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Abstract

In this work we prove that, for a general polyhedral domain of R3, the cohomology spaces of the
discrete de Rham complex of [Di Pietro and Droniou, An arbitrary-order discrete de Rham complex
on polyhedral meshes: Exactness, Poincaré inequalities, and consistency, Found. Comput. Math.,
2021, DOI: 10.1007/s10208-021-09542-8] are isomorphic to those of the continuous de Rham
complex. This is, to the best of our knowledge, the first result of this kind for an arbitrary-order
complex built from a general polyhedral mesh.
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1 Introduction
The well-posedness of relevant classes of partial differential equations hinges on subtle analytical and
homological properties that underpin Hilbert complexes. A Hilbert complex is a sequence of Hilbert
spaces 𝑋𝑖 connected by closed densely defined linear operators d𝑖 : 𝑋𝑖 → 𝑋𝑖+1 such that the complex
property holds, i.e., the range of d𝑖 is contained in the kernel of d𝑖+1. The best-known example of Hilbert
complex is the de Rham complex which, for a connected domain Ω of R3, reads

R 𝐻1(Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2(Ω) 0,ℑ grad curl div 0

where ℑ identifies real numbers with constant functions, 𝐻1(Ω) is spanned by scalar-valued functions
that are square-integrable over Ω along with their gradient, while 𝑯(curl;Ω) and 𝑯(div;Ω) are spanned
by vector-valued functions that are square-integrable over Ω along with their curl and divergence,
respectively. The complex property corresponds, in this case, to the classical relations gradℑ = 0,
curl grad = 0, and div curl = 0. We note that we moreover have Im div = 𝐿2(Ω) and, depending on
the topology of Ω, the previous properties can become stronger. Specifically, if Ω is not crossed by any
tunnel (i.e., its first Betti number 𝑏1 is zero), then Im grad = Ker curl. Similarly, if Ω does not enclose
any void (i.e., its second Betti number 𝑏2 is zero), then Im curl = Ker div. When both these properties
hold, the complex is said to be exact. For domains with more complicated topologies, the defect of
exactness is reflected by the fact that the cohomology spaces

H0 ≔ Ker grad/Imℑ, H1 ≔ Ker curl/Im grad,
H2 ≔ Ker div/Im curl, H3 ≔ 𝐿2(Ω)/Im div

(1.1)
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are possibly non-trivial. As a matter of fact, the de Rham theorem states that the above cohomology
spaces are, with the exception of H0, isomorphic to the simplicial cohomology spaces through the de
Rham maps. Notice, in passing, that the isomorphism could be extended to H0 with the usual choice
of replacing R with the trivial space at the beginning of the sequence, but this would result in the
impossibility for the complex to be exact. An important consequence of the de Rham theorem is that
H𝑖 , 𝑖 ∈ {1, 2, 3}, has dimension equal to 𝑏𝑖 (with 𝑏3 = 0 independently of the topology of Ω since we
are in dimension 3).

The compatible numerical approximation of problems whose stability hinges on Hilbert complexes
is based on discrete versions of the relevant complex with cohomology spaces isomorphic to the
continuous ones. Discrete 𝑯(div;Ω)- and 𝐿2(Ω)-conforming finite element spaces mimicking the
exactness property of the rightmost portion of the de Rham complex have been used since the early 80s
to prove the stability of mixed formulations of scalar diffusion problems [19, 20]. The first use of the
full de Rham complex, on the other hand, was made a few years later to devise stable approximations
of problems in computational electromagnetism [8]. In recent years, the study of compatible finite
elements has gravitated towards generalisations based on the formalism of exterior calculus (see, e.g.,
[1] and references therein).

While very powerful from certain points of view, the finite element paradigm is typically limited to
meshes composed of elements with a limited number of shapes (usually, tetrahedra or hexahedra), which
makes meshing complicated geometries or local mesh refinement more challenging. To circumvent this
limitation, polytopal paradigms have emerged enabling the support of much more general meshes,
including, e.g., non-matching interfaces and polyhedral elements. We also notice that the high-level
approach of polytopal paradigms can lead, even on standard (e.g., hexahedral) meshes, to a lower
number of unknowns compared to finite elements; see, e.g., [13, Table 2]. A first example of low-order
polyhedral discrete Hilbert complex has been obtained using the mimetic finite difference paradigm
(see, e.g., [5] and references therein). Related approach are the discrete geometric approach [10] and
compatible discrete operators [7] (see also [6]), that hinge on the notions of dual mesh and Hodge
operators.

More recent developments have focused on the extension to high order of accuracy. We can cite, in
particular, the virtual element method, which has been used in [2, 3] to devise arbitrary-order discrete
Hilbert complexes on general polyhedral meshes.

Recent works [13, 17] have introduced a fully discrete approach to the design and analysis of
arbitrary-order discrete de Rham (DDR) complexes on general polyhedral meshes; see [9, 11, 12, 14,
15, 21] for applications and further developments, as well as [4] for an in-depth study of the links with
the virtual element method. The basic idea of the DDR approach is to replace both spaces and operators
with discrete counterparts, the latter constructed so as to satisfy discrete integration by parts formulas
leading to suitable polynomial consistency properties. Further assuming Ω polyhedral and following
the notations of [13, 17], the DDR complex corresponding to a polynomial degree 𝑘 ≥ 0 reads

DDR(𝑘) ≔ R 𝑋 𝑘
grad,ℎ 𝑿𝑘

curl,ℎ 𝑿𝑘
div,ℎ P𝑘 (Tℎ) 0.

𝐼𝑘grad,ℎ 𝑮𝑘
ℎ

𝑪𝑘
ℎ

𝐷𝑘
ℎ (1.2)

Precise definitions of the spaces and operators above are provided in Section 3. On this complex, the
cohomology spaces are

H 𝑘
0 ≔ Ker𝑮𝑘

ℎ
/Im 𝐼𝑘grad,ℎ, H

𝑘
1 ≔ Ker𝑪𝑘

ℎ
/Im𝑮𝑘

ℎ
,

H 𝑘
2 ≔ Ker 𝐷𝑘

ℎ/Im𝑪𝑘
ℎ
, H 𝑘

3 ≔ P𝑘 (Tℎ)/Im 𝐷𝑘
ℎ .

(1.3)

It has been proved in [13, Theorems 1 and 2] that these cohomology spaces are trivial for domains with
trivial topology (i.e., such that 𝑏0 = 1 and 𝑏1 = 𝑏2 = 𝑏3 = 0), so that the DDR(𝑘) complex is exact in
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this case. The purpose of this paper is to study these spaces for domains with non-trivial topologies by
proving the following theorem:

Theorem 1 (Cohomology of the DDR(𝑘) complex). For any 𝑘 ≥ 0, the cohomology spaces defined by
(1.3) are isomorphic to the de Rham cohomology spaces (1.1).

To the best of our knowledge, this is the first proof of a result of this kind for arbitrary-order polytopal
methods. We also notice that, in the case of a topologically trivial domain, Theorem 1 establishes the
exactness of the global DDR complex in a more straightforward way than the previous proofs in [13,
14], using only the local exactness in each element. In a nutshell, the idea of the proof of Theorem 1
consists in showing that, for any 𝑘 ≥ 1, the cohomology spaces (1.3) are isomorphic to H0

0 , H0
1 , H0

2 ,
and H0

3 , and, connecting through the de Rham map the DDR(0) complex to the CW complex defined
by the mesh, that these spaces are in turn isomorphic to the de Rham cohomology spaces (1.1). This is
done using the abstract framework originally introduced in [15, Section 2] in the context of serendipity
DDR complexes. In passing, as a consequence of Theorem 1 and of the discussion in [15, Section 6.6],
we immediately have also the following result:

Corollary 2 (Cohomology of the serendipity DDR complex). The cohomology spaces of the serendipity
DDR complex presented in [15, Section 5] are isomorphic to the de Rham cohomology spaces (1.1).

The rest of this work is organised as follows. In Section 2 we introduce the general setting (mesh,
polynomial spaces, etc.). In Section 3 we briefly recall the DDR complex of [13]. Section 4 contains
the proof of Theorem 1, and Section 5 provides a brief conclusion and perspectives to this work.

2 Setting
2.1 Domain and mesh

Denote by Ω ⊂ R3 a connected polyhedral domain. We consider a polyhedral meshMℎ ≔ Tℎ ∪ Fℎ ∪
Eℎ ∪Vℎ, where Tℎ gathers the elements, Fℎ the faces, Eℎ the edges, andVℎ the vertices. Both elements
and faces are assumed to be topologically trivial. The notations and assumptions are as in [13]. In
particular, for each face 𝐹 ∈ Fℎ, we fix a unit normal 𝒏𝐹 to 𝐹 and, for each edge 𝐸 ∈ Eℎ, a unit tangent
𝒕𝐸 . For 𝑇 ∈ Tℎ, F𝑇 gathers the faces on the boundary 𝜕𝑇 of 𝑇 and E𝑇 the edges in 𝜕𝑇 . For 𝐹 ∈ F𝑇 ,
𝜔𝑇𝐹 ∈ {−1, +1} is such that 𝜔𝑇𝐹𝒏𝐹 is the outer normal on 𝐹 to 𝑇 .

Each face 𝐹 ∈ Fℎ is oriented counter-clockwise with respect to 𝒏𝐹 and, for 𝐸 ∈ E𝐹 with E𝐹 set
of edges of 𝐹, we let 𝜔𝐹𝐸 ∈ {−1, +1} be such that 𝜔𝐹𝐸 = +1 if 𝒕𝐸 points along the boundary 𝜕𝐹 of
𝐹 in the clockwise sense, and 𝜔𝐹𝐸 = −1 otherwise; we also denote by 𝒏𝐹𝐸 the unit normal vector to
𝐸 , in the plane spanned by 𝐹, such that ( 𝒕𝐸 , 𝒏𝐹𝐸 , 𝒏𝐹) is a right-handed system of coordinate; it can be
checked that 𝜔𝐹𝐸𝒏𝐹𝐸 points outside 𝐹. For all 𝑉 ∈ Vℎ, 𝒙𝑉 ∈ R3 denotes the coordinate vector of 𝑉 .
For any mesh face 𝐹 ∈ Fℎ, we denote by grad𝐹 and div𝐹 the tangent gradient and divergence operators
acting on smooth enough functions. Moreover, for any 𝑟 : 𝐹 → R and 𝒛 : 𝐹 → R2 smooth enough,
we let rot𝐹 𝑟 ≔ (grad𝐹 𝑟)⊥ and rot𝐹 𝒛 = div𝐹 (𝒛⊥), with ⊥ denoting the rotation of angle − 𝜋

2 in the
oriented tangent space to 𝐹.

The mesh we consider is such that (Tℎ, Fℎ) belongs to a regular sequence as per [16, Definition 1.9].
This assumption ensures the existence, for each P ∈ Tℎ ∪ Fℎ ∪ Eℎ, of a point 𝒙P ∈ P such that a ball
centered at 𝒙P and of radius uniformly comparable to the diameter of P is contained in P.

2.2 Polynomial spaces and 𝐿2-orthogonal projectors

For any P ∈ Mℎ and an integer ℓ ≥ 0, we denote by Pℓ (P) the space spanned by the restriction to P
of three-variate polynomial functions, and by P0,ℓ (P) its subspace made of polynomials whose integral
over P vanishes. Following standard conventions on degrees of polynomials, this definition gives in
particular P−1(P) = {0}. For 𝐹 ∈ Fℎ, Pℓ (𝐹) (boldface) is the space of vector-valued polynomials of
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degree ≤ ℓ on 𝐹, that are tangent to the face. For 𝑇 ∈ Tℎ, on the other hand, we set Pℓ (𝑇) ≔ Pℓ (𝑇)3.
We note the following decompositions of vector-valued polynomials: For all 𝐹 ∈ Fℎ,

P
ℓ (𝐹) = G

ℓ (𝐹) ⊕ G
c,ℓ (𝐹) with G

ℓ (𝐹) ≔ grad𝐹 Pℓ+1(𝐹) and G
c,ℓ (𝐹) ≔ (𝒙 − 𝒙𝐹)⊥Pℓ−1(𝐹)

= R
ℓ (𝐹) ⊕ R

c,ℓ (𝐹) with R
ℓ (𝐹) ≔ rot𝐹 Pℓ+1(𝐹) and R

c,ℓ (𝐹) ≔ (𝒙 − 𝒙𝐹)Pℓ−1(𝐹)

and, for all 𝑇 ∈ Tℎ,

P
ℓ (𝑇) = G

ℓ (𝑇) ⊕ G
c,ℓ (𝑇) with G

ℓ (𝑇) ≔ gradPℓ+1(𝑇) and G
c,ℓ (𝑇) ≔ (𝒙 − 𝒙𝑇 ) × P

ℓ−1(𝑇)
= R

ℓ (𝑇) ⊕ R
c,ℓ (𝑇) with R

ℓ (𝑇) ≔ curlPℓ+1(𝑇) and R
c,ℓ (𝑇) ≔ (𝒙 − 𝒙𝑇 )Pℓ−1(𝑇).

Given a polynomial (sub)space Xℓ (P) on P ∈ Mℎ, the corresponding 𝐿2-orthogonal projector
is denoted by 𝜋ℓX,P, and boldface font will be used when the elements of Xℓ (P) are vector-valued.
Similarly, when considering a complement Xc,ℓ (P) with X ∈ {G, R}, 𝝅c,ℓ

X,P denotes the 𝐿2-orthogonal
projector on X

c,ℓ (P).
3 DDR complex
In this section we briefly recall the DDR complex and refer to [13, Section 3] for further details. From
this point on, we fix an integer 𝑘 ≥ 0 corresponding to the polynomial degree of the complex.

3.1 Spaces

The DDR counterparts of 𝐻1(Ω), 𝑯(curl;Ω), 𝑯(div;Ω), and 𝐿2(Ω) are respectively defined as follows:

𝑋 𝑘
grad,ℎ ≔

{
𝑞
ℎ
=
(
(𝑞𝑇 )𝑇∈Tℎ , (𝑞𝐹)𝐹∈Fℎ , (𝑞𝐸)𝐸∈Eℎ , (𝑞𝑉 )𝑉∈Vℎ

)
:

𝑞𝑇 ∈ P𝑘−1(𝑇) for all 𝑇 ∈ Tℎ, 𝑞𝐹 ∈ P𝑘−1(𝐹) for all 𝐹 ∈ Fℎ,

𝑞𝐸 ∈ P𝑘−1(𝐸) for all 𝐸 ∈ Eℎ, and 𝑞𝑉 ∈ R for all 𝑉 ∈ Vℎ

}
,

(3.1a)

𝑿𝑘
curl,ℎ ≔

{
𝒗
ℎ
=
(
(𝒗R,𝑇 , 𝒗

c
R,𝑇
)𝑇∈Tℎ , (𝒗R,𝐹 , 𝒗

c
R,𝐹
)𝐹∈Fℎ , (𝑣𝐸)𝐸∈Eℎ

)
:

𝒗R,𝑇 ∈ R
𝑘−1(𝑇) and 𝒗c

R,𝑇
∈ R

c,𝑘 (𝑇) for all 𝑇 ∈ Tℎ,

𝒗R,𝐹 ∈ R
𝑘−1(𝐹) and 𝒗c

R,𝐹
∈ R

c,𝑘 (𝐹) for all 𝐹 ∈ Fℎ,

and 𝑣𝐸 ∈ P𝑘 (𝐸) for all 𝐸 ∈ Eℎ
}
,

(3.1b)

𝑿𝑘
div,ℎ ≔

{
𝒘

ℎ
=
(
(𝒘G,𝑇 , 𝒘

c
G,𝑇
)𝑇∈Tℎ , (𝑤𝐹)𝐹∈Fℎ

)
:

𝒘G,𝑇 ∈ G
𝑘−1(𝑇) and 𝒘c

G,𝑇
∈ G

c,𝑘 (𝑇) for all 𝑇 ∈ Tℎ,

and 𝑤𝐹 ∈ P𝑘 (𝐹) for all 𝐹 ∈ Fℎ
}
,

(3.1c)

and
P𝑘 (Tℎ) ≔

{
𝑞ℎ ∈ 𝐿2(Ω) : (𝑞ℎ) |𝑇 ∈ P𝑘 (𝑇) for all 𝑇 ∈ Tℎ

}
. (3.1d)

The restriction of each of these spaces (or vectors thereof) to a mesh entity P ∈ Mℎ that appears in its
definition, obtained gathering the polynomial components on P and its boundary, is denoted replacing
the subscript ℎ by P. Following the usual DDR notations, underlined objects represent spaces or
vectors having polynomial components, and we use boldface for vector-valued polynomial functions or
operators. The sans-serif font is used for “complete” differential operators, that only appear in the DDR
complex through projections on particular polynomial spaces.

4



3.2 Discrete vector calculus operators and potentials

3.2.1 Gradient

For any 𝐸 ∈ Eℎ, the edge scalar trace 𝛾𝑘+1
𝐸

: 𝑋 𝑘
grad,𝐸 → P

𝑘+1(𝐸) is such that, for all 𝑞
𝐸
∈ 𝑋 𝑘

grad,𝐸 ,
𝛾𝑘+1
𝐸

𝑞
𝐸

is the unique polynomial in P𝑘+1(𝐸) that takes the value 𝑞𝑉 in each vertex 𝑉 of 𝐸 and satisfies
𝜋𝑘−1
P,𝐸𝛾

𝑘+1
𝐸

𝑞
𝐸
= 𝑞𝐸 . The edge gradient 𝐺𝑘

𝐸
: 𝑋 𝑘

grad,𝐸 → P
𝑘 (𝐸) is defined as: For all 𝑞

𝐸
∈ 𝑋 𝑘

grad,𝐸 ,∫
𝐸

𝐺𝑘
𝐸𝑞𝐸

𝑟𝐸 = −
∫
𝐸

𝑞𝐸𝑟
′
𝐸 + 𝑞𝑉2𝑟𝐸 (𝒙𝑉2) − 𝑞𝑉1𝑟𝐸 (𝒙𝑉1) ∀𝑟𝐸 ∈ P𝑘 (𝐸), (3.2)

where 𝑉1, 𝑉2 are the two vertices of 𝐸 numbered according to 𝒕𝐸 .
Remark 3 (Definition of the edge trace and gradient). With the notation 𝑞Eℎ used, e.g., in [14], we have
𝛾𝑘+1
𝐸

𝑞
𝐸
= (𝑞Eℎ ) |𝐸 . Moreover, it is a simple matter to check that 𝐺𝑘

𝐸
𝑞
𝐸
= (𝛾𝑘+1

𝐸
𝑞
𝐸
)′, with the derivative

taken in the direction of 𝒕𝐸 .
For any 𝐹 ∈ Fℎ, the face gradient G𝑘

𝐹 : 𝑋 𝑘
grad,𝐹 → P

𝑘 (𝐹) and the face scalar trace 𝛾𝑘+1
𝐹

:
𝑋 𝑘

grad,𝐹 → P
𝑘+1(𝐹) are such that, for all 𝑞

𝐹
∈ 𝑋 𝑘

grad,𝐹 ,∫
𝐹

G𝑘
𝐹𝑞𝐹
· 𝒗𝐹 = −

∫
𝐹

𝑞𝐹 div𝐹 𝒗𝐹 +
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝛾𝑘+1
𝐸 𝑞

𝐸
(𝒗𝐹 · 𝒏𝐹𝐸) ∀𝒗𝐹 ∈ P

𝑘 (𝐹) (3.3)

and∫
𝐹

𝛾𝑘+1
𝐹 𝑞

𝐹
div𝐹 𝒗𝐹 = −

∫
𝐹

G𝑘
𝐹𝑞𝐹
· 𝒗𝐹 +

∑︁
𝐸∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝛾𝑘+1
𝐸 𝑞

𝐸
(𝒗𝐹 · 𝒏𝐹𝐸) ∀𝒗𝐹 ∈ R

c,𝑘+2(𝐹).

For all𝑇 ∈ Tℎ, the element gradient G𝑘
𝑇 : 𝑋 𝑘

grad,𝑇 → P
𝑘 (𝑇) is defined such that, for all 𝑞

𝑇
∈ 𝑋 𝑘

grad,𝑇 ,∫
𝑇

G𝑘
𝑇𝑞𝑇
· 𝒗𝑇 = −

∫
𝑇

𝑞𝑇 div 𝒗𝑇 +
∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝛾𝑘+1
𝐹 𝑞

𝐹
(𝒗𝑇 · 𝒏𝐹) ∀𝒗𝑇 ∈ P

𝑘 (𝑇). (3.4)

Finally, the global discrete gradient 𝑮𝑘
ℎ

: 𝑋 𝑘
grad,ℎ → 𝑿𝑘

curl,ℎ is obtained collecting the projections
of local gradients on the polynomial components of 𝑿𝑘

curl,ℎ: For all 𝑞
ℎ
∈ 𝑋 𝑘

grad,ℎ,

𝑮𝑘
ℎ
𝑞
ℎ
≔

(
(𝝅𝑘−1

R,𝑇
G𝑘
𝑇𝑞𝑇

, 𝝅c,𝑘
R,𝑇

G𝑘
𝑇𝑞𝑇
)𝑇∈Tℎ , (𝝅𝑘−1

R,𝐹
G𝑘

𝐹𝑞𝐹
, 𝝅c,𝑘

R,𝐹
G𝑘

𝐹𝑞𝐹
)𝐹∈Fℎ , (𝐺𝑘

𝐸𝑞𝐸)𝐸∈Eℎ
)
. (3.5)

3.2.2 Curl

For all 𝐹 ∈ Fℎ, the face curl 𝐶𝑘
𝐹

: 𝑿𝑘
curl,𝐹 → P𝑘 (𝐹) and the face tangential trace 𝜸𝑘

t,𝐹 : 𝑿𝑘
curl,𝐹 →

P
𝑘 (𝐹) are such that, for all 𝒗

𝐹
∈ 𝑿𝑘

curl,𝐹 ,∫
𝐹

𝐶𝑘
𝐹𝒗𝐹 𝑟𝐹 =

∫
𝐹

𝒗R,𝐹 · rot𝐹 𝑟𝐹 −
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑣𝐸 𝑟𝐹 ∀𝑟𝐹 ∈ P𝑘 (𝐹) (3.6)

and∫
𝐹

𝜸𝑘
t,𝐹𝒗𝐹 · (rot𝐹 𝑟𝐹 + 𝒘𝐹) =

∫
𝐹

𝐶𝑘
𝐹𝒗𝐹 𝑟𝐹 +

∑︁
𝐸∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝑣𝐸𝑟𝐹 +
∫
𝐹

𝒗c
R,𝐹
· 𝒘𝐹

∀(𝑟𝐹 , 𝒘𝐹) ∈ P0,𝑘+1(𝐹) × R
c,𝑘 (𝐹).
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For all 𝑇 ∈ Tℎ, the element curl C𝑘
𝑇 : 𝑿𝑘

curl,𝑇 → P
𝑘 (𝑇) and the vector potential reconstruction

𝑷𝑘
curl,𝑇 : 𝑿𝑘

curl,𝑇 → P
𝑘 (𝑇) are defined such that, for all 𝒗

𝑇
∈ 𝑿𝑘

curl,𝑇 ,∫
𝑇

C𝑘
𝑇𝒗𝑇 · 𝒘𝑇 =

∫
𝑇

𝒗R,𝑇 · curl𝒘𝑇 +
∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝜸𝑘
t,𝐹𝒗𝐹 · (𝒘𝑇 × 𝒏𝐹) ∀𝒘𝑇 ∈ P

𝑘 (𝑇) (3.7)

and∫
𝑇

𝑷𝑘
curl,𝑇𝒗𝑇 · (curl𝒘𝑇 + 𝒛𝑇 ) =

∫
𝑇

C𝑘
𝑇𝒗𝑇 · 𝒘𝑇 −

∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝜸𝑘
t,𝐹𝒗𝐹 · (𝒘𝑇 × 𝒏𝐹) +

∫
𝑇

𝒗c
R,𝑇
· 𝒛𝑇

∀(𝒘𝑇 , 𝒛𝑇 ) ∈ G
c,𝑘+1(𝑇) × R

c,𝑘 (𝑇).

Finally, the global discrete curl 𝑪𝑘
ℎ

: 𝑿𝑘
curl,ℎ → 𝑿𝑘

div,ℎ is obtained setting, for all 𝒗
ℎ
∈ 𝑿𝑘

curl,ℎ,

𝑪𝑘
ℎ
𝒗
ℎ
≔

(
(𝝅𝑘−1

G,𝑇
C𝑘
𝑇𝒗𝑇 , 𝝅

c,𝑘
G,𝑇

C𝑘
𝑇𝒗𝑇 )𝑇∈Tℎ , (𝐶

𝑘
𝐹𝒗𝐹)𝐹∈Fℎ

)
. (3.8)

3.2.3 Divergence

For all 𝑇 ∈ Tℎ, the element divergence 𝐷𝑘
𝑇

: 𝑿𝑘
div,𝑇 → P

𝑘 (𝑇) and vector potential reconstruction
𝑷𝑘

div,𝑇 : 𝑿𝑘
div,𝑇 → P

𝑘 (𝑇) are defined by: For all 𝒘
𝑇
∈ 𝑿𝑘

div,𝑇 ,∫
𝑇

𝐷𝑘
𝑇𝒘𝑇

𝑟𝑇 = −
∫
𝑇

𝒘G,𝑇 · grad 𝑟𝑇 +
∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝑤𝐹𝑟𝑇 ∀𝑟𝑇 ∈ P𝑘 (𝑇) (3.9)

and∫
𝑇

𝑷𝑘
div,𝑇𝒘𝑇

· (grad 𝑟𝑇 + 𝒛𝑇 ) = −
∫
𝑇

𝐷𝑘
𝑇𝒘𝑇

𝑟𝑇 +
∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝑤𝐹 𝑟𝑇 +
∫
𝑇

𝒘c
G,𝑇
· 𝒛𝑇

∀(𝑟𝑇 , 𝒛𝑇 ) ∈ P0,𝑘+1(𝑇) × G
c,𝑘 (𝑇).

The global discrete divergence 𝐷𝑘
ℎ

: 𝑿𝑘
div,ℎ → P

𝑘 (Tℎ) is obtained setting, for all 𝒘
ℎ
∈ 𝑿𝑘

div,ℎ,

(𝐷𝑘
ℎ𝒘ℎ
) |𝑇 ≔ 𝐷𝑘

𝑇𝒘𝑇
∀𝑇 ∈ Tℎ, (3.10)

3.3 DDR complex

The definition of the DDR complex (1.2) is completed setting, for all 𝑞 : Ω→ R smooth enough,

𝐼𝑘grad,ℎ𝑞 ≔
(
(𝜋𝑘−1
P,𝑇𝑞 |𝑇 )𝑇∈Tℎ , (𝜋

𝑘−1
P,𝐹𝑞 |𝐹)𝐹∈Fℎ , (𝜋

𝑘−1
P,𝐸𝑞 |𝐸)𝐸∈Eℎ , (𝑞(𝒙𝑉 ))𝑉∈Vℎ

)
. (3.11)

A synopsis of the definitions of the DDR spaces and operators is provided in Table 1.

4 Cohomology of the DDR complex
This section contains the proof Theorem 1 preceded by some preliminary results.

4.1 Cohomology of the DDR(0) complex

Lemma 4 (Cohomology of the DDR(0) complex). The cohomology spaces defined by (1.3) with 𝑘 = 0
are isomorphic to the de Rham cohomology spaces (1.1).
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DDR operator Definition DDR space Definition

𝐼𝑘grad,ℎ (3.11) 𝑋 𝑘
grad,ℎ (3.1a)

𝑮𝑘
ℎ

(3.5) 𝑿𝑘
curl,ℎ (3.1b)

𝑪𝑘
ℎ

(3.8) 𝑿𝑘
div,ℎ (3.1c)

𝐷𝑘
ℎ

(3.10) P𝑘 (Tℎ) (3.1d)

Table 1: Definitions of the spaces and operators appearing in the DDR complex (1.2).

Proof. The meshMℎ can be seen as a cellular (CW) complex with vertices in Vℎ as 0-cells, edges in
Eℎ as 1-cells, faces in Fℎ as 2-cells, and elements in Tℎ as 3-cells. With this interpretation, “discrete de
Rham” maps create isomorphisms between the DDR(0) spaces and cochains (with first space R instead
of {0}). Specifically, we have the following diagram:

R 𝑋0
grad,ℎ 𝑿0

curl,ℎ 𝑿0
div,ℎ P0(Tℎ) 0

R V∗
ℎ

E∗
ℎ

F ∗
ℎ

T ∗
ℎ

0,

Id

𝐼0
grad,ℎ 𝑮0

ℎ

𝜅grad

𝑪0
ℎ

𝜅curl

𝐷0
ℎ

𝜅div 𝜅P

𝑖R 𝜕∗0 𝜕∗1 𝜕∗2

(4.1)

in which V∗
ℎ

, E∗
ℎ
, F ∗

ℎ
, and T ∗

ℎ
denote the sets of dual vertices, edges, faces, and volumes, 𝜕∗

𝑖
are the

coboundary operators on the cochain complex, 𝑖R is the embedding of R inV∗
ℎ

as the map 𝑖R(𝑠) (𝑉) = 𝑠

for all 𝑉 ∈ Vℎ, and the discrete de Rham maps are defined by:

𝜅grad(𝑞
ℎ
) (𝑉) = 𝑞𝑉 ∀𝑞

ℎ
∈ 𝑋0

grad,ℎ ,∀𝑉 ∈ Vℎ,

𝜅curl(𝒗ℎ) (𝐸) =
∫
𝐸

𝑣𝐸 ∀𝒗
ℎ
∈ 𝑿0

curl,ℎ ,∀𝐸 ∈ Eℎ,

𝜅div(𝒘ℎ
) (𝐹) =

∫
𝐹

𝑤𝐹 ∀𝒘
ℎ
∈ 𝑿0

div,ℎ ,∀𝐹 ∈ Fℎ,

𝜅P (𝑟ℎ) (𝑇) =
∫
𝑇

𝑟ℎ ∀𝑟ℎ ∈ P0(Tℎ) ,∀𝑇 ∈ Tℎ .

It is trivial to verify that these de Rham maps are isomorphisms, and that the diagram (4.1) is commutative
(the latter property simply consists in translating the definitions of 𝑮0

ℎ
, 𝑪0

ℎ
and 𝐷0

ℎ
and of the coboundary

operators). This proves that the DDR(0) complex is isomorphic to the cochain complex, and thus has
the same cohomology spaces. Since, in turn, these cohomology spaces are isomorphic to the de Rham
cohomology spaces (1.1) (see, e.g., [22]), this concludes the proof. □

4.2 Reduction and extension cochain maps

The study of the cohomology for 𝑘 ≥ 1 is done leveraging [15, Proposition 2]. Specifically, we link the
DDR(𝑘) and DDR(0) complexes through reduction and extension cochain maps as follows:

R 𝑋 𝑘
grad,ℎ 𝑿𝑘

curl,ℎ 𝑿𝑘
div,ℎ P𝑘 (Tℎ) 0

R 𝑋0
grad,ℎ 𝑿0

curl,ℎ 𝑿0
div,ℎ P0(Tℎ) 0,

Id

𝐼𝑘grad,ℎ 𝑮𝑘
ℎ

𝑅grad,ℎ

𝑪𝑘
ℎ

𝑹curl,ℎ

𝐷𝑘
ℎ

𝑹div,ℎ 𝜋0
P,ℎ

𝐼0
grad,ℎ 𝑮0

ℎ

𝐸grad,ℎ

𝑪0
ℎ

𝑬curl,ℎ

𝐷0
ℎ

𝑬div,ℎ 𝑖 (4.2)
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where 𝑖 is the natural inclusion and 𝜋0
P,ℎ is the 𝐿2-orthogonal projection on P𝑘 (Tℎ). In what follows

we provide precise definitions of the reductions 𝑅grad,ℎ, 𝑹curl,ℎ, 𝑹div,ℎ, and of the extensions 𝐸grad,ℎ,
𝑬curl,ℎ, 𝑬div,ℎ.

4.2.1 Reductions

The reduction maps are naturally obtained taking the 𝐿2-orthogonal projection of the components
attached to the lowest-dimensional mesh entity in each space, i.e.,

𝑅grad,ℎ𝑞ℎ
≔ (𝑞𝑉 )𝑉∈Vℎ

∀𝑞
ℎ
∈ 𝑋 𝑘

grad,ℎ, (4.3)

𝑹curl,ℎ𝒗ℎ ≔ (𝜋0
P,𝐸𝑣𝐸)𝐸∈Eℎ ∀𝒗

ℎ
∈ 𝑿𝑘

curl,ℎ, (4.4)

𝑹div,ℎ𝒘ℎ
≔ (𝜋0

P,𝐹𝑤𝐹)𝐹∈Fℎ ∀𝒘
ℎ
∈ 𝑿𝑘

div,ℎ . (4.5)

By the definitions of the discrete differential and reduction operators, it can easily be checked that
𝑅grad,ℎ 𝐼

𝑘
grad,ℎ = 𝐼0

grad,ℎ, 𝑹curl,ℎ𝑮
𝑘
ℎ
= 𝑮0

ℎ
𝑅grad,ℎ, 𝑹div,ℎ𝑪

𝑘
ℎ
= 𝑪0

ℎ
𝑹curl,ℎ, and 𝜋0

P,ℎ𝐷
𝑘
ℎ
= 𝐷0

ℎ
𝑹div,ℎ,

showing that the reductions yield a cochain map.

4.2.2 Extensions

The definition of the extension maps is, on the other hand, more subtle. Concerning the gradient space,
we set, for all 𝑞

ℎ
∈ 𝑋0

grad,ℎ,

𝐸grad,ℎ𝑞ℎ
≔

(
(𝐸 𝑘−1
P,𝑇𝑞𝑇

)𝑇∈Tℎ , (𝐸 𝑘−1
P,𝐹𝑞𝐹

)𝐹∈Fℎ , (𝐸 𝑘−1
P,𝐸𝑞𝐸

)𝐸∈Eℎ , (𝑞𝑉 )𝑉∈Vℎ

)
(4.6a)

with, for all 𝐸 ∈ Eℎ, 𝐸 𝑘−1
P,𝐸𝑞𝐸

∈ P𝑘−1(𝐸) such that∫
𝐸

𝐸 𝑘−1
P,𝐸𝑞𝐸

𝑟 ′𝐸 = −
∫
𝐸

𝐺0
𝐸𝑞𝐸

𝑟𝐸 + 𝑞𝑉2 𝑟𝐸 (𝒙𝑉2) − 𝑞𝑉1 𝑟𝐸 (𝒙𝑉1) ∀𝑟𝐸 ∈ P𝑘 (𝐸), (4.6b)

for all 𝐹 ∈ Fℎ, 𝐸 𝑘−1
P,𝐹𝑞𝐹

∈ P𝑘−1(𝐹) such that∫
𝐹

𝐸 𝑘−1
P,𝐹𝑞𝐹

div𝐹 𝒗𝐹 = −
∫
𝐹

G0
𝐹𝑞𝐹
· 𝒗𝐹 +

∑︁
𝐸∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝛾𝑘+1
𝐸 𝐸grad,𝐸𝑞𝐸

(𝒗𝐹 · 𝒏𝐹𝐸)

∀𝒗𝐹 ∈ R
c,𝑘 (𝐹), (4.6c)

and, for all 𝑇 ∈ Tℎ, 𝐸 𝑘−1
P,𝑇𝑞𝑇

∈ P𝑘−1(𝑇) such that∫
𝑇

𝐸 𝑘−1
P,𝑇𝑞𝑇

div 𝒗𝑇 = −
∫
𝑇

G0
𝑇𝑞𝑇
· 𝒗𝑇 +

∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝛾𝑘+1
𝐹 𝐸grad,𝐹𝑞𝐹

(𝒗𝑇 · 𝒏𝐹)

∀𝒗𝑇 ∈ R
c,𝑘 (𝑇). (4.6d)

In (4.6c) and (4.6d) above, we have respectively introduced the notations𝐸grad,𝐸 ≔
(
𝐸 𝑘−1
P,𝐸𝑞𝐸

, (𝑞𝑉 )𝑉∈V𝐸

)
and 𝐸grad,𝐹 ≔

(
𝐸 𝑘−1
P,𝐹𝑞𝐹

, (𝐸 𝑘−1
P,𝐸𝑞𝐸

)𝐸∈E𝐹 , (𝑞𝑉 )𝑉∈V𝐹

)
(withV𝐸 , resp. V𝐹 , denoting the set of vertices

of 𝐸 , resp. 𝐹).
Remark 5 (Test functions in the definition of the extension operators). To properly define 𝐸 𝑘−1

P,𝐸 , we
should only consider in (4.6b) test functions 𝑟𝐸 ∈ P0,𝑘 (𝐸) (as the derivative is an isomorphism
P0,𝑘 (𝐸) → P𝑘−1(𝐸)); however, we note that (4.6b) is also satisfied for constant 𝑟𝐸 since the right-hand
side then vanishes by definition of 𝐺0

𝐸
. This is why we can actually consider test functions in the entire

space P𝑘 (𝐸). Similar considerations hold for (4.6c), and (4.6d), as well as (4.7b) and (4.8b) below.
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The extension operator from 𝑿0
curl,ℎ to 𝑿𝑘

curl,ℎ is such that, for all 𝒗
ℎ
∈ 𝑿0

curl,ℎ,

𝑬curl,ℎ𝒗ℎ ≔
(
(𝑬𝑘−1

R,𝑇
𝒗
𝑇
, 𝝅c,𝑘

R,𝑇
𝑷0

curl,𝑇𝒗𝑇 )𝑇∈Tℎ , (𝑬
𝑘−1
R,𝐹

𝒗
𝐹
, 𝝅c,𝑘

R,𝐹
𝜸0

t,𝐹𝒗𝐹)𝐹∈Fℎ , (𝑣𝐸)𝐸∈Eℎ
)
, (4.7a)

where, for all 𝐹 ∈ Fℎ, 𝑬𝑘−1
R,𝐹

𝒗
𝐹
∈ R

𝑘−1(𝐹) such that∫
𝐹

𝑬𝑘−1
R,𝐹

𝒗
𝐹
· rot𝐹 𝑟𝐹 =

∫
𝐹

𝐶0
𝐹𝒗𝐹 𝑟𝐹 +

∑︁
𝐸∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝑣𝐸 𝑟𝐹 ∀𝑟𝐹 ∈ P𝑘 (𝐹), (4.7b)

and, for all 𝑇 ∈ Tℎ, 𝑬𝑘−1
R,𝑇

𝒗
𝑇
∈ R

𝑘−1(𝑇) such that∫
𝑇

𝑬𝑘−1
R,𝑇

𝒗
𝑇
· curl𝒘𝑇 =

∫
𝑇

C0
𝑇𝒗𝑇 · 𝒘𝑇 −

∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝜸𝑘
t,𝐹𝑬curl,𝐹𝒗𝐹 · (𝒘𝑇 × 𝒏𝐹)

∀𝒘𝑇 ∈ G
c,𝑘 (𝑇), (4.7c)

with 𝑬curl,𝐹𝒗𝐹 ≔
(
𝑬𝑘−1

R,𝐹
𝒗
𝐹
, 𝝅c,𝑘

R,𝐹
𝜸0

t,𝐹𝒗𝐹 , (𝑣𝐸)𝐸∈E𝐹
)
.

The extension operator from 𝑿0
div,𝑘 to 𝑿𝑘

div,ℎ is such that, for all 𝒘
ℎ
∈ 𝑿0

div,ℎ,

𝑬div,ℎ𝒘ℎ
=
(
(𝑬𝑘−1

G,𝑇
𝒘
𝑇
, 𝝅c,𝑘

G,𝑇
𝑷0

div,𝑇𝒘𝑇
)𝑇∈Tℎ , (𝑤𝐹)𝐹∈Fℎ

)
, (4.8a)

where, for all 𝑇 ∈ Tℎ, 𝑬𝑘−1
G,𝑇

𝒘
𝑇
∈ G

𝑘−1(𝑇) such that∫
𝑇

𝑬𝑘−1
G,𝑇

𝒘
𝑇
· grad 𝑟𝑇 = −

∫
𝑇

𝐷0
𝑇𝒘𝑇

𝑟𝑇 +
∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝑤𝐹 𝑟𝑇 ∀𝑟𝑇 ∈ P𝑘 (𝑇). (4.8b)

The fact that the above-defined extensions are a cochain map requires a detailed proof, which we
provide in the following lemma.

Lemma 6 (Cochain map properties for the extensions). The extensions are cochain maps, that is:

𝐼0
grad,ℎ𝐶 = 𝐸grad,ℎ 𝐼

0
grad,ℎ𝐶 ∀𝐶 ∈ R, (4.9)

𝑮𝑘
ℎ
𝐸grad,ℎ𝑞ℎ

= 𝑬curl,ℎ𝑮
0
ℎ
𝑞
ℎ

∀𝑞
ℎ
∈ 𝑋0

grad,ℎ, (4.10)

𝑪𝑘
ℎ
𝑬curl,ℎ𝒗ℎ = 𝑬div,ℎ𝑪

0
ℎ
𝒗
ℎ

∀𝒗
ℎ
∈ 𝑿0

curl,ℎ, (4.11)

𝐷𝑘
ℎ𝑬div,ℎ𝒘ℎ

= 𝐷0
ℎ𝒘ℎ

∀𝒘
ℎ
∈ 𝑿0

div,ℎ . (4.12)

Proof. (i) Proof of (4.9). This amounts to checking that, for all P ∈ Tℎ∪Fℎ∪Eℎ, 𝐸 𝑘−1
P,P 𝐼

0
grad,P𝐶 = 𝜋𝑘−1

P,P𝐶
for all 𝐶 ∈ R, which is straightforward from the definition of the extension operators and the polynomial
consistency of the edge and face scalar traces.

(ii) Proof of (4.10). Let 𝑞
ℎ
∈ 𝑋0

grad,ℎ. Combining the definition (3.2) of 𝐺𝑘
𝐸

together with the definition
(4.6b) of 𝐸 𝑘−1

P,𝐸 immediately gives 𝐺𝑘
𝐸
𝐸grad,𝐸𝑞𝐸

= 𝐺0
𝐸
𝑞
𝐸

, which shows the equality of the edge
components on both sides of (4.10). Applying the definition (3.3) of G𝑘

𝐹 with 𝒗𝐹 ∈ R
c,𝑘 (𝐹) ⊂ P

𝑘 (𝐹)
and invoking the definition (4.6c) of 𝐸 𝑘−1

P,𝐹 with the same 𝒗𝐹 gives 𝝅c,𝑘
R,𝐹

G𝑘
𝐹𝐸grad,𝐹𝑞𝐹

= 𝝅c,𝑘
R,𝐹

G0
𝐹𝑞𝐹

=

𝝅c,𝑘
R,𝐹

𝜸0
t,𝐹𝑮

0
𝐹
𝑞
𝐹

, where the second equality comes from [14, Eq. (3.26)]. The same arguments, based
on (3.4), (4.6d) and [14, Eq. (4.29)], give 𝝅c,𝑘

R,𝑇
G𝑘
𝑇𝐸grad,𝑇𝑞𝑇

= 𝝅c,𝑘
R,𝑇

𝑷0
curl,𝑇𝑮

0
𝑇
𝑞
𝑇

. This establishes the
equality of the components in R

c,𝑘 (P), P ∈ Tℎ ∪ Fℎ, on either side of (4.10).
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We next show that, for all 𝐹 ∈ Fℎ,

𝝅𝑘−1
R,𝐹

G𝑘
𝐹𝐸grad,𝐹𝑞𝐹

= 𝑬𝑘−1
R,𝐹

𝑮0
𝐹
𝑞
𝐹
. (4.13)

Apply the definition (3.3) of G𝑘
𝐹 to 𝒗𝐹 = rot𝐹 𝑟𝐹 for some 𝑟𝐹 ∈ P𝑘 (𝐹) and use div𝐹 rot𝐹 = 0 together

with rot𝐹 𝑟𝐹 · 𝒏𝐹𝐸 = −(𝑟𝐹)′|𝐸 , the derivative being taken in the direction of 𝒕𝐸 (see [17, Eq. (4.20)]) to
write∫
𝐹

G𝑘
𝐹𝐸grad,𝐹𝑞𝐹

· rot𝐹 𝑟𝐹 = −
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝛾𝑘+1
𝐸 𝐸grad,𝐸𝑞𝐸

(𝑟𝐹)′|𝐸

= −
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝜋𝑘−1
P,𝐸 (𝛾

𝑘+1
𝐸 𝐸grad,𝐸𝑞𝐸

) (𝑟𝐹)′|𝐸

=
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝐺0
𝐸𝑞𝐸

𝑟𝐹 −
(((((((((((((((((((((∑︁
𝐸∈E𝐹

𝜔𝐹𝐸

(
𝑞𝑉2,𝐸𝑟𝐹 (𝒙𝑉2,𝐸 ) − 𝑞𝑉1,𝐸𝑟𝐹 (𝒙𝑉1,𝐸

)
,

where the introduction of the projector in the second line is justified by (𝑟𝐹)′|𝐸 ∈ P
𝑘−1(𝐸), and the third

line follows from 𝜋𝑘−1
P,𝐸 (𝛾

𝑘+1
𝐸

𝐸grad,𝐸𝑞𝐸
) = 𝐸 𝑘−1

P,𝐸𝑞𝐸 (by definition of 𝛾𝑘+1
𝐸

) and the definition (4.6b) of
𝐸 𝑘−1
P,𝐸 (we have added the index 𝐸 in the vertices to clearly show that they are related to each edge in the

sum); the final cancellation is obtained by noticing that each vertex of 𝐹 appears twice in the sum with
opposite orientations 𝜔𝐹𝐸 . We then apply the definition (4.7b) of 𝑬𝑘−1

R,𝐹
to 𝒗

𝐹
= 𝑮0

𝐹
𝑞
𝐹

together with
the complex property 𝐶0

𝐹
𝑮0

𝐹
= 0 to deduce∫

𝐹

G𝑘
𝐹𝐸grad,𝐹𝑞𝐹

· rot𝐹 𝑟𝐹 =

∫
𝐹

𝑬𝑘−1
R,𝐹

𝑮0
𝐹
𝑞
𝐹
· rot𝐹 𝑟𝐹 ,

which concludes the proof of (4.13). Together with the equality of the R
c,𝑘 (𝐹) components and the

edge components, this shows that

𝑮𝑘
𝐹
𝐸grad,𝐹𝑞𝐹

= 𝑬curl,𝐹𝑮
0
𝐹
𝑞
𝐹

∀𝐹 ∈ Fℎ . (4.14)

Let us now take 𝑇 ∈ Tℎ and let us prove the equality of the components in R
𝑘−1(𝑇) on either side

of (4.10), i.e.,
𝝅𝑘−1
R,𝑇

G𝑘
𝑇𝐸grad,𝑇𝑞𝑇

= 𝑬𝑘−1
R,𝑇

𝑮0
𝑇
𝑞
𝑇
. (4.15)

For all 𝒘𝑇 ∈ G
c,𝑘 (𝑇), using the link between element and face discrete gradients together with the

property 𝜸𝑘
t,𝐹𝑮

𝑘
𝐹
= G𝑘

𝐹 of the tangential trace (see [14, Proposition 1 and Eq. (3.26)]) we have∫
𝑇

G𝑘
𝑇𝐸grad,𝑇𝑞𝑇

· curl𝒘𝑇 = −
∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝜸𝑘
t,𝐹𝑮

𝑘
𝐹
𝐸grad,𝐹𝑞𝐹

· (𝒘𝑇 × 𝒏𝐹)

= −
∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝜸𝑘
t,𝐹𝑬curl,𝐹𝑮

0
𝐹
𝑞
𝐹
· (𝒘𝑇 × 𝒏𝐹)

=

∫
𝑇

𝑬𝑘−1
R,𝑇

𝑮0
𝑇
𝑞
𝑇
· curl𝒘𝑇 ,

where the second equality follows from (4.14), and the third one from the definition (4.7c) of 𝑬𝑘−1
R,𝑇

together with the complex property 𝑪0
𝑇
𝑮0

𝑇
= 0 (which implies C0

𝑇𝑮
0
𝑇
= 0 since 𝑷0

div,𝑇𝑪
0
𝑇
= C0

𝑇 by [14,
Eq. (4.30)]). This concludes the proof of (4.15).
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(iii) Proof of (4.11). Let 𝒗
ℎ
∈ 𝑿0

curl,ℎ and 𝐹 ∈ Fℎ. The definitions (3.6) of 𝐶𝑘
𝐹

and (4.7b) of 𝑬curl,𝐹
show that

𝐶𝑘
𝐹𝑬curl,𝐹𝒗𝐹 = 𝐶0

𝐹𝒗𝐹 , (4.16)

which proves the equality of the face components on either side of (4.11). Take now 𝑇 ∈ Tℎ and
consider the component on G

c,𝑘 (𝑇). Applying the definitions (3.7) of C𝑘
𝑇 and (4.7c) of 𝑬curl,𝑇 to a

generic 𝒘𝑇 ∈ G
c,𝑘 (𝑇) ⊂ P

𝑘 (𝑇) yields 𝝅c,𝑘
G,𝑇

C𝑘
𝑇𝑬curl,𝑇𝒗𝑇 = 𝝅c,𝑘

G,𝑇
C0
𝑇𝒗𝑇 = 𝝅c,𝑘

G,𝑇
𝑷0

div,𝑇𝑪
0
𝑇
𝒗
𝑇

, where the
second equality is obtained applying [14, Eq. (4.30)]. It remains to show the equality of the components
in G

𝑘−1(𝑇), i.e.,
𝝅𝑘−1
G,𝑇

C𝑘
𝑇𝑬curl,𝑇𝒗𝑇 = 𝑬𝑘−1

G,𝑇
𝑪0
𝑇
𝒗
𝑇
. (4.17)

We use the link between element and face discrete curls [14, Proposition 4] together with (4.16) to write,
for all 𝑟𝑇 ∈ P𝑘 (𝑇),∫

𝑇

C𝑘
𝑇𝑬curl,𝑇𝒗𝑇 · grad 𝑟𝑇 =

∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝐶𝑘
𝐹𝑬curl,𝐹𝒗𝐹𝑟𝑇 =

∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝐶0
𝐹𝒗𝐹𝑟𝑇 .

Invoking then the definition (4.8b) of 𝑬𝑘−1
G,𝑇

with 𝒘
𝑇
= 𝑪0

𝑇
𝒗
𝑇

and using the complex property 𝐷0
𝑇
𝑪0
𝑇
= 0,

we infer ∫
𝑇

C𝑘
𝑇𝑬curl,𝑇𝒗𝑇 · grad 𝑟𝑇 =

∫
𝑇

𝑬𝑘−1
G,𝑇

𝑪0
𝑇
𝒗
𝑇
· grad 𝑟𝑇 ,

which concludes the proof of (4.17).

(iv) Proof of (4.12). Let 𝒘
ℎ
∈ 𝑿0

div,ℎ. For all 𝑇 ∈ Tℎ, apply the definitions (3.9) of 𝐷𝑘
𝑇

and (4.8b) of
𝑬𝑘−1

G,𝑇
to get 𝐷𝑘

𝑇
𝑬div,𝑇𝒘𝑇

= 𝐷0
𝑇
𝒘
𝑇

.
□

4.3 Cohomology of the DDR(𝑘) complex

Proof of Theorem 1. The result for 𝑘 = 0 is proved in Lemma 4. To prove the statement for a generic
𝑘 ≥ 1, we establish an isomorphism in cohomology between DDR(𝑘) and DDR(0) through the reduction
and extension cochain maps defined in the previous section. To this end, we leverage [15]. We first
recall that, by the discussion in Section 4.2.1 and Lemma 6, both reductions and extensions are cochain
maps. It is also a simple matter to check that the reductions are left-inverses of the extensions, that is:

𝑅grad,ℎ𝐸grad,ℎ = Id𝑋0
grad,ℎ

, 𝑹curl,ℎ𝑬curl,ℎ = Id𝑿0
curl,ℎ

,

𝑹div,ℎ𝑬div,ℎ = Id𝑿0
div,ℎ

, 𝑖𝜋0
P,ℎ = IdP0 (Tℎ ) .

(4.18)

A consequence of this fact along with the cochain property of the reductions is that the bottom operators
in (4.2) are obtained from the top operators by composing the reduction and extensions (that is, 𝐼0

grad,ℎ =

𝑅grad,ℎ 𝐼
𝑘
grad,ℎ, 𝑮0

ℎ
= 𝑹curl,ℎ𝑮

𝑘
ℎ
𝐸grad,ℎ, 𝑪0

ℎ
= 𝑹div,ℎ𝑪

𝑘
ℎ
𝐸grad,ℎ and 𝐷0

ℎ
= 𝜋0

P,ℎ𝐷
𝑘
ℎ
𝑬div,ℎ). This proves

that we are indeed in the context of the blueprint presented in [15, Section 2]. Moreover, (4.18) and the
cochain properties of the extensions and reductions show that Assumptions (C1) and (C3) of Proposition
2 therein are satisfied. It therefore only remains to check the assumption (C2) of this proposition, that
is:

For all 𝑞
ℎ
∈ Ker𝑮𝑘

ℎ
, there exists 𝐶 ∈ R such that 𝐸grad,ℎ𝑅grad,ℎ𝑞ℎ

− 𝑞
ℎ
= 𝐼𝑘grad,ℎ𝐶, (4.19a)

For all 𝒗
ℎ
∈ Ker𝑪𝑘

ℎ
, there exists 𝑞

ℎ
∈ 𝑋 𝑘

grad,ℎ such that 𝑬curl,ℎ𝑹curl,ℎ𝒗ℎ − 𝒗ℎ = 𝑮𝑘
ℎ
𝑞
ℎ
, (4.19b)

For all 𝒘
ℎ
∈ Ker 𝐷𝑘

ℎ, there exists 𝒗
ℎ
∈ 𝑿𝑘

curl,ℎ such that 𝑬div,ℎ𝑹div,ℎ𝒘ℎ
− 𝒘

ℎ
= 𝑪𝑘

ℎ
𝒗
ℎ
. (4.19c)
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(i) Proof of (4.19a). SinceH 𝑘
0 is trivial, for all 𝑞

ℎ
∈ 𝑋 𝑘

grad,ℎ, 𝑮𝑘
ℎ
𝑞
ℎ
= 0 implies 𝑞

ℎ
= 𝐼𝑘grad,ℎ𝑄 for some

𝑄 ∈ R. Using this fact along with the cochain property of the extension and reduction, we infer that
𝐸grad,ℎ𝑅grad,ℎ𝑞ℎ

= 𝐸grad,ℎ 𝐼
0
grad,ℎ𝑄 = 𝐼𝑘grad,ℎ𝑄, and thus that 𝐸grad,ℎ𝑅grad,ℎ𝑞ℎ

− 𝑞
ℎ
= 𝐼𝑘grad,ℎ0. This

proves (4.19a).

(ii) Proof of (4.19b). We start by noticing that, since the reductions and extensions are cochain maps,
if 𝒗

ℎ
∈ 𝑿𝑘

curl,ℎ is such that 𝑪𝑘
ℎ
𝒗
ℎ
= 0 then

𝑪𝑘
ℎ
𝑬curl,ℎ𝑹curl,ℎ𝒗ℎ = 𝑬div,ℎ𝑪

0
ℎ
𝑹curl,ℎ𝒗ℎ = 𝑬div,ℎ𝑹div,ℎ𝑪

𝑘
ℎ
𝒗
ℎ
= 0.

Hence, 𝑬curl,ℎ𝑹curl,ℎ𝒗ℎ − 𝒗
ℎ
∈ Ker𝑪𝑘

ℎ
, and the exactness of the local DDR complex (see the proof of

[13, Theorem 2] applied to each element 𝑇 ∈ Tℎ, which is topologically trivial by assumption) implies,
for all 𝑇 ∈ Tℎ, the existence of 𝑞𝑇

𝑇
∈ 𝑋 𝑘

grad,𝑇 such that

𝒛
𝑇
≔ 𝑬curl,𝑇𝑹curl,𝑇𝒗𝑇 − 𝒗𝑇 = 𝑮𝑘

𝑇
𝑞𝑇
𝑇
. (4.20)

We then have to check that the the 𝑞𝑇
𝑇

, 𝑇 ∈ Tℎ, can be glued together to form an element of 𝑋 𝑘
grad,ℎ.

Let 𝑇 ∈ Tℎ and notice that, by definition of the reduction and extension operators, for all 𝐸 ∈ E𝑇 ,
𝐺𝑘

𝐸
𝑞𝑇
𝐸
= 𝑧𝐸 = 𝜋0

P,𝐸𝑣𝐸 − 𝑣𝐸 has a zero integral over 𝐸 . The definition (3.2) of 𝐺𝑘
𝐸

thus shows that 𝑞𝑇
𝑇

takes the same value at the vertices of 𝐸 and thus, since this holds for any edge of 𝑇 and the boundary
of 𝑇 is connected, this implies the existence of 𝐶𝑇 ∈ R such that 𝑞𝑇

𝑉
= 𝐶𝑇 for all 𝑉 ∈ V𝑇 . By the

substitution 𝑞𝑇
𝑇
← 𝑞𝑇

𝑇
− 𝐼𝑘grad,𝑇𝐶𝑇 (where 𝐼𝑘grad,𝑇 is the restriction to 𝑋 𝑘

grad,𝑇 of 𝐼𝑘grad,ℎ), which leaves
(4.20) unaltered since 𝑮𝑘

𝑇
𝐼𝑘grad,𝑇 = 0 by the complex property, we obtain local vectors 𝑞𝑇

𝑇
, 𝑇 ∈ Tℎ, that

vanish (hence match) at mesh vertices. We next notice that, for all 𝐸 ∈ Eℎ and any 𝑇 such that 𝐸 ∈ E𝑇 ,
using (4.20) along with the definition (3.2) of the edge gradient and the fact that the vertex values of 𝑞𝑇

𝑇
vanish, ∫

𝐸

𝑧𝐸 𝑟𝐸 =

∫
𝐸

𝐺𝑘
𝐸𝑞

𝑇

𝐸
𝑟𝐸 = −

∫
𝐸

𝑞𝑇𝐸𝑟
′
𝐸 ∀𝑟𝐸 ∈ P0,𝑘 (𝐸). (4.21)

The relation (4.21) implies that 𝑞𝑇
𝐸

is in fact independent of 𝑇 , and thus that there exists 𝑞𝐸 ∈ P𝑘−1(𝐸)
such that 𝑞𝑇

𝐸
= 𝑞𝐸 for all𝑇 ∈ Tℎ such that 𝐸 ∈ E𝑇 . We therefore set 𝑞

𝐸
≔ (𝑞𝐸 , (0)𝑉∈V𝐸

) for all 𝐸 ∈ Eℎ,
where we remind the reader thatV𝐸 collects the vertices of 𝐸 . Having proved the single-valuedness of
the 𝑞𝑇

𝑇
, 𝑇 ∈ Tℎ, on the mesh edge skeleton, we next notice that, for all 𝐹 ∈ Fℎ and all 𝑇 ∈ Tℎ such that

𝐹 ∈ F𝑇 , (4.20) followed by the definition (3.3) of G𝑘
𝐹 implies, for all 𝒘𝐹 ∈ R

c,𝑘 (𝐹),∫
𝐹

𝒛c
R,𝐹
· 𝒘𝐹 =

∫
𝐹

G𝑘
𝐹𝑞

𝑇

𝐹
· 𝒘𝐹 = −

∫
𝐹

𝑞𝑇𝐹 div𝐹 𝒘𝐹 +
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝛾𝑘+1
𝐸 𝑞

𝐸
(𝒘𝐹 · 𝒏𝐹𝐸),

which shows, since div𝐹 : Rc,𝑘 (𝐹) → P𝑘−1(𝐹) is an isomorphism, that 𝑞𝑇
𝐹

only depends on 𝒛c
R,𝐹

and
𝛾𝑘+1
𝐸

𝑞
𝐸

, quantities that are, in turn, independent of𝑇 . We therefore conclude that 𝑞𝑇
𝐹
= 𝑞𝐹 for all 𝐹 ∈ Fℎ

and all 𝑇 ∈ Tℎ having 𝐹 as a face. Setting 𝑞
ℎ
≔ ((𝑞𝑇

𝑇
)𝑇∈Tℎ , (𝑞𝐹)𝐹∈Fℎ , (𝑞𝐸)𝐸∈Eℎ , (0)𝑉∈Vℎ

) ∈ 𝑋 𝑘
grad,ℎ,

we then have 𝑞
𝑇
= 𝑞𝑇

𝑇
for all 𝑇 ∈ Tℎ; recalling (4.20), this concludes the proof of (4.19b).

(iii) Proof of (4.19c). Let 𝒘
ℎ
∈ 𝑿𝑘

div,ℎ be such that 𝐷𝑘
ℎ
𝒘

ℎ
= 0. Since the reductions and extensions

are cochain maps, as in Point (ii) above we have 𝐷𝑘
ℎ
𝑬div,ℎ𝑹div,ℎ𝒘ℎ

= 𝑖𝜋0
P,ℎ𝐷

𝑘
ℎ
𝒘

ℎ
= 0. Hence,

𝑬div,ℎ𝑹div,ℎ𝒘ℎ
− 𝒘

ℎ
∈ Ker 𝐷𝑘

ℎ
, and the exactness of the local DDR complex yields, for all 𝑇 ∈ Tℎ, the

existence of 𝒗𝑇
𝑇
∈ 𝑿𝑘

curl,𝑇 such that

𝒛
𝑇
≔ 𝑬div,𝑇𝑹div,𝑇𝒘𝑇

− 𝒘
𝑇
= 𝑪𝑘

𝑇
𝒗𝑇
𝑇
. (4.22)
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The above relation implies, accounting for the definitions of the reduction and extension operators,
𝜋0
P,𝐹𝐶

𝑘
𝐹
𝒗𝑇
𝑇
= 0 for all 𝐹 ∈ F𝑇 . By virtue of Proposition 7 below, we can assume that

∫
𝐸
𝑣𝑇
𝐸
= 0 for all

𝐸 ∈ E𝑇 without loss of generality. We additionally notice that, by the complex property of the local
DDR sequence, (4.22) holds up to the substitution 𝒗𝑇

𝑇
← 𝒗𝑇

𝑇
+ 𝑮𝑘

𝑇
𝑞𝑇
𝑇

with 𝑞𝑇
𝑇
∈ 𝑋 𝑘

grad,𝑇 .
We leverage these observations as described hereafter. Let 𝐸 ∈ Eℎ, denote by T𝐸 ⊂ Tℎ the set of

mesh elements sharing 𝐸 , and fix one 𝑇𝐸 ∈ T𝐸 . For all 𝑇 ∈ T𝐸 \ {𝑇𝐸}, we select 𝑞𝑇
𝐸
∈ 𝑋 𝑘

grad,𝐸 such
that 𝑞𝑇

𝑉
= 0 for all 𝑉 ∈ V𝐸 and 𝑣𝑇

𝐸
+ 𝐺𝑘

𝐸
𝑞𝑇
𝐸
= 𝑣

𝑇𝐸
𝐸

≕ 𝑣𝐸 (the existence of such 𝑞𝑇
𝐸

is guaranteed by the
conditions

∫
𝐸
(𝑣𝐸 − 𝑣𝑇𝐸) = 0).

Given a mesh element 𝑇 ∈ Tℎ, we use the vectors 𝑞𝑇
𝐸
= (𝑞𝑇

𝐸
, (0)𝑉∈V𝐸

), 𝐸 ∈ E𝑇 , constructed above
to form a vector (0, (𝑞𝑇

𝐹
)𝐹∈F𝑇 , (𝑞𝑇𝐸)𝐸∈E𝑇 , (0)𝑉∈V𝑇

) ∈ 𝑋 𝑘
grad,𝑇 with face components selected so as to

ensure that �̂�𝑇
𝑇
≔ 𝒗𝑇

𝑇
+ 𝑮𝑘

𝑇
𝑞𝑇
𝑇

can be glued together at faces shared by two different elements. Let
us describe this selection. By construction, the edge components of �̂�𝑇

𝑇
are independent of 𝑇 , hence

we denote them without the superscript “𝑇”. We moreover notice that, by (4.22) combined with the
definition (3.6) of the face curl, for all 𝐹 ∈ F𝑇 , �̂�𝑇

R,𝐹
= �̂�R,𝐹 with �̂�R,𝐹 ∈ R

𝑘−1(𝐹) such that∫
𝐹

�̂�R,𝐹 · rot 𝑟𝐹 =

∫
𝐹

𝑧𝐹 𝑟𝐹 +
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑣𝐸 𝑟𝐹 ∀𝑟𝐹 ∈ P𝑘 (𝐹).

The right-hand side of the above expression does not depend on 𝑇 , showing that, as announced, �̂�R,𝐹

is indeed single-valued (that is, it only depends on 𝐹 and not the elements to which 𝐹 belongs). For
any 𝐹 ∈ F𝑇 shared with an element 𝑇 ′ ∈ Tℎ, we then proceed as follows to select 𝑞𝐹 in order to ensure
that the face components in R

c,𝑘 (𝐹) are also single-valued: If 𝜔𝑇𝐹 = 1, we let 𝑞𝑇
𝐹

= 0, otherwise
we take 𝑞𝑇

𝐹
∈ P𝑘−1(𝐹) such that the components of �̂�𝑇

𝑇
= 𝒗𝑇

𝑇
+ 𝑮𝑘

𝑇
𝑞𝑇
𝑇

and �̂�𝑇
′

𝑇 ′ = 𝒗𝑇
′

𝑇 ′ + 𝑮
𝑘
𝑇 ′𝑞

𝑇 ′

𝑇 ′
(with

𝑞𝑇
′

𝑇 ′
= (0, (0)𝐹∈F𝑇′ , (𝑞𝑇

′
𝐸
)𝐸∈E𝑇′ , (0)𝑉∈V𝑇′ )) on R

c,𝑘 (𝐹) match, i.e., recalling the definition (3.3) of G𝑘
𝐹 ,∫

𝐹

𝑞𝑇𝐹 div 𝒚𝐹 =
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝛾𝑘+1
𝐸 (𝑞𝑇𝐸 − 𝑞

𝑇 ′

𝐸
) (𝒚𝐹 · 𝒏𝐹) +

∫
𝐹

(𝒗c,𝑇
R,𝐹
− 𝒗c,𝑇 ′

R,𝐹
) · 𝒚𝐹 ∀𝒚𝐹 ∈ R

c,𝑘 (𝐹).

This relation defines 𝑞𝑇
𝐹

uniquely since div : Rc,𝑘 (𝐹) → P𝑘−1(𝐹) is an isomorphism. This concludes
the construction of local vectors �̂�𝑇

𝑇
,𝑇 ∈ Tℎ, that can be glued at faces to form a global vector 𝒗

ℎ
∈ 𝑿𝑘

curl,ℎ
satisfying (4.19c). □

Proposition 7 (Elements of the local curl space with zero-average face curl). Let𝑇 ∈ Tℎ and 𝒗
𝑇
∈ 𝑿𝑘

curl,𝑇
be such that, for all 𝐹 ∈ F𝑇 with area |𝐹 |,

𝜋0
P,𝐹𝐶

𝑘
𝐹𝒗𝐹 = − 1

|𝐹 |
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝑣𝐸 = 0.

Then, there exists 𝒘
𝑇
∈ 𝑿𝑘

curl,𝑇 such that

𝜋0
P,𝐸𝑤𝐸 = 0 for all 𝐸 ∈ E𝑇 and 𝑪𝑘

𝑇
𝒘
𝑇
= 𝑪𝑘

𝑇
𝒗
𝑇
. (4.23)

Proof. Setting, for all 𝐸 ∈ E𝑇 , 𝑤𝐸 ≔ 𝑣𝐸 − 𝜋0
P,𝐸𝑣𝐸 ensures that the first condition in (4.23) is verified.

Recalling the definition (3.6) of the face curl, and noticing that we already have 𝜋0
P,𝐹𝐶

𝑘
𝐹
𝒘
𝐹

= 0,
enforcing 𝐶𝑘

𝐹
𝒘
𝐹
= 𝐶𝑘

𝐹
𝒗
𝐹

amounts to selecting 𝒘R,𝐹 ∈ R
𝑘−1(𝐹) such that∫

𝐹

𝒘R,𝐹 · rot𝐹 𝑟𝐹 =

∫
𝐹

𝒗R,𝐹 · rot𝐹 𝑟𝐹 −
∑︁

𝐸∈E𝐹
𝜔𝐹𝐸

∫
𝐸

𝜋0
P,𝐸𝑣𝐸 𝑟𝐹 ∀𝑟𝐹 ∈ P0,𝑘 (𝐹).
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Since rot𝐹 : P0,𝑘 (𝐹) → R
𝑘−1(𝐹) is an isomorphism, this condition defines, for all 𝐹 ∈ F𝑇 , a

unique value for 𝒘R,𝐹 . We then set 𝒘
𝐹
≔ (𝒘R,𝐹 , 0, (𝑤𝐸)𝐸∈E𝐹 ). The equality of face curls enforced

above implies, by the relation between face and element curls of [13, Proposition 4], that 𝝅𝑘−1
G,𝑇

C𝑘
𝑇𝒗𝑇 =

𝝅𝑘−1
G,𝑇

C𝑘
𝑇𝒘𝑇

. Finally, to enforce 𝝅c,𝑘
G,𝑇

C𝑘
𝑇𝒗𝑇 = 𝝅c,𝑘

G,𝑇
C𝑘
𝑇𝒘𝑇

, recalling the definition (3.7) of the element
curl, we select 𝒘R,𝑇 ∈ R

𝑘−1(𝑇) such that, for all 𝒛𝑇 ∈ G
c,𝑘 (𝑇),∫

𝑇

𝒘R,𝑇 · curl 𝒛𝑇 =

∫
𝑇

𝒗R,𝑇 · curl 𝒛𝑇 +
∑︁
𝐹∈F𝑇

𝜔𝑇𝐹

∫
𝐹

𝜸𝑘
t,𝐹 (𝒗𝐹 − 𝒘

𝐹
) · (𝒛𝑇 × 𝒏𝐹).

This relation defines 𝒘R,𝑇 uniquely since curl : Gc,𝑘 (𝑇) → R
𝑘−1(𝑇) is an isomorphism. The vector

𝒘
𝑇
= (𝒘R,𝑇 , 0, (𝒘R,𝐹 , 0)𝐹∈F𝑇 , (𝑤𝐸)𝐸∈E𝑇 ) constructed above then fulfils the second condition in (4.23),

thus concluding the proof. □

Remark 8 (Chain homotopy between the DDR(𝑘) and DDR(0) complexes). The proof of Theorem
1, can also be interpreted through the concept of chain homotopy. Specifically, it can be shown
that the reduction 𝑅•,ℎ is a chain equivalence with extension 𝐸•,ℎ as a chain-homotopy inverse for
• ∈ {grad, curl, div}. Since (4.18) already shows that 𝑅•,ℎ𝐸•,ℎ = Id𝑋𝑘

•,ℎ
, it is sufficient to find a chain

homotopy between 𝐸•,ℎ𝑅•,ℎ and Id𝑋𝑘
•,ℎ

, namely, mappings D𝑘
grad : 𝑋 𝑘

grad,ℎ → R, D𝑘
curl : 𝑿𝑘

curl,ℎ →
𝑋 𝑘

grad,ℎ, D𝑘
div : 𝑿𝑘

div,ℎ → 𝑿𝑘
curl,ℎ, DP𝑘 (Tℎ ) : P𝑘 (Tℎ) → 𝑿𝑘

div,ℎ such that

Id𝑋𝑘
grad,ℎ
− 𝐸grad,ℎ𝑅grad,ℎ = 𝐼𝑘grad,ℎD

𝑘
grad + D

𝑘
curl𝑮

𝑘
ℎ
, (4.24a)

Id𝑿 𝑘
curl,ℎ
− 𝑬curl,ℎ𝑹curl,ℎ = 𝑮𝑘

ℎ
D𝑘

curl + D
𝑘
div𝑪

𝑘
ℎ
, (4.24b)

Id𝑿 𝑘
div,ℎ
− 𝑬div,ℎ𝑹div,ℎ = 𝑪𝑘

ℎ
D𝑘

div + DP𝑘 (Tℎ )𝐷
𝑘
ℎ, (4.24c)

IdP𝑘 (Tℎ ) − 𝜋0
P,ℎ = 𝐷𝑘

ℎDP𝑘 (Tℎ ) . (4.24d)

The design of these mappings relies on two key points. First, the fields 𝑞
ℎ
∈ 𝑋 𝑘

grad,ℎ and 𝒗
ℎ
∈ 𝑿𝑘

curl,ℎ
constructed in Points (ii) and (iii) of the proof of Theorem 1, respectively, are unique if we impose
𝑅grad,ℎ𝑞ℎ

= 0 and 𝑹curl,ℎ𝒗ℎ = 0. Second, by setting Π•,ℎ ≔ Id𝑋𝑘
•,ℎ
−𝐸•,ℎ𝑅•,ℎ for • ∈ {grad, curl, div},

it can be shown that Π•,ℎ is a cochain map and that ImΠ•,ℎ = �̃�
𝑘

•,ℎ.
Remark 9 (Zero-reduction sub-complex). Let us define the zero-reduction subspaces of the DDR spaces
(3.1) (which are simply the kernels of the reductions):

�̃�
𝑘

•,ℎ ≔

{
𝑥
ℎ
∈ 𝑋 𝑘

•,ℎ : 𝑅•,ℎ𝑥ℎ = 0
}

for • ∈ {grad, curl, div}, and 𝑃𝑘
ℎ ≔

{
𝑟ℎ ∈ P𝑘 (Tℎ) : 𝜋0

P,ℎ𝑟ℎ = 0
}
.

It can then be checked that the zero-reduction subcomplex

0 �̃�
𝑘

grad,ℎ �̃�
𝑘

curl,ℎ �̃�
𝑘

div,ℎ 𝑃𝑘
ℎ

0,
𝐼𝑘grad,ℎ 𝑮𝑘

ℎ
𝑪𝑘

ℎ
𝐷𝑘

ℎ (4.25)

is well defined, and an equivalent formulation of (4.19) is that this subcomplex is exact, irrespective of
the topology of Ω. With a standard inclusion of the DDR(0) spaces into the DDR(𝑘) spaces, we have
𝑋 𝑘
•,ℎ = �̃�

𝑘

•,ℎ ⊕ 𝑋0
•,ℎ for • ∈ {grad, curl div} and P𝑘 (Tℎ) = 𝑃𝑘

ℎ
⊕ P0(Tℎ). Hence, the exactness of the

zero-reduction subcomplex is another way of seeing that the information on the topology of the domain
is completely encapsulated on the lowest-order portion of the DDR(𝑘) complex.
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5 Conclusion and perspectives
In this work, we establish that the discrete de Rham complex DDR(𝑘) and its serendipity version both
have the same cohomology as the continuous de Rham complex. The proof hinges on the usage of
reduction and extension cochain maps between the the DDR(𝑘) complex for 𝑘 ≥ 1 and the DDR(0)
complex, which is representative of the usual low-order cochain complex defined on the CW complex
of the mesh. This result represents an essential theoretical and practical step towards using the DDR
construction (and, more generally, high-order polytopal complexes) to discretise physical problems on
domains with non-trivial topologies.

On the theoretical side, one of the virtues of our result is that extension maps allow to extend
standard cohomology constructions of the low-order cochain complex to the high-order complex. As an
instance, the well-posedness of certain electromagnetic boundary value problems requires the usage of
so-called relative cohomology spaces. In this case, instead of trying to develop a relative cohomology
theory on the sequence DDR(𝑘), we can exploit extension maps to define such relative cohomology
spaces starting from those of DDR(0), where a standard de Rham isomorphism (relative, in this case)
with respect to the continuous de Rham complex can be readily established.

On the practical side, we note that the computation of cohomology spaces consists in finding the
quotient vector spaces (1.3). Obtaining bases of these quotient spaces requires the solution of expensive
linear algebra problems. The fundamental computational advantage of our construction is that we
provide an explicit way to find generators of the cohomology spaces of the DDR complex starting from
those of the CW complex associated with the mesh; for the latter, efficient graph-based algorithms exist;
see for instance [18].

Future work will explore the application of this result to obtain representations of the cohomology
spaces of the DDR complex, and the study of their analytical properties required for their usage in
schemes for relevant problems on non-trivial topologies.
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