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Abstract5

In this paper, we consider nonlocal nonlinear renewal equation (Markov chain, Ordinary differential6

equation and Partial Differential Equation). We show that the General Relative Entropy [29] can be7

extend to nonlinear problems and under some assumptions on the nonlinearity we prove the convergence8

of the solution to its steady state as time tends to infinity.9
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Introduction1

In [29], authors introduce the General Relative Entropy (GRE) which gives a natural Lyapunov structure2

in linear evolution equation from the linear ordinary differential equations to the linear partial differential3

equations (and for stochastic processes [43] with Relative Entropy).4

From Malthus to McKendrick - VonFoerster like equations Under assumptions of homogeneity,5

size and unlimited resource, a population at time t that has a size n(t) will evolve as follow6

∂

∂t
n(t) = (B −D)n(t), i.e., L : g 7→ (B −D)g, (1)

where B is a birth rate and D a death rate. It is well known that the solution to (1) is given by n(0)e(B−D)t.

Considering that the population has different birth rates and death rates with respect to their age, therefore,

a population at time t and age k of size n(t, k) (with k ∈ [0, N ]) will evolve as follow

∂

∂t


n(t, 0)

n(t, 1)
...

n(t,N)

 = M


n(t, 0)

n(t,N)
...

n(t, k)

 , i.e., L : g 7→Mg,

where M is a Leslie-Usher matrix. We known (see [16]) that,

n(t) ∼ Cst.eλtN,

where λ = supµ∈Sp(M)Re(µ) and N is a positive eigenvector associated to the eigenvalue λ (Perron Frobe-

nius). When the class age has an infinitesimal length, we obtain McKendrick VonFoerster type of equations

[34, 32]

∂

∂t
n(t, a) = − ∂

∂a
n(t, a)− d(t, a)n(t, a) + δ0

∫
b(t, a′)n(t, a′)da′,

i.e., L : g 7→ − ∂

∂a
g − d(t, .)g + δ0

∫
b(t, a′)g(a′)da′,

where b is a birth rate and d a death rate. The transport term − ∂
∂a correspond to the aging of the population.

Here again, it is well known that n behaves as

n(t, .) ∼ Cst.eλtN(.),

where λ = supµ∈Sp(L)Re(µ) and N is a positive eigenfunction associated to the eigenvalue λ. More generally,

for a size structured population [34, 29], where n satisfies

∂

∂t
n(t, x) = − ∂

∂a
n(t, x)− d(t, x)n(t, x)−

∫
y>x

b(x, y)n(t, y)dy + b(t, x)n(t, x),

i.e., L : g 7→ − ∂

∂a
g − d(t, .)g −

∫
y>x

b(x, y)g(y)dy + b(t, .)g,
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with b the division rate and d the death rate, we have proved the same behavior in long time asymptotic.

And finally, when appears some randomness in the measure of the age (size or more generally trait), we have

a diffusion terms

∂

∂t
n(t, a) = − ∂

∂a
n(t, a) + C

∂2

∂a2
n(t, a)− d(t, a)n(t, a) + δ0

∫
b(t, a′)n(t, a′)da′,

i.e., L : g 7→ − ∂

∂a
g + C

∂2

∂a2
g − d(t, .)g + δ0

∫
b(t, a′)g(t, a′)da′,

and we prove a similar result on the asymptotic behavior [1]. More generally, this results seems to hold for1

positive semigroups.2

Positive Semigroups and “Perron Frobenius” results. The existence, of the eigenelements : (λ,N),3

is well known for irreducible positive matrix (Perron Frobenius), strongly positive and compact operators4

(Krein Rutmann). It is a general result on positive semigroups [13, 33] and we just recall that5

Definition 0.1. A strongly continuous semigroup (T (t))t≥0 on a Banach lattice X is called positive if

0 ≤ f ∈ X implies 0 ≤ T (t)f ∀t ≥ 0.

Theorem 0.1. Let (T (t))t≥0 be an irreducible, positive, strongly continuous semigroup with generator A on6

the Banach lattice X and assume that sup{Re λ : λ ∈ Spectrum of A} = 01. If 0 is a pole of the resolvent7

R(., A), then the following properties hold.8

• Ker(A) = Fixed Point (T (t))t = lin{N}, for some positive function N ∈ X.9

• Ker(A∗) = Fixed Point (T ′(t))t = lin{φ} (where A∗ is the dual operator), for some positive function10

φ ∈ X∗.11

We refer to [33] for more precise results.12

General Relative Entropy results. The GRE gives a natural Lyapunov structure in an evolution equa-13

tion such as14

∂

∂t
n = Ln, n(t = 0, .) = n0(.). (2)

More precisely, for f = ne−λt

N with LN = λN and L∗φ = λφ2 strictly positive eigenelement associated to15

the eigenvalue λ = sup{Re λ : λ ∈ Spectrum of L} and for all H regular, positive and convex, we have that16

d

dt
H(f) = DLH(f), (3)

where H(f) = 〈H(f)N,φ〉 and, by direct computation,17

DLH(f) =
〈
H ′(f)L

(
fN
)
−H ′(f)fL

(
N
)

+H(f)L
(
N
)
− L

(
H(f)N

)
, φ
〉
, (4)

1True up to a translation of the spectrum by changing A to A− cstId
2L∗ is the dual operator
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where 〈u, v〉 is the duality bracket between a Banach space and its dual. The dissipation can be rewritten,1

for convenience, as2

DLH(f) =
〈
L
((
H ′(f(x)(f(.)− f(x)) +H(f(x))−H(f(.))

)
N(.)

)
(x), φ(x)

〉
. (5)

Therefore, we have the conservation law (H = Id)3

〈fN, φ〉 = 〈fN, φ〉(t = 0), (6)

and for H positive and convex and L a positive operator, we have that4

d

dt
H(f) = DLH(f) ≤ 0. (7)

Using a LaSalle principle, we see that the ω−limit set of n belongs to the kernel of the entropy dissipation5

Ker(DLH) =
{
f : DLH(f) = 0

}
, (8)

and, under some assumptions on the kernel of DLH (irreducibility), we prove that f →t→∞ Constant, i.e.,6

n(t, .) ∼ Cst.eλtN(.). (9)

We notice that the dissipation term is linear with respect to L, this means that

L =
∑
k

akLk ⇒ DLH =
∑
k

akD
L
H .

The formalism of the General Relative Entropy (GRE) (see [8, 15, 23, 29, 34, 35, 36, 26, 31, 42]) is an7

interesting tool to study semigroup of evolution equations (see [16, 17, 44, 7, 33, 14, 13, 46]). In particular,8

in linear renewal equations as in the McKendrick-VonFoerster (see [6, 29, 15]) the GRE has shown its easy9

computability and powerful results to study asymptotic behavior of solution to evolution equation.10

Example of operators and their entropy dissipation. For instance, for the following operators (with11

H convex)12

• Linear system of Ordinary Differential Equations : L = (aij)i,j is a matrix of transitions states (positive

except on its diagonal) and n represents the states vector (see Leslie-Usher population matrix), then

DLH(f) = −
∑
i,j

aijNjφi
[
H ′(fi)(fj − fi) +H(fi)−H(fj)

]
≤ 0.

• Differentiation : L∂f = f ′ corresponds to a transport (term) equation and DL
∂

H (f) = 0 means that the13

“transport” operator gives no information on the dynamic of an evolution equation.14

• Multiplication by r : LMultf = rf corresponds, for instance, to a death term in a population evolution15

equation and DL
Mult

H (f) = 0 means that the multiplication operator gives no information on the16

dynamic of an evolution equation.17
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• Diffusion : LDifff = Df ′′ and DL
Diff

H (f) = −
〈
DH ′′(f)(f ′)2N,φ

〉
≤ 0. The Kernel Ker(L

Diff

H ) of1

the dissipation is the set {f ∈ X : f |Supp DN= Cst} 6= ∅ if the support of D is not empty.2

• Integral : (for instance in the Chapmann Kolmogorrov equation) : LIntf =
∫
K(., y)f(y)dν(y) corre-

sponds to a mix states term and

DL
Int

H (f) = −
〈∫

K(x, y)((H ′(f(x))(f(y)− f(x)) +H(f(x))−H(f(y)))N(y))dν(y), φ(x)
〉
≤ 0.

In this case, we need that K mixes enough the variables x and y (irreducibility) to have a “useful”3

Kernel.4

• Birth Term : LBirthf = δ0
∫
fdν and

DL
Birth

H (f) = −
〈∫

B(y)((H ′(f(0))(f(y)− f(0)) +H(f(0))−H(f(y)))N(y))dν(y), φ(0)
〉
≤ 0.

• and so on, by computation · · ·5

The aim of this work is to extend this result to nonlinear evolution equation6

d

dt
n = L(〈n, ψ〉)n. (10)

where ψ can be seen as a distribution function of ressources and 〈n, ψ〉 corresponds to the resources con-

sumption by the population (see [34, 7, 9, 5, 11, 10, 12]). We show in section 1 (proves are given in section

4) that we can decompose the entropy dissipation in two terms

d

dt
Entropy(n) = −Entropy DissipationL(n) + Entropy IncreaseL(n),

where the Entropy DissipationL(n) contains the linear part and the +Entropy IncreaseL(n) contains the7

linear part of the dynamic. In section 2, we study theoretically three examples of application : Markov8

chains, an Ordinary Differential equation and a Partial Differential Equation. Finally we conclude in section9

3.10

1 Entropy calculus and decomposition of its variation11

Let B a Banach space. For L nonlinear operator : L : n ∈ B 7→ L(〈n, ψ〉)n ∈ B, with ψ ∈ B∗, such that, for12

any fixed n13

L〈n,ψ〉 : m 7→ L(〈n, ψ〉)m, is a linear and compact operator (11)

which satisfies14 
∀z ∈ R+ ∃C(z) ∈ R s.t. L(z) + C(z)Id is strongly positive,

supSp(L(0)) > 0 and supSp(L(∞)) < 0,

z ∈ R+ 7→ L(z) continuous.

(12)

Assumptions (11)-(12) imply, by Krein Rutmman theorem [22], that for all M ∈ B, there exists (NM ,ΦM )15

solution to L(〈M,ψ〉)NM = λMNM and L∗(〈M,ψ〉)φM = λMφM . Moreover, compactness condition and16
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condition on the spectrum in 0 and ∞ implies that there exists a fixed point to M 7→ NM and λM = 0, i.e.1

L(〈N,ψ〉)N = 0 (and L(〈N,ψ〉)∗φ = 0). We define the linear operator at the equilibrium2

Leq := L(〈N,ψ〉), (13)

where N satisfies L(〈N,ψ〉)N = 0. We let3

H(g) := 〈H(g)N,φ〉. (14)

Definition 1.1. We define the variation of L around its equilibrium N ,4

∀g, |∆Lg| := −
L(〈N,ψ〉+ 〈gN, ψ〉)− L(〈N,ψ〉)

〈gN, ψ〉
. (15)

Moreover, we define the following entropy dissipation

DLinearH (g) := 〈Leq
(
u(x, y)

)
, φ(x)〉,

(EH)L±(g) := ±〈|∆Lg|(N(g + 1))(x)〈(g(s)H ′(g(x)))∓N(s), ψ(s)〉, φ〉, 3

and

NDNon linear
H (g) := −〈|∆Lg|(N(g + 1))(x)〈u(x, y), ψ(y)〉, φ(x)〉,

where u(x, y) :=
(
H ′(g(x))(g(y)− g(x)) +H(g(x))−H(g(y))

)
N(y).5

Theorem 1.1. (Entropy Calculus). Let H ∈ C1(R,R+), convex and H(0) = 0. Then we have6

d

dt
H(f − 1) = DLinearH (f − 1) + (EH)L−(f − 1) + (EH)L+(f − 1). (16)

Now, assuming that, for all g, |∆Lg| is a positive operator, then we have that7

d

dt
H(f − 1) = DLH(f − 1) ≤ DLinearH (f − 1) +NDNonlinearH (f − 1). (17)

Corollary 1.1. (boundedness and Convergence). Assuming there exists C > 0 so that8

∃Cst ∈ R, ∀−1 ≤ g ≤ C + 1, |∆Lg|(N
g + 1

C
) ≤ inf

u>0

1

2
(Leq + CstId)

( u

〈u, ψ〉

)
(18)

then n0 ≤ CN implies that for all t ≥ 0, n(t, .) ≤ CN(.). Moreover, if n0 ≤ CN and9

∃Cst ∈ R, ∀−1 ≤ g ≤ C, |∆Lg|(N(g + 1)) ≤ inf
u>0

(Leq + CstId)
( u

〈u, ψ〉

)
(19)

then g(t, .)→ 0 as t→∞, i.e., n(t, .)→t→∞ N .410

Proves of theorem 1.1 and corollary 1.1 are given in section 4. To show the usefulness of the methods we11

apply it to different type of evolution system.12

3We recall that x+ =

 x, if x > 0,

0, if x ≤ 0
and x− =

 −x, if x < 0,

0, if x ≥ 0
.

4We notice that conditions (18) and (19) are directly satisfy for a linear problem, i.e. |∆Lg | = 0.
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2 Examples of application1

This section is subdivided in three paragraph where we give examples of application of the GRE method2

: a discrete time evolution equation (Markov Chain), in paragraph 2.1, a continuous in time and discrete3

in “space” (Ordinary Differential Equation), in paragraph 2.2 and finally a Partial Differential Equation in4

paragraph 2.3.5

2.1 Discrete Time evolution equation : application to non homogeneous Markov6

chains7

Let g a probability vector on Rn, ψ ∈ Rn+ so that 〈1, ψ〉 = 1 and assume that L(〈g, ψ〉) is a square n × n8

positive and irreducible matrix. We have, using Perron Frobenius theorem, that L(〈g, ψ〉) admit a strictly9

positive eigenvector associated to the spectral radius of L(〈g, ψ〉). Moreover, if L(〈g, ψ〉) is stochastic then10

the spectral radius is 1 and we know that φ = (1, 1, ..., 1) is an eigenvector of L(〈g, ψ〉)′ associated to 1, i.e.11

L(〈g, ψ〉)φ = φ (see [3, 19]). Then, we can construct a, non homogeneous, Markov chain,12

πk+1 = πkL(〈πk, ψ〉), k ∈ N, (20)

where π0 is a given probability vector. Then, by induction, for all k, πk is a probability vector, i.e.,13

〈πk, 1〉 = 〈π̄, 1〉 = 1. (21)

Moreover, assuming that g 7→ L(〈π̄, ψ〉) is continuous, we have by compactness, existence of π̄ solution to14

the stationary equation.15

π̄ = π̄L(〈π̄, ψ〉). (22)

Then, we have the following result16

Proposition 2.1. If the variation of the transition matrix

∆L =
π̄(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄〈(πkπ̄ − 1)π̄, ψ〉

satisfies17

(inf 1/π̄ − 1)(supψ/π̄ + 1) sup
h>0, 〈h,1〉

〈h∆Lπ̄, 1〉 ≤ inf
h>0, 〈h,1〉

〈h(
π̄L(〈π̄, ψ〉)

π̄
)π̄, 1〉, (23)

and18

〈((gπ̄L(〈π̄, ψ〉)
π̄

)′ − g)2(
π̄L(〈π̄, ψ〉)

π̄
)π̄, 1〉 = 0⇐⇒ g = Cst = (1, · · · , 1). (24)

Then, we have that

πk →k→∞ π̄.

Proof. We define

Entropy := 〈(π
k

π̄
− 1)2π̄, 1〉,

and its variations by

DL2 := 〈(π
k+1

π̄
− 1)2π̄, 1〉 − 〈(π

k

π̄
− 1)2π̄, 1〉.

7



Using (20), (21) and (22), we have that1

〈((
πk

π̄ π̄L(〈π̄, ψ〉)
π̄

)′ − πk

π̄
)2(

π̄L(〈π̄, ψ〉)
π̄

)π̄, 1〉

= 〈(π
k

π̄
)2(

π̄L(〈π̄, ψ〉)
π̄

)π̄, 1〉 − 〈(
πk

π̄ π̄L(〈π̄, ψ〉)
π̄

)2(
π̄L(〈π̄, ψ〉)

π̄
)π̄, 1〉

= 〈(π
k

π̄
)2π̄, 1〉 − 〈(

πk

π̄ π̄L(〈π̄, ψ〉)
π̄

)2π̄, 1〉.

Moreover, we can separate the nonlinear part and the linear part of the variation of the entropy, noticing

that

DL2 := 〈(π
kL(〈πk, ψ〉)

π̄
− 1)2π̄, 1〉 − 〈(π

k

π̄
− 1)2π̄, 1〉,

and so we have that

DL2 := 〈(π
k(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄
)(
πk(L(〈πk, ψ〉) + L(〈π̄, ψ〉))

π̄
− 2)π̄, 1〉

+ 〈(
πk

π̄ π̄L(〈π̄, ψ〉)
π̄

− 1)2π̄, 1〉 − 〈(π
k

π̄
− 1)2π̄, 1〉

= 〈(π
k(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄
)(
πk(L(〈πk, ψ〉) + L(〈π̄, ψ〉))

π̄
− 2)π̄, 1〉

− 〈((
πk

π̄ π̄L(〈π̄, ψ〉)
π̄

)′ − πk

π̄
)2(

π̄L(〈π̄, ψ〉)
π̄

)π̄, 1〉.

Now, we focus on the nonlinear part that satisfies the following inequality

|〈(π
k(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄
)(
πk(L(〈πk, ψ〉) + L(〈π̄, ψ〉))

π̄
− 2)π̄, 1〉|

≤ 2(inf 1/π̄ − 1)〈〈(π
k

π̄

′

− 1′)(
πk

π̄
− 1)∆Lπ̄, 1〉, ψ′〉

≤ (inf 1/π̄ − 1)[〈(π
k

π̄

′

− 1′)2, π̄′
ψ′

π̄′
〉〈1|∆L|π̄, 1〉+ 〈(π

k

π̄
− 1)2|∆L|π̄, 1〉].

Using assumptions (23) and (24), we have the result.2

Remark 2.1. Markov chains : Assuming that L is a square n× n positive and irreducible matrix, we have,

using Perron Frobenius theorem, that L (resp. L′ =t L) admit a strictly positive eigenvector associated

to the spectral radius of L. Moreover, if L is stochastic then the spectral radius is 1 and we know that

φ = (1, 1, ..., 1) is an eigenvector of L′ associated to 1 and π̄ can be normalized to be a probability vector. Let

Ci :=
{
j : aij > 0

}
, and we define the equivalence relation ∼ by

Ci ∼ Cj ⇔ ∃i0 = i, i1, i2, ..., ir = j : Cik
⋂
Ck+1 6= ∅, ∀k ∈ [0, r − 1].

We note Ω∼ := {1, 2, 3, ..., n}/ ∼ the quotient space states. Therefore, the aperiodic condition of convergence

of Markov chains (see [3, 19]), can be seen as follows :

]Ω∼ = 1⇒ lim
k→∞

πk = π∞.

8



2.2 A time continuous and discrete state : application for an age structured1

model2

In this section, we are interested in the time evolution of a specie which is state structured. More precisely,3

let X(t) = (xi(t))
N
i=1, at time t, a real vector in RN+ , where xi(t) corresponds to the number of individuals4

at state i at time t, which follows the main evolution equation5

d

dt
X(t) = LX(t), ∀t ≥ 0. (25)

For example, in a discrete age structured model, we use a Leslie like matrix (see for discrete time application6

of the Leslie matrix [2, 45, 39])7

L =



b1(t)− d1 − p1 b2(t) b3(t) · · · bn(t)

p1 −d2 − p2 0 · · · 0

0 p2 −d3 − p3 0 · · ·

· · · · · · · · · · · · · · ·

0 · · · 0 pn−1 −dn


, (26)

to modelize the aging with (pi)i, the death with (di)i and the birth process with (bi)i > 0. The linear8

evolution is classical and we only focus on the nonlinear problem : since resources are limited, the birth rate9

is depending on the number of individuals which use these resources, i.e., we have that10

bi(t) = big(w(t)), (27)

where

w(t) =
∑
i

αiXi(t),

represents the total consumption of resource, assuming that individual of age i consume αi > 0 resources11

and g the decay of birth rate due to the lack of resources [39].12

Proposition 2.2. Assuming that g is a decreasing C1 function which satisfies,13

−g′(ζ)

g−1
(

p1+d1
b1+

∑
j≥2 bj

∏j
k=2

pk−1
pk+dk

)
p1+d1

b1+
∑
j≥2 bj

∏j
k=2

pk−1
pk+dk

≤ 1

2(C + 1)

inf(bi)i inf(αj)j
sup(bj)j sup(αj)j

, ∀ζ ∈ [0, C
∑
i

αiNi] (28)

and X(0) ≤ CN (C > 1) where N is the stationary solution, i.e., solution to the following equation

b1(
∑
i αiNi)− d1 − p1 b2(

∑
i αiNi) b3(

∑
i αiNi) · · · bn(

∑
i αiNi)

p1 −d2 − p2 0 · · · 0

0 p2 −d3 − p3 0 · · ·

· · · · · · · · · · · · · · ·

0 · · · 0 pn−1 −dn


N = 0.

Then we have that X(t)→t→∞ N .14

9



Proof. We have that1

|∆Lg| = −



b1(w(t))−b̄1
w(t)−w̄ · · · bn(w(t))−b̄n

w(t)−w̄

0 · · · 0

0 0 · · ·

· · · · · · · · ·

0 · · · 0


= −g′(ζ)



b1 · · · bn

0 · · · 0

0 0 · · ·

· · · · · · · · ·

0 · · · 0


, (29)

for ζ ∈ [min(w̄, w(t)),max(w̄, w(t))]. Moreover, a direct computation gives that2

|∆Lg|(N(g + 1)) = −g′(ζ)



∑
i biNi(gi + 1)

0
...

0


≤ −g′(ζ)(C + 1)

sup(bj)j
inf(αj)j

g−1
( p1 + d1

b1 +
∑
j≥2 bj

∏j
k=2

pk−1

pk+dk

)
, ∀g ∈ [−1, C],

and

(Leq + CstId)
( u

〈u, ψ〉

)
=



∑
i b̄iui + (Cst− d1 − p1)u1

p1u1 + (Cst− d2 − p2)u2

p2u2 + (Cst− d3 − p3)u3

...

pn−1un−1 + (Cst− dn)un


∑
j αjuj

≥



∑
i b̄iui∑
j αjuj

0

0
...

0


≥ inf(b̄i)i

sup(αj)j
=

inf(bi)i
sup(αj)j

p1 + d1

b1 +
∑
j≥2 bj

∏j
k=2

pk−1

pk+dk

.

Therefore, assumption (19)-(18) are satisfied as (28) is verified.3

2.3 Partial Differential equation : application to Renewal equation with diffu-4

sive effect on the age5

Renewal equation appears in mathematical biology to study the evolution of population structured in age6

(see [7, 44, 16, 17, 34, 25]). The density n(t, x) at time t and age x follows the main equation (transport7

equation with loss due to a death term d and diffusion in age). According to the biologists, the matter of8

which sites are active on various chromosomes determines the true age of a biological entity [4]. This true9

age is a multidimensional variable and can be determined by time since birth. We are mainly concerned10

about the population and not on the individuals, hence we assume that average aging in the population is11

measured from time since birth (renewal). Because of lots of sources of variation in the vector valued age12

10



of individuals, the population as a whole diffuse in population age variable. We are interested to study the1

dynamics of the following renewal equation with diffusion.2 

nt(t, x) + nx(t, x) + d(x, S(t, x))n(t, x) = Cnxx(t, x), t > 0, x > 0,

n(t, 0)− Cnx(t, 0) =

∫ ∞
0

B(x, S(t, x))n(t, x)dx, t > 0,

n(0, .) = n0(.), n0 ∈ L1(R+) ∩ L2(R+),

(30)

where 1/S(t, x) represents resource allocated to individuals of trait x at time t,3

S(t, x) =

∫ ∞
0

β(x, y)n(t, y)dy, ∀t, x. (31)

Equation (30) with C = 0 is popularly known as McKendrick–Von Foerster (MV) equation (see [7, 41]).4

There are several mathematicians who worked on the stability estimates and longtime behavior of the MV5

equation ([7, 17, 44] and the references therein) or MV - like (see [18, 21] for instance). In [37, 40] the6

authors have discussed the existence and uniqueness of a weak solution and have also proved the linear7

stability around the nontrivial steady state of the nonlinear renewal equation. The linear version of equation8

(30) with C = 1 has been studied in [1]. Touaoula et. al., proved the existence and uniqueness of a weak9

solution. They have used Poincaré Writinger’s type inequality to prove the exponential decay of the solution10

for large times to a steady state. In [30], Michel et. al., considered the nonlinearity in the boundary term11

in equation (30) and proved the convergence of the solution towards the steady state problem. In [20],12

Kakumani et. al., proved the existence and uniqueness of a weak solution with S(t) =
∫
ψ(y)n(t, y)dy and13

they have also proved the longtime behavior is some particular cases. We will prove that n converge to N14

solution to the corresponding steady state equation (of (30))15 

N ′(x) + d(x, S̄(x))N(x) = CN ′′(x), x > 0,

N(0)− CN ′(0) =

∫ ∞
0

B(x, S̄(x))N(x)dx,∫ ∞
0

N(x)dx <∞, S̄(x) =

∫ ∞
0

β(x, y)N(y)dy.

(32)

Moreover, we will need the solution to the adjoint equation, i.e. φ solution to16 

−φ′(x) + d(x, S̄(x))φ(x) = Cφ′′(x) + φ(0)B(x, S̄(x)), x > 0,

φ′(0) = 0,∫ ∞
0

φ(x)N(x)dx = 1.

(33)

Main results Throughout this section, we assume that the functions d,B, β are nonnegative and contin-17

uous. Further we assume that there exists L > 0 such that for all x, S1, S2 we have18

|B(x, S1)−B(x, S2)| ≤ L|S1 − S2|, |d(x, S1)− d(x, S2)| ≤ L|S1 − S2|, (34)
19

∂

∂S
d(., .) > 0,

∂

∂S
B(., .) < 0, (35)

11



1

0 < Bm ≤ B(., .) ≤ BM , 0 < dm ≤ d(., .) ≤ dM , 0 ≤ β ≤ βM (36)

where Bm, BM , dm, dM , βM are positive constants.2

3

Proposition 2.3. Assume (34)–(36), then there is a unique weak solution4

n ∈ C
(
R+;L1(R+)

)
∩ L2

loc(R+;W 1,2(R+)) solving (30) - (31). Moreover, assuming (35) and5

k ≤ β ≤ k, 0 < k ≤ k <∞. (37)

6

S2 7→ B(x, S2) is strictly decreasing and S1 7→ d(x, S1) is strictly increasing on [α, β], α < β (38)

and7

B(x, 0)− d(x, 0) > 0 B(x,∞)− d(x,∞) < 0 (39)

are satisfied then there exists a solution to (32)-(33).8

Since, in this work, we focus on the convergence of n to N , we give the proof of existence and uniqueness9

in annex 4. Now, we give assumptions which leads to the convergence of n, solution to (30) - (31), to N10

solution to (32).11

Proposition 2.4. Assuming that n(0, .) < KN(.) for K > 0 and12

(Cbound)


sup
S,S̄

∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣N(x)

(K + 2)

K
<

1

2
inf
u>0

∫
B(y, S̄)u(y)dy∫
β(x, y)u(y)dy

,

sup
S,S̄

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣ <∞, (40)

then for all t > 0, n(t, .) ≤ KN(.). Moreover, if we assume that13

(C1)


2

∫ ∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣β(x, y)Ndx < B(y, S̄)N(y)/K,∫ ∞

s

∫ s

0

|x− y|β(x, y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣dν(x) < CN(s)φ(s)/K,

(41)

or14

(C2)



∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣[4∫ β(x, y)dy

]
< B(x, S̄)N(x)/K,∫ ∞

s

∫ s

0

|x− y|β(x, y)dy
[
4φ(0)

∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣N +

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣Nφ(x)

]
dx

< CN(s)φ(s)/K,

(42)

is satisfied, then n(t, .)→t→∞ N , i.e.
∫∞

0
(f(t)− 1)2dν → 0.

15
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proof of proposition 2.4. We recall that we denote g = f − 1. The assumption (40) is the translation1

of assumption (18) to the problem (30) therefore the result holds (we notice that supS,S̄
∣∣d(x,S)−d(x,S̄)

S−S̄

∣∣ <∞2

implies te existence of Cst in assumption (18). First we decompose the variation of the entropy in a negative3

and positive part in lemma 2.1. Then we show that under assumptions (40) and ((41) or(42)), the negative4

part (which forces the convergence) wins against the positive part (which creates oscillations).5

Lemma 2.1. Let n,N, φ be solution to equation (30), (32) and (33) respectively, f = n/N and dν(x) =6

N(x)φ(x)dx. Let the entropy defined as follows H(f(t)) :=
∫∞

0
(f(t)− 1)2dν. Then we have7

d

dt
H(f(t)) = [Ddiff

2 (f) +Dren
2 (f) + E−2 (f)]︸ ︷︷ ︸
≤0

+E+
2 (f)︸ ︷︷ ︸
≥0

,

where the entropy dissipation due to diffusion and the renewal terms are8

Ddiff
2 (f) = −2C

∫ ∞
0

( ∂
∂x
f(t, x)

)2

dν(x),

9

Dren
2 (f) = −φ(0)

∫ ∞
0

{(
f(t, x)− 1

)2

−
(
f(t, 0)− 1

)2

− 2
(
f(t, 0)

)[
f(t, x)− f(t, 0)

]}
B(x, S̄)N(x)dx,

E−2 (f) = −φ(0)

∫ ∞
0

[
2
(
f(t, 0)− 1

)(
B(x, S)−B(x, S̄)

)]
−
fNdx

− 2

∫ ∞
0

[
(f(t, x)− 1)

[
d(x, S)− d(x, S̄)

]
f(t, x)

]
+
dν(x),

and the positive terms due to non linearities is given by

E+
2 (f) = 2φ(0)

∫ ∞
0

[(
f(t, 0)− 1

)(
B(x, S)−B(x, S̄)

)]
+
fNdx

+

∫ ∞
0

[
2(f(t, x)− 1)

[
d(x, S)− d(x, S̄)

]
f(t, x)

]
−
dν(x).

The proof of this lemma is a direct computation (application of theorem 1.1). Now, we prove the10

proposition.11

Proof. of proposition. Using that B (resp. d) increases (resp. decreases) with respect to S, we notice that[(
f(t, 0)− 1

)(
B(x, S)−B(x, S̄)

)]
+

=
[
− |B(x, S)−B(x, S̄)

S − S̄
|(S − S̄)

(
g(t, 0)

)]
+

=
[
|B(x, S)−B(x, S̄)

S − S̄
|(S − S̄)

(
g(t, 0)

)]
−
,

and [
2(f(t, x)− 1)

[
d(x, S)− d(x, S̄)

]]
−

=
[
2g(t, x)(S − S̄)|d(x, S)− d(x, S̄)

S − S̄
|
]
−
.

Thus, we have that,

E+
2 (f) = 2φ(0)

∫ ∞
0

[(
f(t, 0)− 1

)(
B(x, S)−B(x, S̄)

)]
+
fNdx

+

∫ ∞
0

[
2(f(t, x)− 1)

[
d(x, S)− d(x, S̄)

]
f(t, x)

]
−
dν(x) =

2φ(0)

∫ ∞
0

|B(x, S)−B(x, S̄)

S − S̄
|
[
(S − S̄)

(
g(t, 0)

)]
−
fNdx

+

∫ ∞
0

|d(x, S)− d(x, S̄)

S − S̄
|
[
2g(t, x)(S − S̄)

]
−
dν(x).

13



Since, for all a, b ∈ R, we have that5 : (ab)− ≤ (a− b)2, then, using Jensen inequality, we obtain that

(∫
β(x, y)g(t, y)g(t, x)dy

)
−

∫
β(x, y′)dy′∫
β(x, y′)dy′

≤
(
g(t, x)−

∫
g(t, y)

β(x, y)∫
β(x, y′)dy′

dy
)2
∫
β(x, y′)dy′

≤
∫

(g(t, x)− g(t, y))2β(x, y)dy, (43)

with g = f − 1. Therefore, we have that∫ ∞
0

∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣( ∫ β(x, y)g(t, y)g(t, 0)dy

)
−
fNdx

≤ 2

∫∫ ∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣β(x, y)

(
g(t, x)− g(t, 0)

)2

fNdxdy

+ 2

∫∫ ∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣β(x, y)

(
g(t, x)− g(t, y)

)2

fNdxdy, (44)

and∫ ∞
0

∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣( ∫ β(x, y)g(t, y)g(t, 0)dy

)
−
fNdx

≤
∫∫ ∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣β(x, y)

(
g(t, y)− g(t, 0)

)2

fNdxdy. (45)

Moreover, using (43), we find that∫ ∞
0

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣( ∫ β(x, y)g(t, y)g(t, x)dy

)
−
f(t, x)dν(x)

≤
∫∫ ∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)(g(t, x)− g(t, y))2β(x, y)dydν(x).

Since, g(t, x)− g(t, y) =
∫ x
y

∂
∂sg(t, s)ds, we have that (Poincare inequality)

∫ ∞
0

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣( ∫ β(x, y)g(t, y)g(t, x)dy

)
−
f(t, x)dν(x)

≤
∫ ( ∂

∂s
g(t, s)

)2[ ∫ s

0

∫ ∞
s

|x− y|β(x, y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)dν(x)

]
ds,

and, using Fubini Tonelli theorem, we have that∫ ∞
0

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣( ∫ β(x, y)g(t, y)g(t, x)dy

)
−
f(t, x)dν(x)

≤
∫ ( ∂

∂s
g(t, s)

)2[ ∫ ∞
s

∫ s

0

|x− y|β(x, y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)dν(x)

]
ds. (46)

Moreover, we find that∫∫ ∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)(g(t, x)− g(t, y))2β(x, y)dydν(x)

≤ 2

∫
(g(t, x)− g(t, 0))2

[ ∫ ∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)β(x, y)dy

]
dν(x)

+ 2

∫
(g(t, x)− g(t, 0))2

∫ ∣∣d(y, S)− d(y, S̄)

S − S̄
∣∣f(t, y)β(y, x)dν(y)

]
dx. (47)

5(ab)− ≤ (a− b)2, if sgn(ab) > 0 and (ab)− ≤ (a− b)2 − (|a|2 + |b|2) ≤ (a− b)2, if sgn(ab) ≤ 0.
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Then, using (45)-(46), we find that

E+
2 (g) ≤ φ(0)

∫ (
g(t, y)− g(t, 0)

)2[
2

∫ ∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣β(x, y)fNdx

]
dy

+ 2

∫∫ ∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)(g(t, x)− g(t, y))2β(x, y)dydν(x),

or, using (45)-(47), we find that

E+
2 (g) ≤ φ(0)

∫ (
g(t, y)− g(t, 0)

)2[
2

∫ ∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣β(x, y)fNdx

]
dy

+

∫ ( ∂
∂s
g(t, s)

)2[
2

∫ ∞
s

∫ s

0

|x− y|β(x, y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)dν(x)

]
ds,

or, using (44)-(47), we find that

E+
2 (g) ≤ φ(0)

∫ (
g(t, x)− g(t, 0)

)2∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣[4 ∫ β(x, y)dy

]
fNdx

+

∫ ( ∂
∂s
g(t, s)

)2[
4φ(0)

∫ ∞
s

∫ s

0

|x− y|β(x, y)dy
∣∣B(x, S)−B(x, S̄)

S − S̄
∣∣fNdx]ds

+

∫ ( ∂
∂s
g(t, s)

)2[
2

∫ ∞
s

∫ s

0

|x− y|β(x, y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)dν(x)

]
ds.

Since, we have that,1

Dren
2 (g) = −φ(0)

∫ ∞
0

(
g(t, y)− g(t, 0)

)2

B(y, S̄)N(y)dy,

Ddiff
2 (g) = −2C

∫ ∞
0

( ∂
∂s
g(t, s)

)2

dν(s),

both conditions (41) and (42) leads to the decay of the entropy and, so, to the convergence of f to 1 as2

t→∞.3

3 Conclusion4

We show in this paper that the GRE is a powerful method to study the dynamic of solutions of evolution5

equations (from positive semigroups) which appears in biology (where population stays positive). We prove6

that the study of the kernel of the entropy dissipation is the key to study the dynamic. We see that the7

variation of the entropy can be decomposed in a negative part which participates to the convergence to the8

equilibrium (containing the linear part around the equilibrium) and the positive part which participates to9

the oscillations (coming form the nonlinear part of the evolution equation). The difficulties (and so the10

assumptions that would be find), to prove the convergence, come from the comparison between these two11

effects : oscillation versus back to the equilibrium. We do not claim that assumptions we gives here are12

optimal but are sufficient to obtain the convergence in each models. It could be interesting to study optimal13

assumption in order to have the convergence and so to compare more accurately L2 norms which appear in14

the GRE computation.15

15



4 Annex1

4.1 Proof of th. 1.12

Proof. Using the main equation (10), we have that

d

dt
n = L(〈N,ψ〉)n+

L(〈n, ψ〉)− L(〈N,ψ〉)
〈n, ψ〉 − 〈N,ψ〉

n〈(n−N), ψ〉.

Now, noticing that (L(〈N,ψ〉)N) = 0, we have that

d

dt
nN−1 =

[
L(〈N,ψ〉)n+

L(〈n, ψ〉)− L(〈N,ψ〉)
〈n, ψ〉 − 〈N,ψ〉

n〈(n−N), ψ〉
]
N−1 − (L(〈N,ψ〉)N)nN−1N−1.

Let H̃ : z 7→ H(z − 1) a C1, function, we find that

d

dt
H̃(nN−1) = H̃ ′(nN−1)

[[
L(〈N,ψ〉)n+

L(〈n, ψ〉)− L(〈N,ψ〉)
〈n, ψ〉 − 〈N,ψ〉

n〈(n−N), ψ〉
]
N−1 − (L(〈N,ψ〉)N)nN−2

]
.

Then, we have directly that

d

dt
〈H̃(nN−1)N,φ〉 = 〈H̃ ′(nN−1)

[[
L(〈N,ψ〉)n+

L(〈n, ψ〉)− L(〈N,ψ〉)
〈n, ψ〉 − 〈N,ψ〉

n〈(n−N), ψ〉
]
N−1

− (L(〈N,ψ〉)N)nN−2
]
N,φ〉 − 〈H̃(nN−1)N,L(〈N,ψ〉)∗φ〉+ 〈H̃(nN−1)L(〈N,ψ〉)N,φ〉,

and replacing nN−1 by f we find that

d

dt
〈H̃(f)N,φ〉 = 〈H̃ ′(f)

[
L(〈N,ψ〉)(fN)− (L(〈N,ψ〉)N)f

]
, φ〉 − 〈H̃(f)N,L(〈N,ψ〉)∗φ〉

+ 〈H̃(f)L(〈N,ψ〉)N,φ〉+ 〈H̃ ′(f)
L(〈fN,ψ〉)− L(〈N,ψ〉)

〈(f − 1)N,ψ〉
(Nf)〈(f − 1)N,ψ〉, φ〉,

and finally we obtain that

d

dt
〈H̃(f)N,φ〉 = 〈L(〈N,ψ〉)

((
H̃ ′(f(x))(f(y)− f(x)) + H̃(f(x))− H̃(f(y))

)
N(y)

)
, φ(x)〉

+ 〈H̃ ′(f)
L(〈fN,ψ〉)− L(〈N,ψ〉)

〈(f − 1)N,ψ〉
(Nf)〈(f − 1)N,ψ〉, φ〉.

with 〈H̃ ′(f)L(〈fN,ψ〉)−L(〈N,ψ〉)
〈(f−1)N,ψ〉 (Nf)〈(f − 1)N,ψ〉, φ〉 = (EH)L+(f − 1) + (EH)L−(f − 1). This proves that

d
dtH(f − 1) = DLH(f − 1) = DLinearH (f − 1) + (EH)L−(f − 1) + (EH)L+(f − 1). Since H is convex, positive and

H(0) = 0 we have directly that

(H ′(f(x))f(s))+ ≤ H ′(f(x))f(s) +−H(0) +H(f(x))−H ′(f(x))f(x)︸ ︷︷ ︸
≤0

−H(f(s))︸ ︷︷ ︸
≤0

=
(
H ′(f(x))(f(s)− f(x)) +H(f(x))−H(f(s))

)
,

and so (EH)L+(g) ≤ NDNon linear
H (g).3

4.2 Proof of corollary 1.14

Proof. Let C > 0 and H : x 7→ ((x− C)+)2, then, we have directly that(
2(g(x)− C)+(g(y)− g(x)) + ((g(x)− C)+)2 − ((g(y)− C)+)2

)
= −

(
(g(x)− C)+ − (g(y)− C)+

)2 − 2(g(x)− C)+(g(y)− C)−,
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and (g(s)H ′(g(x)))− = 2(g(x)− C)+g(s)−. Therefore, we find that

DLinearH (g) := 〈Leq
((
H ′(g(x))(g(y)− g(x)) +H(g(x))−H(g(y))

)
N(y)

)
, φ(x)〉

= −〈Leq
((

(g(x)− C)+ − (g(y)− C)+

)2
N(y)

)
, φ(x)〉

− 2〈Leq
(

(g(y)− C)−N(y)
)

(g(x)− C)+, φ(x)〉,

and

(EH)L+(g) := 〈|∆Lg|(N(g + 1))(x)〈(g(s)H ′(g(x)))−N(s), ψ(s)〉, φ〉

= 2〈|∆Lg|(N(g + 1))(x)(g(x)− C)+, φ〉〈(g(s)−N(s), ψ(s)〉.

Since g ≥ −1, we have that (g(y)− C)− ≥ Cg−(y),therefore, we obtain the following inequality,

C〈g(s)−N(s), ψ(s)〉 ≤ 〈(g(y)− C)−N(s), ψ(s)〉

and so we find that (EH)L+(g) ≤ 2〈|∆Lg|(N (g+1)
C )(x)(g(x)−C)+, φ〉〈(g(s)−C)−N(s), ψ(s)〉. Under assump-

tion (18), we have that 〈|∆Lg|(N 2(g+1)
C )(x), (g(x)− C)+φ〉 ≤ 〈

Leq

(
(g(y)−C)−N(y)

)
〈(g(s)−C)−N(s),ψ(s)〉 , (g(x)− C)+φ(x)〉. Now,

we assume that g(t = 0, .) < C and we let

T ∗ = sup
t>0
{g(s, .) ≤ C, ∀s ∈ [0, t[}.

Assuming that T ∗ <∞, then in a neighborhood of T ∗ : ]T ∗ − µ, T ∗ + µ[, 0 ≤ (g − C)+ ≤ ε ≤ 1 and so

d

dt
〈(g(x)− C)2

+N,φ〉 ≤ −〈|∆Lg|(N
(g + 1)

C
)(x), (g(x)− C)+φ〉 ≤ 0, ∀t ∈ [0, T ∗ + µ[,

which means that g(t, .) ≤ C, for all t ∈ [0, T ∗ + µ[ (absurd) and so we have that T ∗ =∞.

For the convergence result, it suffices to notice that under assumption (19), we have that

DLinearH (f − 1) +NDNonlinearH (f − 1) ≤ 0,

and so, using the inequality (17) we have the decay of the entropy and the convergence to the equilibrium1

f = 1 (Lasalle principle).2

4.3 Proof of prop. 2.33

In this section, we prove existence and uniqueness result of solution to (30)–(31), (32) and (33). We use4

the same definition of weak solution and follow the similar arguments which are used in [20] to prove the5

existence and uniqueness result to (30)–(31). We start with the following a priori estimate of n.6

Lemma 4.1. Assume that S(.) ∈ L∞loc(R+ × R+), then there exists a unique weak solution7

n ∈ C
(
R+;L1(R+)

)
∩ L2

loc(R+;W 1,2(R+)) which solves (30). Moreover, we have n ≥ 0, and8 ∫ ∞
0

|n(t, x)|dx ≤ e||(B−d)+||∞t
∫ ∞

0

|n0(x)|dx. (48)
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Theorem 4.1. Assume (34)− (36), then there is a unique weak solution

n ∈ C
(
R+;L1(R+)

)
∩ L2

loc(R+;W 1,2(R+))

solving (30).1

Proof’s of Lemma (4.1) and Theorem (4.1) goes in similar lines that are given in [20]. So we omit the proofs.2

3

Now we prove the existence and uniqueness of (32) and (33). First we observe that for a given S, we have4

to consider the associated eigenvalue problem of (32) and (33).5

6

Before we prove Proposition 2.3, we prove some lemmas which are helpful. We notice that for a given S̄7

there exists (λS̄ , NS̄ , φS̄) solution to the eigenproblem (see [1],[24] for details),8 

∂xNS̄ = C∆NS̄ − d(x, S̄)NS̄ − λS̄NS̄ ,

NS̄(0)− CN ′
S̄

(0) =

∫
B(x, S̄)NS̄(x)dx, NS̄ ∈W 1,2(R+),

−∂xφS̄ = C∆φS̄ − d(x, S̄)φS + φS̄(0)B(x, S̄)− λS̄φS̄ , φS̄ ∈W 1,2(R+),

φ′
S̄

(0) = 0 and

∫
φS̄NS̄(x)dx = 1.

(49)

Lemma 4.2. Assume (35) then we have9

∂

∂S̄
λS̄ = −

∫ ( ∂

∂S̄
d
)
NS̄φS̄dx+ φS̄(0)

∫ ( ∂

∂S̄
B
)
NS̄dx < 0. (50)

Proof. The proof goes in similar lines that are given in [27, 28]. Therefore we skip the proof.10

Lemma 4.3. Assume (35), λ0 > 0, λ∞ < 0 and (37) then there exists a solution to (32).11

Proof. Using that λ0 > 0, λ∞ < 0 and the decay (50), we have the existence of Γ decreasing regular function12

defined on [0, S̄∗[ (with S̄∗ ∈ [0,∞]) so that {S̄ : λS̄ = 0} = {(S̄,Γ(S̄)) : S̄ ∈ R+} ⊂ R2
+ (1-dimension13

manifold).14

15

Remark 4.1. It is easy to check that the Proposition 2.3 is an immediate consequence of Lemma 4.3. Notice16

that using (39), we have λ0 > 0, λ∞ < 0 are satisfied.17

Uniqueness of U : Let U solution of the eigenproblem given by the Proposition 2.3 and V an another

positive solution to

V ′ + d(x,

∫
V ψ)V = CV ′′, V (0)− V ′(0) =

∫
B(x,

∫
V ψ)V (x)dx

with
∫
V ψ 6=

∫
Uψ. Then there exists V̄ , φ̄, λ̄ solution to the eigenproblem

V̄ ′ + d(x,

∫
V ψ)V̄ = CV̄ ′′ − λ̄V̄ , V̄ (0)− V̄ ′(0) =

∫
B(x,

∫
V ψ)V̄ (x)dx

−φ̄′ + d(x,

∫
V ψ)φ̄ = Cφ̄′′ − λ̄φ̄+B(x,

∫
V ψ)φ(0), φ̄′(0) = 0

with λ̄ 6= 0 (since ∂
∂SλS < 0). Therefore by integration, we have λ̄

∫
V φ̄ = 0 and hence V = 0.18

18
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