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ABSTRACT
In this paper we develop a class of models to study a population and resource dynamical system
in which the decision to give birth is based on a rational far-sighted cost-benefit analysis on what
the future of the ressource level will be. This leads to consider a system in which a time forward
population/resource dynamical system is coupled with a time backward Bellman’s equation (which
models the choice of having a child). We construct, from a population model with food consumption,
an example, to study the change in time of the fertility rate when a catastrophic change in ressource
is announced at a given moment, when a birth control policy is announced and we compare these two
announcements in case nothing happens. Moreover, we provide, mathematical tools to theoretically
and numerically study this complex coupling of time forward and time backward equations.

ntroduction
asically, living organisms are born, consume resources
nisms), give birth and finally become resources, in a
etitive environment. Therefore, the survival of a specie
nds on the ability to produce well fitted newborns and,
usly, on the level of available resources. The relation-
between consumers and their resources is a core study
ology and in demography. There exists numerous the-
cal models, which deal with different cases of relation-
between consumers and their resources [13, 15, 23, 26,
6, 33], where consumer is a predator and resource is
y. The foundation of the mathematical modeling ap-
ch is based on the Lotka-Volterra equations [36] of cou-
predator-prey (or consumer-resource) dynamics. More-
in someworks (for instance [21] p277, [31, 32]), the au-
have introduced the optimization of a gain functional,
timize the number of prey and predators at, or during, a
time. This approach leads to adding an adjoint equa-

to the Lotka-Volterra system of equations (Bellman’s
tion [5]).
ince there is a close correlation between economic and
an population growth [24], application to human popu-
ns arises in demography and economics. In this context,
okta-Volterra equations therefore describe the demog-
of human populations [4]. The same type of equations

ggested to model a human population and a resource is
in [1, 2, 4, 37, 29, 34] (close to Lotka-Volterra model).

e has been much recent activity in the modeling of hu-
civilizations using this formalism. In [6], Brander and
r study the collapse of Easter Island. Robert Axtel, in
ses these models to study the collapse of the Kayenta
azi civilization. In [29], authors propose a model to
the dynamics of Human/Environment interactions in

ollapse of classic Maya. All of these models consider
Corresponding author

philippe.michel@ec-lyon.fr (P. MICHEL)
ORCID(s):

that the population undergoes a lack of resources without
birth control (or with a fixed birth control that does not an-
ticipate the lack of resources). In [28], the resources used
are modeled by the food ratio which is a function of the size
of the population and could be considered as a steady state
of the resource equation.

In these models, individuals adapt their fertility rate to
the current level of resources which is implicitly modeled
by the choice of the birth/fertility rate and its variations with
respect to the level of resources. Nevertheless, they do not
anticipate their behavior with future variations in the amount
of resources. Along with the question of population growth
and its impact on the environment, arise the question of birth
control and the anticipation of the fertility rate in the ecolog-
ical debate [25]. More precisely, population growth is seen
as the main detriment to the environment: some two billion
people already lack food security and water supplies, and
agricultural land is under increasing pressure. These figures
alarm many people, who take it for granted that population
growth will imply famine, economic backwardness, more
pollution and a faster depletion of natural resources in the
world [9]. Consequently, the child can be considered as a
cost for the environment (environmental cost1) and the ex-
pected difficulties of life of the child in the future (due to the
environmental problems) could be a reason for parents not to
have children (personal cost). Both of these costs decrease
with the level of resources and the value V (t) of having a
child depends on the predictions (see figure 1) on the future
states of the resources which is given by the dynamic pro-
gramming via Bellman equations [5, 32] (and, for instance,
in [11, 12] in epidemiological models).

In this paper, we develop a class of toy models to take
into account the value of having a child due to ressource
level assessment, using backward/forward ordinary differ-
ential systems close to those developed in [11, 12, 31, 32].
These models are developed in Section 2. In Section 3, we

1environmental degradation, dwindling fisheries, shrinking forests, de-
creasing biodiversity
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e 1: Population/Resource coupling in an anticipation dy-
cs. The population changes due to death and birth. Re-
es change due to their own dynamics and their consump-
y the population. If the population anticipates a problem
ource in the future, from a neo-Malthusian point of view,
es not give birth and vice versa, if the resources are suffi-
ly important, it gives birth.

are the behavior of a population which adapts its birth
o the current level of resources and of the same popula-
which anticipates the variation of resources (here food
). Finally, we conclude our work. 2

opulation Change in Time with
nticipation and Adaptive Behavior

n the classical Lotka-Volterra equations [36], the level
sources (represented by Re(t) at time t) and the level
nsumers (represented by Pop(t) at time t) satisfy the
wing Ordinary Differential Equations, for t ≥ 0,
⎧
⎪⎪⎨⎪⎪⎩

d
dtPop(t) = G(Re(t), P op(t))Pop(t)

d
dtRe(t) = �(Re(t)) −H(Re(t), P op(t))

Pop(0) = Pop0 ≥ 0, Re(0) = R0 ≥ 0
, (1)

e � is the functional gain in the absence of consumer,
e function governing the consumption of resources and
e growth function (birth minus death) in the population
nsumers as a function of resources [15, 4]. The growth
could be decomposed into a birth rate B and a death
(see [33]) and we focus on (1) of the form
⎧⎪⎨⎪⎩

d
dtPop(t) =

(
B(Re(t)) −D(Re(t))

)
Pop(t)

d
dtRe(t) = �(Re(t)) −H(Re(t), P op(t))

, (2)

the initial data Pop(0) = Pop0 ≥ 0, Re(0) = R0 ≥ 0.
8], the authors use a discrete time evolution equation for
opulation level equation and a resource level (food ratio)
h is expressed directly as a function of the population
Wegive in Appendix A,mathematical proves of existence, uniqueness
merical tools used to compute solutions.

level. This could be understood as if the resources in (1) are
in a stable steady state, i.e.,

d
dt
Re(t) = 0, �(Re(t)) = H(Re(t), P op(t)),

with � andH define, not only, as �(Re) = Re(D − Re) and
H(Re, P op) = D(1 − (1−e−CPop)

CPop )Re where C and D are two
constants, i.e., Re = D (1−e−CPop)

CPop (see [28] for the equation
of the food ratio). This behavior can be approximated in (1)
by taking

d
dt
Re(t) = 1

�
[�(Re(t)) −H(Re(t), P op(t))],

with � ≪ 1 (corresponding to a time scale difference : slow
variation for population and rapid variation for resources (agr
culture)) and corresponds to the following system of coupled
population/resource time evolution equations

⎧⎪⎨⎪⎩

d
dtPop(t) =

(
B(Re(t)) −D(Re(t))

)
Pop(t)

0 = �(Re(t)) −H(Re(t), P op(t))
. (3)

In Section 2.1, we complete the population and resources
co-evolutionmodel with equations describing decision-maki
process of individuals to have children.
2.1. Construction of Anticipation Models

At time t, the size of the population Pop(t) and the level
of resources Re(t) are driven by a time evolution equation
such as (2) (resp. (3)).

Now we consider that the decision to give birth is as-
sumed to be based on a rational and far-sighted cost-benefit
analysis on what the future will be. If the parents anticipate
that, in the near future, there will be war or famine (due to
overpopulation) they are not having children at present (for
their own safety and for the environment). On the other hand,
if the parents anticipate that the future will be safe, they can
choose to have a child (see figure 1). Let  be a probabil-
ity/wish to have a child, then (2), becomes

⎧⎪⎨⎪⎩

d
dtPop(t) =

(
�(t) −D(Re(t))

)
Pop(t)

d
dtRe(t) = �(Re(t)) −H(Re(t), P op(t))

, (4)

where � is the maximum birth rate. We notice that (3), re-
spectively, becomes

⎧⎪⎨⎪⎩

d
dtPop(t) =

(
�(t) −D(Re(t))

)
Pop(t)

0 = �(Re(t)) −H(Re(t), P op(t))
. (5)

If we follow [31, 32], in a certain sense, by choosing this
probability of having a child, the parents want to maximize
a gain functional of the Bolza type (from current time 0 to
time T where T is large enough)

∫
T

0
[u(Re(s))Pop(s) − C�(s)Pop(s)]e−�sds, (6)
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e u is a utility function depending on the resource level
is a constant cost of having a child (related to the time
oney) parents have to spend raising a child : one of the
ns why some adults do not want children [16]) 3 and �
ime discount factor (simplifying assumption modeling
rgetting process). This approach was used in [21] p277
timize the number of predators and prey at a given time
oosing the best hunting rate function of predators. The
(or cost function) is similar to those proposed in [31,
or the fishing optimization problem and in [11, 12] for
nal far-sighted cost-benefit analysis of vaccination in the
of epidemiology. Moreover in [32], the authors show
to obtain the adjoint equation (Bellman’s equation [5])
lve the optimal control problem with a gain function
to (6). More precisely, optimized gain function

Pop) = max
 ∫

T

t
[u(Re(s))−C�(s)]Pop(s)e−�(s−t)ds,

e 0 ≤ (t) ≤ 1 for all t, satisfies the time backward
tion ([32, 5])
)
)t
Ṽ (t, P op) = −�Ṽ +

[
�max( )

)P op
Ṽ − C, 0)

+ u(Re(t))
]
Pop(t) −D(Re(t))Pop(t) )

)P op
Ṽ ,

= Heaviside( )Ṽ
)P op

− C) =
⎧⎪⎨⎪⎩

1, if )Ṽ
)P op − C > 0

0, if )Ṽ
)P op − C < 0

.

efore, by setting,
Ṽ (t, P op) = V (t)Pop,

ave V which satisfies
d
dt
V = u(Re(t))+�(t)(V −C)−(�+D(Re(t)))V . (7)

e, the value V (t) (at time t) that the individual expects
ve a child, depends on the variation of the level of re-
es and the immediate cost of raising a child. Note that
alue of having a child depends on predictions about fu-
resource states. In order to ease numerical methods and
ertainly as a realistic assumption, we use the concept of
thed best response [14] that uses logistic functions, i.e.

z ↦ 1
(1 + e−Tez)

,

h is a smooth approximation of the Heaviside step func-
(with Te which parametrizes the slope of the function at
rigin). Moreover we choose the following form for the
y function (exponential)

u ∶ z↦ 1 − e−auz+cu ,

Therefore u(Re(s)) − C�(s) is the individual’s gain function

V (t) = udt+�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

@
@
@

�dt

1 − �dt

0
Ddt

1 −Ddt
0

(t)�dt

V (t + dt)

V (t + dt)
⏟⏞⏞⏟⏞⏞⏟
value for cℎild

+ (V (t + dt) − C)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
value for parents

1 − (t)�dt

Figure 2: Probability tree for individuals for Equation 7. Dur-
ing a step time dt at time t, we evaluate V (t) as u(Re(t))dt (the
utility of the resources during time dt) plus a value, depending
on events happening to individuals and the value at time t+dt
:
- when death happens (with probability Ddt) the value is zero
- when forgetting (with probability �dt) the value is zero
- if the parents do not have child (with probability 1 − �dt)
the value is V (t + dt)
- if the parents want a child and have one (with probability
�dt) the value is V (t+dt)+ (V (t+dt)−C) (value to the child
and value to parents minus the cost of raising the child).
Therefore, to evaluate the value at time t, we compute the
mean of the value, which depends on the value at time t+dt :

V (t) = u(Re(t + dt))dt + �(t)(V (t + dt) − C)dt
+ (1 − (D + �)dt)V (t + dt) + O(dt2),

therefore by dividing by dt and passing to the limit in dt to
zero we find (7).

where au and cu are reals. The equations describing the deci-sion making process by individuals are given in the Equation
7 and can be understood using the decision trees [38, 18]
which is a list of scenarios in which an individual is con-
fronted with their probabilities, and individual and societal
costs.

We modify the value equation by adding an altruism pa-
rameter � which models a biased assessment of the value for
the child when the decision to have a child is made4 (see fig-
ure 2 for the change in probability tree and figure 6 to see the
variation in birth rate due to this parameter : when resources
are low (resp. high) the birth rate can be higher or lower
(resp. lower or higher) from one population to another) and
the value when finally, the value function V (t), for individ-
ual, from ’having a child’ at time t follows the time backward
equation

− d
dt
V (t) = u(Re(t)) + �(t)(�V (t) − C)

− (D(Re(t)) + �)V (t), V (T ) = VT , (8)
where � is an altruism parameter (we add �V to the value
V when having the child), C the cost of having a child, �

4We choose a linear evaluation : Vcℎild = �V .
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�dt

1 − �dt

0
Ddt

1 −Ddt
0

(t)�dt

V (t + dt)

�V (t + dt)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
value for cℎild

+ (V (t + dt) − C)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
value for parents

1 − (t)�dt

e 3: Probability tree for individuals Equation 8. During
p time dt at time t, we evaluate V (t) as u(Re(t))dt (the
y of the resources during time dt) plus a value, depending
ents happening to individuals and the value at time t+dt

n death happens (with probability Ddt) the value is zero
n forgetting (with probability �dt) the value is zero
he parents do not have child (with probability 1 − �dt)
alue is V (t + dt)
he parents want a child and have one (with probability
) the value is �V (t + dt) + (V (t + dt) − C) (biased value
e child and value to parents minus the cost to raise the
).
efore, to evaluate the value at time t, we compute the
of the value, which depends on the value at time t+dt :

V (t) = u(Re(t + dt))dt + �(t)(�V (t + dt) − C)dt
+ (1 − (D + �)dt)V (t + dt) + O(dt2),

fore by dividing by dt and passing to the limit in dt to
we find (8).

me discount factor, u a utility function for available re-
es Re and
(t) = 1

(1 + e−Te(�V (t)−C))
, (9)

Te ∈]0,∞[ the slope of the sigmoid and � ∈]0,∞[ the
mal number of birth rate. Therefore, we can compute
dividual and societal costs of a single case of ’having a
’ as the net present value over lifetime of the expected
of all scenarios (see figure 3).
he complete model of anticipation for (4) (resp. (5)) is
given by the coupled system of equations
d
dtPop(t) =

(
�(t) −D(Re(t))

)
Pop(t)

d
dtRe(t) = �(Re(t)) −H(Pop(t), Re(t))

− d
dtV (t) = u(Re(t)) + �(t)(�V (t) − C)

−(D(Re(t)) + �)V (t)

, (10)

. 0 = �(Re(t)) − H(Pop(t), Re(t)) for the resources
tion in the adaptation model of (5)) with initial data

Pop(0) = Pop0, Re(0) = Re0 ≥ 0 and final data V (T ) =
VT (mathematical results are in Appendix A).

To model the change in the case where individuals adopt
an adaptive behavior, i.e. do not anticipate the variation of
the level of resources at an aggregate level, even if they eval-
uate the resources for their own survival, we set the value
equation at its equilibrium ( ddtV (t) = 0) :
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dtPopad(t) =

(
�ad(t) −D(Read(t))

)
Popad(t)

d
dtRead(t) = �(Read(t)) −H(Popad(t), Read(t)

0 = u(Read(t)) + �ad(t)(�Vad(t) − C)
−(D(Read(t)) + �)Vad(t)

, (11)

with (0 = �(Read(t)) − H(Popad(t), Read(t)) for the re-
sources equation to the adaptive behavior of (5))

ad(t) =
1

(1 + e−Te(�Vad (t)−C))
, (12)

and initial data Pop(0) = Pop0, Re(0) = Re0 ≥ 0 (here
dynamic is only time forward).
2.2. Discussion and Parameters Estimation

In this Section, we discuss the model and its parameters.
The probability tree given in figure 3 shows that the first time
event of ’having’ a child depends on  . We give its law in
Section 2.2.1 and we give some examples when  is fixed.
Then we show, in the Sections 2.2.2-2.2.3, we explain how
to understand and estimate parameters. In the Section 2.2.4,
we discuss about the model and its limits.
2.2.1. Choice and its Related Law

The personal choice to have a child, during [t, t + dt],
is modeled by (t)�dt which represents the probability of
choosing to have a child (during [t, t + dt]). Therefore, the
first time the event ’have a child’ occurs follows a Cox pro-
cess ([7] p763) X of intensity ∫ t0 �(s)ds, and its density is
given by

fX(t) =
{ 0, t ≤ 0

�(t)e− ∫ t0 �(s)ds ,

which is, when  is constant over time, nothing more than
an exponential law. In order to understand it in demographic
terms [17], we give two examples, when  is constant over
time and when  is a Heaviside step function .

1. Case  = 0 means to stop or never have children and
case (t) = 0 > 0, for all t, means that time between
two events ’having a child’ is, on average, 1∕(0�) andso decay of 0 involves spacing two events ’having a
child’.

2. When  is an Heaviside step function
(t) =

{
0, t ≤ �
0, t > � ,

then the first time the event ’have a child’ happens fol-
lows an exponential law of parameter 0 translated, i.e.
postponed, of time �.

ICHEL: Preprint submitted to Elsevier Page 4 of 16

Jo
ur

na
l P

re
-p

ro
of



2.2.2
F

resou

and s

Unde
prob
in a l

and s
ing a

The
prob
(figu
is giv

and s

l

we h
facto
of th
’forg

F
(in S
1 [17
ing, a
ure 4

2.2.3

S
survi
adap
(2) w
B(R
tion

P. M

Journal Pre-proof
Model of Neo-Malthusian Population Anticipating Future Changes in Resources

. Time Discount Factor and its Estimation
irst, we study the dynamics of V in the case of constant
rces (which is valid in a short time analysis), i.e.

ū, D = D̄ ≥ 0,
o V satisfies
− d
dt
V (t) = ū + �(t)(�V (t) − C) − (D̄ + �)V (t).

r assumption � ≫ �� and D̄, we have thatV and so, the
ability of having a child,  converges to an equilibrium
ong time Veq and eq with

eq ∼
1

1 + e−Te(
�ū
� −C)

,

o �, �, C and Te are linked with the probability of hav-child in a long time eq

(
�ū
�
− C) ∼

log( eq
1−eq

)

Te
. (13)

value after having a child could be measured by the
ability of wanting a child immediatly after having a child
re 1 [17]) : 0. The dynamics of  when (t = 0) = 0en by

(t) ∼
0(

eq(1−0)
(1−eq)0

)1−e−�t

1 − 0 + 0(
eq(1−0)
(1−eq)0

)1−e−�t
,

o, at time t1∕2 such that

og( 
1 − 

)(t1∕2) = [log(
0

1 − 0
) + log(

eq
1 − eq

)]∕2,

ave e−�t1∕2 = 1∕2, i.e., � ∼ log(2)
t1∕2

. The time discount
r � can be related to the time necessary to reach half
e equilibrium (of log( 

1− )) in growth, i.e., in a sense,
eting’ the cost of having a child.
or instance, in [17], the authors study the desire of women
ub-Saharan) childbearing and by identifying, in figure
], the probability that a woman want to delay childbear-
s 1−  we can plot the time↦ log( 

1− )(time) (see fig-
) andwe notice that, � ∼ log(2)

t1∕2
leads to � ∈ [10%, 20%].

. Adaptive Equation and its link with Classical
Time Evolution Equations

ince individuals evaluate the resources for their own
val : the time evolution Equation (2) is, in fact, the
tive Equation (11)-(12). By identifying (11)-(12) and
e have �ad is equal to the birth rate function Re ↦
e), i.e. for well-chosen parameters (C, �, Te, � and func-
u) we should have for all Re : Re solution to
⎧⎪⎨⎪⎩

0 = u(Re) + �Re(�VRe − C) − (D(Re) + �)VRe

Re =
1

(1+e−Te(�VRe−C))

,

Figure 4: In blue : log( 
1−
) where 1 −  is given by the proba-

bility than a woman want to delay childbearing in Fig1. [17].
In red, the contant line [log( 0

1−0
) + log( eq

1−eq
)]∕2 which cuts

the blue line in different points (around 3 years and around 7
years).

(14)
satisfies �Re = B(Re). Therefore, (2) and (11)-(12) have
the same solutions.
2.2.4. Discussion

Since we do not model the variation of age in (1), it is im-
possible to model the change of childbearing with respect to
age nor the ’peak’ around year three in figure 4. To copewith
these two effects, it is necessary to introduce age of individu-
als and age of the last birth. It might be possible to introduce
age structure using Kermack - McKendrick [20] that mod-
els continuous aging of population or a discrete age model
(with a vector of population such as [28]) for the population
time evolution equation and adapt the value equation (time
backward) with these age structure. Nevertheless, this could
increase complexity of the model and make it less readable.
The choice of a linear relationship between the value given
to the child and the value, through the ’altruism’ parame-
ter, is done to add more complex behavior without being too
complex : this could be improved in the future with a more
complex relationship.

3. Adaptive Versus Anticipation Over an
Example
In this Section, we adapt a model given in [28] of time

evolution of the population with food consumption (Section
3.1) where the size of the population is represented by a vec-
tor structured by agewith a discrete time to a continuous time
model with a single age group. Then, in Section 3.2, we give
the anticipationmodel and compare with the dynamics of the
adaptive model. This is an application of the construction of
adaptive and anticipation model from equation type (3)5.

5We give an example of construction of adaptive and anticipation
model from equation type (2) in appendix Section B
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Basic Model : an Adaptive Behavior
t time t the size of the population is given by Pop(t),
onsumption is represented by the food ratio E(t) and is
uted by the food produced over the food consumed :

E(t) = (Y Am)
(1 − e−HkPop(t)�̂∕Am )

JPop(t)�̂
,

e Am is the maximum area in active cultivation, H the
s worked per day, �̂ part of the population that produces
, k a constant that converts hour of labour to area, Y
aloric yield per area cultivated and J the calorie re-
ment (per individual) modulated by a consumption rate
able with age of individuals) �̂ (see [28] for more de-
. The survival probability of the population depends on
ood ratio

p ∶ E ↦ p(E),

e take as a piecewise linear function close to the curves
in figure 3 [28] (ages 5 or 65) and we see in figure 5,
eath rate, i.e.

D(E) = 1 − p(E).

ertility rate, namedm in [28], is also an increasing func-
of the food ratio

B ∶ E ↦ B(E) ∈ [0, .135].

otice that the birth rate (and the death rate) is depend-
n food ratio, i.e., the birth rate is ’adapted’ to the level
is variable. The food ratio depends on the maximum
cultivated Am and a sudden change in this value could
lated to one of the expected difficulties predicted by
malthusianists : the depletion of natural resources in the
d [9]. Finally, a low food ratio is an indicator of a famine
overpopulation. Therefore, we choose this variable as
ey variable, for parents, to decide whether or not to have
ld in order to optimize the well-being of the population
icularly their child) in the future.
he size of the population follows the main ordinary dif-
tial equation
⎧⎪⎨⎪⎩

d
dtPop(t) =

(
B(E(t)) −D(E(t))

)
Pop(t),

E(t) = YHk
J

(1−e−HkPop(t)�̂∕Am )
HkPop(t)�̂∕Am

.
(15)

ince individuals value resources for their own survival
time evolution Equation (15) is, in fact, the adaptive
tion : the fertility rate t ↦ B(E(t)) is computed as t ↦
(t) where .135 is the maximal fertility rate and  is the
ability/wish to have a child (adaptative behavior)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dtPop(t) =

(
.135(t) −D(E(t))

)
Pop(t)

E(t) = YHk
J

(1−e−HkPop(t)�̂∕Am )
HkPop(t)�̂∕Am

0 = u(E(t)) + .135(t)(�V (t) − C)
−(D(E(t)) + �)V (t)

, (16)

Figure 5: Up : In blue the curve of death rate, i.e. one
minus the survival probability, given in [28]. Down : Plot of
E ↦ m(E) (plain line, m is the name of the fertility rate in[28])
and .135E (dashed line) solution to (18) with parameters given
in table 1.

with
(t) = 1

(1 + e−Te(�V (t)−C))
, (17)

and so by identifying (16)-(17) and (15) we choose parame-
ters (see table 1) to have, for all E ∈ [0, 1] : .135E is close
to m(E) where E satisfies

⎧⎪⎨⎪⎩

0 = u(E) + .135E(�VE − C)
−(D(E) + �)VE

E =
1

(1+e−Te(�VE−C))

. (18)

For well chosen parameters (see table 1) we have .135 close
to m given in figure 4. [28] (see figure 5).
3.1.1. Remark on Parameters and Sensitivity of

Fertility Rate to Personal Cost and Altruism
The evaluation of the cost parameter C , the altruism fac-

tor� and the parameters of the utility function is not easy and
depends on countries, age, social category, religion [27]...
We notice that childfree movement [16], claiming that hav-
ing children is not costless in particular for women who lose
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e 6: Variation of 0.135 ↦ 0.135(E) solution to (18)
respect to C and � . Down, we set parameters in table 1
pt C) and we plot  ↦ .135(E) for C = 0.001 → 0.101.
birth rate is decreasing with respect to C. Up, we set
eters in table 1 (except �) and we plot  ↦ .135(E) for
.0319 → 0.2867.

freedom and career to raise their(s) child(ren) [22], surely
an impact on the parameters of cost and altruism.
e use a genetic algorithm to find parameters such that
is sufficiently close to the fertility ratem given in [28],
prehistoric population and therefore, these parameters
be re-evaluated for another fertility rate data (see figure
n order to see the sensitivity of the fertility rate to these
eters, we plot, in figure 6, the variation of .135 solu-

to (18) with respect to the personal cost C (with other
eters fixed in table 1) and the altruism factor � (with
parameters fixed in table 1). We notice that, as the
nal cost increases, .135 decreases and therefore the
ibrium Ê also increases. The variation with respect to
ltruism factor is more complicated. Note that the shape
35 changes from nearly linear to sigmoid and is in-
ing with respect to � when E is large enough (E > Ē,
V (Ē) = 0) and decreasing with respect to � when E
all enough (E < Ē). Since the death rate function
(1 − p(E)) intersects the curves in the first case (E
enough), Ê decreases with respect to � .
. First Simulation
e have directly that (Pop(t), E(t)) reaches a stable equi-
m when t goes to infinity (due to the growth of p + m

Figure 7: Numerical solution of (15) with parameter given in
table 1. Time change of the population size time↦ Pop(time).
Plain line : solution to Equation (15) and dashed line : solution
to (16)-(17).

with respect to E and decreasing of E with respect to Pop),
and this equilibrium (P̂ op, Ê) satisfies

B(Ê) = D(Ê), Ê = YHk
J

(1 − e−HkP̂ op�̂∕Am )
HkP̂ op�̂∕Am

,

which is (0.5606; 9786) for the parameters given in the table
1 (same as parameters give in table 1 [28]) (see figure 7 for a
numerical simulation of (16)-(17). The equilibrium found in
[28] is (0.680; 4752). The difference with [28] is due to the
approximation of the death rate, fertility rate and loss of age
structure : indeed, by taking only one age group, we choose a
fertility rate of one age group that overestimates the fertility
rate of the whole population, the same goes for the death rate
which underestimates the death rate of the whole population.
To find an equilibrium close to that given in [28], it might be
possible to modify average effective workers/person param-
eter �̂ and average age structure weighted consumption �̂ to
take into account the simplification to an age class. How-
ever we have chosen to keep parameters as given in [28], to
be more consistent with the original model and its functions
definitions.
3.2. The Anticipation Model and Simulations

Now we add the anticipation, following (10), with the
backward equation of the value

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

d
dtPop(t) =

(
.135(t) −D(E(t))

)
Pop(t)

E(t) = (Y Am)
(1−e−HkPop(t)�̂∕Am )

JPop(t)�̂

− d
dtV (t) = u(E(t)) + .135(t)(�V (t) − C)

−(D(E(t)) + �)V (t)

, (19)
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ble 1
rameters definition.

nition Variable Value

x. food J 2, 785 Kcal/day
icultural potential Y 13, 100 Kcal/ha/day
l arable land Am 1000 ha
or contribution H 5 hours/indiv./day
version from time k 0.0944
nnual area cultivated ha-days/hour/yr
rage effective
kers/person �̂ 0.723
rage age structure
ghted consumption �̂ 0.827
ameters of (au; cu) (15.5347; 3.4672)
utility function
e of the  sigmoid T e 3.1826
t C 0.6102
uism factor � 0.1659
ount time factor � 15∕100

(t) = 1
1+e−Te(�V (t)−C) with parameters given in the ta-

. We give three numerical simulations to analyze the
rence in behavior between an adaptive and an anticipat-
ndividual. In the first case (’nothing change’), we com-
both models when there is no change in the future : no
ge in the agriculture parameter such as the area of arable
the agricultural potential... and no birth rate policy. In
econd case (’agriculture catastrophe’), we see what is
ged by announcing that at a given time the total arable
has its area will be divided by two. In the third case
th control policy’), we see the effect of announcing of
th control policy that would be modeled by fixing the
rate at a certain value at a given time.
. Case 1. Nothing Change
ince the adaptive model corresponds to an equilibrium
e value equation in the anticipation model, equilibria
e adaptive model (16) are the same as the anticipation
el (19). The stability of steady states can be studied as
ssical (forward) way by keeping the backward/forward
ture.
rem 1. (Stability) The only steady state of (16) (resp.
: (P̂ op, Ê) is locally stable for both model.

he proof is direct for the adaptive model (due to the
th of  + p with respect to E and the decay of E with
ct to Pop). For the adaptation model, we have to deal
the Jacobian at (P̂ op, V̂ )

Jac =
(

0 J12
J21 J22

)
,

J12 = .135
)
)V P op > 0, J21 = (u′(E)+p′(E)V ) )E

)Pop <

J22 = .135
)
)V ((�V (t)−C))− (1−p(E)+�) < 0 (byerical computation). Since det(Jac) > 0 and tr(Jac) <

genvalues are negative and the steady state is locally
ptotically stable stable.

Figure 8: Anticipation VS Adaptation case 1. In blue (plain
line) we see time evolution of the population that adapts its
behavior and in red (dashed line) time evolution of the popula-
tion that anticipates. There is a small difference on the fertility
rate due to the adaptation to the variation of the food ratio
E. Population, food ratio and death rate are similar.

Therefore, we do not expect much difference between the
two models when the resource condition (here, for instance,
Am : area of arable land) does not change (see figure 8) dur-
ing of temporal evolution.
3.2.2. Case 2. Agriculture Catastrophe

Nevertheless, differences between anticipation and adap-
tative behavior appear when adding information such as eco-
logical catastrophe (modeled here by a decay in very short
time of the total area of arable land).

To illustrate a difference in behavior, we assume that the
area of arable land is divided by two at a given time :

Am =
{

1000, for t ∈ [0, 500]
500, for t ≥ 500 ,

where t = 500 is chosen to compare behavior of adaptive
and adaptation when population has reached its equilibrium
before area change happens. The information of area decay
is known by the population.

We see, in figure 9, that the food ratio only changes for a
relatively short time (time 500 to time 510) due to the short
evolution over time of the area of arable land and the high
death rate during this period to reach a new steady state in
population and food ratio.

Note that in the adaptive model (the classical model),
individuals do not change their birth rate before the loss of
area of arable land t = 500.

In the adaptation model, we see, in figure 9, that after
time 490 (therefore before any change of the arable land
area), the birth rate decreases due to the anticipation of the
decay of the food ratio E. True or not, the information of
the decay of the area of arable land has an impact on the
behavior on the fertility rate and therefore on the dynamics
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e 9: Anticipation VS Adaptation case 2. In blue (plain
we see time evolution of the population that adapts its be-
r and in red (dashed line) time evolution of the population
anticipates. In the four up plots : we show simulations
me interval 0..1000. Note the effect of the change of area
e t = 500 : the population changes from an equilibrium
another with a large death rate and a decay of fertility.
e four down plots we magnify the change around time
00 in order to observe more precisely the difference of
vior.

e population before the moment it could (or not) occur
-Malthusian behavior).
. Case 3. Birth Control Policy
ere we illustrate an another difference in behavior in the
of a birth control announcement that would be applied
a given time.
e assume that at time t = 470 is announced that the
rate will be limited to 0.0420 (which corresponds to
of the case 1. at equilibrium) thirty years after the an-
cement, i.e. at time t = 500.
e observe, in the figure 10, that between time t = 470
= 500 the birth rate increases due to the fact that in-
uals anticipate an increase in the food ratio under the
t of limitation of the birth rate after time t = 500.

Figure 10: Anticipation of a birth control policy. In the four up
plots : we show simulations on time interval 0..1000. Note the
effect of the change of area at time t = 500 : the population
moves from one equilibrium to an another with a decrease in
fertility (except a peak around time t = 500). In the four down
plots we magnify the change around time t = 500 to observe
the fertility and the behavior of anticipating population.

Consequently, the effect of announcing a birth control
policy to a population that anticipates change of resources
may have a counter effect just before the application of the
policy.

4. Conclusion
In this workwe have given a construction scheme tomode

the anticipation behavior in a dynamic population and re-
source model. This construction leads to a coupling of a
forward-in-time system of equations which models the in-
teraction between population and resources and a backward-
in-time equation which models the valuation of the value of
childbearing. On an example using a simple dynamic on the
time evolution of population, we show the construction of
the anticipationmodel and we apply it on different scenarios.
In a catastrophic scenario of a loss of arable area (announce-
ment), we see that an adaptive population, i.e., that evaluates
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alue but does not anticipate its variations, does not adapt
fertility rate to the loss. Whereas in the anticipation
el, the evolution of the fertility rate shows an anticipa-
of the loss. Since, the coupling is not classic in anal-
we have given general tools to prove the existence, the
eness and the numerical analysis in appendix. To go
er, it should be interesting to adapt the construction to
e structured model such as the model given in [28] (or
rmack - McKendrick [20] partial differential equation
el) and to adjust parameters to more recent population
ity rate. Moreover, we consider that C and � are con-
in time, an inflation of these parameters could have a
zero impact on the evolution of the birth rate over time.

ppendix
here are several and interesting mathematical problems
g in (10). Due to the coupling of time forward (for
and Re) and time backward (for V ), the existence and
eness of a solution to (10) is not a trivial application of
auchy-Lipshitz theorem. Moreover, numerical approx-
ion scheme of this problem is not easy. Trying to inverse
in the third equation (in V ) and using a shootingmethod
d V (0) such that V (T ) = VT fails due to the fact that
quation in V is unstable for positive time, i.e. a small
tion of V (0) implies a large variation of V (T ). A direct
ch-Picard fixed point algorithm fails also. In this Sec-
we first give results on the existence and the uniqueness
lution. Moreover, we explain the reason of the conver-
e of a relaxed Banach-Picard scheme to the solution (the
od has been used in previous works [11, 12] but not ex-
ed).
Mathematical Results

n this Section, we give two main results. The first the-
concerns the existence and uniqueness of a solution to
and the second gives an approximation scheme which
erges to the solution. In both theorems we use the func-
f defined as follows
f ∶ (, Re) ∈ C([0, T ], [0, 1]2)↦

f (, Re) ∈ C([0, T ], [0, 1]2), (20)

f ∶ (, R̃e)↦ ( 1
(1 + e−Te(�V −C))

, Re) (21)

e (V ,Re) is solution to
d
dtPop(t) =

(
�(t) −D(R̃e(t))

)
Pop(t), t ≥ 0,

d
dtRe(t) = �(Re(t)) −H(Pop(t), Re(t)),

− d
dtV (t) = u(Re(t)) + �

(�V (t)−C)
(1+e−Te(�V (t)−C))

−(D(Re(t)) + �)V (t),

(22)

initial data Pop(0) = Pop0 ∈]0,∞[, Re(0) = Re0 ∈
, V (T ) = VT .

Theorem 2. Assuming that

D, � ∈ C1(ℝ) and H ∈ C1(ℝ2), (23)
with

�(1) = �(0) = H(Pop, 0) = 0, and D(0) > � > D(1), (24)
and

D′ < 0 and )
)P op

H < 0. (25)

Then, there exists an unique solution to (10).6

We approach this solution can be by the following algo-
rithm : let u0 = 0, and define by induction

un+1 = (1 − �)un + �f (un), (26)
with � ∈]0, 1[ small enough. More precisely, we have the
following convergence result.
Theorem 3. Under assumptions (23)-(25) then u = (, Re)
the solution to (10) is a locally asymptotically stable state to
the equation

d
ds
U (s, t) = f (U (s, .))(t)−U (s, t), ∀t ∈ [0, T ], s ≥ 0. (27)

Remark 1. Indeed, an Euler approximation of (27) is given
by

Un+1(t) = Un(t) + �[f (U (n, .))(t) − U (n, t)]
= �f (U (n, .))(t) + (1 − �)U (n, t),

where � is the time step, i.e., the relaxed algorithm (26). An
another scheme, given by a semi-implicit Euler approxima-
tion of (27) could be

Un+1(t) = (Un(t) + �f (U (n, .))(t))∕(1 + �),

where � is the time step.
A.2. Proof of Existence and Uniqueness

We first give the existence result which comes directly
from the compactness of the operator f and the Schauder
fixed point theorem (see [19]). Then we prove uniqueness
using the decay of f and Ordinary Differential Equations
tools (upper/lower solutions).
Existence. This is a direct application of Schauder fixed
point theorem (see [19]). Indeed, for all (, R̃e) which be-
longs to C([0, T ], [0, 1]2), (V ,Re, P op) is the solution to the
Ordinary Differential system of Equations (22) which exis-
tence and uniqueness is a consequence to the Cauchy Lip-
schitz theorem (see [8]). Moreover (V ,Re, P op) are regu-
lar functions, i.e. (Pop,Re) ∈ C1([0, T ], [0, 1]) and V is a
C1([0, T ], [0, 1]2). Now, using that

x↦
1

1 + e−Te(�x−C)
∈ C1(ℝ,ℝ),

6C1 assumptions could be replaced by Lipschitz,D′ < 0 byD decreas-
ing and )

)P opH < 0 byH decreasing with respect to Pop.
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f (, Re) is bounded in C1([0, T ], [0, 1]2). Therefore f
mpact on the convex set C([0, T ], [0, 1]2) and so, using
uder theorem (see [19]), there exists a fixed point to f .

ueness. Let (1, Re1) and (2, Re2) two solutions to
xed point (, Re) = f (, Re), i.e., solutions to (10) then
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dtPopi(t) =

(
�i(t) −D(Rei(t))

)
Popi(t),

d
dtRei(t) = �(Rei(t)) −H(Popi(t), Rei(t)),

d
dtVi(t) = −u(Rei(t)) − �

(�Vi(t)−C)
(1+e−Te(�Vi(t)−C))

+(D(Rei(t)) + �)Vi(t),

the initial data Popi(0) = Pop0 ∈]0,∞[, Rei(0) =
∈]0, 1], Vi(0) = V 0i and V 0i = (C − log(1∕i(0) −
e)∕� . If V 01 = V 02 , by Cauchy Lipschtiz theorem 1 =e suppose that 1(0) > 2(0) (and so V1(0) > V2(0)),
we have d

dtPop1(0) >
d
dtPop2(0) and so

Pop1(t) > Pop2(t),

neighborhood of t = 0. Then, using assumption (25),
ave

Re1(t) < Re2(t),

o we have
D(Re1(t)) − u(Re1(t)) > D(Re2(t)) − u(Re2(t)),

h implies that V1(t) > V2(t) and so 1(t) > 2(t) in a
borhood of 0. Therefore Ω = {s ∈ [0, T ] s.t. 1(t) >
∀t ∈ [0, s[} is a nonempty set. On Ω̄∕{0}, we have

mparison principle Pop1 > Pop2 and Re1 < Re2 and
= Ω̄ = [0, T ] : which is impossible since V1(T ) =
) = VT and so 1(T ) = 2(T ). □

Proof of Convergence Result
he most difficult is to prove the convergence of the al-
hm (26). Ideed, since f is not a contractant operator,
anach fixed point theorem (see [19]) cannot be used
tly. Nevertheless, we can prove that f is decreasing
tone, see [30]), its differential df is a strongly negative
[10]) and compact operator and so we can construct a
mical system which converges to the solution. The al-
hm (26) can be seen as a numerical approximation of
ynamical system.
y differentiation of V = f (U ) − U with respect to s
ave directly that V = f (U ) − U , where f is defined by
(22) and U solution to (27) satisfies

V (s, t) = dfU (s,.)V (s, .)(t)−V (s, t), ∀t ∈ [0, T ], s ≥ 0.
(28)

e show that dfU (s,.) is a strongly negative (see [10])
ompact operator (uniformly along a trajectory U ).

Lemma 4. Let f defined by (21)-(22) then dfU (s,.) an inte-
gral operator with the following properties :

1. dfU (s,.) ∶ ℎ↦ dfU (s,.)(ℎ) is a linear, regular (contin-
uous) and strongly negative operator, i.e., −dfU (s,.) is
strongly positive (see [10]),

2. dfU ∶ ℎ ∈ C0([0, T ]×ℝ+)↦ dfU (s,.)(ℎ) ∈ C0([0, T ]
ℝ+) is a compact operator,

3. infU∈{U (s,.), s≥0} dfU , supU∈{U (s,.), s≥0} dfU are li
ear, regular (continuous) and strongly negative oper-
ator.

And finally we prove that, for all dynamical system of
this form (with a strongly negative (see [10]) and compact
operator), we have the convergence of the solution to 0 ex-
ponentially.
Lemma 5. Let �(s, t) solution to

d
ds
�(s, t) = −(t + I)�(s, t),

wheret is a compact strongly positive operator on the func-
tion set C0([0, T ], [0, 1]2) then we have

1. the spectral radius oft, named �(t), is a single eigen-
value, there exists N(., t) ≥ 0 eigenfunction associ-
ated to this eigenvalue

2. there are no other eigenvalue of modulus �(t)

More precisely there exists (�,N, �), with � > 1, solution to

⎧⎪⎨⎪⎩

− d
dsΦ(s, t) = ∗tΦ(s, t) + �(t)Φ(s, t),

d
dsN(s, t) = tN(s, t) + �(t)N(s, t),

(29)

with t = −(t + I) and ∗t its dual operator. Moreover,
we have the convergence of � to 0 and

∫ |�(s, t)|Φ(s, t)dt = O(e−s). (30)

Therefore we have proved thatU solution to (27) satisfies
f (U ) − U →s→∞ 0,

in C0([0,∞[, L1([0, T ])).
Proof of Lemma 4 Let , Re and �1, �2 then compute
(Pop,Re, V ), with the input functions (, Re) and
(Pop� , Re� , V�) with the input functions ( + �1, Re + �2).We have, at first order,
Pop�(t) = Pop(t) + �Pop(t), Re�(t) = Re(t) + �Re(t),

V�(t) = V (t) + �V (t),

with
d
dt
�Pop(t) = (�(t) −D(Re(t)))�Pop(t)
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+ ��1(t)Pop(t) −D′(Re(t))�2(t),

�Pop(0) = 0, i.e., by integration

�Pop(t) = ∫
t

0
e∫ ts (�(w)−D(Re(w)))dw

[��1(s)Pop(s) −D′(Re(s))�2(s)]ds.

over, we have
d
dt
�Re(t) = [�′(Re) −

)
)Re

H(Re, P op)]�Re(t)

− )
)P op

H(Re, P op)�Pop(t),

�Re(0) = 0, i.e., by integration we have

�Re(t) = ∫
t

0
e∫ ts [�′(Re)− )

)ReH(Re,P op)](w)dw

[− )
)P op

H(Re, P op)]�Pop(s)ds,

nally

�Re(t′) = ∫
t′

0
1s≤t′ ∫

t′

q
e∫ t

′
s [�

′(Re)− )
)ReH(Re,P op)](w)dw

[− )
)P op

H(Re, P op)](e∫ sq (�(w)−D(Re(w)))dwds
[��1(q)Pop(q) −D′(Re(q))�2(q)]dq).

ow, for �V , we have

− d
dt
�V (t) = [u′(Re(t)) −D′(Re(t))V (t)]�Re(t)

− (� + � + �P ′(V ))�V (t),

�V (T ) = 0 and P (V ) ∶= (�V (t)−C)
(1+e−Te(�V (t)−C)) . Therefore, byration, we obtain

�V (t) = ∫
T

t
[u′(Re(s)) −D′(Re(s))V (s)]�Re(s)

e− ∫ st (D(Re(w))+�+�P ′(V (w)))dwds.
lly, we find

�V (t′) = ∫
T

t′
[u′(Re(t)) −D′(Re)V (t)]

e− ∫ tt′ (D(Re(w))+�+�P ′(V ))dw

∫
t

0
e∫ ts [�′(Re)− )

)ReH(Re,P op)](w)dw

[− )
)P op

H(Re, P op)](s)

∫
s

0
e∫ sq (�(w)−D(Re(w)))dw[��1(q)Pop(q)

−D′(Re(q))�2(q)]dqdsdt,

which could be written, using Fubini, in the following form

�V (t′) = ∫
T

0 ∫
T

t′ ∫
t

q
[u′(Re(t)) −D′(Re)V (t)]

[− )
)P op

H(Re, P op)](s)

e− ∫ tt′ (D(Re(w))+�+�P ′(V ))dwe∫ ts [�′(Re)− )
)ReH(Re,P op)](w)dw

e∫ sq (�(w)−D(Re(w)))dwdsdt[��1(q)Pop(q)
−D′(Re(q))�2(q)]dq.

Therefore, we have
(

� (t′)
�Re(t′)

)
= ∫

T

0
Q(s, t′)

(
�1(s)
�2(s)

)
ds,

with

Q(s, t′) =
(
Q11(s, t′) Q12(s, t′)
Q21(s, t′) Q22(s, t′)

)
.

Q11(q, t′) = C ′f (V (t
′))�Pop(q)

∫
T

t′ ∫
t

q
[u′(Re(t)) −D′(Re)V (t)]

[− )
)P op

H(Re, P op)](s)

e
−∫

t

t′
(D(Re(w)) + � + �P ′(V ))dw

e∫
t

s
[�′(Re) − )

)Re
H(Re, P op)](w)dw

e∫
s

q
(�(w) −D(Re(w)))dw

dsdt,

Q12(q, t′) = C ′f (V (t
′))

∫
T

t′ ∫
t

q
[u′(Re(t)) −D′(Re)V (t)]

[− )
)P op

H(Re, P op)](s)

e
−∫

t

t′
(D(Re(w)) + � + �P ′(V ))dw

e∫
t

s
[�′(Re) − )

)Re
H(Re, P op)](w)dw

e∫
s

q
(�(w) −D(Re(w)))dw

dsdt(−D′(Re(q))),

Q21(q, t′) = �Pop(q)1q≤t′

∫
t′

q
e∫

t′

s
[�′(Re) − )

)Re
H(Re, P op)](w)dw
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[− )
)P op

H(Re, P op)]

e∫
s

q
(�(w) −D(Re(w)))dw

ds,

Q22(q, t′) = [−D′(Re(q))]1q≤t′ ∫
t′

q

e∫
t′

s
[�′(Re) − )

)Re
H(Re, P op)](w)dw

[− )
)P op

H(Re, P op)]

e∫
s

q
(�(w) −D(Re(w)))dw

ds,

e Cf (V ) ∶= 1
(1+e−Te(�V (t)−C)) . We notice that Qi,j < 0

ll i, j and using assumptions (23) and (25) we have that
t′,i,j Qi,j(q, t′) < 0. Therefore, −dfU is a strongly posi-
perator (and the same holds for sup and inf of −dfU ).e dfU is an integral operator with Q continuous with
ct to q and C1 with respect to t′ we have compactness
is operator on C0([0, T ] ×ℝ+). □

f of Lemma 5 Using Krein Rutmann theorem [10],
ave existence of (�t, Nt, �t) solution to (29). By com-
ion, we find
d
ds ∫ �(s, t)e∫ s0 �(s′)ds′Φ(s, t)dt

= ∫ �(s, .)(t)e∫ s0 �(s′)ds′Φ(s, t)dt
+ ∫ �(s, t)e∫ s0 �(s′)ds′ [ d

ds
Φ(s, t) + �(s)Φ(s, t)]dt,

o we have the conservation law
d
ds ∫ �(s, t)e∫ s0 �(s′)ds′Φ(s, t)dt = ∫ �(s, t)e∫ s0 �(s′)ds′

[∗Φ(s, t) + d
ds
Φ(s, t) + �(s)Φ(s, t)]dt = 0.

+(s, t) ∶= max(�(s, t), 0) and �−(s, t) ∶= max(−�(s, t), 0)we have
d
ds ∫ �+(s, t)e∫

s
0 �(s

′)ds′Φ(s, t)dt = ∫ �(s, t)

e∫ s0 �(s′)ds′
[∗(sgn+(�(s, .))Φ(s, .))

+ ( d
ds
Φ(s, t) + �(s)Φ(s, t))sgn+(�(s, t))]dt.

g (29), we find
d
ds ∫ �+(s, t)e∫

s
0 �(s

′)ds′Φ(s, t)dt = ∫ �(s, t)

e∫ s0 �(s′)ds′ [∗(sgn+(�(s, .))Φ(s, .))
− ∗(Φ(s, .)sgn+(�(s, t)))(t)]dt.

The same computation holds for �− and we find
d
ds ∫ �−(s, t)e∫

s
0 �(s

′)ds′Φ(s, t)dt = ∫ �(s, t)e∫ s0 �(s′)d

[∗(sgn−(�(s, .))Φ(s, .))−∗(Φ(s, .)sgn−(�(s, t)))(t)]d
Now using that t = −( + I) and ∗t = −(∗ + I), we
have

d
ds ∫ �+(s, t)e∫

s
0 �(s

′)ds′Φ(s, t)dt = ∫ �(s, t)e∫ s0 �(s′)d

[∗(sgn+(�(s, .))Φ(s, .))−∗(Φ(s, .)sgn+(�(s, t)))(t)]d

and
d
ds ∫ �−(s, t)e∫

s
0 �(s

′)ds′Φ(s, t)dt = −∫ �(s, t)e∫ s0 �(s′

[∗(sgn−(�(s, .))Φ(s, .))−∗(Φ(s, .)sgn−(�(s, t)))(t)]d

Therefore, using that |�(s, t)| = �+ + �− we obtain
d
ds ∫ |�(s, t)|e∫ s0 �(s′)ds′Φ(s, t)dt = −∫ �(s, t)

e∫ s0 �(s′)ds′∗(Φ(s, .))dt

+ ∫ |�(s, t)|e∫ s0 �(s′)ds′∗(Φ(s, .))dt.

Using that
d
ds
Φ + (� − 1)Φ = ∗Φ,

we have
d
ds ∫ |�(s, t)|e∫ s0 �(s′)ds′Φ(s, t)dt = −(�−1)∫ �(s, t)

e∫ s0 �(s′)ds′Φdt + (� − 1)∫ |�(s, t)|e∫ s0 �(s′)ds′Φdt

− ∫ [�(s, t) − |�(s, t)|]e∫ s0 �(s′)ds′ d
ds
Φdt,

and so we find
d
ds ∫ |�(s, t)|e∫ s0 �(s′)ds′Φ(s, t)dt = −(�−1)∫ �(s, t)

e∫ s0 �(s′)ds′Φdt + (� − 1)∫ |�(s, t)|e∫ s0 �(s′)ds′Φdt

+ 2∫ �−(s, t)e∫
s
0 �(s

′)ds′ d
ds
Φdt.

Noticing that
− d
ds
Φ = (� − 1)[Id − ∗

� − 1
]Φ,

where [Id − ∗
�−1 ] ≥ 0 and [Id − ∗

�−1 ] > 0 whenever Φ ≠
CtsΨ with

[Id − ∗

� − 1
]Ψ = 0,
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g Krein Rutmann), we have

− d
ds
Φ ≥ 0,

Φ ≥ 0. Finally, we have

d
ds ∫ |�(s, t)|e∫ s0 �(s′)ds′Φ(s, t)dt ≤
− (� − 1)∫ �(0, t)Φ(0, t)dt

+ (� − 1)∫ |�(s, t)|e∫ s0 �(s′)ds′Φdt,

nd, using Gronwall inequality, we obtain

∫ |�(s, t)|Φ(s, t)dt ≤ −(�− 1)∫ �(0, t)Φ(0, t)dte−s

+ e−s ∫
s

0
e− ∫ s′0 (�(s′′)−1)ds′′ds′,

30) is satisfied. □

n Exemple of Predator - Prey Model with
nticipation
e follow here the work of J. Terry in [33], in which,
rowth rate of predators is decomposed into a birth rate
d a death rate D. At time t, predators P (t) and preys
follow the master system of equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dtN(t) = rN(1 −N∕K)⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

logistic growtℎ

−P (t)F (N(t))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

ℎunt

d
dtP (t) = P (t)

[
B(F (N(t)))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
birtℎ rate

−D(F (N(t)))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
deatℎ rate

] , (31)

F (Holling type II) defined as (a, b positive constants)

F (N) = aN
1 + bN

.

r gives as example,

B(F (N)) =
⎧
⎪⎨⎪⎩

0, 0 ≤ F (N) ≤ �1
�, F (N) ≥ �2
� cos2(�2 (1 +

F (N)−�1
�2−�1

)), else
, (32)

(N)) =
⎧⎪⎨⎪⎩

dM , 0 ≤ F (N) ≤ �1
dm, F (N) ≥ �2,
dm + (dM − dM ) cos2(

�
2 (
F (N)−�1
�2−�1

)), else
,

(33)

with �1, �2, �1, �2, � (maximal birth rate), dM (maximal deat
rate) and dm (minimal death rate) positive constants. Follow-
ing the construction of Section 2.1, we have

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d
dtN(t) = rN(1 −N∕K)⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

logistic growtℎ

−P (t)F (N(t))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

ℎunt

d
dtP (t) = P (t)

[
�(t)
⏟⏟⏟
birtℎ

−D(F (N(t)))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
deatℎ rate

]

− d
dtV (t) = u(N(t)) + �(t)(�V (t) − C)

−(D(F (N(t))) + discountfactor)V (t)

,

(34)
and

(t) = 1
1 + e−T e(�V (t)−C)

,

for the anticipation model and
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d
dtN(t) = rN(1 −N∕K)⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

logistic growtℎ

−P (t)F (N(t))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

ℎunt

d
dtP (t) = P (t)

[
�(t)
⏟⏟⏟
birtℎ

−D(F (N(t)))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
deatℎ rate

]

0 = u(N(t)) + �(t)(�V (t) − C)
−(D(F (N(t))) + discountfactor)V (t)

,

(35)
and

(t) = 1
1 + e−T e(�V (t)−C)

,

for the adaptive model. The author studies the existence,
uniqueness and stability of steady states depending of values
of �1, �2, �1, �2, �, dM , dm, r, K , a et b. For �1 = �1 =
.05, �2 = �2 = .1250, � = .15, dM = .0375, dm = .0125,
r = .0125, K = 9, a = .0250 et b = .1, there exists a
locally asymptotically stable non-trivial steady state. The
birth and the death rates are given in figure 11, we notice
that for parameters [T e, C, cℎi, au, cu] well chosen, thebirth rate B can be approximated by � as in (14).

To compare both dynamics (adaptive versus adaptation),
we simulate a sudden decrease in the growth rate of the prey
: rwhich is divided by two after time t = 4500. In the figure
12, we see that adaptation involves less oscillations (in am-
plitude and more rapidly converging) than for the adaptive
behavior.
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