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ABSTRACT

The X-IFU (X-ray Integral Field Unit) onboard the large ESA mission Athena (Advanced Telescope for High
ENergy Astrophysics), planned to be launched in the mid 2030s, will be a cryogenic X-ray imaging spectrometer
operating at 55 mK. It will provide unprecedented spatially resolved high-resolution spectroscopy (2.5 eV FWHM
up to 7 keV) in the 0.2-12 keV energy range thanks to its array of TES (Transition Edge Sensors) microcalorime-
ters of more than 2k pixel. The detection chain of the instrument is developed by an international collaboration:
the detector array by NASA /GSFC, the cold electronics by NIST, the cold amplifier by VI'T, the WFEE (Warm
Front-End Electronics) by APC, the DRE (Digital Readout Electronics) by IRAP and a focal plane assembly
by SRON. To assess the operation of the complete readout chain of the X-IFU, a 50 mK test bench based on
a kilo-pixel array of microcalorimeters from NASA/GSFC has been developed at IRAP in collaboration with
CNES. Validation of the test bench has been performed with an intermediate detection chain entirely from NIST
and Goddard. Next planned activities include the integration of DRE and WFEE prototypes in order to perform
an end-to-end demonstration of a complete X-IFU detection chain.
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1. INTRODUCTION

Athena (Advanced Telescope for High-Energy Astrophysics)® is the ESA second large mission of the Cosmic
Vision science program, dedicated to the study of the Hot and Energetic Universe. This mission will address
two fundamental questions: how baryonic matter assembles into the large-scale structures we see today and how
supermassive black holes grow and shape the observable Universe.

The 12 meter focal length telescope is scheduled for launch in the mid 2030’s, by the future Ariane 6 European
rocket, into a Lagrange point L1 orbit between the Sun and the Earth. The movable silicon pore optics (SPO)?
X-ray mirror will be able to focus photons on two different instruments situated at the focal plane:

e the Wide Field Imager (WFI)? optimised for surveys;

e the X-ray Integral Field Unit (X-IFU)* optimised for spatially resolved high resolution spectroscopy.
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The X-IFU is an imaging high-resolution spectrometer based on an array of 2376 transition-edge-sensor (TES)
microcalorimeters that are cooled to a bath temperature of 55 mK. The X-IFU TESs achieve energy resolution
better than 2.5eV for X-ray energies up to 7keV, which is more than a factor of 50 better than the energy
resolution of traditional solid-state X-ray imagers. It operates in the soft X-ray energy band, between 0.2 and
12keV, and the pixel size is 5” in a hexagonal field-of-view of 5’ equivalent diameter.®

The X-IFU is built under the responsibility of IRAP and CNES by a consortium of 11 European countries
plus USA and Japan. The instrument is currently at the end of its preliminary definition Phase (Phase B). In
this context, we need to assess the performance of the instrument, and in particular to validate the operation of
a complete prototype readout chain.

2. THE CNES/IRAP CRYOGENIC TEST BENCH: ELSA

To demonstrate the operation of the warm electronics blocs of the X-IFU readout chain with representative cold

electronics and microcalorimeters, a cryogenic test bench has been developed at IRAP in collaboration with
CNES, “Elsa” (Fig. 1).
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Figure 1. The CNES-IRAP 50 mK cryogenic test bench: Elsa

2.1 Commercial cryostat from Entropy GmbH

The Entropy GmbH (L-series) cryostat® is based on a double stage pulse tube refrigerator providing cooling
power at 50K and 3K, where a double stage Adiabatic Demagnetisation Refrigerator (ADR) is located, with
a gadolinium gallium garnet (GGG) stage at 500mK and an ferric aluminum alum (FAA) stage at 50 mK.
The thermometry of the cryostat is operated by an AVS 47-B resistance bridge, to control the different stages
temperature. An additional LakeShore 372 resistance bridge has been installed, dedicated to thermal regulation
of the FAA stage during experiments.

*https://www.entropy-cryogenics.com/
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2.2 Cold part of detection chain

A focal plane assembly from NIST and GSFC, called “snout”,% is attached to the 50 mK stage (Fig. 2). It is
based on a 1024-pixel TES array” from NASA/GSFC. Two columns of 32 pixels of this array are connected to
their associated cold readout electronics®? provided by NIST. Each pixel is read by a first stage Superconducting
Quantum Interference Device (SQUID). These SQUIDs, referred as MUX SQUIDs, can be turned on and off, or
addressed, via Flux Actuated Switches (FASs).

The Time-Division Multiplexing (TDM)!? allows to read sequentially each row of all columns simultaneously.
This snout allows us to perform a 2x32 multiplexing which is sufficient for a validation of the X-IFU baseline
readout electronics. The multiplexed signal of the first stage SQUIDs is amplified by an array of SQUIDs (SQUID
AMP), situated on a cold PCB electronics (3K card) attached to the 3K plate.

Because TES and SQUID devices are highly sensitive to magnetic field, the snout is enclosed in a niobium
shield, superconducting below 9K, that sets a very low uniform ambient magnetic field needed to run ground
experiments on TES microcalorimeters.!’ A field coil has been placed at the level of the TES array. It produces
a magnetic field perpendicular to the TES array, set to null the remaining field at the detectors level along this
direction.

32 x 32 TES array

2 x 32 FAS (Flux
Actuated Switches)

MUX SQUIDs

SQUID AMP

Figure 2. (Left) The snout is composed of a 1024 TES array with its associated cold readout electronics. (Right)
The snout is placed in the niobium shield and connected to the 50 mK stage. Superconducting looms insure the signals
connection to the 500 mK terminator card and then to the 3K cold electronics.

The characterisation of the thermal performances of the cryostat has been checked with the Goddard and
NIST cold detection chain installed:

- the temperature stability is around 5 uK rms, under optimisation;

- the hold time for one ADR recharge is 15h at 55 mK. It allows spectra with high enough counting statistics
to determine the resolution to a few times 0.01eV;

- the residual magnetic field at the focal plane level, inside the Nb shield, is around 1T when the cryostat
is enclosed in a p-metal shield during cooldown.

All these measurements are in good agreement with all values found during our cryostat full characterisation.'?



3. PERFORMANCES OF THE DETECTION CHAIN IN ELSA

In order to evaluate the performance of the 50 mK test bench cold detection chain, a warm readout chain also
provided by Goddard and NIST electronics is used as a starting point.

3.1 Goddard-NIST readout electronics

The “Tower”® (NIST), on top of the cryostat (Fig. 1 and 3 left), is connected to the 3K card through a vac-
uum feedthrough by a set of flexes thermalized at 50 K. It includes low-noise amplifiers for the TES signals,
provides TES and SQUIDs biases, and feedthrough for feedback signals and for row addressing signals from the
multiplexing electronics.

The TDM electronics!® (NASA/GSFC) (Fig. 1 and 3 right) is made of commercial-off-the-shelf (COTS)
electronic components. It is composed of the row electronics box which controls the row addressing by sending
the sequencing signals to the FAS, via HDMI cables to the Tower. The row electronics box is connected via BNC
cables to the column electronics box for clock synchronisation. The column electronics box de-multiplexes the
TES signals, for up to 2 columns, and sends back the flux-locked loop (FLL) signals that allows the first stage
SQUIDs to stay in a linear zone of their response.

TDM Column box

Figure 3. (Left) The Tower on top of the Elsa cryostat. SMB cards are labeled, and those cards allows to connect 8
columns. On the picture only one row is connected to TDM column box: SA out stands for output signal, SA fb for
SQUID AMP flux bias and SQ1 fb for MUX SQUID feedback. 8 HDMI cables are connected to TDM row box for row
sequencing on all columns simultaneously. (Right) The TDM readout electronics composed of the row box on top of the
column box. The link between the two boxes are made with 2 BNC cables for clock synchronisation. The TDM column
box has only one channel connected (A) on the picture but could allow 2 columns TDM acquisition.

3.2 EMI/EMC reduction analysis

In order to perform a functional validation of the X-IFU instrument prototype warm readout chain, a satisfactory
value of 3eV or better FWHM energy resolution at 5.9 keV for a multiplexed acquisition has been chosen. Opti-
misation of the signal to noise ratio is performed through a careful EMI (Electro-Magnetic Interference)/EMC
(Electro-Magnetic Compatibility) analysis and control implementation:

1. As done on NIST and GSFC systems, a strict grounding scheme was implemented on the 50 mK test bench:
(a) All measurement electronics and cryostat control electronics are grounded through a single large
copper braid;

(b) A metal cable path tray is installed between the cryostat structure and the measurement electronic
rack.



2. An isolation transformer allows to isolate the measurement electronics from any power supply disturbance.
3. High-Frequency filtering is implemented at cryostat feedthroughs:

(a) The magnet power-supply is filtered with Shaffner Single-stage Filter FN2410/FN2412;

(b) LEMO plugs for thermometry are filtered with 560 pF capacitor EEseal filters performing a low-pass
filter around 100 kHz.

Ground loops have been removed from the system, such as those created by the cable of the pressure gauge
or the shielding of the field coil cable. These paths are removed permanently or just disconnected during
experimentation. Further improvements are ongoing.

3.3 Optical path alignment and filtering

In order to characterise our end-to-end present detection and readout electronics, a radioactive ®*Fe source is
placed in front of the down looking cryostat on-axis X-ray window. It emits X-ray photons in the Mn Ka complex
at 5.9keV. A remote controlled filter wheel selects a specific absorber (various Mylar and Al films) to obtain a
typical count rate of 1 photon/pixel/sec.

The optical path, allowing X-ray photons to reach the focal plane assembly inside the cryostat, is composed
of a series of apertures at the bottom of each thermal shield. To block visible and infrared photons, each aperture
has been filtered:

- the Nb shield aperture filter is a 25 um Al foil;
- both 3K and 50 K aperture filters are aluminized mylar foils (6 gm mylar coated with 200 nm Al);

- the 300 K window, sustaining the differential pressure between vacuum and atmospheric pressure, is a Luxel
“LEX-HT” window providing a good X-ray transmission between 0.2 and 12keV.

The alignment of the TES array center, the cryostat optical apertures, and the **Fe source, has been checked.
The deviation from the cryostat mechanical axis was determined to be smaller than 1 mm for all optical items,
excluding all possible vignetting.

3.4 Test bench performance first validation

We present here the first validation of the full NASA/GSFC and NIST detection chain as implemented in the
50mK test bench, after performing the EMI/EMC optimisation detailed above. A dedicated integration (more
than 6 hours) on a 1x8 pixels TDM subset setup allowed to detect at least 20.000 photons per pixel. Due to
some false pulse triggers and multiple-pulse rejections, the number of final records were rather around 12.000
photons per pixel.

In order to retrieve the photon energy thanks to pulse records, we apply optimal filtering technique'* using
the NASA /GSFC X-ray data processing software, that implements all the protocols and algorithms needed. This
analysis includes several processes such as the correction of the drift of the energy baseline during acquisition,
the lag-phase correction and gain calibration. Spectra of the Mn Ka complex were finally generated to assess
the end-to-end energy resolution:

- a 2.8eV FWHM energy resolution has been measured for a single given channel read in TDM (Fig. 5);

- a 3.1eV FWHM energy resolution has been measured for the combined 8 TDM multiplexed pixels of one
column (1x8) (Fig. 4).
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Figure 4. Mn-Ka complex spectrum on 1x8 multiplexed pixels after 6 hours of acquisition, processed with Goddard
software.
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Figure 5. Same complex spectrum of Fig. 4, during the same acquisition, but for a single given pixel.

These results have to be compared to the performance of this detection chain in a GSFC cryostat: 2.1eV for
a single channel and 2.6V for a 2x32 TDM acquisition.'® We assume that the difference might be due to still
specific lines close to the sampling rate of our TDM frequency, visible on power spectrum density of our output
baseline, together with the thermal stability of our system. We are presently performing tests to quantify the
effect of bath temperatures variations on the energy resolution. We also observed that 2 of our 8 pixels have
relatively lower resolution than others (3.4 and 3.5eV). We suppose that these might have reduced the overall



energy resolution and caused those “oscillations” on residuals in Fig. 4.

However, the energy resolution in the IRAP-CNES test bench is very close to the 3eV requirement in TDM
for our demonstrations, and further EMI/EMC actions, as well as investigations to improve out thermal stability
are in progress. This demonstrates the validation of the 50 mK IRAP-CNES Elsa test bench for performing the
end-to-end demonstration of the X-IFU prototype warm readout electronics.

4. X-IFU PROTOTYPE WARM READOUT CHAIN VALIDATION

The X-IFU baseline readout chain warm electronics is composed of:
- the WFEE (Warm Front-End Electronics) is developed by APC;!6
- the DRE (Digital Readout Electronics) is developed by IRAP.'7

The purpose of the ELSA test bench is to perform a functional validation of the X-IFU baseline warm
readout electronics in an end-to-end detection chain including microcalorimeters and a representative cold readout
electronics. In order to perform this demonstration, prototypes of the WFEE and DRE will replace step-by-step
the corresponding Goddard and NIST electronics previously used to validate the performance of the 50 mK test
bench.

Figure 6. (Left) Part of demonstration model of the Warm Front-End Electronics (WFEE). Each block are SMB
connectors for signal output as well as TES bias, MUX SQUID bias and feedback and AMP SQUID flux bias inputs, for
two channels (or columns). Those 4 blocks permits to perform 8 column TDM. (Right) Digital Readout Electronics Row
Addressing and Synchronisation (DRE RAS) prototype module. There are 5 HDMI outputs (J1 to j5) for differential
readout that will be used with WFEE. 5 other HDMI output (J6 to J10) are used in the actual single-ended readout
electronics, allowing to test until 17 pixels in a column.

The replacement of the Goddard TDM row electronics box by the prototype DRE Row Addressing and
Synchronisation module (Fig. 6 right) is ongoing. First tests validate the compatibility between the RAS and
the actual TDM Column box and Tower. Characteristic combined V-¢ curves of the MUX SQUID and AMP
SQUID, as well as X-ray photon pulses, have been measured using the DRE RAS prototype module, implementing
the sequencing of a 1x8 multiplexed acquisition.

The replacement of the TDM column box by a prototype DRE DEMUX (demultiplexing) model is planned
next year, after replacement of the NIST tower electronics by a demonstration model of the WFEE (Fig. 6 left).
The WFFE and DRE electronics being differential electronics, the present single-ended 3 K amplifying electronics
and 3 K-300 K flexes will be upgraded using a differential electronics design.

All present analysis on the 50 mK test bench are performed with a software suite from NASA/GSFC based
on Igor Pro from Wavemetrics' (Fig. 4). A software framework is developed by CNES: XIFUFWK. Based on

Thttps://www.wavemetrics.com/
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the open-source Python language, XIFUFWK is designed to analyse data from the future X-IFU instrument.
XIFUFWK is currently under validation on the 50 mK test bench, using the NASA /GSFC software suite results
in parallel.

5. CONCLUSION

We have performed a successful validation of a 50 mK test bench to be used for the demonstration of the warm
readout segment of the detection chain of the Athena/X-IFU. We measured a 3.1 eV energy resolution at 5.9keV
for a 1x8 multiplexing scheme using the warm readout from NASA/GSFC and NIST. Thermal stability and
EMI/EMC planned further optimisations give us a reasonable insurance that our 3 eV energy goal resolution
will be met. The X-IFU warm readout chain demonstration has started with a first flight compatible designed
prototype for one component, the DRE RAS. Demonstration of the complete warm electronics segment can now
be considered and planned with confidence.
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