with p the pressure.

In the frame moving with the knife, the fluid velocity is zero on the surface B of the blade (see Fig. 1), hence (u, v, w) = (0, 0, 0) on B. Let Γ be the boundary of the cross section of the notch in the plane (x, y), i.e. the projection of the solid-liquid interface onto (x, y). The continuity equation imposes that the flux of matter on the gel side of Γ is equal to the flux of liquid on the other side. Mass densities are almost the same on both sides of Γ. Hence, continuity of the flux of matter implies the continuity of velocity through Γ. Since the components of the velocity on the solid side are (-U, 0, -W ) in the frame moving with the knife, the velocity in the liquid along Γ has to fulfil:

u| Γ = -U (6) v| Γ = 0 (7) w| Γ = -W (8)
The Cauchy stress tensor in the liquid phase is σ = σ + pI with I the identity tensor and σ the deviatoric stress given by the standard formulae for viscous fluids [START_REF] Landau | Fluid Mechanics[END_REF],

σ = η 2u ,x u ,y + v ,x w ,x u ,y + v ,x -2u ,x w ,y w ,x w ,y 0 . ( 9 
)
The interfacial tension between the two phases is negligible because the gel is mainly composed of solvent, the same as the liquid phase [START_REF] Mora | Solid drops: large capillary deformations of immersed elastic rods[END_REF][START_REF] Mora | Softening of edges of solids by surface tension[END_REF]. In addition, we consider boundary conditions such that the gel is not initially stressed, so that the stress in the gel at the interface Γ is the viscous stress applied by the liquid on the gel, σ. The characteristic polynomial of σ is as a function of the variable σ:

-σ 3 + η 2 w 2 ,y + w 2 ,x + 4u 2 ,x + (u ,y + v ,x ) 2 σ +η 3 -2u ,x w 2 ,y + 2(u ,y + v ,x )w ,x w ,y + 2u ,x w 2 ,x . (10) 
From Eqs. 6-8, the derivatives of u, v and w along Γ, defined here as x = Γ(y), are equal to zero. Hence, at the gel-fluid interface, u ,x Γ ,y + u ,y = 0, v ,x Γ ,y + v ,y = 0 and w ,x Γ ,y + w ,y = 0. As a consequence, the characteristic polynomial of σ (Eq. 10) simplifies with Eq. 2, for (x, y) = (Γ(y), y), in:

-σ 3 + η 2 w 2 ,y + w 2 ,x + 4u 2 ,x + (u ,y + v ,x ) 2 σ, ( 11 
)
and the principal stresses, defined as the eigenvalues of σ, are 0 and ±Σ with

Σ = η w 2 ,y + w 2 ,x + 4u 2 ,x + (u ,y + v ,x ) 2 . ( 12 
)
The solid-fluid interface is then subjected to a pure shear stress. For a isotropic material, the critical stress σ 1 for the solid-liquid transformation has to be independent on the choice of coordinates. Hence, for an incompressible solid, it has to be a function of the eigenvalues of σ, here a function of Σ:

σ 1 = f (Σ) . ( 13 
)
Taking for σ 1 the shear yield stress of the gel [START_REF] Buscall | Viscoelastic properties of strongly flocculated polystyrene latex dispersions[END_REF] in the region around the tip of the notch where liquefaction is happening, the equation of the curve Γ is found by imposing the condition

Σ = σ 1 (14) 
on Γ, whatever the yielding criterion specific to the gel. The details of the yield criterion are here irrelevant.

The only assumptions that have to be made about the mechanical behaviour of the gel are (i) the solid phase is isotropic and incompressible, and (ii) it behaves as a Newtonian liquid beyond the yielding point.

In the following, (defined in Eq. 1) is taken as unit length, W as unit speed and σ 1 as unit stress. In addition, the ratio of the normal to the tangential velocity, U/W , is called ζ.

Blades with a finite thickness

In [START_REF] Mora | Cutting and slicing weak solids[END_REF], the blade was assumed to be sharp enough to be approximated as a half plane of zero thickness. We consider here straight blades (i.e. blades with parallel edges) of finite thickness 2h, and we compute the shape of the solid-liquid interface (Γ) as well as the critical tangential velocity. We show that they converge towards the zero-thickness solution as the finite thickness of the blade tends to zero.

Let us first compute the characteristic thickness of the liquid layer in the liquefaction region behind the cutting edge of the blade (see Fig. 1). This thickness is defined as dh, where 2d is the total extension of the cross section of the notch behind the cutting edge, as indicated in Fig. 1. In this region, derivatives along xdirection in Eq. 12 are negligible and Eq. 12 simplifies:

Σ = η w 2 ,y + u 2 ,y . ( 15 
)
According to the incompressibility condition (Eq. 2), the average value of u along y is < u >= -d d-h U . From Eq. 4, u(y) is parabolic and from the boundary conditions at y = 0 and y = d, the velocity profile for -x and -x (dh) is:

u(y) = 3U d + h d -h y -h d -h 2 -2U 2d + h d -h y -h d -h .
(16) This is a simple combination of Couette and Poiseuille flows [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF], the pressure gradient along the x-direction being constant (see Fig. 2). In addition, w(y) is linear arising from the model, insofar as all these results are valid whatever the choice of the criterion. This should not obscure that the stress induced transformation of the solid into a liquid is a complex phenomenon. Some assumptions have led to simplifications in the model.

First, describing the material properties in the process zone as a Newtonian fluid is a simplifying hypothesis. The rheological features of this zone may be more complex. It would be interesting to consider constitutive equations accounting for specific rheological properties, such as those of Bingham fluids [START_REF] Burgos | On the determination of yield surfaces in herschel-bulkley fluids[END_REF][START_REF] Balmforth | Yielding to stress: recent developments in viscoplastic fluid mechanics[END_REF]. Reducing them to a Newtonian fluid must be viewed as a first approximation in order to bring out the important physical mechanisms in the slicing process. The goal is to take into account the viscous effects of the fluid in the model, in a simple although realistic and relevant form.

A finite width of the transition zone from solid to liquid has not been considered here, by assuming this width is far smaller than . In addition, the transformation of the solid to liquid for stress beyond σ 1 is not instantaneous. We have considered in the model that the timescale /U related to the penetration of the blade into the gel is much larger than the characteristic time involved in the solid-liquid transformation [START_REF] Varchanis | Transi-tion between solid and liquid state of yield-stress fluids under purely extensional deformations[END_REF]. Introducing more detailed constitutive laws taking into account internal characteristic times of the material would be useful, for instance to deal with thixotropic fluids [START_REF] Dinkgreve | Carbopol: From a simple to a thixotropic yield stress fluid[END_REF].

In this paper, we have focused on steady states. A better understanding of the early stages of the slicing by considering transient regimes would be useful, giving hints for elucidating the physics of slicing in the cases no steady state exists, i.e. when the normal velocity is too fast compared to the tangential one. Hence, completing the model by taking into account time dependence is an important task that has now to be addressed.

Comparisons of the theoretical predictions with experiments would be welcome, and experiments could reveal what happen in the cases no steady state exists. Unfortunately, experimental data for a quantitative or even semi-quantitative comparison with the theory are currently lacking. Cutting with sliding soft materials has been explored only for relatively slow tangential (and normal) velocities [START_REF] Reyssat | Slicing softly with shear[END_REF][START_REF] Atkins | Cutting, by 'pressing and slicing', of thin floppy slices of materials illustrated by experiments on cheddar cheese and salami[END_REF] so that the characteristic length ( ) is too small to be relevant at the continuous scale. In addition, these experimental data mainly concern situations for which the ratio of tangential to normal velocities is larger than one [START_REF] Reyssat | Slicing softly with shear[END_REF][START_REF] Atkins | Cutting, by 'pressing and slicing', of thin floppy slices of materials illustrated by experiments on cheddar cheese and salami[END_REF], and data with a ratio less than one are far too spare to draw any tendency.
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