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GRE methods for nonlinear model of evolution equation and limited ressource environment

Introduction

In [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF], authors introduce the General Relative Entropy (GRE) which gives a natural Lyapunov structure in linear evolution equation from the linear ordinary differential equations to the linear partial differential equations (and for stochastic processes [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF] with Relative Entropy).

From Malthus to McKendrick -VonFoerster like equations Under assumptions of homogeneity, size and unlimited resource, a population at time t that has a size n(t) will evolve as follow

∂ ∂t n(t) = (B -D)n(t), i.e., L : g → (B -D)g, (1) 
where B is a birth rate and D a death rate. It is well known that the solution to (1) is given by n(0)e (B-D)t .

Considering that the population has different birth rates and death rates with respect to their age, therefore, a population at time t and age k of size n(t, k) (with k ∈ [0, N ]) will evolve as follow

∂ ∂t         n(t, 0) n(t, 1) . . . n(t, N )         = M         n(t, 0) n(t, N ) . . . n(t, k)         , i.e., L : g → M g,
where M is a Leslie-Usher matrix. We known (see [START_REF] Iannelli | Age-Structured Population[END_REF]) that, where b is a birth rate and d a death rate. The transport term -∂ ∂a correspond to the aging of the population. Here again, it is well known that n behaves as n(t, .) ∼ Cst.e λt N (.), where λ = sup µ∈Sp(L) Re(µ) and N is a positive eigenfunction associated to the eigenvalue λ. More generally, for a size structured population [START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] and we prove a similar result on the asymptotic behavior [START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF]. More generally, this results seems to hold for positive semigroups.

Positive Semigroups and "Perron Frobenius" results. The existence, of the eigenelements : (λ, N ), is well known for irreducible positive matrix (Perron Frobenius), strongly positive and compact operators (Krein Rutmann). It is a general result on positive semigroups [START_REF] Engel | A Short Course on Operator Semigroups[END_REF][START_REF]One-Parameter Semigroups of Positive Operators[END_REF] and we just recall that Definition 0.1. A strongly continuous semigroup (T (t)) t≥0 on a Banach lattice X is called positive if

0 ≤ f ∈ X implies 0 ≤ T (t)f ∀t ≥ 0.
Theorem 0.1. Let (T (t)) t≥0 be an irreducible, positive, strongly continuous semigroup with generator A on the Banach lattice X and assume that sup{Re λ : λ ∈ Spectrum of A} = 0 1 . If 0 is a pole of the resolvent R(., A), then the following properties hold.

• Ker(A) = F ixed P oint (T (t)) t = lin{N }, for some positive function N ∈ X.

• Ker(A * ) = F ixed P oint (T (t)) t = lin{φ} (where A * is the dual operator), for some positive function φ ∈ X * .

We refer to [START_REF]One-Parameter Semigroups of Positive Operators[END_REF] for more precise results.

General Relative Entropy results. The GRE gives a natural Lyapunov structure in an evolution equation such as

∂ ∂t n = Ln, n(t = 0, .) = n 0 (.). (2) 
More precisely, for f = ne -λt N with LN = λN and L * φ = λφ 2 strictly positive eigenelement associated to the eigenvalue λ = sup{Re λ : λ ∈ Spectrum of L} and for all H regular, positive and convex, we have that

d dt H(f ) = D L H (f ), (3) 
where H(f ) = H(f )N, φ and, by direct computation,

D L H (f ) = H (f )L f N -H (f )f L N + H(f )L N -L H(f )N , φ , (4) 
1 True up to a translation of the spectrum by changing A to A -cstId 2 L * is the dual operator where u, v is the duality bracket between a Banach space and its dual. The dissipation can be rewritten, for convenience, as

D L H (f ) = L H (f (x)(f (.) -f (x)) + H(f (x)) -H(f (.)) N (.) (x), φ(x) . (5) 
Therefore, we have the conservation law (H = Id)

f N, φ = f N, φ (t = 0), (6) 
and for H positive and convex and L a positive operator, we have that

d dt H(f ) = D L H (f ) ≤ 0. ( 7 
)
Using a LaSalle principle, we see that the ω-limit set of n belongs to the kernel of the entropy dissipation

Ker(D L H ) = f : D L H (f ) = 0 , (8) 
and, under some assumptions on the kernel of D L H (irreducibility), we prove that f → t→∞ Constant, i.e., n(t, .) ∼ Cst.e λt N (.).

We notice that the dissipation term is linear with respect to L, this means that

L = k a k L k ⇒ D L H = k a k D L H .
The formalism of the General Relative Entropy (GRE) (see [START_REF] Devys | A model describing the growth and the size distribution of multiple metastatic tumors[END_REF][START_REF] Gwiazda | Invariants and exponential rate of convergence to steady state in the renewal equation[END_REF][START_REF] Laurencot | Exponential decay for the growth-fragmentation/cell-division equation[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Perthame | Mathematical tools for kinetic equations[END_REF][START_REF] Perthame | The general relative entropy principle applications in Perron-Frobenius and Floquet theories and a parabolic system for biomotors[END_REF][START_REF] Michel | General Relative Entropy in a nonlinear McKendrick model[END_REF][START_REF] Mischler | Stability in a Nonlinear Population Maturation Model[END_REF][START_REF] Touaoula | Decay solution for the renewal equation with diffusion, Nonlinear Differential Equations and Applications NoDEA[END_REF]) is an interesting tool to study semigroup of evolution equations (see [START_REF] Iannelli | Age-Structured Population[END_REF][START_REF] Iannelli | Mathematical theory of age-structured population dynamics[END_REF][START_REF] Webb | Theory of Nonlinear Age-dependent Population Dynamics[END_REF][START_REF] Cushing | An Introduction to structured population dynamics[END_REF][START_REF]One-Parameter Semigroups of Positive Operators[END_REF][START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF][START_REF] Engel | A Short Course on Operator Semigroups[END_REF][START_REF] Yosida | Functional analysis[END_REF]). In particular, in linear renewal equations as in the McKendrick-VonFoerster (see [START_REF] Clairambault | A mathematical model of the cell cycle and its circadian control[END_REF][START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Gwiazda | Invariants and exponential rate of convergence to steady state in the renewal equation[END_REF]) the GRE has shown its easy computability and powerful results to study asymptotic behavior of solution to evolution equation.

Example of operators and their entropy dissipation. For instance, for the following operators (with H convex)

• Linear system of Ordinary Differential Equations : L = (a ij ) i,j is a matrix of transitions states (positive except on its diagonal) and n represents the states vector (see Leslie-Usher population matrix), then

D L H (f ) = - i,j a ij N j φ i H (f i )(f j -f i ) + H(f i ) -H(f j ) ≤ 0.
• Differentiation : L ∂ f = f corresponds to a transport (term) equation and D L ∂ H (f ) = 0 means that the "transport" operator gives no information on the dynamic of an evolution equation.

• Multiplication by r : L M ult f = rf corresponds, for instance, to a death term in a population evolution equation and D L M ult H (f ) = 0 means that the multiplication operator gives no information on the dynamic of an evolution equation.

• Diffusion :

L Dif f f = Df and D L Dif f H (f ) = -DH (f )(f ) 2 N, φ ≤ 0. The Kernel Ker( L Dif f H ) of the dissipation is the set {f ∈ X : f | Supp DN = Cst} = ∅ if the support of D is not empty.
• Integral : (for instance in the Chapmann Kolmogorrov equation) : L Int f = K(., y)f (y)dν(y) corresponds to a mix states term and

D L Int H (f ) = - K(x, y)((H (f (x))(f (y) -f (x)) + H(f (x)) -H(f (y)))N (y))dν(y), φ(x) ≤ 0.
In this case, we need that K mixes enough the variables x and y (irreducibility) to have a "useful" Kernel.

• Birth Term : L Birth f = δ 0 f dν and

D L Birth H (f ) = - B(y)((H (f (0))(f (y) -f (0)) + H(f (0)) -H(f (y)))N (y))dν(y), φ(0) ≤ 0.
• and so on, by computation • • •

The aim of this work is to extend this result to nonlinear evolution equation

d dt n = L( n, ψ )n. ( 10 
)
where ψ can be seen as a distribution function of ressources and n, ψ corresponds to the resources consumption by the population (see [START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Cushing | An Introduction to structured population dynamics[END_REF][START_REF] Jauffret | Numerical Solution of an Inverse Problem in Size-Structured Population Dynamics[END_REF][START_REF] Calvez | Bimodality, prion aggregates infectivity and prediction of strain phenomenon[END_REF][START_REF] Echenim | Multi-scale modeling of the follicle selection process in the ovary[END_REF][START_REF] Echenim | Modelisation et controle multi-echelles du processus de selection des follicules ovulatoires[END_REF][START_REF] Echenim | Multi-scale modeling of follicular ovulation as a reachability problem[END_REF]). We show in section 1 (proves are given in section 4) that we can decompose the entropy dissipation in two terms

d dt Entropy(n) = -Entropy Dissipation L (n) + Entropy Increase L (n),
where the Entropy Dissipation L (n) contains the linear part and the +Entropy Increase L (n) contains the linear part of the dynamic. In section 2, we study theoretically three examples of application : Markov chains, an Ordinary Differential equation and a Partial Differential Equation. Finally we conclude in section 3.

Entropy calculus and decomposition of its variation

Let B a Banach space. For L nonlinear operator : L : n ∈ B → L( n, ψ )n ∈ B, with ψ ∈ B * , such that, for any fixed n L n,ψ : m → L( n, ψ )m, is a linear and compact operator [START_REF] Echenim | Multi-scale modeling of the follicle selection process in the ovary[END_REF] which satisfies

         ∀z ∈ R + ∃C(z) ∈ R s.t. L(z) + C(z)I d is strongly positive, sup Sp(L(0)) > 0 and sup Sp(L(∞)) < 0, z ∈ R + → L(z) continuous. (12) 
Assumptions ( 11)-( 12) imply, by Krein Rutmman theorem [START_REF] Krein | Linear operators leaving invariant a cone in a Banach space[END_REF], that for all M ∈ B, there exists

(N M , Φ M ) solution to L( M, ψ )N M = λ M N M and L * ( M, ψ )φ M = λ M φ M .
Moreover, compactness condition and condition on the spectrum in 0 and ∞ implies that there exists a fixed point to M → N M and λ M = 0, i.e.

L( N, ψ )N = 0 (and L( N, ψ ) * φ = 0). We define the linear operator at the equilibrium

L eq := L( N, ψ ), (13) 
where N satisfies L( N, ψ )N = 0. We let

H(g) := H(g)N, φ . (14) 
Definition 1.1. We define the variation of L around its equilibrium N ,

∀g, |∆L g | := - L( N, ψ + gN, ψ ) -L( N, ψ ) gN, ψ . (15) 
Moreover, we define the following entropy dissipation

D Linear H (g) := L eq u(x, y) , φ(x) , (E H ) L ± (g) := ± |∆L g |(N (g + 1))(x) (g(s)H (g(x))) ∓ N (s), ψ(s) , φ , 3
and

N D N on linear H (g) := -|∆L g |(N (g + 1))(x) u(x, y), ψ(y) , φ(x) ,
where u(x, y) := H (g(x))(g(y) -g(x)) + H(g(x)) -H(g(y)) N (y).

Theorem 1.1. (Entropy Calculus). Let H ∈ C 1 (R, R + ), convex and H(0) = 0. Then we have

d dt H(f -1) = D Linear H (f -1) + (E H ) L -(f -1) + (E H ) L + (f -1). ( 16 
)
Now, assuming that, for all g, |∆L g | is a positive operator, then we have that

d dt H(f -1) = D L H (f -1) ≤ D Linear H (f -1) + N D N onlinear H (f -1). ( 17 
)
Corollary 1.1. (boundedness and Convergence). Assuming there exists C > 0 so that

∃Cst ∈ R, ∀-1 ≤ g ≤ C + 1, |∆L g |(N g + 1 C ) ≤ inf u>0 1 2 (L eq + CstI d ) u u, ψ (18) 
then n 0 ≤ CN implies that for all t ≥ 0, n(t, .) ≤ CN (.). Moreover, if n 0 ≤ CN and

∃Cst ∈ R, ∀-1 ≤ g ≤ C, |∆L g |(N (g + 1)) ≤ inf u>0 (L eq + CstI d ) u u, ψ (19) 
then g(t, .) → 0 as t → ∞, i.e., n(t, .) → t→∞ N . 4Proves of theorem 1.1 and corollary 1.1 are given in section 4. To show the usefulness of the methods we apply it to different type of evolution system. 3 We recall that

x + =    x, if x > 0, 0, if x ≤ 0 and x -=    -x, if x < 0, 0, if x ≥ 0 .

Examples of application

This section is subdivided in three paragraph where we give examples of application of the GRE method : a discrete time evolution equation (Markov Chain), in paragraph 2.1, a continuous in time and discrete in "space" (Ordinary Differential Equation), in paragraph 2.2 and finally a Partial Differential Equation in paragraph 2.3.

Discrete Time evolution equation : application to non homogeneous Markov chains

Let g a probability vector on R n , ψ ∈ R n + so that 1, ψ = 1 and assume that L( g, ψ ) is a square n × n positive and irreducible matrix. We have, using Perron Frobenius theorem, that L( g, ψ ) admit a strictly positive eigenvector associated to the spectral radius of L( g, ψ ). Moreover, if L( g, ψ ) is stochastic then the spectral radius is 1 and we know that φ = (1, 1, ..., 1) is an eigenvector of L( g, ψ ) associated to 1, i.e.

L( g, ψ )φ = φ (see [START_REF] Billingsley | Probability and Measure[END_REF][START_REF] Iosifsecu | Finite Markov Processes and their Applications[END_REF]). Then, we can construct a, non homogeneous, Markov chain,

π k+1 = π k L( π k , ψ ), k ∈ N, (20) 
where π 0 is a given probability vector. Then, by induction, for all k, π k is a probability vector, i.e.,

π k , 1 = π, 1 = 1. (21) 
Moreover, assuming that g → L( π, ψ ) is continuous, we have by compactness, existence of π solution to the stationary equation.

π = πL( π, ψ ). ( 22 
)
Then, we have the following result Proposition 2.1. If the variation of the transition matrix

∆L = π(L( π k , ψ ) -L( π, ψ )) π ( π k π -1)π, ψ satisfies (inf 1/π -1)(sup ψ/π + 1) sup h>0, h,1 h∆Lπ, 1 ≤ inf h>0, h,1 h( πL( π, ψ ) π )π, 1 , (23) 
and

(( gπL( π, ψ ) π ) -g) 2 ( πL( π, ψ ) π )π, 1 = 0 ⇐⇒ g = Cst = (1, • • • , 1). ( 24 
)
Then, we have that

π k → k→∞ π.
Proof. We define

Entropy := ( π k π -1) 2 π, 1 ,
and its variations by

D L 2 := ( π k+1 π -1) 2 π, 1 -( π k π -1) 2 π, 1 .
Using ( 20), ( 21) and ( 22), we have that 1 ((

π k π πL( π, ψ ) π ) - π k π ) 2 ( πL( π, ψ ) π )π, 1 = ( π k π ) 2 ( πL( π, ψ ) π )π, 1 -( π k π πL( π, ψ ) π ) 2 ( πL( π, ψ ) π )π, 1 = ( π k π ) 2 π, 1 -( π k π πL( π, ψ ) π ) 2 π, 1 .
Moreover, we can separate the nonlinear part and the linear part of the variation of the entropy, noticing that

D L 2 := ( π k L( π k , ψ ) π -1) 2 π, 1 -( π k π -1) 2 π, 1 ,
and so we have that

D L 2 := ( π k (L( π k , ψ ) -L( π, ψ )) π )( π k (L( π k , ψ ) + L( π, ψ )) π -2)π, 1 + ( π k π πL( π, ψ ) π -1) 2 π, 1 -( π k π -1) 2 π, 1 = ( π k (L( π k , ψ ) -L( π, ψ )) π )( π k (L( π k , ψ ) + L( π, ψ )) π -2)π, 1 -(( π k π πL( π, ψ ) π ) - π k π ) 2 ( πL( π, ψ ) π )π, 1 .
Now, we focus on the nonlinear part that satisfies the following inequality

| ( π k (L( π k , ψ ) -L( π, ψ )) π )( π k (L( π k , ψ ) + L( π, ψ )) π -2)π, 1 | ≤ 2(inf 1/π -1) ( π k π -1 )( π k π -1)∆Lπ, 1 , ψ ≤ (inf 1/π -1)[ ( π k π -1 ) 2 , π ψ π 1|∆L|π, 1 + ( π k π -1) 2 |∆L|π, 1 ].
Using assumptions ( 23) and ( 24), we have the result.

2 Remark 2.1. Markov chains : Assuming that L is a square n × n positive and irreducible matrix, we have, using Perron Frobenius theorem, that L (resp. L = t L) admit a strictly positive eigenvector associated to the spectral radius of L. Moreover, if L is stochastic then the spectral radius is 1 and we know that φ = (1, 1, ..., 1) is an eigenvector of L associated to 1 and π can be normalized to be a probability vector. Let C i := j : a ij > 0 , and we define the equivalence relation ∼ by

C i ∼ C j ⇔ ∃i 0 = i, i 1 , i 2 , ..., i r = j : C i k C k+1 = ∅, ∀k ∈ [0, r -1].
We note Ω ∼ := {1, 2, 3, ..., n}/ ∼ the quotient space states. Therefore, the aperiodic condition of convergence of Markov chains (see [START_REF] Billingsley | Probability and Measure[END_REF][START_REF] Iosifsecu | Finite Markov Processes and their Applications[END_REF]), can be seen as follows :

Ω ∼ = 1 ⇒ lim k→∞ π k = π ∞ .

A time continuous and discrete state : application for an age structured model

In this section, we are interested in the time evolution of a specie which is state structured. More precisely, let X(t) = (x i (t)) N i=1 , at time t, a real vector in R N + , where x i (t) corresponds to the number of individuals at state i at time t, which follows the main evolution equation

d dt X(t) = LX(t), ∀t ≥ 0. ( 25 
)
For example, in a discrete age structured model, we use a Leslie like matrix (see for discrete time application of the Leslie matrix [START_REF] Behncke | On the Harvesting of Age Structured of Fish Populations[END_REF][START_REF] Wikan | Nonstationary and Chaotic Dynamics in Age-Structured Population Models[END_REF][START_REF] Silva | Compensation and stability in nonlinear matrix models[END_REF])

L =            b 1 (t) -d 1 -p 1 b 2 (t) b 3 (t) • • • b n (t) p 1 -d 2 -p 2 0 • • • 0 0 p 2 -d 3 -p 3 0 • • • • • • • • • • • • • • • • • • 0 • • • 0 p n-1 -d n            , (26) 
to modelize the aging with (p i ) i , the death with (d i ) i and the birth process with (b i ) i > 0. The linear evolution is classical and we only focus on the nonlinear problem : since resources are limited, the birth rate is depending on the number of individuals which use these resources, i.e., we have that

b i (t) = b i g(w(t)), (27) 
where

w(t) = i α i X i (t),
represents the total consumption of resource, assuming that individual of age i consume α i > 0 resources and g the decay of birth rate due to the lack of resources [START_REF] Silva | Compensation and stability in nonlinear matrix models[END_REF].

Proposition 2.2. Assuming that g is a decreasing C 1 function which satisfies,

-g (ζ) g -1 p1+d1 b1+ j≥2 bj j k=2 p k-1 p k +d k p1+d1 b1+ j≥2 bj j k=2 p k-1 p k +d k ≤ 1 2(C + 1) inf(b i ) i inf(α j ) j sup(b j ) j sup(α j ) j , ∀ζ ∈ [0, C i αiN i ] ( 28 
)
and

X(0) ≤ CN (C > 1)
where N is the stationary solution, i.e., solution to the following equation

           b 1 ( i α i N i ) -d 1 -p 1 b 2 ( i α i N i ) b 3 ( i α i N i ) • • • b n ( i α i N i ) p 1 -d 2 -p 2 0 • • • 0 0 p 2 -d 3 -p 3 0 • • • • • • • • • • • • • • • • • • 0 • • • 0 p n-1 -d n            N = 0.
Then we have that X(t) → t→∞ N .

Proof. We have that

|∆L g | = -            b1(w(t))-b1 w(t)-w • • • bn(w(t))-bn w(t)-w 0 • • • 0 0 0 • • • • • • • • • • • • 0 • • • 0            = -g (ζ)            b 1 • • • b n 0 • • • 0 0 0 • • • • • • • • • • • • 0 • • • 0            , (29) 
for ζ ∈ [min( w, w(t)), max( w, w(t))]. Moreover, a direct computation gives that

|∆L g |(N (g + 1)) = -g (ζ)         i b i N i (g i + 1) 0 . . . 0         ≤ -g (ζ)(C + 1) sup(b j ) j inf(α j ) j g -1 p 1 + d 1 b 1 + j≥2 b j j k=2 p k-1 p k +d k , ∀g ∈ [-1, C],
and

(L eq + CstI d ) u u, ψ =            i bi u i + (Cst -d 1 -p 1 )u 1 p 1 u 1 + (Cst -d 2 -p 2 )u 2 p 2 u 2 + (Cst -d 3 -p 3 )u 3 . . . p n-1 u n-1 + (Cst -d n )u n            j α j u j ≥            i biui j αj uj 0 0 . . . 0            ≥ inf( bi ) i sup(α j ) j = inf(b i ) i sup(α j ) j p 1 + d 1 b 1 + j≥2 b j j k=2 p k-1 p k +d k .
Therefore, assumption ( 19)-( 18) are satisfied as ( 28) is verified.

Partial Differential equation : application to Renewal equation with diffusive effect on the age

Renewal equation appears in mathematical biology to study the evolution of population structured in age (see [START_REF] Cushing | An Introduction to structured population dynamics[END_REF][START_REF] Webb | Theory of Nonlinear Age-dependent Population Dynamics[END_REF][START_REF] Iannelli | Age-Structured Population[END_REF][START_REF] Iannelli | Mathematical theory of age-structured population dynamics[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF]). The density n(t, x) at time t and age x follows the main equation (transport equation with loss due to a death term d and diffusion in age). According to the biologists, the matter of which sites are active on various chromosomes determines the true age of a biological entity [START_REF] Brewer | The age-dependent eigenfunctions of certain Kolmogorov equations of engineering, economics, and biology[END_REF]. This true age is a multidimensional variable and can be determined by time since birth. We are mainly concerned about the population and not on the individuals, hence we assume that average aging in the population is measured from time since birth (renewal). Because of lots of sources of variation in the vector valued age of individuals, the population as a whole diffuse in population age variable. We are interested to study the dynamics of the following renewal equation with diffusion.

               n t (t, x) + n x (t, x) + d(x, S(t, x))n(t, x) = Cn xx (t, x), t > 0, x > 0, n(t, 0) -Cn x (t, 0) = ∞ 0 B(x, S(t, x))n(t, x)dx, t > 0, n(0, .) = n 0 (.), n 0 ∈ L 1 (R + ) ∩ L 2 (R + ), (30) 
where 1/S(t, x) represents resource allocated to individuals of trait x at time t,

S(t, x) = ∞ 0 β(x, y)n(t, y)dy, ∀t, x. (31) 
Equation ( 30) with C = 0 is popularly known as McKendrick-Von Foerster (MV) equation (see [START_REF] Cushing | An Introduction to structured population dynamics[END_REF][START_REF] Thieme | Mathematics in Population Biology[END_REF]).

There are several mathematicians who worked on the stability estimates and longtime behavior of the MV equation ( [START_REF] Cushing | An Introduction to structured population dynamics[END_REF][START_REF] Iannelli | Mathematical theory of age-structured population dynamics[END_REF][START_REF] Webb | Theory of Nonlinear Age-dependent Population Dynamics[END_REF] and the references therein) or MV -like (see [START_REF] Iannelli | Two-sex age structured dynamics in a fixed sex-ratio population[END_REF][START_REF] Kakumani | Extinction and blow-up phenomena in a nonlinear gender structured population model[END_REF] for instance). In [START_REF] Perthame | Nonlinear renewal equations[END_REF][START_REF] Tumuluri | Steady state analysis of a non-linear renewal equation[END_REF] the authors have discussed the existence and uniqueness of a weak solution and have also proved the linear stability around the nontrivial steady state of the nonlinear renewal equation. The linear version of equation ( 30) with C = 1 has been studied in [START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF]. Touaoula et. al., proved the existence and uniqueness of a weak solution. They have used Poincaré Writinger's type inequality to prove the exponential decay of the solution for large times to a steady state. In [START_REF] Michel | Asymptotic behavior for a class of the renewal nonlinear equation with diffusion[END_REF], Michel et. al., considered the nonlinearity in the boundary term in equation [START_REF] Michel | Asymptotic behavior for a class of the renewal nonlinear equation with diffusion[END_REF] and proved the convergence of the solution towards the steady state problem. In [START_REF] Kakumani | On a nonlinear renewal equation with diffusion[END_REF],

Kakumani et. al., proved the existence and uniqueness of a weak solution with S(t) = ψ(y)n(t, y)dy and they have also proved the longtime behavior is some particular cases. We will prove that n converge to N solution to the corresponding steady state equation (of ( 30))

               N (x) + d(x, S(x))N (x) = CN (x), x > 0, N (0) -CN (0) = ∞ 0 B(x, S(x))N (x)dx, ∞ 0 N (x)dx < ∞, S(x) = ∞ 0 β(x, y)N (y)dy. (32) 
Moreover, we will need the solution to the adjoint equation, i.e. φ solution to

               -φ (x) + d(x, S(x))φ(x) = Cφ (x) + φ(0)B(x, S(x)), x > 0, φ (0) = 0, ∞ 0 φ(x)N (x)dx = 1. ( 33 
)
Main results Throughout this section, we assume that the functions d, B, β are nonnegative and continuous. Further we assume that there exists L > 0 such that for all x, S 1 , S 2 we have

|B(x, S 1 ) -B(x, S 2 )| ≤ L|S 1 -S 2 |, |d(x, S 1 ) -d(x, S 2 )| ≤ L|S 1 -S 2 |, (34) 
∂ ∂S d(., .) > 0, ∂ ∂S B(., .) < 0, ( 35 
) 0 < B m ≤ B(., .) ≤ B M , 0 < d m ≤ d(., .) ≤ d M , 0 ≤ β ≤ β M ( 36 
)
where B m , B M , d m , d M , β M are positive constants.

Proposition 2.3. Assume ( 34)-( 36), then there is a unique weak solution 30) - [START_REF] Mischler | Stability in a Nonlinear Population Maturation Model[END_REF]. Moreover, assuming [START_REF] Perthame | Mathematical tools for kinetic equations[END_REF] and

n ∈ C R + ; L 1 (R + ) ∩ L 2 loc (R + ; W 1,2 (R + )) solving (
k ≤ β ≤ k, 0 < k ≤ k < ∞. ( 37 
)
S 2 → B(x, S 2 ) is strictly decreasing and S 1 → d(x, S 1 ) is strictly increasing on [α, β], α < β ( 38 
)
and

B(x, 0) -d(x, 0) > 0 B(x, ∞) -d(x, ∞) < 0 ( 39 
)
are satisfied then there exists a solution to ( 32)- [START_REF]One-Parameter Semigroups of Positive Operators[END_REF].

Since, in this work, we focus on the convergence of n to N , we give the proof of existence and uniqueness in annex 4. Now, we give assumptions which leads to the convergence of n, solution to ( 30) -( 31), to N solution to [START_REF] Murray | Mathematical biology I and II[END_REF].

Proposition 2.4. Assuming that n(0, .) < KN (.) for K > 0 and

(Cbound)

         sup S, S B(x, S) -B(x, S) S -S N (x) (K + 2) K < 1 2 inf u>0 B(y, S)u(y)dy β(x, y)u(y)dy , sup S, S d(x, S) -d(x, S) S -S < ∞, (40) 
then for all t > 0, n(t, .) ≤ KN (.). Moreover, if we assume that

(C1)        2 B(x, S) -B(x, S) S -S β(x, y)N dx < B(y, S)N (y)/K, ∞ s s 0 |x -y|β(x, y)dy d(x, S) -d(x, S) S -S dν(x) < CN (s)φ(s)/K, (41) 
or

(C2)              B(x, S) -B(x, S) S -S 4 β(x, y)dy < B(x, S)N (x)/K, ∞ s s 0 |x -y|β(x, y)dy 4φ(0) B(x, S) -B(x, S) S -S N + d(x, S) -d(x, S) S -S N φ(x) dx < CN (s)φ(s)/K, (42) 
is satisfied, then n(t, .)

→ t→∞ N , i.e. ∞ 0 (f (t) -1) 2 dν → 0.
proof of proposition 2.4. We recall that we denote g = f -1. The assumption [START_REF] Tumuluri | Steady state analysis of a non-linear renewal equation[END_REF] is the translation of assumption [START_REF] Iannelli | Two-sex age structured dynamics in a fixed sex-ratio population[END_REF] to the problem (30) therefore the result holds (we notice that sup S, S d(x,S)-d(x, S) S-S < ∞ implies te existence of Cst in assumption [START_REF] Iannelli | Two-sex age structured dynamics in a fixed sex-ratio population[END_REF]. First we decompose the variation of the entropy in a negative and positive part in lemma 2.1. Then we show that under assumptions [START_REF] Tumuluri | Steady state analysis of a non-linear renewal equation[END_REF] and (( 41) or( 42)), the negative part (which forces the convergence) wins against the positive part (which creates oscillations).

Lemma 2.1. Let n, N, φ be solution to equation ( 30), ( 32) and ( 33) respectively, f = n/N and dν(x) = N (x)φ(x)dx. Let the entropy defined as follows

H(f (t)) := ∞ 0 (f (t) -1) 2 dν. Then we have d dt H(f (t)) = [D dif f 2 (f ) + D ren 2 (f ) + E - 2 (f )] ≤0 + E + 2 (f ) ≥0 ,
where the entropy dissipation due to diffusion and the renewal terms are

D dif f 2 (f ) = -2C ∞ 0 ∂ ∂x f (t, x) 2 dν(x), D ren 2 (f ) = -φ(0) ∞ 0 f (t, x) -1 2 -f (t, 0) -1 2 -2 f (t, 0) f (t, x) -f (t, 0) B(x, S)N (x)dx, E - 2 (f ) = -φ(0) ∞ 0 2 f (t, 0) -1 B(x, S) -B(x, S) - f N dx -2 ∞ 0 (f (t, x) -1) d(x, S) -d(x, S) f (t, x) + dν(x),
and the positive terms due to non linearities is given by

E + 2 (f ) = 2φ(0) ∞ 0 f (t, 0) -1 B(x, S) -B(x, S) + f N dx + ∞ 0 2(f (t, x) -1) d(x, S) -d(x, S) f (t, x) - dν(x).
The proof of this lemma is a direct computation (application of theorem 1.1). Now, we prove the proposition.

Proof. of proposition. Using that B (resp. d) increases (resp. decreases) with respect to S, we notice that

f (t, 0) -1 B(x, S) -B(x, S) + = -| B(x, S) -B(x, S) S - S |(S -S) g(t, 0) + = | B(x, S) -B(x, S) S - S |(S -S) g(t, 0) - , and 
2(f (t, x) -1) d(x, S) -d(x, S) - = 2g(t, x)(S -S)| d(x, S) -d(x, S) S - S | - .
Thus, we have that,

E + 2 (f ) = 2φ(0) ∞ 0 f (t, 0) -1 B(x, S) -B(x, S) + f N dx + ∞ 0 2(f (t, x) -1) d(x, S) -d(x, S) f (t, x) - dν(x) = 2φ(0) ∞ 0 | B(x, S) -B(x, S) S - S | (S -S) g(t, 0) - f N dx + ∞ 0 | d(x, S) -d(x, S) S - S | 2g(t, x)(S -S) - dν(x).
Since, for all a, b ∈ R, we have that5 : (ab) -≤ (a -b) 

D dif f 2 (g) = -2C ∞ 0 ∂ ∂s g(t, s) 2 dν(s),
both conditions ( 41) and ( 42) leads to the decay of the entropy and, so, to the convergence of f to 1 as t → ∞.

Conclusion

We show in this paper that the GRE is a powerful method to study the dynamic of solutions of evolution equations (from positive semigroups) which appears in biology (where population stays positive). We prove that the study of the kernel of the entropy dissipation is the key to study the dynamic. We see that the variation of the entropy can be decomposed in a negative part which participates to the convergence to the equilibrium (containing the linear part around the equilibrium) and the positive part which participates to the oscillations (coming form the nonlinear part of the evolution equation). The difficulties (and so the assumptions that would be find), to prove the convergence, come from the comparison between these two effects : oscillation versus back to the equilibrium. We do not claim that assumptions we gives here are optimal but are sufficient to obtain the convergence in each models. It could be interesting to study optimal assumption in order to have the convergence and so to compare more accurately L 2 norms which appear in the GRE computation. and (g(s)H (g(x))) -= 2(g(x) -C) + g(s) -. Therefore, we find that

D Linear H (g) := L eq H (g(x))(g(y) -g(x)) + H(g(x)) -H(g(y)) N (y) , φ(x) = -L eq (g(x) -C) + -(g(y) -C) + 2 N (y) , φ(x) -2 L eq (g(y) -C) -N (y) (g(x) -C) + , φ(x) ,
and

(E H ) L + (g) := |∆L g |(N (g + 1))(x) (g(s)H (g(x))) -N (s), ψ(s) , φ = 2 |∆L g |(N (g + 1))(x)(g(x) -C) + , φ (g(s) -N (s), ψ(s) .
Since g ≥ -1, we have that (g(y) -C) -≥ Cg -(y),therefore, we obtain the following inequality,

C g(s) -N (s), ψ(s) ≤ (g(y) -C) -N (s), ψ(s)
and so we find that (

E H ) L + (g) ≤ 2 |∆L g |(N (g+1) C )(x)(g(x) -C) + , φ (g(s) -C) -N (s), ψ(s) . Under assump- tion (18), we have that |∆L g |(N 2(g+1) C )(x), (g(x) -C) + φ ≤ Leq (g(y)-C)-N (y) (g(s)-C)-N (s),ψ(s) , (g(x) -C) + φ(x)
. Now, we assume that g(t = 0, .) < C and we let

T * = sup t>0 {g(s, .) ≤ C, ∀s ∈ [0, t[}.
Assuming that T * < ∞, then in a neighborhood of T * : ]T * -µ, T * + µ[, 0 ≤ (g -C) + ≤ ≤ 1 and so

d dt (g(x) -C) 2 + N, φ ≤ -|∆L g |(N (g + 1) C )(x), (g(x) -C) + φ ≤ 0, ∀t ∈ [0, T * + µ[,
which means that g(t, .) ≤ C, for all t ∈ [0, T * + µ[ (absurd) and so we have that T * = ∞.

For the convergence result, it suffices to notice that under assumption [START_REF] Iosifsecu | Finite Markov Processes and their Applications[END_REF], we have that

D Linear H (f -1) + N D N onlinear H (f -1) ≤ 0,
and so, using the inequality [START_REF] Iannelli | Mathematical theory of age-structured population dynamics[END_REF] we have the decay of the entropy and the convergence to the equilibrium f = 1 (Lasalle principle).

Proof of prop. 2.3

In this section, we prove existence and uniqueness result of solution to (30)-( 31), [START_REF] Murray | Mathematical biology I and II[END_REF] and [START_REF]One-Parameter Semigroups of Positive Operators[END_REF]. We use the same definition of weak solution and follow the similar arguments which are used in [START_REF] Kakumani | On a nonlinear renewal equation with diffusion[END_REF] to prove the existence and uniqueness result to (30)- [START_REF] Mischler | Stability in a Nonlinear Population Maturation Model[END_REF]. We start with the following a priori estimate of n.

Lemma 4.1. Assume that S(.) ∈ L ∞ loc (R + × R + ), then there exists a unique weak solution n ∈ C R + ; L 1 (R + ) ∩ L 2 loc (R + ; W 1,2 (R + )) which solves [START_REF] Michel | Asymptotic behavior for a class of the renewal nonlinear equation with diffusion[END_REF]. Moreover, we have n ≥ 0, and Proof's of Lemma (4.1) and Theorem (4.1) goes in similar lines that are given in [START_REF] Kakumani | On a nonlinear renewal equation with diffusion[END_REF]. So we omit the proofs. Now we prove the existence and uniqueness of ( 32) and [START_REF]One-Parameter Semigroups of Positive Operators[END_REF]. First we observe that for a given S, we have to consider the associated eigenvalue problem of ( 32) and [START_REF]One-Parameter Semigroups of Positive Operators[END_REF].

Before we prove Proposition 2.3, we prove some lemmas which are helpful. We notice that for a given S there exists (λ S , N S , φ S ) solution to the eigenproblem (see [START_REF] Abdellaoui | Decay solution for the renewal equation with diffusion[END_REF], [START_REF] Dautray | Analyse Mathématique et calcul numérique pour les sciences et les techniques[END_REF] for details), Proof. The proof goes in similar lines that are given in [START_REF] Michel | Optimal proliferation rate in a cell division model[END_REF][START_REF] Michel | Fitness optimization in a cell division model[END_REF]. Therefore we skip the proof.

                       ∂ x N S =
Lemma 4.3. Assume [START_REF] Perthame | Mathematical tools for kinetic equations[END_REF], λ 0 > 0, λ ∞ < 0 and (37) then there exists a solution to [START_REF] Murray | Mathematical biology I and II[END_REF].

Proof. Using that λ 0 > 0, λ ∞ < 0 and the decay (50), we have the existence of Γ decreasing regular function with λ = 0 (since ∂ ∂S λ S < 0). Therefore by integration, we have λ V φ = 0 and hence V = 0.

n

  (t) ∼ Cst.e λt N, where λ = sup µ∈Sp(M ) Re(µ) and N is a positive eigenvector associated to the eigenvalue λ (Perron Frobenius). When the class age has an infinitesimal length, we obtain McKendrick VonFoerster type of equations [34, 32] ∂ ∂t n(t, a) = -∂ ∂a n(t, a) -d(t, a)n(t, a) + δ 0 b(t, a )n(t, a )da , i.e., L : g → -∂ ∂a g -d(t, .)g + δ 0 b(t, a )g(a )da ,

2 B

 2 (x, y)dy d(x, S) -d(x, S) S -S f (t, x)dν(x) ds.Since, we have that,D ren 2 (g) = -φ(0)∞ 0 g(t, y) -g(t, 0) (y, S)N (y)dy,

Theorem 4 . 1 .

 41 , x)|dx ≤ e ||(B-d)+||∞t ∞ 0 |n 0 (x)|dx.(48) Assume (34) -(36), then there is a unique weak solutionn ∈ C R + ; L 1 (R + ) ∩ L 2 loc (R + ; W 1,2 (R + ))solving[START_REF] Michel | Asymptotic behavior for a class of the renewal nonlinear equation with diffusion[END_REF].

Lemma 4 . 2 .

 42 C∆N S -d(x, S)N S -λ S N S , N S (0) -CN S (0) = B(x, S)N S (x)dx, N S ∈ W 1,2 (R + ), -∂ x φ S = C∆φ S -d(x, S)φ S + φ S (0)B(x, S) -λ S φ S , φ S ∈ W 1,2 (R + ),φ S (0) = 0 and φ S N S (x)dx = 1. Assume (35) then we have ∂ ∂ S λ S = -∂ ∂ S d N S φ S dx + φ S (0) ∂ ∂ S B N S dx < 0. (50)

  defined on [0, S * [ (with S * ∈ [0, ∞]) so that { S : λ S = 0} = {( S, Γ( S)) : S ∈ R + } ⊂ R 2 + (1-dimension manifold).

Remark 4 . 1 .

 41 It is easy to check that the Proposition 2.3 is an immediate consequence of Lemma 4.3. Notice that using[START_REF] Silva | Compensation and stability in nonlinear matrix models[END_REF], we have λ 0 > 0, λ ∞ < 0 are satisfied.Uniqueness of U : Let U solution of the eigenproblem given by the Proposition 2.3 and V an another positive solution toV + d(x, V ψ)V = CV , V (0) -V (0) = B(x, V ψ)V (x)dx with V ψ = U ψ. Then there exists V , φ, λ solution to the eigenproblem V + d(x, V ψ) V = C Vλ V , V (0) -V (0) = B(x, V ψ) V (x)dx φ + d(x, V ψ) φ = C φλ φ + B(x, V ψ)φ(0), φ (0) = 0

  with b the division rate and d the death rate, we have proved the same behavior in long time asymptotic.And finally, when appears some randomness in the measure of the age (size or more generally trait), we have

	a diffusion terms		
	∂ ∂t	n(t, a) = -	∂ ∂a	n(t, a) + C	∂ 2 ∂a 2 n(t, a) -d(t, a)n(t, a) + δ 0 b(t, a )n(t, a )da ,
					i.e., L : g → -	∂ ∂a	g + C	∂ 2 ∂a

, where n satisfies ∂ ∂t n(t, x) = -∂ ∂a n(t, x) -d(t, x)n(t, x) -y>x b(x, y)n(t, y)dy + b(t, x)n(t, x), i.e., L : g → -∂ ∂a g -d(t, .)g -y>x b(x, y)g(y)dy + b(t, .)g, 2 g -d(t, .)g + δ 0 b(t, a )g(t, a )da ,

  2 , then, using Jensen inequality, we obtain that

	Then, using (45)-(46), we find that			
	β(x, y)g(t, y)g(t, x)dy 2 (g) ≤ φ(0) E + g(t, y) -g(t, 0) -β(x, y )dy β(x, y )dy 2 2	≤ g(t, x) -g(t, y) B(x, S) -B(x, S) S -S β(x, y)f N dx dy β(x, y) β(x, y )dy dy	2	β(x, y )dy
										+ 2	d(x, S) -d(x, S) S -S	≤ (g(t, x) -g(t, y)) 2 β(x, y)dy, (43) f (t, x)(g(t, x) -g(t, y)) 2 β(x, y)dydν(x),
	with g = f -1. Therefore, we have that or, using (45)-(47), we find that	
	∞ E + 0 2 (g) ≤ φ(0) B(x, S) -B(x, S) S -S g(t, y) -g(t, 0) β(x, y)g(t, y)g(t, 0)dy 2 2 B(x, S) -B(x, S) -f N dx S -S	β(x, y)f N dx dy
				≤ 2 +	B(x, S) -B(x, S) S -S ∂ ∂s g(t, s) 2 2 ∞ s	β(x, y) g(t, x) -g(t, 0) s 0 |x -y|β(x, y)dy d(x, S) -d(x, S) 2 f N dxdy S -S	f (t, x)dν(x) ds,
	or, using (44)-(47), we find that			+ 2	B(x, S) -B(x, S) S -S	β(x, y) g(t, x) -g(t, y)	2	f N dxdy, (44)
	and E + 2 (g) ≤ φ(0)	g(t, x) -g(t, 0)	2 B(x, S) -B(x, S) S -S	4 β(x, y)dy f N dx
	0	∞	B(x, S) -B(x, S) S -S + ∂ ∂s g(t, s)	β(x, y)g(t, y)g(t, 0)dy 2 4φ(0) ∞ s s 0 |x -y|β(x, y)dy -f N dx	B(x, S) -B(x, S) S -S	f N dx ds
					+		∂ ∂s	≤ g(t, s)	B(x, S) -B(x, S) S -S	β(x, y) g(t, y) -g(t, 0)	2	f N dxdy. (45)
	Moreover, using (43), we find that			
	0	∞	d(x, S) -d(x, S) S -S		β(x, y)g(t, y)g(t, x)dy	-	f (t, x)dν(x)
											≤	d(x, S) -d(x, S) S -S	f (t, x)(g(t, x) -g(t, y)) 2 β(x, y)dydν(x).
	Since, g(t, x) -g(t, y) =	x y	∂ ∂s g(t, s)ds, we have that (Poincare inequality)
	0	∞	d(x, S) -d(x, S) S -S		β(x, y)g(t, y)g(t, x)dy	-	f (t, x)dν(x)
						≤		∂ ∂s	g(t, s)	2	0	s	s	∞	|x -y|β(x, y)dy	d(x, S) -d(x, S) S -S	f (t, x)dν(x) ds,
	and, using Fubini Tonelli theorem, we have that
	0	∞	d(x, S) -d(x, S) S -S		β(x, y)g(t, y)g(t, x)dy	-	f (t, x)dν(x)
				≤		∂ ∂s	g(t, s)	2	s	∞	0	s	|x -y|β(x, y)dy	d(x, S) -d(x, S) S -S	f (t, x)dν(x) ds. (46)
	Moreover, we find that							
			d(x, S) -d(x, S) S -S	f (t, x)(g(t, x) -g(t, y)) 2 β(x, y)dydν(x)
				≤ 2 (g(t, x) -g(t, 0)) 2	d(x, S) -d(x, S) S -S	f (t, x)β(x, y)dy dν(x)
								+ 2 (g(t, x) -g(t, 0)) 2	d(y, S) -d(y, S) S -S	f (t, y)β(y, x)dν(y) dx. (47)

We notice that conditions[START_REF] Iannelli | Two-sex age structured dynamics in a fixed sex-ratio population[END_REF] and (19) are directly satisfy for a linear problem, i.e. |∆Lg| = 0.

(ab) -≤ (a -b) 2 , if sgn(ab) > 0 and (ab) -≤ (a -b) 2 -(|a| 2 + |b| 2 ) ≤ (a -b) 2 , if sgn(ab) ≤ 0.

Proof. Using the main equation [START_REF] Echenim | Modelisation et controle multi-echelles du processus de selection des follicules ovulatoires[END_REF], we have that

Now, noticing that (L( N, ψ )N ) = 0, we have that

Let H : z → H(z -1) a C 1 , function, we find that

Then, we have directly that

and replacing nN -1 by f we find that

and finally we obtain that

. Since H is convex, positive and H(0) = 0 we have directly that