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Abstract

Motivation: Classical Molecular Dynamics is a standard computational approach to model time-dependent
processes at the atomic level. The inherent sparsity of increasingly huge generated trajectories demands
clustering algorithms to reduce other post-simulation analysis complexity. The quality threshold (QT)
variant is an appealing one from the vast number of available clustering methods. It guarantees that all
members of a particular cluster will maintain a collective similarity established by a user-defined threshold.
Unfortunately, its high computational cost for processing big data limits its application in the molecular
simulation field.
Results: In the present work, we propose a methodological parallel between QT clustering and another
well-known algorithm in the field of Graph Theory, the Maximum Clique Problem. Molecular trajectories are
represented as graphs whose nodes designate conformations, while unweighted edges indicate mutual
similarity between nodes. The use of a binary-encoded RMSD matrix coupled to the exploitation of
bitwise operations to extract clusters significantly contributes to reaching a very affordable algorithm
compared to the few implementations of QT for Molecular Dynamics available in the literature. Our
alternative provides results in good agreement with the exact one while strictly preserving the collective
similarity of clusters.The source code and documentation of BitQT are free and publicly available
on GitHub (https://github.com/LQCT/BitQT.git) and ReadTheDocs (https://bitqt.readthedocs.io/en/latest/)
respectively.
Contact: roy_gonzalez@fq.uh.cu, fabrice.leclerc@i2bc.paris-saclay.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction1

Molecular dynamics (MD) is a powerful tool to gain insight into2

the conformational behavior of nanoscopic systems. Nowadays,3

methodologies like coarse-grained MD, accelerated MD, and replica-4

exchange MD are common ways to reach a representative sampling of5

dynamically meaningful states. As the computational power grows, the6

size of trajectories generated by these techniques represents a massive7

amount of information that is potentially difficult to analyze. Geometrical8

clustering is a classical way to simplify those trajectories by grouping9

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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2 González-Alemán et al.

similar conformations into sets known as clusters. In such a way,1

conformations inside a cluster are more similar between them than those2

from other clusters.3

Many clustering algorithms exist for analyzing MD (Peng et al.,4

2018), having benefits and shortcomings that make them suitable for5

particular applications and inappropriate for others (Röttger, 2016). Due6

to the inherent subjectivity associated with classification (the same7

set of elements can be grouped according to many different criteria),8

some authors consider clustering as an art (von Luxburg et al., 2012).9

However, in those particular cases where strongly geometrically correlated10

conformations are needed to be returned as clusters, the Quality Threshold11

(QT) algorithm (Heyer et al., 1999) stands out as an ideal option.12

QT appeared in the context of clustering gene expression patterns.13

Since then, it has been applied to many areas other than microbiology14

(Tang et al., 2010; Yaakob et al., 2010; Olson et al., 2011; Dutta and15

Overbye, 2011; Yaakob and Jain, 2012), including the MD field (Procacci16

et al., 1997; Danalis et al., 2012). Two remarkable features of this algorithm17

are the guarantee that no pair of frames having a similarity value greater18

than a user-specified cutoff will coalesce into the same cluster and that the19

number of clusters to retrieve must not be known a priori. However, QT20

has an expensive computational cost (Danalis et al., 2012) that currently21

limits its applicability.22

Several popular software have inaccurately qualified their clustering23

implementations as QT or QT-like variants in the past (González-Alemán24

et al., 2020b). These pseudo-QT alternatives correspond to another simple25

and largely disseminated algorithm (Daura et al., 1999) that has been26

recently optimized for the efficient treatment of long molecular trajectories27

(González-Alemán et al., 2020a).28

After careful inspection of current literature, we have found only29

two valid and ready-to-use attempts to implement QT to analyze MD30

trajectories. The first one corresponds to the qtcluster command of31

the ORAC suite (Procacci et al., 1997) while the second one is an32

implementation previously published by authors of this study (González-33

Alemán et al., 2020b), referred to as QTPy from now on.34

While QTPy can be stated as an exact version of the QT proposed35

by Heyer in 1999, it should be emphasized that qtcluster only partially36

complies with the original algorithm. Perhaps the most essential feature37

that makes qtcluster a fast QT implementation lies in the fact that it38

is not an exact QT attempt, only preserving one condition from the39

exact algorithm; the one assuring the collective similarity of retrieved40

clusters. It is also worth noting that qtcluster uses the maximum difference41

between corresponding pairs of atoms as the similarity measure while42

QTPy employs the more customary optimal RMSD. Both of them are43

marked by a run time and RAM consumption that impedes the processing44

of relatively long trajectories.45

Here we propose a heuristic variation of QT that can output equivalent46

results to the exact algorithm at a much less computational cost. It has47

been devised using a parallel with the Maximum Clique Problem (MCP).48

A clique is a fully connected sub-graph, i.e. all pairs of nodes in it are49

connected by an edge, so the MCP is concerned with searching for the50

biggest clique in a graph. In our workflow, molecular trajectories are51

represented as graphs in which each frame is depicted as a node. The52

similarity between frames is encoded as binary (unweighted) edges, and53

clusters are found following a heuristic search of big cliques.54

The construction of a binary-encoded similarity matrix, instead of the55

classical half/single-precision float matrix, leads to considerable RAM56

savings regarding the existing QT implementations. This binary matrix57

also allows implementing the fundamental clustering steps as bitwise58

operations faster than the corresponding set operations when dealing with59

considerable amounts of data. Our proposal, BitQT, is free and publicly60

available at GitHub (https://github.com/LQCT/BitQT.git).61

2 Computational Details62

BitQT heuristic has been coded in Python 3 programming language63

and makes heavy use of two third-party libraries: version 1.9.4 of64

MDTraj (McGibbon et al., 2015) for the fast RMSD calculations65

and version 1.6.1 of bitarray for all the binary-related operations66

(https://github.com/ilanschnell/bitarray). The two QT implementations67

used in this work for comparisons against BitQT correspond to the QTPy68

code, previously published by authors of this study and available at GitHub69

(https://github.com/rglez/QT) and the qtcluster command distributed in70

version 6.0.1 of the ORAC package (Procacci et al., 1997).71

We selected MD trajectories of different sizes and compositions72

to benchmark the performance of these algorithms. They are referred73

generically by their size as follows: 6K- a 6001 frames REMD simulation74

of the Tau peptide (Shea and Levine, 2016), 30K- a 30605 frames MD75

of villin headpiece based on PDB 2RJY (Melvin et al., 2016), 50K- a76

50500 frames MD of serotype 18C of Streptococcus Pneumoniae, 100K-77

a 100500 frames MD of Cyclophilin A based on PDB 2N0T, and 250K-78

a 250000 frames MD of four chains of the Tau peptide that corresponds79

to the MD simulation of an extended Tau peptide (PHF8) during 1µs80

(Álvarez-Ginarte et al., unpublished work). Not referenced trajectories81

were obtained by the authors of this work. The details of the MD are82

available in the Supporting Information (S2: Details of the Molecular83

Dynamics Simulations). All trajectory and topology files used in this84

work can be found online at the following addresses: 6K, 50K, 100K,85

and 250K at https://doi.org/10.6084/m9.figshare.c.5403930.v1, and 30K86

at https://doi.org/10.6084/m9.figshare.3983526.v1.87

QTPy and BitQT used the same quality threshold value k for each88

trajectory; 4 Å for trajectories 6K and 30K, 3 Å for trajectory 250K89

and 2 Å for trajectories 50K and 100K. These values were set after a90

trial/error procedure aided by visual inspection of the generated clusters91

uniformity. However, as qtcluster does not use the RMSD metric (Steipe,92

2002), we adjusted the k values for each trajectory ran with this software.93

We multiplied the corresponding k by 2.4, in analogy with a previously94

published report of qtcluster’s authors (see S.I of Guardiani et al. (2012)).95

All calculations were performed on an AMD Ryzen5 Hexa-core96

Workstation with a processor speed of 3.6 GHz and 64 GB RAM under a97

64-bit Xubuntu 18.04 operating system. Run times and RAM peaks were98

recorded with the /usr/bin/time Linux command.99

3 Approaching QT Clustering from a Maximum100

Clique Problem Perspective101

If we define the diameter of a cluster C as the maximum distance between102

any pair of its elements (equation 1), the exact QT algorithm applied to an103

MD trajectory can be described as follows: After the user sets a similarity104

threshold k, one arbitrary frame is selected and marked as a candidate105

clusterC1. The remaining frames are iteratively added toC1 if and only if106

two conditions hold:Condition 1- the entering frame increases the diameter107

of C1 by the minimum amount, and Condition 2- the diameter of C1108

does not exceed the threshold k. A second candidate cluster is formed109

by starting with another frame and repeating the procedure. Note that all110

frames are made available to the second candidate cluster (frames from the111

first candidate cluster are not discarded from consideration). This process112

continues for all framesn in the trajectory untilCn candidate clusters have113

been formed. The one with more frames is set as a cluster, its elements114

removed from further consideration, and the entire process repeated until115

no more clusters can be discovered.116

117

diam(C) = max(dij) | ∀ (i, j) ∈ C (1)

118
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The crucial aspect of the above-described algorithm lies in its ability1

to guarantee that all pairwise similarities inside a cluster will remain under2

the threshold k. This aspect is assured entirely by Condition 2, whose3

relevance has been previously discussed (González-Alemán et al., 2020b).4

It is worth noting that Condition 1 merely limits the size of retrieved clusters5

but has no impact in maintaining their collective similarity.6

Concepts and tools from graph theory have been widely used to7

represent numerous situations in which several objects are mutually8

related. Before showing how QT can be approached from a graph-9

theoretical perspective, we will briefly define some basic underlying10

concepts.11

A graph G = (V,E) is a pair of a set of vertices (nodes) V and12

a set of edges E. Each edge is a two-element subset of V and denotes13

the adjacency between the nodes it connects. Two connected nodes are14

called neighbors, and the number of neighbors of a given node constitutes15

its degree. Connectivity of simple graphs can be represented using its16

adjacency matrix, a square symmetric matrix M in which Mij = 117

if nodes i and j are connected and Mij = 0 otherwise. If there is no18

directionality in the definition of the edges and there is no data associated19

to them, it is said that the graph is undirected and unweighted.20

A clique is a subgraph in which vertices are all pairwise adjacent. If a21

clique is not contained in any other clique, it is said to be maximal, while22

the term maximum clique denotes the maximal clique with a maximum23

number of nodes (maximum cardinality). The maximum clique problem24

(MCP) solves the challenge of finding the maximum clique inside a given25

graph.26

A central idea of MCP algorithms is the notion of vertex coloring.27

A proper vertex coloring refers to assigning a particular color (or any28

other unique label) to each vertex of a graph so that adjacent vertices do29

not share the same color. The vertex coloring problem consists of finding30

a proper coloring that uses the fewest number of colors, known as the31

graph’s chromatic number (χ). It is common to employ coloring techniques32

becauseχ is an upper bound to the maximum clique’s size of a graph. This33

property is exploited to discard impossible solutions and guide the search34

of cliques (San Segundo and Tapia, 2014). As exact coloring itself is an35

NP-hard problem, heuristics are usually applied.36

To make a parallel between QT and MCP, it is possible to represent37

each frame of an MD trajectory as a node of an undirected graph in which38

edges depict RMSD similarity between nodes. Only edges with an RMSD39

less or equal to the threshold k are allowed, so there would be no weights40

associated with them. In that context, QT can be declared as an iterative41

search of cliques. However, QT cliques are not necessarily maximum due42

to Condition 1 of the algorithm, which ensures that they should have a43

minimum weight instead of a maximum cardinality. Condition 1 requires44

the diameter of the clusters to be minimum. Still, it is Condition 2 that45

assures the respect of a quality threshold in the pairwise similarity of46

retrieved clusters.47

Conveniently, a redefinition of the QT algorithm can be made to48

search for maximum-sized clusters instead of minimum-weighted without49

compromising the pairwise similarity assured by the second condition.50

In most clustering applications, maximizing the size of the clusters is51

a desirable feature. Relaxation of Condition 1 in this way automatically52

converts QT in an MCP problem, accessible by the graph theory tools. This53

approach profoundly impacts how molecular similarity can be encoded and54

the efficiency of algorithms used to solve the problem, as discussed in the55

following sections.56

3.1 Binary encoding of RMSD pairwise similarity57

As the ultimate goal of our clustering proposal is to partition all MD58

trajectory frames, all the pairwise similarities should be analyzed. This59

information can be saved in RAM as a matrix to accelerate the algorithm’s60

run time. AsRMSDij = RMSDji , the similarity matrix is symmetric.61

Although the valuable information is contained in one of the triangles,62

many current MD clustering software preserve the whole matrix to avoid63

the performance penalty of working with "triangular" data structures.64

The amount of RAM needed for the storage of the matrix expressed in65

GB. can be calculated using the equation 2, whereN is the total number of66

frames in the trajectory andm is the size of the numeric type used to express67

the RMSD values (in bytes). Being the RMSD a float number ranging from68

0.0 to infinite, the common choice is to use float numeric types to represent69

inter-frame similarity. Some clustering alternatives like TTClust (Tubiana70

et al., 2018) use the costly choice of double-precision float (m=8). Other71

options like GROMACS (Abraham et al., 2015), and WORDOM (Seeber72

et al., 2007) packages use single-precision floats (m=4), saving half of73

RAM just by adjusting the precision used to express RMSD. It is worth74

noting that the minimum size of standard available floats is a half-precision75

value (m=2), which is enough for most MD clustering applications and the76

one used in QTPy.77

VRAM =
m ∗N2

230
(2)

Here we followed a different approach to diminish the value of m. If78

we conceive the QT algorithm as an MCP problem, after considering the79

relaxation of Condition 1 our search will be focused on finding cliques80

of maximum cardinality, and no helpful information is extracted from the81

weight of the edges other than its absence or existence. This information82

can therefore be encoded as a binary matrix M where Mij = 1 if83

nodes i and j are similar (RMSDij ≤ k) or 0 otherwise. Note that84

M contains the same information that the adjacency matrix of the graph85

except for the diagonal, which in this case will always be one instead of86

zero (RMSDii ≡ 0.0). For the sake of simplicity, we will refer to M as87

the adjacency matrix of the trajectory graph.88

By using the binary adjacency matrix, we reduce the RAM89

consumption of this object in 16, 32, or 64 times (m = 1
8

) compared90

to other software that deals with half, single or double-precision float91

values to represent the pairwise RMSD distance. Besides the RAM saving,92

expressing similarity as a binary matrix offers the possibility to perform93

the search of cliques using binary operators (AND and XOR), contributing94

to the speedup of the heuristic clique search algorithm we propose in the95

following section.96

3.2 QT as a heuristic search of big cliques97

Since MCP is an NP-hard problem, no efficient exact polynomial-time98

algorithms are expected to be found. Nevertheless, exact proposals exist99

to treat the MCP relatively fast for real problems of limited size. San100

Segundo and co-workers’ efforts are of particular relevance for us as they101

also use the binary adjacency matrix of graphs and bitwise operations102

to develop their algorithms (San Segundo et al., 2010; San Segundo103

et al., 2013; San Segundo and Artieda, 2015; San Segundo et al., 2016,104

2017b,a). However, they are mainly focused on exact solutions rather than105

approachable heuristics.106

A heuristic method tries to find a satisfactory solution to a complex107

problem using logical assumptions. While heuristics for MCP reduce the108

time of finding cliques, there is no guarantee that found cliques would be109

maximum. Nevertheless, heuristics are widely used in applications where110

a marginal error is not of great importance. In our case, we want to keep111

the common similarity of clusters, but their size is not of a big concern.112

After all, the original QT does not provide either maximum cliques. We113

are interested in a cheaper way to keep pairwise similarity, and for that114

purpose, a heuristic approach may suffice. Next we describe the workflow115

of the BitQT clustering algorithm, which is built upon a not previously116

published heuristic for searching big cliques (see the pseudocode in the117
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4 González-Alemán et al.

Fig. 1. First iteration of the binary heuristic for searching cliques implemented in BitQT.

Supplementary Information “S1: Pseudocode of BitQT algorithm”). A1

formal review of the many MCP heuristics available is out of this paper’s2

scope and can be found elsewhere (Wu and Hao, 2015).3

We start with the calculation of the binary similarity matrix that will4

be stored in RAM. The float vector containing the one-versus-all RMSD5

similarity of each frame is transformed into a bit-vector Bi (B1 to B9 in6

Matrix 1, Figure 1) in which Bij = 1 if RMSDij ≤ k, zero otherwise.7

Each vertex’s degree is calculated as the total number of switched-on8

positions in the Bi vector (D column in Matrix 1, Figure 1).Note that9

Bi vectors always have 1 at the ith position (RMSDii == 0 ≤ k), so10

D column actually contain degree + 1 of each vertex in the trajectory11

graph..Then, the subsequent steps are followed.12

1- Vertex coloring: Each vertex of the input graph (Graph 1, Figure13

1) is ranked (column R, Matrix 1, Figure 1) in descending order of their14

corresponding degrees (column D, Matrix 1, Figure 1). Following the rank15

order, each vertex takes a color label that it shares with all other vertices16

that are neither colored nor neighbors (column C, Matrix 1, Figure 1).17

2- Clique search from the maximum degree node: After all vertices18

are colored, the search of a clique starts considering only neighbors of19

the maximum degree node of the graph (Graph 1A, Figure 1), which is20

called the seed of the clique (node 1 in Matrix 1A, Graph 1A, Figure 1).21

Neighbors of the seed are strictly ordered for further processing following22

three criteria (DCg ordering); descending order of their degrees, ascending23

order of their color class, and ascending order of the degeneracy of the color24

class (columns D, C, and g, respectively, Matrix 1A, Figure 1). Note that25

for our purposes, degeneracy is perceived as the number of nodes of the26

color class in the context of the neighbors of a seed node, not in the entire27

graph (in which case using it for order would be meaningless).28

Following this ordering, the first node is selected to start a clique,29

and subsequent nodes will be added to that clique if they have a still-not-30

explored color and if they are adjacent to previously explored nodes (clique31

propagation).32

BitQT performs this search using bitwise operations. The bit-vector33

Bi corresponding to the maximum degree node is set as the clique bit-34

vector (B1 in Heuristic search of Graph 1A, Figure 1). Following the DCg35

ordering, an AND operation is performed between the clique bit-vector36

and the next node bit-vector if it has a new color (B6 in Heuristic search37

of Graph 1A, Figure 1). Indices corresponding to bits that become zero by38

this operation are discarded from further consideration (B2, B3, B4, and39

B5) as they are not adjacent to processed nodes (B1 and B6). The resulting40

bit-vector becomes the new clique bit-vector used for the AND operation41

with the next candidate following the DCg ordering (B9). The bit-vector42

resulting from the iterative AND operations contains the members of the43

first clique.44

3- Clique search from promising nodes: Once the clique retrieved by45

using the maximum degree node as the seed is found in the previous step,46

the same exploration strategy is conducted for every promising node in the47

original graph (Graph 1). A promising node (B8 in Graph 1, Figure 1) is48

defined as a node with a color not present in the first clique and whose49

degree is higher than the number of nodes in the first clique. Using such50

nodes as seeds for propagation might lead to the formation of a bigger51

clique (Heuristic search of Graph 1B, Scheme 1).52

4- Conclusion and updating: When the maximum degree node and53

all promising nodes have been used as seeds, the maximum clique found54

is picked as a cluster and their members removed from the input graph55

(the corresponding Bi vectors removed from the binary matrix). An56

updating of the remaining bit-vector is necessary to set as zero all entries57
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Table 1. Run time and RAM consumption of analyzed QT implementations on
different trajectories.1

Traj. Name
BitQT qtcluster QTPy

# atoms Run time RAM peak Run time RAM peak Run time RAM peak
(selection) h:mm:ss GB h:mm:ss GB h:mm:ss GB

6K 217 (all) 0:00:08 0.101 0:08:21 0.529 0:04:36 0.181
30K 64 (CA) 0:02:15 0.470 0:18:55 0.270 3:41:11 2.710
50K 78 (no H) 0:12:34 0.435 1:14:08 1.526 181:51:57 7.101

100K 660 (backbone) 1:15:37 4.355 0:00:49 >81.014 >200:00:00 18.626
250K 160 (backbone) 6:36:04 8.128 130:18:06 17.476 0:00:03 >117.000

1 Bold entries denote either a time crash (job taking more than 200 h) or
a memory crash (job taking more than 64GB)

corresponding to nodes that formed the cluster, which will not be available1

for subsequent iterations. This updating is bitwise encoded as a consecutive2

AND/XOR operation between remaining bit-vectors and the clique bit-3

vector (Conclusion of iteration 1, Figure 1). The same steps are repeated4

from Step 2 until no more cliques can be found.5

During the execution of BitQT, some scenarios leading to ties may6

arise, for instance, selecting the node of the highest degree as seed (in “2-7

Clique search from the maximum degree node” and “3-Clique search from8

promising nodes”), or selecting the maximum clique (in “4-Conclusion9

and updating”). BitQT solves these cases by choosing the element with10

the lowest index among the available options as the “winner” of the tie.11

These ties can also appear in the original QT algorithm (see Section 312

when selecting the candidate cluster with most neighbors as a cluster).13

QTPy also picks as “winner” of the tie the element with the lowest index14

from the available options. Choosing one or another “winner” does impact15

the outcome of algorithms in terms of cluster composition. However, the16

choice of a “winner” in a tied scenario will never invalidate the discussed17

guarantees of BitQT or QTPy.18

4 BitQT benchmark19

4.1 Performance20

In this section, we compare the run time and memory usage of BitQT,21

QTPy and qtcluster, which are the only QT implementations for MD we22

have found in the literature. These parameters are shown in Table 1 for23

the clustering of the six different MD trajectories that we described in24

Section 2 (6K, 30K, 50K, 100K, and 250K). Given that these software25

are programmed following distinct algorithms and also using different26

programming languages (Fortran 90 for qtcluster and Python 3 for BitQT27

and QTPy), we are only able to provide general insights into the disparate28

performances observed in Table 1.29

From the three options, QTPy is the only one that always creates a30

square float matrix for saving the RMSD distances, so its RAM peak is31

expected to be the highest. The only exception is 6K, where the pairwise32

matrix uses only about 69 MB of RAM, so other data structures (or merely33

the molecular trajectory) will be responsible for the peak. RAM usage of34

BitQT also grows quadratically with the number of frames in the trajectory.35

However, as it uses bits instead of half-precision floats, there is a 16X36

memory saving in this object’s construction compared to QTPy.37

The memory usage of qtcluster may be confusing at first sight, as it38

can process a 250K trajectory but produced a memory crash when dealing39

with a simulation of 100K frames. This behavior is a direct consequence40

of the similarity metric, the maximum difference between corresponding41

pairs of atoms. As expressed in equation 3, under this metric, the similarity42

of two frames Sm and Sn is assessed by the absolute maximum value of43

the difference between their inter-atomic distances.44

dSm,Sn = maxi,j |dij(Sm)− dij(Sn)| (3)

This means that it is necessary to hold the square matrix of the45

selected inter-atomic distances for each conformation in RAM. In practice,46

qtcluster allocates the values of only one triangle of that matrix for every47

conformation.48

The RAM used by the qtcluster similarity matrix (in GB) is expressed49

by equation 4, in which N is the total number of frames in the trajectory,50

m is the size of the numeric type used to express the similarity values51

(in bytes), and natoms is the number of selected atoms. It is clear why52

qtcluster crashed at 100K but could process 250K; the 100K trajectory53

contained 660 atoms and 250K only 160. Substituting in equation 454

and taking m = 4 we obtain 81 GB for 100K and about 12 GB for55

250K. Inconveniently, qtcluster can analyze big trajectories only when56

the number of selected atoms is relatively small.57

VRAMqtcluster
=
m ∗N ∗ natoms∗(natoms−1)

2

230
(4)

In a nutshell, while the three algorithms have quadratic memory58

complexity, the costs of BitQT and QTPy are governed by the trajectory59

size. In contrast, qtcluster is dominated by the size of the atomic selection.60

Run time reported in Table 1 exhibits a general trend; QTPy is the61

slowest choice, followed by qtcluster, which is greatly outperformed by62

BitQT. It is worth noting that QTPy is the only one that implements the63

exact version of QT (Heyer et al., 1999). As we have commented before,64

the exact QT has a very high computational cost evinced in the QTPy run65

times. The RMSD computation step can be safely discarded as the main66

contributor to the slow time performance of QTPy because it employs the67

same library that BitQT for this purpose (MDTraj). Given its slowness,68

QTPy applications are limited to the processing of small trajectories or as69

a reference for the development of future QT algorithms applied to the70

MD field.71

qtcluster was designed as a high-speed alternative for the QT72

partitioning of MD. The similarity metric employed by this script (equation73

3) is cheaper than the more customary RMSD and avoids any alignment.74

Somewhat similar to BitQT, qtcluster only preserves the original condition75

assuring the collective similarity of retrieved clusters. For big trajectories,76

however, qtcluster is not a fast option.77

Comparatively, BitQT has the best run time performance allowing78

it to handle relatively long MD trajectories. The accelerated computing79

of optimal RMSD distances through the MDTraj engine joined to the80

developed binary-based heuristic for searching cliques are the cornerstones81

of its cheap cost.82

4.2 Preservation of the Quality Threshold83

As we discussed earlier in section 3, there are two fundamental restrictions84

in the QT original algorithm: Condition 1, which requires the diameter85

of clusters to be of minimum size, and Condition 2, which ensures the86

respect of a quality threshold in the values of intra-cluster similarity. BitQT87

conveniently relaxed the former, but it carefully does preserve the latter88

one. The previous claim implies that all clusters returned by BitQT must89

have a diameter less equal than the quality threshold k.90

Figure 2 shows the distribution of all clusters’ diameter for every91

analyzed trajectory. As it is appreciated, pairwise distances between frames92

of the same cluster never surpass the predefined quality thresholdk (4 Å for93

6K and 30K, 3 Å for 250K, and 2 Å for 50K and 100K).94
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Fig. 2. Distributions of cluster diameters returned by BitQT for each analyzed trajectory.

Figure 2 also demonstrates that BitQT clusters are cliques in the MD1

trajectory graph. As we discussed in Section 3, an edge between two2

nodes i and j of the trajectory graph is set if and only if dij ≤ k. If3

all pairwise distances between frames in every cluster are under k, then4

the corresponding nodes of the trajectory graph are pairwise connected,5

implying that clusters are indeed cliques.6

4.3 Equivalence between BitQT and QTPy7

If we consider an MD trajectory T as a set of N elements (frames) T =8

{t1, t2, ..., tN}, the outcome of applying a given clustering algorithm on9

T is a partitionP of theN objects intoC clusters,P = {p1, p2, ..., pC},10

such that the union of all the subsets inP is equal to T and the intersection11

of any two subsets inP is empty. QTPy and BitQT produced such partitions12

(Q = {q1, q2, ..., qC} and B = {b1, b2, ..., bC} respectively) for the13

6K, 30K, and 50K trajectories.14

Considering
(N
2

)
= N(N − 1)/2 as the total number of element15

pairs (ti, tj ) in T , there exist four classifications of pairs when comparing16

Q and B outcomes; a-) elements in a pair are placed in the same group17

in Q and in the same group in B (true positives), b-) elements in a pair18

are placed in the same group in Q and in different groups in B (false19

negatives), c-) elements in a pair are placed in the same group in B and20

in different groups in Q (false positives), and d-) elements in a pair are21

placed in different groups in Q and B (true negatives). It is possible to22

assess the equivalence between Q and B based on the number of pairs of23

elements lying in any of these four categories.24

The Rand Index (Rand, 1971) (Equation 5) expresses the fraction of25

pairs of elements on which two clusterings coincide (from 0 for unrelated26

to 1 in a perfect match). However, RI approaches its upper limit as the27

number of clusters increases because d tends to grow even for poorly28

related partitions, giving a high score. An Adjusted RI (Hubert and Arabie,29

1985; Steinley, 2004)corrected against “agreements-by-chance" (ARI) has30

been extensively used (Equation 6) to measure the correspondence between31

partitions created by clustering algorithms. ARI values extend from -132

(poorly related partitions) to 1 (highly similar partitions).33

34

RI =
a+ d

a+ b+ c+ d
(5)

35

36

ARI =

(N
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](N
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(6)

37

An ARI analysis between partitions obtained with QTPy (Q) and BitQT38

(B) for trajectories 6K, 30K, and 50K is shown at Figure 3. Note that39

instead of reporting just the global ARI between Q and B, we explicitly40

compared the ARI between both partitions at the top-X clusters (QX and41

BX ), taking X from 1 (the first cluster) toC (the total number of clusters).42

Consequently, the global ARI between Q and B corresponds to the last43

point of each curve. The remaining points indicate the correspondence44

between the first X clusters of Q and B.45

For trajectories 6K and 30K, the global ARI is 0.87, indicating a46

good agreement between clusters produced by QTPy and BitQT. An47

even higher index is reported for the first X clusters with sizes bigger48

than 1% of the trajectory size (ARI1%). These most populated clusters49

are often considered the most relevant of the trajectory as they groups50

the representative conformational states explored in an MD simulation.51

ARI1% (represented by a bold point in Figure 3A-C) is 0.96, 0.88 and52

0.XX for trajectories 6K, 30K, and 50K, respectively. This is indicative of53

a very good agreement between the most popular clusters obtained byQTPy54

and BitQT.55

Fig. 3. To do

56

Observed ARI fluctuations at different top-X are expected because both57

algorithms pick their seeds to form clusters differently. It is possible that58

at a given value of X, clusters formed by QTPy were still not recovered by59

BitQT or vice versa. However, fluctuations are more pronounced for the60

less populated clusters.61

5 Conclusions62

The QT algorithm is an appealing option for partitioning MD trajectories as63

it assures a collective similarity of frames in recovered clusters. However,64

its inherent complexity currently limits its application. In the present work,65

we have relaxed a condition in the original formulation of QT66

Instead of looking for minimum-sized clusters where all pairwise67

similarity values were under a threshold, we reformulated the problem68

to maximize the size of those clusters. This trivial change allowed us to69
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approach QT from an MCP perspective. The use of a similarity binary1

matrix (rather than a float-encoded one) greatly diminished the RAM2

resources. It made it possible to implement most clustering steps as fast3

bitwise operations.4

Rather than an exact implementation of the MCP, we developed our5

modified version of QT called BitQT using an MCP heuristic whose6

out-coming clusters are in good agreement with those obtained by the7

original version QTPy. BitQT strictly guaranteed the preservation of the8

user-defined quality threshold in all reported clusters.9
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