
HAL Id: hal-03767732
https://hal.science/hal-03767732v1

Submitted on 23 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RCDPeaks: memory-efficient density peaks clustering of
long molecular dynamics

Daniel Platero-Rochart, Roy González-Alemán, Erix Hernández-Rodríguez,
Fabrice Leclerc, Julio Caballero, Luis Montero-Cabrera

To cite this version:
Daniel Platero-Rochart, Roy González-Alemán, Erix Hernández-Rodríguez, Fabrice Leclerc, Julio
Caballero, et al.. RCDPeaks: memory-efficient density peaks clustering of long molecular dynamics.
Bioinformatics, 2022, 38 (7), pp.1863-1869. �10.1093/bioinformatics/btac021�. �hal-03767732�

https://hal.science/hal-03767732v1
https://hal.archives-ouvertes.fr

i
i

“RCDPeaks” — 2021/7/28 — 22:55 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Original Paper

Structural Bionformatics

RCDPeaks: Memory-Efficient Density Peaks
Clustering of Long Molecular Dynamics
Daniel Platero-Rochart 1,∗, Roy González-Alemán 1, 2,∗, Erix W.
Hernández-Rodríguez 3, Fabrice Leclerc 2, Julio Caballero 4 and Luis
Montero-Cabrera 1

1Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, La Habana, 10400, Cuba.
2Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette, F-91198, France.
3Laboratorio de Bioinformática y Química Computacional, Escuela de Química y Farmacia, Facultad de Medicina, Universidad
Católica del Maule, 3460000 Talca, Chile.
4Departamento de Bioinformática, Facultad de Ingeniería, Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de
Talca, Talca, Chile.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Density Peaks is a widely spread clustering algorithm that has been previously applied
to Molecular Dynamics simulations. Its conception of cluster centers as elements displaying both a
high density of neighbors and a large distance to other elements of high density, particularly fits the
nature of a geometrical converged Molecular Dynamics simulation. Despite its theoretical convenience,
implementations of Density Peaks carry a quadratic memory complexity that only permits the analysis of
relatively short trajectories.
Results: Here, we describe DP+, an exact novel implementation of Density Peaks that drastically
reduces the RAM consumption in comparison to the scarcely available alternatives designed for Molecular
Dynamics. Based on DP+, we developed RCDPeaks, a refined variant of the original Density Peaks
algorithm. Through the use of DP+, RCDPeaks was able to cluster a one-million frames trajectory using
less than 4.5 GB of RAM, a task that would have taken more than 2 TB and about 3X more time with the
fastest and less memory-hunger alternative currently available. Other key features of RCDPeaks include
the automatic selection of parameters, the merging of very similar center candidates, and the geometrical
refining of returned clusters. The source code and documentation of RCDPeaks are free and publicly
available on GitHub (https://github.com/LQCT/RCDPeaks.git).
Contact: roy_gonzalez@fq.uh.cu, daniel.platero@fq.uh.cu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Geometrical clustering of Molecular Dynamics (MD) simulations is a
spread task in the Bioinformatics field. Formally conceptualized as an
unsupervised machine learning technique (Sammut and Webb, 2010),
clustering aims to classify elements according to their similarity into
groups named clusters. Though a rich palette of these algorithms has been
proposed and continuously optimized to deal with the growing size of MD

trajectories (Shao et al., 2007; Peng et al., 2018), the popular Density
Peaks alternative (Rodriguez and Laio, 2014) stands out for its simple yet
powerful definitions.

In Density Peaks (DP), clusters centers are spotted as those elements
displaying both a high density of neighbors and a relatively large distance
to other elements of high density. As it has been already pointed out
(Sylvain et al., 2020), the previous statement exceptionally fits the nature
of a converged MD simulation, where relevant biological states would lie
in denser regions separated by lower-density zones of transitional basins.

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

i
i

“RCDPeaks” — 2021/7/28 — 22:55 — page 2 — #2 i
i

i
i

i
i

2 González-Alemán, Platero-Rochart et al.

Despite its theoretical convenience, DP has some practical limitations
that have given rise to diverse enhancement proposals (see Seyedi et al.,
2019; Flores and Garza, 2020 for a review) typically addressed to one of the
following aspects: i- the robust estimation of each element’s density (Wang
and Xu, 2017; Du et al., 2016), ii- the selection of an adequate distance
metric (Du et al., 2017), iii- reducing the computational complexity of
computing the local density of each component and their distance to
neighbors of higher density (Majdara and Nooshabadi, 2020), iv- the
automatic determination of clusters centers (Liang and Chen, 2016; Flores
and Garza, 2020), and v- optimizing the process of assigning elements to
clusters (Wang et al., 2019; Seyedi et al., 2019).

There are few implementations of DP specifically designed to treat MD
trajectories. The cpptraj module of the AMBER suite (Roe and Cheatham,
2013) is equipped with an exact variant while a recent contribution
has proposed CLoNe (Sylvain et al., 2020), a robust improvement of
the original algorithm. Even though these two options’ quadratic time
complexity is not critical for processing a relatively long MD trajectory,
their also quadratic memory complexity renders this endeavor impractical.

Here we propose DP+, a methodology to derive the exact DP
partitioning of elements but without constructing a square similarity
matrix. Instead, a double-heap approach is used to produce an oriented tree
where every node (trajectory frame) is connected to its nearest neighbor
of higher density by a weighted edge (RMSD distance).

Built upon DP+, we designed RCDPeaks, a refined variant of the
original DP. Employing DP+, RCDPeaks processed a one-million frames
trajectory using less than 4.5 GB of RAM, a task that would have taken
more than 2 TB (and about 3X more time) or 7 TB (and about 30X more
time) with cpptraj or CLoNe, respectively.

After computing each element’s density and the optimal RMSD
distance to its nearest neighbor of higher density through DP+,
RCDPeaks can automatically set the necessary cutoffs and detect potential
cluster centers. These centers are then selectively merged to guarantee
a high distance between them and to avoid the unnecessary splitting of
clusters. Then, the usual DP clustering of elements occurs, and it is
refined to smaller groups of frames revealing a higher degree of collective
similarity.

2 Computational Details
RCDPeaks has been coded in Python 3 programming language and made
freely available at GitHub (https://github.com/LQCT/RCDPeaks.git) and
as a PyPI package (https://pypi.org/project/RCDPeaks/). It heavily
depends on version 1.9.4 of MDTraj (McGibbon et al., 2015) for the fast
calculations of pairwise optimal RMSD.

The computational performance of the AMBER cpptraj exact
implementation of Density Peaks (Roe and Cheatham, 2013) and CLoNe
(Sylvain et al., 2020) were compared against RCDPeaks. The benchmark
was conducted on a set of publicly available trajectories that are referred
by their size as follows: i- 6 kF, a 6001 frames REMD simulation of
the Tau peptide (Shea and Levine, 2016), ii- 30 kF, a 30605 frames
MD of villin headpiece based on PDB 2RJY (Melvin et al., 2016),
iii- 50 kF, a 50000 frames MD of serotype 18C of Streptococcus
pneumoniae, iv- 100 kF, a 100000 frames MD of Cyclophilin A based
on PDB 2N0T, v- 250 kF, a 250000 frames MD of four chains of the
Tau peptide that corresponds to the MD simulation of an extended Tau
peptide (PDB PHF8) (Álvarez-Ginarte et al., unpublished work), vi-
500 kF, a 500000 frames MD toy trajectory constructed from randomly
selected conformations of 6 kF, and vii- 1 MF, a one-million frames MD
of ubiquitin based on PDB 1UBQ . The details of MD simulations are
available in the Supporting Information (S1: Details of the Molecular
Dynamics Simulations). All trajectory and topology files used in this work

can be found online at the following addresses: 6 kF, 50 kF, 100 kF, 250
kF, 500 kF at https://doi.org/10.6084/m9.figshare.c.5403930.v1, 30 kF at
https://doi.org/10.6084/m9.figshare.3983526.v1, and 1 MF at unavailable
at this moment.

RCDPeaks and cpptraj, used the same distance cutoff value (dc) for
every trajectory; 2.5 Å for 6 kF and 500 kF, 4 Å for 30 kF, 1 Å for 50
kF, 100 kF and 1M, and 2 Å for 250 kF. These values where set after a
trial/error procedure aided by visual inspection of the number of possible
centers in the decision graph. The only input parameter of CLoNe is a user-
defined percentage pdc of all pairwise similarity distances. This parameter
was set to 0.4 for 6 kF (corresponding to dc = 2.6) and to 4.4 for 30 kF
(corresponding to dc = 4.0). The other trajectories could not be analyzed
with CLoNe due to excessive memory consumption.

All calculations were performed on an AMD Ryzen 5 Hexa-core
Workstation with a processor speed of 3.6 GHz and 64GB RAM under
a 64-bit Xubuntu 18.04 operating system. Run times and RAM peaks
were recorded with the /usr/bin/time Linux command.

3 Density Peaks formalism
In DP formalism, cluster centers are surrounded by neighbors of lower local
density, and they are distant from any point with high local density. This
simple statement rules the algorithm, which can be described as follows
when processing an MD trajectory.

Two magnitudes are computed for each frame i after setting a distance
cutoff (dc); its local density (ρi in equation 1) and its minimum distance
to a neighbor of higher local density, (δi in equation 2). In equation 1 the
termχ(x) = 1 if x < 0 or zero otherwise so this is equivalent to define ρi
as the number of i neighbors whose distance from i is under the dc cutoff.

ρi =
∑
j

χ(dij − dc) (1)

In equation 2, an exception is made for the frame of maximum ρi,
which is conventionally set to max(dij). Note that δi is significantly
larger than the typical nearest neighbor distance only for those frames
that are local or global maxima in ρ. Higher values of δi are then
a distinctive hallmark of cluster centers. Previous information can be
condensed and visually inspected in the decision graph of the trajectory;
a 2D representation of ρ versus δ in which clusters centers are spotted at
higher values of these two magnitudes.

δi = min(dij) : ρj > ρi (2)

After selecting cluster centers from the decision graph, each remaining
frame is assigned to the same cluster as its nearest neighbor of higher ρ.
Algorithm 1 contains the pseudocode corresponding to the previous steps.

To account for the notion of noise, DP defines a boundary region for
each cluster Ci consisting of frames that were previously assigned to Ci

but being within a distance dc from frames belonging to other clusters.
The maximum density value of the boundary region is designated as ρb
and compared to the ρi of every frame inCi. If ρi > ρb the frame belongs
to the core region (robust assignation), otherwise it can be considered in
the halo zone (noisy assignation).

The typical workflow used in exact or modified DP variants saves the
pairwise similarity of elements (frames in the particular case of an MD) into
a square float matrix. This strategy may offer a fast determination of ρi and
δi but inconveniently limits the algorithm’s application to problems whose
similarity matrix could fit in available RAM. Next, we describe DP+,
an alternative approach to the exact DP that avoids the construction and
storage of such a matrix and hence can be applied to treat much longer
trajectories.

i
i

“RCDPeaks” — 2021/7/28 — 22:55 — page 3 — #3 i
i

i
i

i
i

RCDPeaks 3

Algorithm 1: Density Peaks clustering algorithm

Require: trajectory, dc
1: I 1. Compute the pairwise similarity matrix
2: rmsd_matrix = calc_rmsd_matrix(trajectory)

3: I 2. Compute ρ values for each node
4: elements = {1, 2, 3, ..., trajectory.size}
5: rho_values = {}
6: for i ∈ elements do
7: i_vector = rmsd_matrix[i]

8: rho_values[i] = count_elements(i_vector < dc)

9: I 3. Compute δ values for each node
10: delta_values = {}
11: for i ∈ elements do
12: i_vector = rmsd_matrix[i]

13: i_rho = rho_values[i]
14: i_sorted = sort_elements(i_vector)
15: for j ∈ i_sorted do
16: j_rho = rho_values[j]
17: if j_rho > i_rho then
18: delta_values[i] = rmsd_matrix[i][j]

19: if delta_values[i] == None then
20: delta_values[i] = get_max_value(rmsd_matrix)

21: I 4. Select cluster centers from the Decision Graph
22: decision_graph = plot(rho_values, delta_values)
23: rho_cut, delta_cut = select_cutoffs(decision_graph)

24: centers = select_centers(decision_graph, rho_cut, delta_cut)
25: I 5. Assign remaining elements
26: clusters = assign_elements(elements, centers)

4 DP+ Implementation
DP+ exploits the graph-theoretical view of an MD trajectory by
considering it as a graph T in which all nodes are pairwise connected. In
T , nodes represent frames, and their pairwise similarity distance weights
undirected edges (Figure 1A). If ρ values are assigned as the weights of
T nodes, then the goal of DP can be stated as transforming T into an
oriented tree T ′ that contains only one outgoing edge per node pointing
to its nearest neighbor of higher ρ. The weights of edges in T ′ correspond
to δ values in equation 2 (Figure 1B).

For every frame i, DP+ computes ρi from the i-versus-all RMSD
vector (RMSDix), by counting the number of elements j whose
RMSDij < dc. As δi refers to the distance from i to its nearest neighbor
of higher ρ, computing this magnitude requires iterative queries to the
sorted RMSDix vector. However, the complete sorting of RMSDix

is an expensive O(n ∗ log(n)) operation. DP+ makes a faster partial
ordering (O(n) time complexity) of RMSDix at the kth position and
then a complete ordering of the much smaller k-neighborhood (denoted
as η from now on). The value of k is internally defined as 0.02 ∗ N
(although users can modify it), where N is the total number of frames in
the trajectory. DP+ relies on the assumption that most frames will find
their nearest neighbor of higher ρ inside this sorted η.

Figure 2 illustrates the previous procedure using theRMSD0x vector
of a ten-frames trajectory where dc = 0.36 nm and k = 5. In Figure 2A,
ρ0 (the number of frames j for which RMSD0j < dc) is set as 7 (bold
entries). In 2B, the partial sorting of RMSD0x at k = 5 is exemplified.
Note that this process returns the first unsorted k elements with lowest
values. Figure 2C shows the last ordering stage in which only the first k
elements ofRMSD0x are completely sorted. This vector corresponds to
ηi (see Algorithm 2).

Fig. 1: Graph-theoretical view of an MD trajectory before and after
applying DP. A-) Complete graph T in which nodes correspond to frames
and undirected edges denote pairwise similarity B-) Oriented tree T ′

obtained after applying DP to T . Each node (weighted by its ρ value)
contain a single outgoing edge pointing to its nearest neighbor of higher
density.

Algorithm 2: Get ρ and η for a particular node i

1: function get_node_info(i, k, dc, trajectory)
2: i_vector = calc_rmsd_vector(i, trajectory)

3: i_rho = count_elements(i_vector < dc)

4: i_partition = partial_sort_elements(i_vector, k)

5: i_eta_elements = sort_elements(i_partition[0 : k])

6: i_eta_rmsd = i_vector[i_eta_elements]
7: i_eta = join(i_eta_elements, i_eta_rmsd)

8: return (i_rho, i, i_eta)

To avoid the storage of T information as a square matrix,
DP+ gradually constructs T ′ using data distributed in two separate heaps.
The main heap will contain the ρi, i, and ηi for a subset of frames (Figure
2D), while an auxiliary heap will store those frames whose nearest neighbor

Fig. 2: DP+ main objects and operations involved in the computation of
ρi and ηi for a ten-frames trajectory (dc = 0.36 nm and k = 5). A-)
RMSD0x vector. Bold entries correspond to frames closer than dc from
frame 0. B-) RMSD0x partially sorted at k = 5. C-) Complete ordering
of first k values of RMSD0x (η0). D-) Main heap. E-) Auxiliary heap.

i
i

“RCDPeaks” — 2021/7/28 — 22:55 — page 4 — #4 i
i

i
i

i
i

4 González-Alemán, Platero-Rochart et al.

of higher density could not be found inside their ηi (Figure 2E). The
importance of using a heap data structure lies in its ability to quickly
retrieve an extreme value (minimum in our case) of the collections it
contains. If we introduce several tuples containing ρi and ηi, a so-called
"min heap" can return the minimum weighted frame and its corresponding
ηi in logarithmic time. Through the use of heaps, DP+ speeds up the
construction of T ′, exploiting the observation that frames with lower ρ are
more likely to find their nearest neighbor of higher density inside η.

Concretely, after defining a local density cutoff dc, DP+ follows the
next steps to construct T ′ (see Algorithm 3): A still not analyzed frame
i is chosen from the trajectory. This action will occur whenever the main
heap is empty. RMSDix is then calculated and ρi computed counting
the number of elements j with RMSDij < dc. Through the already
mentioned sorting strategy, ηi is obtained and DP+ proceeds to search the
first frame Xj ∈ ηi having ρj > ρi. If such a frame is found, a directed
edge from i to j is created, and δi is set to dij . During this process, all
inspected j for which ρj ≤ ρi are transferred to the main heap as a tuple
containing ρj , j index and ηj . If the opposite situation happens, i.e., a
frame j whose ρj > ρi is not found in ηi, then a tuple containing ρi and
i index is passed to a secondary heap for future processing. The previous
process goes on until all frames have been considered.

At that point, the frames i that did not found their nearest neighbor
inside ηi are already stored in the auxiliary heap. For each one of them,
DP+ recalculatesRMSDix and finds the frame j with ρj > ρi to set δi.
In the special case where i has the maximum value of ρ (so it is impossible
to find ρj > ρi), δi is set to max(RMSDix). Experiments show that
the average size of the auxiliary heap is a small percent of N .

5 RCDPeaks Refinements
As explained in Section 4, DP+ is an exact implementation of the
original DP. DP+ avoids the quadratic memory complexity by using
heap-based data structures. Having equivalent results, both approaches
share the same shortcomings, among which are: i- the consideration of
very similar center candidates as independent cluster seeds, inducing
the unnecessary splitting of final clusters. This occurs because, in the
user-selected region of the decision graph, no checking is performed on
centers to ensure their pairwise geometrical separation. ii- the impossibility
to run an automatic job given that ρ and δ must be manually selected
from the decision graph, and iii-the excessive flexibility of core and halo
definitions for MD applications (see Figure 4). In this section, we propose
RCDPeaks (Refined-Core Density Peaks), which is built upon DP+ and
addresses the aforementioned limitations.

5.1 Automatic Detection and Merging of Cluster Centers

In the original DP, users must select the cluster centers from the decision
graph before the DP algorithm could assign the remaining frames to each
cluster (Figure 3A). This selection introduces a potentially biased, user-
dependent step that also prevents automatic runs. Several authors have used
statistical mechanisms to bypass this step (see Flores and Garza, 2020 for
a review) by detecting clusters centers as ρ, δ or γ outliers (equation 3).

γi = ρi ∗ δi (3)

The gap-based centers selection method proposed by Flores and Garza
(Flores and Garza, 2020) proceeds as follows: First, a subsetP1 containing
elements whose ρ and δ values are higher than the average is defined
(discontinue lines in Figure 3B). P1 is subsequently sorted in descending
order of eachγi score. The consecutive point distance (equation 4) between
all candidates, as well as the average point distance (equation 5) are then
computed. In this context, a gap is formally defined as a di ≥ d̄i. The last

Algorithm 3: Compute the Oriented Tree of an MD trajectory

1: function compute_oriented_tree(k, dc, trajectory)
2: I 1. Initialize containers
3: elements = {1, 2, 3, ..., trajectory.size}
4: main_heap = create_heap()

5: auxiliary_heap = create_heap()

6: rho_info = {}
7: delta_info = {}
8: nearest_neighbors = {}
9: I 2. Find node i whose neighborhood will be analyzed
10: while True do
11: if main_heap 6= ∅ then
12: i, i_rho, i_eta = pop_first_from(main_heap)
13: else if elements 6= ∅ then
14: i = pop_any_from(elements)

15: i_rho, i, i_eta = get_node_info(i, k, dc, trajectory)

16: else
17: break
18: I 3. Try to find j inside ηi
19: while True do
20: if i_eta 6= ∅ then
21: j, rmsd_ij = next(i_eta)

22: else
23: send((i_rho, i), auxiliary_heap)
24: break
25: if j ∈ elements then
26: j_rho, j, j_eta = get_node_info(j, k, dc, trajectory)

27: send((j_rho, j, j_eta),main_heap)
28: rho_info[j] = j_rho
29: remove_from(elements, j)

30: else
31: j_rho = rho_info[j]

32: if j_rho > i_rho then
33: nearest_neighbors[i] = j

34: delta_info[i] = rmsd_ij
35: break
36: I 4. Processing the auxiliary heap
37: while True do
38: if auxiliary_heap 6= ∅ then
39: i_rho, i = pop_first_from(auxiliary_heap)
40: i_vector = calc_rmsd_vector(i, trajectory)

41: denser_j = get_elements(rho_info > i_rho)
42: j_vector = i_vector[denser_j]
43: if j_vector 6= ∅ then
44: j = get_min_element(j_vector)
45: delta_info[i] = i_vector[j]
46: nearest_neighbors[i] = j

47: else
48: delta_info[i] = get_max_value[i_vector]
49: nearest_neighbors[i] = i

50: else
51: break
52: return (delta_info, rho_info, edges)

gap in P1 (formed by elements i and i+ 1) is considered a threshold and
all elements before i are marked as cluster centers.

di = abs(γi − γi+1) (4)

i
i

“RCDPeaks” — 2021/7/28 — 22:55 — page 5 — #5 i
i

i
i

i
i

RCDPeaks 5

Fig. 3: Iterative gap-based method of Flores and Garza implemented in
RCDPeaks for the automatic detection of cluster centers. A-) Decision
graph. B-D-) Consecutive iterations of the method produce several
automatic guesses of cluster centers.

d̄i =
∑
a∈Pi

da

|Pi|
(5)

The described methodology produced a high number of cluster centers
for the trajectories analyzed in this work. Instead of stopping the algorithm
after the first loop, RCDPeaks makes another iteration on a new subset
P2, containing only elements whose ρ and δ values are higher than the
average in P1 (Figure 3C). This procedure effectively reduces the number
of candidate clusters, which are intuitively a subset of the original P1.
Iteration continues until the one-member set Pn is found (Figure 3D). All
sets fromP1 toPn may be considered as valid automatic guesses of cluster
centers. Each one of the Pn guesses made by RCDPeaks will be further
processed inn distinct clustering jobs of the same oriented tree represented
by the decision graph in Figure 3A. In the analyzed trajectories, n varies
from 2 to 3.

Although RCDPeaks implements the Flores and Garza method, users
still have the choice to manually set ρ and δ values. Also, as the most time-
consuming part of RCDPeaks consist of computing those two magnitudes
for each frame, the software conveniently saves the decision graph,
allowing users to experiment on their own the result of different ρ and δ
cutoffs for cases where the automatic guesses do not perform as expected
in an inexpensive way.

Centers retrieved by either an automatic or a manual selection may lie
within adc radius. Those cases correspond to regions with multiple density
peaks. The original DP unsuccessfully handles these cases by dividing the
region into analogous clusters. RCDPeaks avoids this worthless splitting
through a merging process of nearby centers. This process iteratively takes
the center of highest γi from Pi as a reference and removes other centers
within a dc distance from further consideration.

5.2 Clusters Core Refining

MD clusters generated by the original version of DP usually contain
structurally unrelated frames. Definitions of the core and halo zones (see
Section 3) contribute to some extent to the separation of highly similar
elements (core) from more loosely related ones (halo). However, the

original cores obtained by the DP clustering may still display a high level
of dissimilarity as can be appreciated in Figure 4.

Fig. 4: Second cluster of trajectory 6 kF. A-) The raw cluster obtained by
the original DP approach. B-) Cluster core obtained by the original DP
approach. C-) refined cluster core obtained by RCDPeaks.

Since cluster centers have a preponderant significance in DP, it is
reasonable to expect their geometrical resemblance to frames in their
respective cores. RCDPeaks follows a simple procedure to extract a set
of exemplar frames (a refined core), evincing a higher degree of collective
similarity than what can be obtained from the original definition of core
zones in DP. For each cluster Ci, its refined core will consist of those
frames within a dc distance from its cluster center. As it can be appreciated
in Figure 4C, this restrained set does exhibit a considerable level of
uniformity.

6 Performance Comparison
The run time and RAM consumption of RCDPeaks, cpptraj, and CLoNe
when processing different MD trajectories are compared in Table 1.
To the best of our knowledge, these three software are the only DP
implementations publicly available and specifically designed to deal with
MD simulations. While cpptraj implements the original algorithm, CLoNe
was inspired on DP to overcome several of its limitations.

Table 1. Run time and RAM consumption of analyzed DP implementations.1

Trajectory
RCDPeaks cpptraj CLoNe

No. of atoms Run time RAM peak Run time RAM peak Run time RAM peak Disk space
(selection) h:mm:ss GB h:mm:ss GB h:mm:ss GB GB

6 kF 217 (all) 0:00:05 0.14 0:00:10 0.09 0:00:40 2.35 0.21
30 kF 64 (CA) 0:00:42 0.16 0:01:46 1.78 0:23:22 39.72 6.30
50 kF 78 (no H) 0:02:00 0.19 0:05:59 4.71 0:11:29 >64.00 15.00

100 kF 660 (backbone) 0:41:59 0.92 2:10:23 19.38 NR � 74.51 > 57.22
250 kF 160 (backbone) 1:14:04 0.87 0:00:04 >125.50 NR � 465.66 > 359.06
500 kF 217 (all) 6:47:12 2.03 0:00:09 >499.99 NR � 1862.65 > 1430.51
1 MF 304 (backbone) 33:21:10 4.16 0:00:26 >2048 NR � 7452.07 > 5723.20

1 Bold entries denote a memory crash (jobs taking more than 64GB of
RAM). NR means Not Ran Job.

As it is shown in Table 1, CLoNe has the highest RAM consumption,
which only permitted to process the small trajectories 6 kF and 30 kF. This
variant also uses substantial disk space resources if the similarity metric is
not euclidean (RMSD in our case), as the user must provide a text file with
the pairwise similarity information. Although CLoNe also has the slowest
run time (about 30X slower than RCDPeaks for the 30 kF trajectory), this is
not a critical aspect when dealing with the short trajectories it can manage.

The cpptraj alternative is considerably less RAM consuming than
CLoNe. The memory peak for each analyzed trajectory roughly
corresponds to the storage of a half-precision float square matrix (pairwise
RMSD information). For short and medium-sized MD trajectories (see

i
i

“RCDPeaks” — 2021/7/28 — 22:55 — page 6 — #6 i
i

i
i

i
i

6 González-Alemán, Platero-Rochart et al.

100 kF in Table 1), cpptraj has an affordable memory cost. However,
if relatively long trajectories must be processed, the quadratic RAM
complexity of cpptraj becomes a major limitation. In terms of run
time, cpptraj is also faster than CLoNe but still about 3X slower than
RCDPeaks. It is worth noting that developers of cpptraj have marked their
implementation as experimental. This software will produce neither the
core nor the boundary regions of the calculated clusters.

The fastest and the most memory-efficient software is RCDPeaks. The
key factors contributing to the speed up of this variant are the use of MDTraj
for computing the optimal RMSD distances and, to a lesser extent, the
sorting procedure to get ηi (see Section 4). On the other hand, the RAM
consumption of RCDPeaks is remarkably low, mainly due to the small size
of the main heap (see Section 4).

7 Conclusion
In this work, we have proposed DP+, an exact implementation of the
popular Density Peaks clustering algorithm. The main contribution of DP+
lies in its ability to reduce the quadratic memory complexity of the original
DP. Instead of storing the pairwise similarity of frames into a square matrix,
a double-heap approach is employed to construct an oriented tree from
the MD trajectory. Besides being faster than other similar MD-oriented
software, our approach produces massive savings of RAM resources. Built
on top of DP+, we conceived RCDPeaks, a refinement of the original DP
algorithm including convenient features like the ability to automatically
produce multiple guesses of cluster centers, the merging of very similar
cluster center candidates, and the refinement of retrieved clusters.

Acknowledgements
D.P.R thanks Matteo Dal Peraro and Sylvain Träger for their help on setting
up CLoNe.

Funding
This work was supported by the Eiffel Scholarship Program of Excellence
of Campus France [P744468L to R.G.A]; the Project Hubert Curien-
Carlos J. Finlay [41814TM to R.G.A, F.L, and L.M.C]; and the
Fondo Nacional de Desarrollo Científico y Tecnológico [CONICYT
FONDECYT/INACH/POSTDOCTORADO/No. 3170107 to E.W.H.R].

References
Du, M. et al. (2016). Study on density peaks clustering based on k-nearest

neighbors and principal component analysis. Knowledge-Based Syst.,

99, 135–145.
Du, M. et al. (2017). A novel density peaks clustering algorithm for mixed

data. Pattern Recognit. Lett., 97, 46–53.
Flores, K. G. and Garza, S. E. (2020). Density peaks clustering with gap-

based automatic center detection. Knowledge-Based Syst., 206, 106350.
Liang, Z. and Chen, P. (2016). Delta-density based clustering with a

divide-and-conquer strategy: 3DC clustering. Pattern Recognit. Lett.,
73, 52–59.

Majdara, A. and Nooshabadi, S. (2020). Accelerated Density-Based
Clustering using Bayesian Sequential Partitioning. In 2020 IEEE Int.
Symp. Circuits Syst., pages 1–5. IEEE.

McGibbon, R. T. et al. (2015). MDTraj: A Modern Open Library for
the Analysis of Molecular Dynamics Trajectories. Biophys. J., 109(8),
1528–1532.

Melvin, R. L. et al. (2016). Uncovering Large-Scale Conformational
Change in Molecular Dynamics without Prior Knowledge. J. Chem.
Theory Comput., 12(12), 6130–6146.

Peng, J.-h. H. et al. (2018). Clustering algorithms to analyze molecular
dynamics simulation trajectories for complex chemical and biological
systems. Chinese J. Chem. Phys., 31(4), 404–420.

Rodriguez, A. and Laio, A. (2014). Clustering by fast search and find of
density peaks. Science (80-.)., 344(6191), 1492–1496.

Roe, D. R. and Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software
for processing and analysis of molecular dynamics trajectory data. J.
Chem. Theory Comput., 9(7), 3084–3095.

Sammut, C. and Webb, G. I. (2010). Encyclopedia of Machine Learning.
Seyedi, S. A. et al. (2019). Dynamic graph-based label propagation for

density peaks clustering. Expert Syst. Appl., 115, 314–328.
Shao, J. et al. (2007). Clustering molecular dynamics trajectories: 1.

Characterizing the performance of different clustering algorithms. J.
Chem. Theory Comput., 3(6), 2312–2334.

Shea, J.-E. and Levine, Z. A. (2016). Studying the Early Stages of Protein
Aggregation Using Replica Exchange Molecular Dynamics Simulations.
In Methods Mol. Biol., volume 1345, pages 225–250.

Sylvain, T. et al. (2020). CLoNe: Automated clustering based on
local density neighborhoods for application to biomolecular structural
ensembles. Bioinformatics.

Wang, G. et al. (2019). Modified FDP cluster algorithm and its application
in protein conformation clustering analysis. Digit. Signal Process. A Rev.
J., 92, 97–108.

Wang, X. F. and Xu, Y. (2017). Fast clustering using adaptive density peak
detection. Stat. Methods Med. Res., 26(6), 2800–2811.

