + 2i
√

3

2
= −1 + i

√
3.

(2). We consider the equation z2 + 2z + 3 = 0. For this equation, we have
∆ = 4− 12 = −8 < 0. Consquently, we have

z1 =
−2− 2i

√
2

2
= −1− i

√
2 or z2 =

−2 + 2i
√

2

2
= −1 + i

√
2·

(3). For the equation z2 − z − 1 = 0, we obtain ∆ = 1 + 4 = 5. Hence, we have
two real solutions

z1 =
1−
√

5

2
or z2 =

1 +
√

5

2
·

(5). We take the equation z4 + 6z2 + 5 = 0. We make the following substitution
t = z2. This ivolves

t2 + 6t+ 5 = 0.

For this last equation, we have, ∆ = 36− 20 = 16. We obtain

t1 =
−6− 4

2
= −5 or t2 =

−6 + 4

2
= −1.

From, this we deduce that

z = ±i
√

5 or z = ±i.

We conclude that S =
{
− i
√

5 ; i
√

5 ; −i ; i
}
·

(6).Let z be a solution to the equation z4 − 4z2 + 3 = 0. To define the solutions
to this equation we set t := z2. This equation becomes

t2 − 4t+ 3 = 0.

This implies that ∆ = 16− 12 = 4. This gives two real solutions

t1 =
4− 2

2
= 1 or t2 =

4 + 2

2
= 3.

This implies that z = ±1 or z = ±
√

3.

Exercise 2. Let z = 5 + 5i
√

3 and z′ = 5 + 5i be two complex numbers.
1. Then, we have |z| =

√
25 + 25× 3 =

√
25 + 75 = 10. If we define θ := arg(z),

we obtain

cos(θ) =
1

2
and sin(θ) =

√
3

2
=⇒ θ =

π

3
·

On the other hand, we have |z′| =
√

25 + 25 =
√

50 = 5
√

2. Setting θ′ := arg(z′),
we define

cos(θ′) =

√
2

2
and sin(θ′) =

√
2

2
=⇒ θ′ =

π

4
·
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2. This implies that

z = 10
[
cos
(π

3

)
+ i sin

(π
3

)]
and z′ = 5

√
2
[
cos
(π

4

)
+ i sin

(π
4

)]
.

3. Using the properties of modulus and arguments we obtain∣∣∣ z
z′

∣∣∣ =
|z|
|z′|

=
10

5
√

2
=
√

2,

arg
( z
z′

)
= arg(z)− arg(z′) =

π

3
− π

4
=

π

12
·

This means that
z

z′
=
√

2
[
cos
( π

12

)
+ i sin

( π
12

)]
4. We have

z

z′
=

1 + i
√

3

1 + i
=

(
1 + i

√
3
)
(1− i)

2
=

1− i + i
√

3 +
√

3

2

=
1 +
√

3

2
+ i

√
3− 1

2
·

5. Combining 3. and 4. we obtain

√
2 cos

( π
12

)
=

1 +
√

3

2
and

√
2 sin

( π
12

)
=

√
3− 1

2
·

This leads to the identities

cos
( π

12

)
=

√
2 +
√

6

4

sin
( π

12

)
=

√
6−
√

2

4
·

Exercise 3. We remind that the main objective of this exercise is to find the
solutions to this equation

z4 + 4z2 + 16 = 0.

To this end we make the following substitution Z = z2.
1. Now, we consider the equation Z2+4Z+16 = 0.We define ∆ = 16−64 = −48.

Therefore, we have

Z1 =
−4− 4i

√
3

2
= −2− 2i

√
3 or Z2 =

−4 + 4i
√

3

2
= −2 + 2i

√
3.

2.Since ω ∈ C such that |ω| = 2 and arg(ω) = π
3 , we can write

ω = 2
[
cos
(π

3

)
+ i sin

(π
3

)]
= 2

(
1

2
+ i

√
3

2

)
= 1 + i

√
3.

Using De Moivre’s formula, we deduce that

ω2 = 4

[
cos

(
2π

3

)
+ i sin

(
2π

3

)]
= 4

(
−1

2
+ i

√
3

2

)
= −2 + 2i

√
3.
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3. Let us consider now the equation z2 = −2 + 2i
√

3 for some complex number
z. We can see that ω is a solution to this equation. On the other hand we know
that

z2 = ω2 ⇐⇒ z = ±ω.

This allows to conclude that the complex number ±
(
1 + i

√
3
)

are solution of this
equation.

4. Let z be a solution to (B.0.3). Then, we have

x4 + 4z2 + 16 = 0⇐⇒ z4 + 4z2 + 16 = 0.

Hence, the complex number z is a solution to (B.0.3).
5. Putting together 3. and 4. we conclude that the solution of (B.0.3) are given

by
z = ±ω or z = ±ω.

That is,

S =
{

1 + i
√

3 ; −1− i
√

3 ; 1− i
√

3 ; −1 + i
√

3
}
.
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Final Exam

Exercise 1. In the three dimensional space we consider the points A
(
3; 0; 0

)
,

B
(
0; 6; 0

)
, C
(
0; 0; 4

)
and D

(
− 5; 0; 1

)
.

1. Prove that the vector ~n

4
2
3

 is normal to the plane
(
ABC

)
.

2. Determine a cartesian equation to the plane
(
ABC

)
.

3. Determine a set of parametric equations for the line
(
∆
)

that passes through

the point D and orthogonal to the plane
(
ABC

)
4. Find the distance between the plane

(
ABC

)
and the point D.

Exercise 2. In the three dimensional space we consider the points A
(
5;−5; 2

)
,

B
(
− 1; 1; 0

)
, C
(
0; 1; 2

)
and D

(
6; 6;−1

)
.

1. Determine the area of the triangle BCD

2. Prove that the vector ~n

−2
3
1

 is normal to the plane
(
BCD

)
.

3. Determine a cartesian equation to the plane
(
BCD

)
.

4. Define a set of parametric equations to the line
(
AB
)
.

5. Find the volume of the tetrahedron ABCD.

Exercise 3. For any natural number n ≥ 1. we consider the sequence

vn =
1

2
· 3

4
· 5

6
· · · · · 2n− 1

2n
·

1. Using the method of mathematical induction prove that for every n ≥ 1, we
have

0 ≤ vn ≤
1√

2n+ 1
·

2. Compute limn→+∞ vn.

Exercise 4. We consider the sequence of complex numbers (zn) defined by z0 = 1
and for any n ≥ 0,

zn+1 =

(
3

4
+

√
3

4
i

)
zn.

We define the real sequence
(
rn
)

by rn =
∣∣zn∣∣ for every n ≥ 0.

1. Determine the modulus of the complex number 3
4 +

√
3

4 i·

2. Prove that the sequence (rn) is geometric with common ratio

√
3

2
and specify

r0

3. Determine the expression of the term rn for any n ≥ 0 and the

lim
n→∞

rn.
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Solution of final Exam

Exercise 1. Let A (3 ; 0 ; 0), B (0 ; 6 ; 0) and C (0 ; 0 ; 4) be three points in space.

1. We have
−−→
AB (−3 ; 6 ; 0) and

−→
AC (−3 ; 0 ; 4). The vectors

−−→
AB and

−→
AC are

not collinear. Then, they define the plane
(
ABC

)
. In other words any vector of the

plane
(
ABC

)
is a combination of this two vector. From this, we deduce that any

vector which is both othogonal to
−−→
AB and

−→
AC is orthogonal to the plane

(
ABC

)
.

On the other hand, we know that the vector
−−→
AB ×

−→
AC is both orthogonal to−−→

AB and
−→
AC. Therefore, it is orthogonal to the plane

(
ABC

)
. Thus the vector

−→n =
−−→
AB ×

−→
AC =

∣∣∣∣∣∣
~i ~j ~k
−3 6 0
−3 0 4

∣∣∣∣∣∣ =

∣∣∣∣6 0
0 4

∣∣∣∣~i− ∣∣∣∣−3 0
−3 4

∣∣∣∣~j +

∣∣∣∣−3 6
−3 0

∣∣∣∣ = 24~i+ 12~j + 18~k

is normal to the plane
(
ABC

)
.

2.Since the vector ~n (24 ; 12 ; 18) is a normal vector of
(
ABC

)
, a cartesian

equation of this plane is given by

24x+ 12y + 18z + d = 0.

To find the real number d, we use the fact that the point A belongs to this plane.
This means that the coordinates of A satisfy the equation above. Hence, one has
24×3 + 0 + 0 +d = 0. This implies that d = −72. We obtain the following cartesian
equation

24x+ 12y + 18z − 72 = 0.

We remind there exist several cartesian equations of a plane.
3. Let (∆) be the line that passes through the pointD (−5 ; 0 ; 1) and orthogonal

to the plane
(
ABC

)
.We can start by observing that, in this case any direction vector

of ∆ is collinear to ~n. Consequently, the vector ~n is a direction vector of (∆). One
concludes that a set of parametric equation of (∆) can be defined by:

x = 24t− 5,

y = 12t,

z = 18t+ 1

t ∈ R.

4.Let P be a plane with equation ax + by + cz + d = 0 and M (x0 ; y0 ; z0) a
point in space. We recall that the distance between the plane P and point M is
given by the following formula

dist
(
P , M

)
=

∣∣ax0 + by0 + cz0 + d
∣∣

√
a2 + b2 + c2

· (B.0.4)

Applying (B.0.4) with the plane
(
ABC

)
and the point D, we obtain

dist
((
ABC

)
, D
)

=

∣∣24 · (−5) + 12 · 0 + 18 · 1− 72
∣∣

√
242 + 122 + 182

=
√

29·

Exercise 2. We consider four points A
(
5 ; −5 ; 2

)
, B

(
− 1 ; 1 ; 0

)
, C

(
0 ; 1 ; 2

)
and D

(
6 ; 6 ; −1

)
. Then, we have

−−→
BC (1 ; 0 ; 2) and

−−→
BD (7 ; 5 ; −1).
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1. Using the coordinates of the vectors
−−→
BC and

−−→
BD we obtain

−−→
BC ×

−−→
BD =

∣∣∣∣∣∣
~i ~j ~k
1 0 2
7 5 −1

∣∣∣∣∣∣ = −10~i+ 15~j + 5~k.

From this, we get that the area of the triangle BCD is:

ABCD =
1

2

∥∥∥−−→BC ×−−→BD∥∥∥ =
1

2

√
(−10)2 + 152 + 52 =

5
√

14

2
·

2. Since
−−→
BC and

−−→
BD are not collinear they define the plane

(
BCD

)
. Any vector

of this plane should be a combination of these two vectors. To show that ~n is nornal
to the plane

(
BCD

)
we have to establish that

~n ⊥
−−→
BC and ~n ⊥

−−→
BD.

To this end we consider their scalar or dot product. We have

~n ·
−−→
BC = −2 · 1 + 3 · 0 + 2 · 1 = 0

~n ·
−−→
BD = −2 · 7 + 3 · 5 + 1 · (−1) = 0.

Hence, the vector ~n is normal to the plane
(
BCD

)
.

3.This means that a cartesian equation of this plane is geven defined by

−2x+ 3y + z + d = 0.

To determine d, we consider the coordinates of the point B. Then,

−2 · (−1) + 3 · 1 + 1 · 0 + d = 0 =⇒ d = −5.

Finally, we obtain the following equation

−2x+ 3y + z − 5 = 0.

4.The vector
−−→
AB (−6 ; 6 ; −2) is a direction vector of the line

(
AB
)
. Using the

point A (5 ; −5 ; 2), we can see that
x = 5− 6t,

y = −5 + 6t,

z = 2− 2t

t ∈ R.

is a set of parametric equations of
(
AB
)
.

5.The volume of the tatrahedron ABCD is determined by the formula

VABCD =
1

6

∣∣∣−−→AB · (−−→BC ×−−→BD)∣∣∣ .
As we know that

−−→
AB ·

(−−→
BC ×

−−→
BD

)
=

∣∣∣∣∣∣
−6 6 −2
1 0 2
7 5 −1

∣∣∣∣∣∣ = 60 + 90− 10 = 140.
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This involves

VABCD =
1

6
· |140| = 70

3
·

Exercise 3. For any integer n ≥ 1, we define the sequence

vn =
1

2
· 3

4
· 5

6
· · · · · 2n− 1

2n
·

To prove that for any n ≥ 1 , 0 ≤ vn ≤ 1√
2n+1

we proceed by induction.

Step 1. for n = 1, we have v1 = 1
2 > 0. Since

√
3 ≤ 2 =⇒ v1 =

1

2
<

1√
3
·

The property is true for n = 1.

Step 2. We suppose that the property is true for some natural number k ≥ 1. That
is,

0 ≤ vk =
1

2
· 3

4
· · · · · 2k − 1

2k
≤ 1√

2k + 1
·

Now, we have to prove that the property is true for k+ 1. In other words, we have
to show that

0 ≤ vk+1 =
1

2
· 3

4
· · · · · 2k − 1

2k
· 2k + 1

2k + 2
≤ 1√

2k + 3
·

We know that,

vk+1 =
1

2
· 3

4
· · · · · 2k − 1

2k
· 2k + 1

2k + 2
≤ 1√

2k + 1
· 2k + 1

2k + 2
=

√
2k + 1

2k + 2
·

Now we have to compare the positive real numbers
√

2k+1
2k+2 and 1√

2k+3
· We

have

1√
2k + 3

=

√
2k + 1√

(2k + 3)(2k + 1)
=

√
2k + 1√

4k2 + 8k + 3

and

√
2k + 1

2k + 2
=

√
2k + 1√

4k2 + 8k + 4
·

This shows that

vk+1 ≤
√

2k + 1

2k + 2
<

1√
2k + 3

·

We can see that

0 ≤ vk+1 ≤
1√

2k + 3
·

Conclusion: We conclude that for all n ≥ 1, 0 ≤ vn ≤ 1√
2n+1

·
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2. From 1. we see that 0 ≤ vn ≤ 1√
2n+1

, then,

lim
n→+∞

0 = lim
n→+∞

1√
2n+ 1

= 0.

Using Sandwich theorem, we have

lim
n→+∞

vn = 0.

Exercise 4. We consider the sequence of complex numbers (zn) defined by z0 = 1
and for all n ≥ 0

zn+1 =

(
3

4
+

√
3

4
i

)
zn.

For every n ≥ 0 we define rn =
∣∣zn∣∣.

1. We have ∣∣∣∣∣34 +

√
3

4

∣∣∣∣∣ =

√
9

16
+

3

16
=

√
3

2
·

2.From the definition of the sequence
(
zn
)
n≥0

, we can see that

rn+1 =
∣∣zn+1

∣∣ =

∣∣∣∣∣
(

3

4
+

√
3

4
i

)
zn

∣∣∣∣∣ =

∣∣∣∣∣34 +

√
3

4
i

∣∣∣∣∣ · ∣∣zn∣∣
√

3

2
rn·

We interprate this identity by saying that the sequence
(
rn
)
n≥0

is geometric with

common ration q =
√

3
2 and initial term r0 = |z0| = 1.

3. Since
(
rn
)
n≥0

is geometric with common ration q =
√

3
2 and initial term

r0 = |z0| = 1, we can write

rn = r0 · qn = 1 ·

(√
3

2

)n
=

(√
3

2

)n
, ∀n ≥ 0.

As we know that 0 <
√

3
2 < 1, then,

lim
n→+∞

rn = lim
n→+∞

(√
3

2

)n
= 0.
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Dunod, première edition 1989
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