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with p the pressure.
In the frame moving with the knife, the fluid velocity

is zero on the surface B of the blade (see Fig. 1), hence
(u, v, w) = (0, 0, 0) on B. Let Γ be the boundary of the
cross section of the notch in the plane (x, y), i.e. the
projection of the solid–liquid interface onto (x, y). The
continuity equation imposes that the flux of matter on
the gel side of Γ is equal to the flux of liquid on the other
side. Mass densities are almost the same on both sides
of Γ. Hence, continuity of the flux of matter implies the
continuity of velocity through Γ. Since the components
of the velocity on the solid side are (−U, 0,−W ) in the
frame moving with the knife, the velocity in the liquid
along Γ has to fulfil:

u|Γ = −U (6)
v|Γ = 0 (7)
w|Γ = −W (8)

The Cauchy stress tensor in the liquid phase is σ =
σ̃ + pI with I the identity tensor and σ̃ the deviatoric
stress given by the standard formulae for viscous fluids
[20],

σ̃ = η

( 2u,x u,y + v,x w,x

u,y + v,x −2u,x w,y

w,x w,y 0

)
. (9)

The interfacial tension between the two phases is neg-
ligible because the gel is mainly composed of solvent,
the same as the liquid phase [21,22]. In addition, we
consider boundary conditions such that the gel is not
initially stressed, so that the stress in the gel at the
interface Γ is the viscous stress applied by the liquid on
the gel, σ. The characteristic polynomial of σ̃ is as a
function of the variable σ:

−σ3 + η2
(
w2

,y + w2
,x + 4u2

,x + (u,y + v,x)2
)
σ

+η3
(−2u,xw2

,y + 2(u,y + v,x)w,xw,y + 2u,xw2
,x

)
.

(10)

From Eqs. 6-8, the derivatives of u, v and w along Γ,
defined here as x = Γ(y), are equal to zero. Hence,
at the gel–fluid interface, u,xΓ,y + u,y = 0, v,xΓ,y +
v,y = 0 and w,xΓ,y + w,y = 0. As a consequence, the
characteristic polynomial of σ̃ (Eq. 10) simplifies with
Eq. 2, for (x, y) = (Γ(y), y), in:

− σ3 + η2
(
w2

,y + w2
,x + 4u2

,x + (u,y + v,x)2
)
σ, (11)

and the principal stresses, defined as the eigenvalues of
σ̃, are 0 and ±Σ with

Σ = η
√

w2
,y + w2

,x + 4u2
,x + (u,y + v,x)2. (12)

The solid–fluid interface is then subjected to a pure
shear stress. For a isotropic material, the critical stress
σ1 for the solid–liquid transformation has to be inde-
pendent on the choice of coordinates. Hence, for an

incompressible solid, it has to be a function of the eigen-
values of σ̃, here a function of Σ:

σ1 = f (Σ) . (13)

Taking for σ1 the shear yield stress of the gel [23] in the
region around the tip of the notch where liquefaction
is happening, the equation of the curve Γ is found by
imposing the condition

Σ = σ1 (14)

on Γ, whatever the yielding criterion specific to the gel.
The details of the yield criterion are here irrelevant.
The only assumptions that have to be made about the
mechanical behaviour of the gel are (i) the solid phase
is isotropic and incompressible, and (ii) it behaves as a
Newtonian liquid beyond the yielding point.

In the following, � (defined in Eq. 1) is taken as unit
length, W as unit speed and σ1 as unit stress. In addi-
tion, the ratio of the normal to the tangential velocity,
U/W , is called ζ.

3 Blades with a finite thickness

In [1], the blade was assumed to be sharp enough to
be approximated as a half plane of zero thickness. We
consider here straight blades (i.e. blades with paral-
lel edges) of finite thickness 2h, and we compute the
shape of the solid–liquid interface (Γ) as well as the
critical tangential velocity. We show that they converge
towards the zero-thickness solution as the finite thick-
ness of the blade tends to zero.

Let us first compute the characteristic thickness of
the liquid layer in the liquefaction region behind the
cutting edge of the blade (see Fig. 1). This thickness is
defined as d − h, where 2d is the total extension of the
cross section of the notch behind the cutting edge, as
indicated in Fig. 1. In this region, derivatives along x-
direction in Eq. 12 are negligible and Eq. 12 simplifies:

Σ = η
√

w2
,y + u2

,y. (15)

According to the incompressibility condition (Eq. 2),
the average value of u along y is < u >= − d

d−hU .
From Eq. 4, u(y) is parabolic and from the boundary
conditions at y = 0 and y = d, the velocity profile for
−x � � and −x � (d − h) is:

u(y) = 3U
d + h

d − h

(
y − h

d − h

)2

− 2U
2d + h

d − h

(
y − h

d − h

)
.

(16)
This is a simple combination of Couette and Poiseuille
flows [24], the pressure gradient along the x-direction
being constant (see Fig. 2). In addition, w(y) is linear









arising from the model, insofar as all these results are
valid whatever the choice of the criterion. This should
not obscure that the stress induced transformation of
the solid into a liquid is a complex phenomenon. Some
assumptions have led to simplifications in the model.

First, describing the material properties in the pro-
cess zone as a Newtonian fluid is a simplifying hypoth-
esis. The rheological features of this zone may be more
complex. It would be interesting to consider constitu-
tive equations accounting for specific rheological prop-
erties, such as those of Bingham fluids [26,27]. Reduc-
ing them to a Newtonian fluid must be viewed as a
first approximation in order to bring out the important
physical mechanisms in the slicing process. The goal is
to take into account the viscous effects of the fluid in the
model, in a simple although realistic and relevant form.

A finite width of the transition zone from solid to
liquid has not been considered here, by assuming this
width is far smaller than �. In addition, the transfor-
mation of the solid to liquid for stress beyond σ1 is
not instantaneous. We have considered in the model
that the timescale �/U related to the penetration of the
blade into the gel is much larger than the characteris-
tic time involved in the solid–liquid transformation [28].
Introducing more detailed constitutive laws taking into
account internal characteristic times of the material
would be useful, for instance to deal with thixotropic
fluids [29].

In this paper, we have focused on steady states. A
better understanding of the early stages of the slicing
by considering transient regimes would be useful, giving
hints for elucidating the physics of slicing in the cases no
steady state exists, i.e. when the normal velocity is too
fast compared to the tangential one. Hence, completing
the model by taking into account time dependence is
an important task that has now to be addressed.

Comparisons of the theoretical predictions with
experiments would be welcome, and experiments could
reveal what happen in the cases no steady state exists.
Unfortunately, experimental data for a quantitative or
even semi-quantitative comparison with the theory are
currently lacking. Cutting with sliding soft materials
has been explored only for relatively slow tangential
(and normal) velocities [3,30] so that the characteristic
length (�) is too small to be relevant at the continu-
ous scale. In addition, these experimental data mainly
concern situations for which the ratio of tangential to
normal velocities is larger than one [3,30], and data
with a ratio less than one are far too spare to draw any
tendency.
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