N

N
N

HAL

open science

Effects of the blade shape on the slicing of soft gels

Serge Mora

» To cite this version:

Serge Mora. Effects of the blade shape on the slicing of soft gels. Kuropean Physical Journal E:
Soft matter and biological physics, 2021, 44 (12), pp.151. 10.1140/epje/s10189-021-00158-y . hal-

03767749

HAL Id: hal-03767749
https://hal.science/hal-03767749v1

Submitted on 2 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03767749v1
https://hal.archives-ouvertes.fr

Effects of the blade shape on the slicing of soft gels

Serge Mora®®

Laboratoire de Mécanique et Génie Civil, Université de Montpellier and CNRS, Montpellier, France

Abstract Slicing soft gels with a knife is eased by rapidly sliding the blade along its edge. This common
observation has been recently explained thanks to a model in which the split of the gel results from a
failure occurring at a critical stress and consisting of the transformation of the solid gel into a liquid
phase (Phys Rev Lett 125:038002, 2020). Here, the cutting process is shown to be independent of the yield
criterion of the gel, and the model investigated further by considering the thickness and the shape of the
blade. Features of the slicing process converge toward the zero-thickness limit as the sharpness of the blade
increases. The model does predict that a thinner edge facilitates the cleavage. In addition, a symmetric
cross section of the blade is found to be more efficient than a bevel.

1 Introduction

Dragging the blade along its edge facilitates the slic-
ing of soft materials: cutting cheese, meat or vegetables
is made easier by sliding rapidly the knife rather than
just squeezing normally the surface [2,3]. It is also the
case for a surgeon precisely cutting into human flesh [4].
This article is focused on the slicing of gels, with which
the above examples have strong connections. A gel is a
complex system consisting of two phases typically com-
posed of a solid dispersed in a liquid [5,6]. The majority
of their mass is that of the liquid, yet they exhibit the
properties of a solid, such as a nonzero yield stress [7].
Their physical behaviour results from the formation of
percolating networks (made of colloidal particles and /or
polymers) and from the interplay between these struc-
tures and the fluid [8,9]. This leads to specific proper-
ties, making gels used in a broad range of applications
[10].

For most solid materials, if the stress remains below
a critical value, called later o;, the deformation is
elastic and the material returns to its original shape
after the applied stress is removed. In contrast, a part
of the deformation is permanent and non-reversible if
this critical stress is passed, corresponding to a plastic
behaviour[11].

In gels in which the large majority of the mass comes
from the solvent and beyond the critical stress, once a
big enough proportion of links forming the gel skeleton
is broken, the network disappears and the gel becomes
locally a liquid suspension of small particles without the
cohesiveness of a solid. This results in viscous liquid-like
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medium in areas where the stress exceeds the critical
stress [12-14]. The critical stress oy is linked with the
stress tensor by a general relationship, called yielding
criterion, whose expression only depends on the mate-
rial properties. Because the yielding criterion has to be
frame independent, it is a function of the invariants
of the stress tensor. Several yielding criteria have been
proposed, for different kinds of materials. For isotropic
materials, common yield criteria are the Tresca, the
von Mises, the Burzynski-Yagn and the Mohr-Coulomb
yield eriteria [15,16].

A model describing the slicing of soft gels has been
recently introduced in [1]. In this model, the blade
itself does not contact the network of the gel but slides
through the viscous liquid medium resulting from the
gel failure occurring at the vicinity of the blade. The
cutting force is transmitted from the blade to the solid
gel by this thin viscous layer of liquid (see Fig. 1).
Whether the deformations of the solid phase are large or
small [17,18] does not matter in the theory, the impor-
tant property being that the gel remains elastic below a
critical stress. The goals of this article are to elucidate
the role of the yielding criterion on the slicing process
and to test the predictions of the model for different
geometries of the blade.

The paper is organized as follows. The base equa-
tions modelling the slicing and established in [1] are
first recalled in Sect. 2, and the choice of the yielding
criterion is shown to be definitely unimportant. The
effects of the blade thickness are investigated in Sect.
3: the thickness of the liquid layer along the blade is
calculated. The main geometrical features of the notch,
whose boundary is the solid—liquid interface, are also
determined numerically. Steady states in the cutting
exist only if the ratio of the normal to the tangential



velocities is lower than a critical value, called here (*.
In Sect. 3, (* is computed as a function of the blade
thickness. It decreases with the thickness of the blade,
meaning that a steady slicing requires a smaller tangen-
tial velocity as the blade is thinner. The effect of the
angle of a wedge at the cutting edge is investigated in
Sect. 4. The model properly predicts that slicing is facil-
itated by the sharpness of the blade. Then, the case of a
bevelled blade is considered. The last section is devoted
to a discussion and a conclusion.

2 Base equations for the slicing of a soft
gel

In the model, the gels are elastic materials that locally
turn into a liquid-like viscous medium if the stress is
larger than a critical value, 0. This results in a coupling
between elasticity and the dynamics of a viscous fluid.
In order to bring out the main relevant physical mech-
anisms, we describe the viscous features of the fluid
phase as for a Newtonian liquid, and we do not focus
on the detailed rheological behaviour of the fluid phase.
Considering other specific constitutive laws would only
provide corrections without generality.

In this section, the equations describing this coupling
are presented, and the choice of the yielding criterion
is discussed.

Following the model introduced in [1], let us con-
sider a blade moving parallel to the edge in the sliding
direction at velocity W, this direction being parallel to
the surface to be separated. The blade is also moving
inward the solid material in the direction perpendicular
to the cutting edge at velocity U (Fig. 1).

Let 5 be the shear viscosity of the liquid phase and
let us define the characteristic length ¢ of the system
such that the viscous shear stress nW/¢ is equal to the

-
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Fig. 1 Sketch of the blade (in red) moving at velocity U
in the cutting (normal) direction # and at velocity W in the
sliding direction z (parallel to the initial surface of the gel).
Here the blade B is parallelepidic with the thickness 2h.
The boundary of the notch corresponds to the solid-liquid
interface, denoted I'. 2d is the lateral extension of the fluid
layer behind the cutting edge. a is the distance between the
cutting edge and the tip of the notch, and 7 is the radius
of curvature of I' at the tip of the notch

vield stress oy:
{=nW/ay. (1)

One can anticipate that ¢ gives the typical thickness
of the viscous layer on either side of the blade. Let us
estimate orders of magnitude. Consider a hydrogel with
a shear yield stress equal to o1 = 100Pa, being cut
with the sliding (tangential) velocity W = 1m s~1. The
viscosity of the liquid phase is expected to be larger
than that of water: we take here n = 1 x 10~ 2?Pas.
With these values, the characteristic length defined just
above is £ = 100pm, which is a relevant length scale in
the context of continuum mechanics.

The order of magnitude of the rate of migration of
the solvent into the solid phase due to the stress gener-
ated by the cutting is important in order to determine
whether the solid phase can be approximated as incom-
pressible. The shear modulus of the gel is expected to
be of order kT /&3 where £ is the mesh size of the gel
[19]. The yield stress oy being usually comparable to
the shear modulus, one gets, again with ¢; = 100Pa,
& ~ 30nm. Considering a Poiseuille flow through the
porous medium of mesh size £ resulting from a pres-
sure gradient Vp, the characteristic permeation veloc-
ity inside the gel is vy, ~ %?—F With 74 = 1mPa s,
£ =30nm and Vp ~ % ~ 1 x 10°Pa m !, one obtains
Upig ~ 1 % 107 %m st a velocity far smaller than U and
W. Hence, the solid phase will be considered in this
paper as incompressible,

In the following, x is the direction normal to the ini-
tial gel surface, y is the direction perpendicular to the
plane of the knife, and z is the direction of the sliding.
y and z are therefore parallel to the initial free sur-
face of the material. The width of the blade (along z) is
assumed to be far larger than the other length scales, so
that the system can be considered as invariant along z.

The blade is supposed to have advanced in the solid
gel for a sufficiently long time and to continue to sepa-
rate it at constant velocities, making a self-reproducing
notch in the gel around the cutting edge and leading
to a steady state. Within these assumptions, the notch
boundary is stationary in the frame moving with the
knife and the solid gel has a homogeneous velocity. This
velocity is —W in the sliding direction and —U toward
the blade. In the frame moving with the knife, let u, v, w
be the velocity component in the viscous liquid sur-
rounding the blade, along x, y and z respectively. The
system being invariant along z, the incompressibility
condition of the liquid is:

U+ Vy= 01 (2)

where u , = %f, etc. The Reynolds number in the liquid
is assumed to be low enough to make valid the linear
Stokes equation:

n(u,xm + u.yy) = P (3)
n('”,-xz g ”,yy} = Py (4)
Wy + Woyy = U! (5)



with p the pressure.

In the frame moving with the knife, the fluid velocity
is zero on the surface B of the blade (see Fig. 1), hence
(u,v,w) = (0,0,0) on B. Let I be the boundary of the
cross section of the notch in the plane (z,y), i.e. the
projection of the solid-liquid interface onto (z,y). The
continuity equation imposes that the flux of matter on
the gel side of T is equal to the flux of liquid on the other
side. Mass densities are almost the same on both sides
of I'. Hence, continuity of the flux of matter implies the
continuity of velocity through I'. Since the components
of the velocity on the solid side are (—U, 0, —W) in the
frame moving with the knife, the velocity in the liquid
along I' has to fulfil:

ulp = -U (6)
vlp =0 (7)
wlp = =W (8)

The Cauchy stress tensor in the liquid phase is ¢ =
d + pll with I the identity tensor and g the deviatoric
stress given by the standard formulae for viscous fluids

(20],
W,y Uy +V, W,
é =n| Uyt Vs —2’[1,’1 Wy |- (9)

W g Wy 0

)

The interfacial tension between the two phases is neg-
ligible because the gel is mainly composed of solvent,
the same as the liquid phase [21,22]. In addition, we
consider boundary conditions such that the gel is not
initially stressed, so that the stress in the gel at the
interface I is the viscous stress applied by the liquid on
the gel, o. The characteristic polynomial of & is as a
function of the variable o: N

—o® +n? (w?y + wi + 4u,2$ + (u,y + v,x)z) o
P (=20 002, + 2ty 4 0,0)0 0w, + 2u gu?,)
(10)

From Egs. 6-8, the derivatives of u, v and w along T,
defined here as = I'(y), are equal to zero. Hence,
at the gel-fluid interface, u 'y +u, = 0, v, I, +
vy = 0and w,l', +w, = 0. As a consequence, the
characteristic polynomial of & (Eq. 10) simplifies with

Eq. 2, for (z,y) = (['(y),y), in:
—od+n? (wa + wa + 4u?w + (u,y + v7w)2) o, (11)

and the principal stresses, defined as the eigenvalues of
d, are 0 and £3 with

5= n\/w?y w42 4 (uy v,)2 (12)

The solid—fluid interface is then subjected to a pure
shear stress. For a isotropic material, the critical stress
o1 for the solid-liquid transformation has to be inde-
pendent on the choice of coordinates. Hence, for an

incompressible solid, it has to be a function of the eigen-
values of g, here a function of 3

o = (2). (13)

Taking for o7 the shear yield stress of the gel [23] in the
region around the tip of the notch where liquefaction
is happening, the equation of the curve I' is found by
imposing the condition

Y= g1 (14)

on I', whatever the yielding criterion specific to the gel.
The details of the yield criterion are here irrelevant.
The only assumptions that have to be made about the
mechanical behaviour of the gel are (i) the solid phase
is isotropic and incompressible, and (ii) it behaves as a
Newtonian liquid beyond the yielding point.

In the following, ¢ (defined in Eq. 1) is taken as unit
length, W as unit speed and o7 as unit stress. In addi-
tion, the ratio of the normal to the tangential velocity,
U/W, is called C.

3 Blades with a finite thickness

In [1], the blade was assumed to be sharp enough to
be approximated as a half plane of zero thickness. We
consider here straight blades (i.e. blades with paral-
lel edges) of finite thickness 2h, and we compute the
shape of the solid-liquid interface (I') as well as the
critical tangential velocity. We show that they converge
towards the zero-thickness solution as the finite thick-
ness of the blade tends to zero.

Let us first compute the characteristic thickness of
the liquid layer in the liquefaction region behind the
cutting edge of the blade (see Fig. 1). This thickness is
defined as d — h, where 2d is the total extension of the
cross section of the notch behind the cutting edge, as
indicated in Fig. 1. In this region, derivatives along x-
direction in Eq. 12 are negligible and Eq. 12 simplifies:

Y= /wd +ud. (15)

According to the incompressibility condition (Eq. 2),
the average value of w along y is < u >= —ﬁU.
From Eq. 4, u(y) is parabolic and from the boundary
conditions at y = 0 and y = d, the velocity profile for

—z > fand —z > (d—h) is:

Codh (y—h\? 2d+h (y—h
“(y)_3Ud—h<d—h) Vi (d—h '

This is a simple combination of Couette and Poiseuille
flows [24], the pressure gradient along the a-direction
being constant (see Fig. 2). In addition, w(y) is linear



Fig. 2 Sketch of a cross section of the notch near the cut-
ting edge, in the plane (x,y). The blade is drawn in red, the
solid gel in grey, the liquid in light blue, and the velocity
field in plane (z,y) is represented in heavy blue

(Couette flow without pressure gradient):

Wy—h

d—h' (17)

w(y) =—

One concludes from Eqs. 15-17 that for —x > —f and
-z > (d - h),

n 2d + 4h\ 2
Y= Uz + w2 18
d—h\/( d—h) WL 8

and from Eq. 14, the thickness d — h of the liquid layer
along the blade is found by solving the equation:

1 1 2d + 4h\?
?:d-h\/( d—h) St W

(d — h)/¢ is plotted as a function of ¢ for two values of
h/f in Fig. 5¢, h = 0.3¢ and h = 0.01¢. The thickness
of the liquid layer behind the cutting edge increases as
the thickness of the blade increases. This behaviour can
be explained by considering the velocity components in
plane (z, y) and the incompressibility condition (Eq. 2).
The liquid produced by the part of I' facing the cutting
edge (parallel to y) is evacuated on either side of the
blade. Consequently, an increase in the blade thickness
generates an increase in the flow rate along the blade.
The thickness of the liquid layer has therefore to be
larger in order to maintain the viscous shear stress ¥
equal to oy (see Fig. 2).

Details of the shape of the notch are computed fol-
lowing the method used in [1]. Egs. 2-5 together with
Eq. 14 are solved using the finite-element method,
implemented in the open-source finite-clement library
FEniCS [25]. The origin of coordinates (z,y) is cho-
sen such that the middle of the cutting edge is at
(z,y) = (0,0) (Fig. 2). For convenience, the curve T'
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Fig. 3 Standard deviation s (as defined in Eq. 21) for the
best fit of Eq. 20, as a function of ¢, for straight blades
of half-thickness h = 0.01¢ and h = 0.3£. Inset : exam-
ple of reduced stress X /oy calculated along the solid-liquid
interface for I'(y) resulting from the best fit, in the case of
a blade of half-thickness h = 0.3¢, and for { = 0.04 and
¢ = 0.25. The condition ¥ = oy (Eq. 14) is well approached
for { = 0.04, while discrepancies are observable for { = 0.25,
indicating that condition ¥ = o cannot be fulfilled in this
case. This is because ¢* = 0.125 4 0.05 > 0.25

is defined as x = +I'(y). For —d < y < d, I'(y) is
expanded as

n—1 T
P(y) =a+ Y ax(y/d)** +an Y _(y/d)** for —d <y <d.
k=1

k=n

(20)
a is the distance between the cutting edge and the tip
of the notch (see Fig. 1). The first two terms of the
right-hand side are a truncated Taylor series. In the sec-
ond term, n has to be big enough in order to describe
in a good approximation the interface far enough from
the tip of the notch. The third term is here to ensures
a smoother profile of the notch as ~(y) tends to d.
In the computations, z is in the range [z,,in,a] with
Zmin < I[(d). y is set to xd for z in [zymin, [(d)], with
|Zmin|/€ = 9. In the following, n = 8 and m = 20, and
we have checked that neither an increase in n, in m
nor in |#,:,|/¢ induce significant changes on the results
presented below. Velocities u, v, w are discretized using
quadratic continuous Lagrange finite element functions
and the pressure by linear Lagrange finite element func-
tions. Coefficients agy together with a are fitted using
a Gradient descent procedure in order to fulfil Eq. 14.

Let us define the standard deviation s of the fit as

0.95d - 2
§2 = ;’/ @E)z—m)—'dy’ (21)
2% 0.95d J_g.054 o1

The interval [—0.95d,0.95d] in the integral of Eq. 21
excludes the contribution of the parallel flanks of the
notch, far from the tip. s quantifies the accuracy of the
best trial for I, using Eq. 20. In Fig. 3, s is plotted as
a function of ¢ for two different thicknesses, h = 0.01¢
(thin blade) and h = 0.3¢ (thicker blade). It starts to
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Fig. 4 Critical normal to tangential velocity ratio, (¥, as
a function of half of the relative thickness of the blade, h/¢.
For each value of h/¢, ¢* has been determined from a series
of fits carried out for different values of ¢, as shown in Fig. 3
for h = 0.014 and h = 0.3¢

grow up beyond a certain value of ¢, called later {*: for
¢ < ¢*, the profile I' deduced from the fit procedure
well captures the condition Eq. 14, in contrast with
¢ > ¢* where no profile fulfilling Eq. 14 is found (see
inset of Fig. 3). (¥ depends on the relative thickness of
the blade. For h/¢ < 1, ¢* tends to 0.245 + 0.005, in
agreement with the case of a blade modelled as a half
plane [1]: the solution of the slicing with blades of finite
thickness converges well toward the solution obtained
with an idealized blade of zero thickness. ¢* is found
to decrease as h/{ increases (Fig. 4). Hence, if ¢ (i.e.
the ratio oy /(nW)) is fixed, the maximum cutting (nor-
mal) velocity for a steady state decreases as the blade
thickness increases : steady slicing requires a lower tan-
gential velocity as the blade is thinner. Indeed, for a
given blade thickness 2h, an increase in the tangential
velocity (W) leads to a higher maximum cutting veloc-
ity Uppae = C*W because W and also ¢* are larger (the
characteristic length ¢ = R‘% growths upon an increase
in W, hence ¢* also growths, as shown in Fig. 4): A
higher tangential velocity definitely allows quicker dic-
ing.

The values of a/f¢ and the reduced radius of curva-
ture ro/f = h?/(2a3) are plotted as a function of ¢ (for
¢ < ¢*) in Fig. 5b. a/¢ increases with ¢. This behaviour
can be explained as follows: for a fixed value of the tan-
gential velocity W, increasing ¢ = U/W means increas-
ing U. Hence, to maintain the viscous shear stress equal
to o at the tip of the notch while ¢ rises, the distance
a, or equivalently a/¢, has to be augmented.

Beyond the variation of a/f with {, a/¢ increases as
h/t is larger. This is a consequence of the incompress-
ibility of the liquid: the fluid produced by the tip of the
notch is evacuated along the blade, the thickness of the
blade making the flow convergent (see Fig. 2). Hence,
the fluid velocity increases (still considering the frame
moving with the blade), requiring a larger distance a to
maintain the viscous shear stress equal to oy at the tip
of the notch.
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Fig. 5 Left panel: cross section of the notches for ( = 0.1
and h = 0.01¢ (blue) and h = 0.3¢ (red), computed from
the best fit. The blades are represented by the filled rectan-
gles (blue and red), and the boundaries of the liquid—solid
interfaces are represented by the curved lines. Right panels:
reduced radius at the tip of the notch obtained from the best
fits (a), reduced distance between the tip of the notch and
the cutting edge obtained from the best fits (b) and reduced
thickness of the liquid layer along the blade obtained by the
best fit or from Eq. 19 (indistinguishable) (¢), as functions
of ¢ for h = 0.01¢ (blue) and h = 0.3¢ (red)

As previously reported, the radius of curvature at the
tip of the notch grows with ¢ (Fig. 5a). Moreover, it is
bigger as the thickness of the blade is larger due to the
geometrical constraints imposed by the thickness of the
blade.

Note that rq /¢, a/¢ and (d—h) /¢ also converge toward
the values previously found [1] in the limit of the blade
modelled by a half plane.

A thinner blade is known, from observations made
in everyday life, to facilitate the cutting. The common
explanation is that for a given applied force, a thinner
edge generates higher stresses in the cutting zone, and
therefore makes it easier to reach the critical stress at
which the material fails. Thanks to the model investi-
gated here, this explanation can be refined: For a given
tangential velocity, the shear stress produced by this
tangential velocity at the tip of the notch is higher as
the blade is thinner since a decreases as the blade is
thinner (as previously seen, Fig. 5b).

4 Wedge at the cutting edge of the blade

Reducing the blade thickness (as in Sect. 3) in order to
facilitate the cutting necessarily makes it more break-
able. An other route is to consider blades with a sharp
wedge at the cutting edge. In this section, we investi-
gate the effect of the terminal angle of the wedge (see
Fig. 6).



Fig. 6 Examples of cross sections (I') of the solid-liquid
interface for blades of half-thickness h = 0.3¢, with a tan-
gential to normal velocity ratio ¢ = 0.1, and various depths
b of the wedge or the bevel. a Symmetric blades with b = 0,
b= 0.25¢ and b = £. b Asymmetric blades with b = 0 (red),
b = 0.5¢ (green) and b = 2{ (blue). Note that these values of
b have been chosen so that the angle formed by the inclined
face of the blades with axis y are the same from (a) to (b)

We focus on two geometries: symmetric wedges
(Fig. 6a) and bevelled blades (Fig. 6b). Let b be the
depth of the wedge or the bevel, and 2h be the terminal
thickness of the blade (above the wedge or the bevel).
In what follows, the thickness of the blade is fixed to
2h = 0.6f. Fits have been made following the proce-
dure explained in Sect. 3, with the new geometries of
the blade. I is again defined by Eq. 20 in the symmetric
case. For bevelled blades, the reflection symmetry with
respect to y is lost and we take for I' ;

n—1 k
I'(y)=a+ E(tk (y dyo)

T 2
+0f-uZ(g) for —d<y<d.

k=n

(22)

A transverse shift of I" is made possible thanks to .
Some cross sections are shown in Fig. 6 for symmetric
blades and for bevelled blades, for the velocity ratio ¢ =
0.1. As expected, the cross section is not symmetrical
anymore with bevelled blades: The fluid layer behind
the cutting edge of the blades is thinner on the side of
the tip (on the left of the blades in Fig. 6b) than on the
other side. In both cases (symmetric or bevelled), the
distance between the tip of the blades and that of the
notch decreases as the angle is sharper. This is because
the in-plane fluid velocity is smaller as the wedge is
sharper since the incompressible fluid has a larger area
to flow as the angle of the wedge is smaller. Hence, a
shorter distance a/f is required to a produce viscous
stress equal to a;.

The critical ratio ¢* of the normal to the tangen-
tial velocity is plotted as a function of b/(2h) in Fig 7.
Steady cutting with a sharper blade necessitates smaller
tangential velocity.
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Fig. 7 Critical normal to tangential velocity ratio, (¥, as a
function of b/(2h), for blades of thickness 2h = 0.6f, with a
symmetric wedge at the cutting edge (black disks) and with
a bevelled (blue circles). Dashed line indicates the value of
¢ found for blades modelled as a half plane. Inset: reminder
of the shape of the cross section of a blade with a terminal
symmetric wedge (a), and a bevelled blade (b)

This is reminiscent with the conclusion of Sect. 3
since the “average thickness” of the blade close to the
cutting edge is thinner as the blade is sharper. Interest-
ingly. ¢* is found to be smaller in the case of bevelled
blades for certain values of b/(2h) (Fig. 7), showing that
the maximum cutting velocity (U) is larger, for a given
W, with a symmetric wedge.

5 Discussion

The slicing of gels has been described by a model in
which the solid is transformed into a Newtonian liquid
beyond a prescribed value of the shear stress. The blade
is surrounded by a viscous liquid layer, and the applied
stress is transmitted to the solid by this viscous layer.
The validity of the model requires that the character-
istic length ¢ be macroscopic, hence that the critical
stress be small enough. For instance, for a tangential
velocity equal to W = 1m s™! and a liquid viscosity
equal to 77 = 10mPa s, oy has to be smaller than 1 x 10*
Pa to ensure that £ is larger than 1pym.

A steady regime in the slicing necessitates a small
enough ratio of the cutting (normal) velocity to the slid-
ing (tangential) velocity: U/W has to be smaller than
C*, where ¢* depends on the blade thickness and on the
shape of the cutting edge of the blade. The maximum
cutting velocity is therefore directly related to the slid-
ing velocity. A thinner blade is more suitable for slicing
rapidly and in addition the cutting is facilitated by the
sharpness of the blade, as it allows larger cutting veloc-
ity for a given sliding velocity.

The choice of the yielding criterion has no effect on
the slicing because the viscous stress exerted by the lig-
uid on the solid at the interface is a pure shear stress.
It can therefore be accounted for by a single scalar
(7). This reinforces the generality of the predictions



arising from the model, insofar as all these results are
valid whatever the choice of the criterion. This should
not obscure that the stress induced transformation of
the solid into a liquid is a complex phenomenon. Some
assumptions have led to simplifications in the model.

First, describing the material properties in the pro-
cess zone as a Newtonian fluid is a simplifying hypoth-
esis. The rheological features of this zone may be more
complex. It would be interesting to consider constitu-
tive equations accounting for specific rheological prop-
erties, such as those of Bingham fluids [26,27]. Reduc-
ing them to a Newtonian fluid must be viewed as a
first approximation in order to bring out the important
physical mechanisms in the slicing process. The goal is
to take into account the viscous effects of the fluid in the
model, in a simple although realistic and relevant form.

A finite width of the transition zone from solid to
liquid has not been considered here, by assuming this
width is far smaller than ¢. In addition, the transfor-
mation of the solid to liquid for stress beyond o; is
not instantaneous. We have considered in the model
that the timescale £/U related to the penetration of the
blade into the gel is much larger than the characteris-
tic time involved in the solid-liquid transformation [28].
Introducing more detailed constitutive laws taking into
account internal characteristic times of the material
would be useful, for instance to deal with thixotropic
fluids [29].

In this paper, we have focused on steady states. A
better understanding of the early stages of the slicing
by considering transient regimes would be useful, giving
hints for elucidating the physics of slicing in the cases no
steady state exists, i.e. when the normal velocity is too
fast compared to the tangential one. Hence, completing
the model by taking into account time dependence is
an important task that has now to be addressed.

Comparisons of the theoretical predictions with
experiments would be welcome, and experiments could
reveal what happen in the cases no steady state exists.
Unfortunately, experimental data for a quantitative or
even semi-quantitative comparison with the theory are
currently lacking. Cutting with sliding soft materials
has been explored only for relatively slow tangential
(and normal) velocities [3,30] so that the characteristic
length (¢) is too small to be relevant at the continu-
ous scale. In addition, these experimental data mainly
concern situations for which the ratio of tangential to
normal velocities is larger than one [3,30], and data
with a ratio less than one are far too spare to draw any
tendency.
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