Roy González-Alemán

Daniel Platero-Rochart

David Hernández-Castillo

Erix W Hernández-Rodríguez

Julio Caballero

Fabrice Leclerc
email: fabrice.leclerc@i2bc.paris-saclay.fr

Luis Montero-Cabrera

BitQT: A Graph-Based Approach to the Quality Threshold Clustering of Molecular Dynamics

Motivation: Classical Molecular Dynamics is a standard computational approach to model time-dependent processes at the atomic level. The inherent sparsity of increasingly huge generated trajectories demands clustering algorithms to reduce other post-simulation analysis complexity. The quality threshold (QT) variant is an appealing one from the vast number of available clustering methods. It guarantees that all members of a particular cluster will maintain a collective similarity established by a user-defined threshold. Unfortunately, its high computational cost for processing big data limits its application in the molecular simulation field. Results: In the present work, we propose a methodological parallel between QT clustering and another well-known algorithm in the field of Graph Theory, the Maximum Clique Problem. Molecular trajectories are represented as graphs whose nodes designate conformations, while unweighted edges indicate mutual similarity between nodes. The use of a binary-encoded RMSD matrix coupled to the exploitation of bitwise operations to extract clusters significantly contributes to reaching a very affordable algorithm compared to the few implementations of QT for Molecular Dynamics available in the literature. Our alternative provides results in good agreement with the exact one while strictly preserving the collective similarity of clusters.The source code and documentation of BitQT are free and publicly available on GitHub (https://github.com/LQCT/BitQT.git) and ReadTheDocs (https://bitqt.readthedocs.io/en/latest/) respectively.

similar conformations into sets known as clusters. In such a way, conformations inside a cluster are more similar between them than those from other clusters.

Many clustering algorithms exist for analyzing MD [START_REF] Peng | Clustering algorithms to analyze molecular dynamics simulation trajectories for complex chemical and biological systems[END_REF], having benefits and shortcomings that make them suitable for particular applications and inappropriate for others [START_REF] Röttger | Clustering of Biological Datasets in the Era of Big 62 Data[END_REF]. Due to the inherent subjectivity associated with classification (the same set of elements can be grouped according to many different criteria), some authors consider clustering as an art (von Luxburg et al., 2012).

However, in those particular cases where strongly geometrically correlated conformations are needed to be returned as clusters, the Quality Threshold (QT) algorithm [START_REF] Heyer | Exploring expression data identification and analysis of coexpressed genes[END_REF] stands out as an ideal option.

QT appeared in the context of clustering gene expression patterns.

Since then, it has been applied to many areas other than microbiology (Tang et are the guarantee that no pair of frames having a similarity value greater than a user-specified cutoff will coalesce into the same cluster and that the number of clusters to retrieve must not be known a priori. However, QT has an expensive computational cost [START_REF] Danalis | Efficient quality threshold clustering for parallel architectures[END_REF]) that currently limits its applicability. Here we propose a heuristic variation of QT that can output equivalent results to the exact algorithm at a much less computational cost.

diam(C) = max(d ij) | ∀ (i, j) ∈ C (1) i i "revised_BitQT" -2021/4/28 -6:27 -page 3 -#3 i i i i i i BitQT 3
The crucial aspect of the above-described algorithm lies in its ability to guarantee that all pairwise similarities inside a cluster will remain under the threshold k. This aspect is assured entirely by Condition 2, whose relevance has been previously discussed (González-Alemán et al., 2020b).

It is worth noting that Condition 1 merely limits the size of retrieved clusters but has no impact in maintaining their collective similarity.

Concepts and tools from graph theory have been widely used to represent numerous situations in which several objects are mutually related. Before showing how QT can be approached from a graphtheoretical perspective, we will briefly define some basic underlying concepts.

A graph G = (V, E) is a pair of a set of vertices (nodes) V and a set of edges E. Each edge is a two-element subset of V and denotes the adjacency between the nodes it connects. Two connected nodes are called neighbors, and the number of neighbors of a given node constitutes its degree. Connectivity of simple graphs can be represented using its adjacency matrix, a square symmetric matrix M in which M ij = 1 if nodes i and j are connected and M ij = 0 otherwise. If there is no directionality in the definition of the edges and there is no data associated to them, it is said that the graph is undirected and unweighted.

A clique is a subgraph in which vertices are all pairwise adjacent. If a clique is not contained in any other clique, it is said to be maximal, while the term maximum clique denotes the maximal clique with a maximum number of nodes (maximum cardinality). The maximum clique problem (MCP) solves the challenge of finding the maximum clique inside a given graph.

A central idea of MCP algorithms is the notion of vertex coloring.

A proper vertex coloring refers to assigning a particular color (or any

Binary encoding of RMSD pairwise similarity

As the ultimate goal of our clustering proposal is to partition all MD trajectory frames, all the pairwise similarities should be analyzed. This information can be saved in RAM as a matrix to accelerate the algorithm's run time. As RM SD ij = RM SD ji , the similarity matrix is symmetric. 77

V RAM = m * N 2 2 30
(2)

Here we followed a different approach to diminish the value of m. If Supplementary Information "S1: Pseudocode of BitQT algorithm"). A 1 formal review of the many MCP heuristics available is out of this paper's 2 scope and can be found elsewhere [START_REF] Wu | A review on algorithms for maximum 99 clique problems[END_REF].

3

We start with the calculation of the binary similarity matrix that will 4 be stored in RAM. The float vector containing the one-versus-all RMSD 5 similarity of each frame is transformed into a bit-vector Bi (B1 to B9 in 6 Matrix 1, Figure 1) in which B ij = 1 if RM SD ij ≤ k, zero otherwise.

7 Each vertex's degree is calculated as the total number of switched-on 8 positions in the Bi vector (D column in Matrix 1, Figure 1).Note that 9 Bi vectors always have 1 at the i th position (RM SD ii == 0 ≤ k), so 10 D column actually contain degree + 1 of each vertex in the trajectory 11 graph..Then, the subsequent steps are followed.

12 1-Vertex coloring: Each vertex of the input graph (Graph 1, Figure 13 1) is ranked (column R, Matrix 1, Figure 1) in descending order of their 14 corresponding degrees (column D, Matrix 1, Figure 1). Following the rank 15 order, each vertex takes a color label that it shares with all other vertices 16 that are neither colored nor neighbors (column C, Matrix 1, Figure 1). corresponding to nodes that formed the cluster, which will not be available for subsequent iterations. This updating is bitwise encoded as a consecutive AND/XOR operation between remaining bit-vectors and the clique bitvector (Conclusion of iteration 1, Figure 1). The same steps are repeated from Step 2 until no more cliques can be found.

During the execution of BitQT, some scenarios leading to ties may arise, for instance, selecting the node of the highest degree as seed (in "2-Clique search from the maximum degree node" and "3-Clique search from promising nodes"), or selecting the maximum clique (in "4-Conclusion and updating"). BitQT solves these cases by choosing the element with the lowest index among the available options as the "winner" of the tie.

These ties can also appear in the original QT algorithm (see Section 3 when selecting the candidate cluster with most neighbors as a cluster).

QTPy also picks as "winner" of the tie the element with the lowest index from the available options. Choosing one or another "winner" does impact the outcome of algorithms in terms of cluster composition. However, the choice of a "winner" in a tied scenario will never invalidate the discussed guarantees of BitQT or QTPy.

4 BitQT benchmark

Performance

In this section, we compare the run time and memory usage of BitQT, QTPy and qtcluster, which are the only QT implementations for MD we have found in the literature. These parameters are shown in Table 1 for the clustering of the six different MD trajectories that we described in Section 2 (6K, 30K, 50K, 100K, and 250K). Given that these software are programmed following distinct algorithms and also using different programming languages (Fortran 90 for qtcluster and Python 3 for BitQT and QTPy), we are only able to provide general insights into the disparate performances observed in Table 1.

From the three options, QTPy is the only one that always creates a square float matrix for saving the RMSD distances, so its RAM peak is expected to be the highest. The only exception is 6K, where the pairwise matrix uses only about 69 MB of RAM, so other data structures (or merely the molecular trajectory) will be responsible for the peak. RAM usage of

BitQT also grows quadratically with the number of frames in the trajectory.

However, as it uses bits instead of half-precision floats, there is a 16X memory saving in this object's construction compared to QTPy.

The memory usage of qtcluster may be confusing at first sight, as it can process a 250K trajectory but produced a memory crash when dealing with a simulation of 100K frames. This behavior is a direct consequence of the similarity metric, the maximum difference between corresponding pairs of atoms. As expressed in equation 3, under this metric, the similarity of two frames Sm and Sn is assessed by the absolute maximum value of the difference between their inter-atomic distances.

d Sm,Sn = max i,j |d ij (Sm) -d ij (Sn)| (3)
This means that it is necessary to hold the square matrix of the

 Several popular software have inaccurately qualified their clustering implementations as QT or QT-like variants in the past (González-Alemán et al., 2020b). These pseudo-QT alternatives correspond to another simple and largely disseminated algorithm (Daura et al., 1999) that has been recently optimized for the efficient treatment of long molecular trajectories (González-Alemán et al., 2020a). After careful inspection of current literature, we have found only two valid and ready-to-use attempts to implement QT to analyze MD trajectories. The first one corresponds to the qtcluster command of the ORAC suite (Procacci et al., 1997) while the second one is an implementation previously published by authors of this study (González-Alemán et al., 2020b), referred to as QTPy from now on.While QTPy can be stated as an exact version of the QT proposed by Heyer in 1999, it should be emphasized that qtcluster only partially complies with the original algorithm. Perhaps the most essential feature that makes qtcluster a fast QT implementation lies in the fact that it is not an exact QT attempt, only preserving one condition from the exact algorithm; the one assuring the collective similarity of retrieved clusters. It is also worth noting that qtcluster uses the maximum difference between corresponding pairs of atoms as the similarity measure while QTPy employs the more customary optimal RMSD. Both of them are marked by a run time and RAM consumption that impedes the processing of relatively long trajectories.

 other unique label) to each vertex of a graph so that adjacent vertices do not share the same color. The vertex coloring problem consists of finding a proper coloring that uses the fewest number of colors, known as the graph's chromatic number (χ). It is common to employ coloring techniques because χ is an upper bound to the maximum clique's size of a graph. This property is exploited to discard impossible solutions and guide the search of cliques (San Segundo and Tapia, 2014). As exact coloring itself is an NP-hard problem, heuristics are usually applied.To make a parallel between QT and MCP, it is possible to represent each frame of an MD trajectory as a node of an undirected graph in which edges depict RMSD similarity between nodes. Only edges with an RMSD less or equal to the threshold k are allowed, so there would be no weights associated with them. In that context, QT can be declared as an iterative search of cliques. However, QT cliques are not necessarily maximum due to Condition 1 of the algorithm, which ensures that they should have a minimum weight instead of a maximum cardinality. Condition 1 requires the diameter of the clusters to be minimum. Still, it is Condition 2 that assures the respect of a quality threshold in the pairwise similarity of retrieved clusters.Conveniently, a redefinition of the QT algorithm can be made to search for maximum-sized clusters instead of minimum-weighted without compromising the pairwise similarity assured by the second condition.In most clustering applications, maximizing the size of the clusters is a desirable feature. Relaxation of Condition 1 in this way automatically converts QT in an MCP problem, accessible by the graph theory tools. This approach profoundly impacts how molecular similarity can be encoded and the efficiency of algorithms used to solve the problem, as discussed in the following sections.

61

 Although the valuable information is contained in one of the triangles, 62 many current MD clustering software preserve the whole matrix to avoid 63 the performance penalty of working with "triangular" data structures.64The amount of RAM needed for the storage of the matrix expressed in 65 GB. can be calculated using the equation 2, where N is the total number of 66 frames in the trajectory and m is the size of the numeric type used to express 67 the RMSD values (in bytes). Being the RMSD a float number ranging from 68 0.0 to infinite, the common choice is to use float numeric types to represent 69 inter-frame similarity. Some clustering alternatives like TTClust (Tubiana 70 et al., 2018) use the costly choice of double-precision float (m=8). Other 71 options like GROMACS (Abraham et al., 2015), and WORDOM (Seeber 72 et al., 2007) packages use single-precision floats (m=4), saving half of 73 RAM just by adjusting the precision used to express RMSD. It is worth 74 noting that the minimum size of standard available floats is a half-precision 75 value (m=2), which is enough for most MD clustering applications and the 76 one used in QTPy.

78 we

 78 conceive the QT algorithm as an MCP problem, after considering the 79 relaxation of Condition 1 our search will be focused on finding cliques 80 of maximum cardinality, and no helpful information is extracted from the 81 weight of the edges other than its absence or existence. This information 82 can therefore be encoded as a binary matrix M where M ij = 1 if 83 nodes i and j are similar (RM SD ij ≤ k) or 0 otherwise. Note that 84 M contains the same information that the adjacency matrix of the graph 85 except for the diagonal, which in this case will always be one instead of 86 zero (RM SD ii ≡ 0.0). For the sake of simplicity, we will refer to M as 87 the adjacency matrix of the trajectory graph. 88 By using the binary adjacency matrix, we reduce the RAM 89 consumption of this object in 16, 32, or 64 times (m = 1 8) compared 90 to other software that deals with half, single or double-precision float 91 values to represent the pairwise RMSD distance. Besides the RAM saving, 92 expressing similarity as a binary matrix offers the possibility to perform 93 the search of cliques using binary operators (AND and XOR), contributing 94 to the speedup of the heuristic clique search algorithm we propose in the 95 following section. 96 3.2 QT as a heuristic search of big cliques 97 Since MCP is an NP-hard problem, no efficient exact polynomial-time 98 algorithms are expected to be found. Nevertheless, exact proposals exist 99 to treat the MCP relatively fast for real problems of limited size. San 100 Segundo and co-workers' efforts are of particular relevance for us as they 101 also use the binary adjacency matrix of graphs and bitwise operations 102 to develop their algorithms (San Segundo et al.

Fig. 1 .

 1 Fig. 1. First iteration of the binary heuristic for searching cliques implemented in BitQT.

 17

2-

 Clique search from the maximum degree node: After all vertices 18 are colored, the search of a clique starts considering only neighbors of 19 the maximum degree node of the graph (Graph 1A, Figure1), which is 20 called the seed of the clique (node 1 in Matrix 1A, Graph 1A, Figure1).21Neighbors of the seed are strictly ordered for further processing following 22 three criteria (DCg ordering); descending order of their degrees, ascending 23 order of their color class, and ascending order of the degeneracy of the color 24 class (columns D, C, and g, respectively, Matrix 1A, Figure1). Note that 25 for our purposes, degeneracy is perceived as the number of nodes of the 26 color class in the context of the neighbors of a seed node, not in the entire 27 graph (in which case using it for order would be meaningless). 28 Following this ordering, the first node is selected to start a clique, 29 and subsequent nodes will be added to that clique if they have a still-not-30 explored color and if they are adjacent to previously explored nodes (clique 31 propagation). 32 BitQT performs this search using bitwise operations. The bit-vector 33 Bi corresponding to the maximum degree node is set as the clique bit-34 vector (B1 in Heuristic search of Graph 1A, Figure 1). Following the DCg 35 ordering, an AND operation is performed between the clique bit-vector 36 and the next node bit-vector if it has a new color (B6 in Heuristic search 37 of Graph 1A, Figure 1). Indices corresponding to bits that become zero by 38 this operation are discarded from further consideration (B2, B3, B4, and 39 B5) as they are not adjacent to processed nodes (B1 and B6). The resulting 40 bit-vector becomes the new clique bit-vector used for the AND operation 41 with the next candidate following the DCg ordering (B9). The bit-vector 42 resulting from the iterative AND operations contains the members of the 43 first clique. 44 3-Clique search from promising nodes: Once the clique retrieved by 45 using the maximum degree node as the seed is found in the previous step, 46 the same exploration strategy is conducted for every promising node in the 47 original graph (Graph 1). A promising node (B8 in Graph 1, Figure 1) is 48 defined as a node with a color not present in the first clique and whose 49 degree is higher than the number of nodes in the first clique. Using such 50 nodes as seeds for propagation might lead to the formation of a bigger 51 clique (Heuristic search of Graph 1B, Scheme 1).52 4-Conclusion and updating: When the maximum degree node and 53 all promising nodes have been used as seeds, the maximum clique found 54 is picked as a cluster and their members removed from the input graph 55 (the corresponding Bi vectors removed from the binary matrix). An 56 updating of the remaining bit-vector is necessary to set as zero all entries

Fig. 2 .

 2 Fig. 2. Distributions of cluster diameters returned by BitQT for each analyzed trajectory.

Figure 2

 2 Figure 2 also demonstrates that BitQT clusters are cliques in the MD trajectory graph. As we discussed in Section 3, an edge between two nodes i and j of the trajectory graph is set if and only if d ij ≤ k. If all pairwise distances between frames in every cluster are under k, then the corresponding nodes of the trajectory graph are pairwise connected, implying that clusters are indeed cliques.

4. 3 2 =

 32 Equivalence between BitQT and QTPyIf we consider an MD trajectory T as a set of N elements (frames) T = {t 1 , t 2 , ..., t N }, the outcome of applying a given clustering algorithm on T is a partition P of the N objects into C clusters, P = {p 1 , p 2 , ..., p C }, such that the union of all the subsets in P is equal to T and the intersection of any two subsets in P is empty. QTPy and BitQT produced such partitions (Q = {q 1 , q 2 , ..., q C } and B = {b 1 , b 2 , ..., b C } respectively) for the 6K, 30K, and 50K trajectories.Considering N N (N -1)/2 as the total number of element pairs (t i , t j) in T , there exist four classifications of pairs when comparing Q and B outcomes; a-) elements in a pair are placed in the same group in Q and in the same group in B (true positives), b-) elements in a pair are placed in the same group in Q and in different groups in B (false negatives), c-) elements in a pair are placed in the same group in B and in different groups in Q (false positives), and d-) elements in a pair are placed in different groups in Q and B (true negatives). It is possible to assess the equivalence between Q and B based on the number of pairs of elements lying in any of these four categories.The Rand Index[START_REF] Rand | Objective criteria for the evaluation of clustering 60 methods[END_REF]) (Equation5) expresses the fraction of pairs of elements on which two clusterings coincide (from 0 for unrelated to 1 in a perfect match). However, RI approaches its upper limit as the number of clusters increases because d tends to grow even for poorly related partitions, giving a high score. An Adjusted RI (Hubert and Arabie, 1985; Steinley, 2004)corrected against "agreements-by-chance" (ARI) has been extensively used (Equation6) to measure the correspondence between partitions created by clustering algorithms. ARI values extend from -1 (poorly related partitions) to 1 (highly similar partitions).RI = a + d a + b + c + d (5) ARI = N 2 (a + d) -[(a + b)(a + c) + (c + d)(b + d)] N 2 2 -[(a + b)(a + c) + (c + d)(b + d)](6)An ARI analysis between partitions obtained with QTPy (Q) and BitQT (B) for trajectories 6K, 30K, and 50K is shown at Figure 3. Note that instead of reporting just the global ARI between Q and B, we explicitly 40 compared the ARI between both partitions at the top-X clusters (Q X and 41 B X), taking X from 1 (the first cluster) to C (the total number of clusters).

 an MCP perspective. The use of a similarity binary matrix (rather than a float-encoded one) greatly diminished the RAM resources. It made it possible to implement most clustering steps as fast bitwise operations. Rather than an exact implementation of the MCP, we developed our modified version of QT called BitQT using an MCP heuristic whose out-coming clusters are in good agreement with those obtained by the original version QTPy. BitQT strictly guaranteed the preservation of the user-defined quality threshold in all reported clusters.

 al., 2010; Yaakob et al., 2010; Olson et al., 2011; Dutta and Overbye, 2011; Yaakob and Jain, 2012), including the MD field (Procacci et al., 1997; Danalis et al., 2012). Two remarkable features of this algorithm

Approaching QT Clustering from a Maximum 100 Clique Problem Perspective 101 If we define the diameter of a cluster C as the maximum distance between

		62	2 Computational Details
		63	BitQT heuristic has been coded in Python 3 programming language
		64	and makes heavy use of two third-party libraries: version 1.9.4 of
		65	MDTraj (McGibbon et al., 2015) for the fast RMSD calculations
		66	and version 1.6.1 of bitarray for all the binary-related operations
		67	(https://github.com/ilanschnell/bitarray). The two QT implementations
		68	used in this work for comparisons against BitQT correspond to the QTPy
		69	code, previously published by authors of this study and available at GitHub
		70	(https://github.com/rglez/QT) and the qtcluster command distributed in
		71	version 6.0.1 of the ORAC package (Procacci et al., 1997).
		72	We selected MD trajectories of different sizes and compositions
		73	to benchmark the performance of these algorithms. They are referred
		74	generically by their size as follows: 6K-a 6001 frames REMD simulation
		75	of the Tau peptide (Shea and Levine, 2016), 30K-a 30605 frames MD
		76	of villin headpiece based on PDB 2RJY (Melvin et al., 2016), 50K-a
		77	50500 frames MD of serotype 18C of Streptococcus Pneumoniae, 100K-
		78	a 100500 frames MD of Cyclophilin A based on PDB 2N0T, and 250K-
		79	a 250000 frames MD of four chains of the Tau peptide that corresponds
		80	to the MD simulation of an extended Tau peptide (PHF8) during 1µs
		81	(Álvarez-Ginarte et al., unpublished work). Not referenced trajectories
		82	were obtained by the authors of this work. The details of the MD are
		83	available in the Supporting Information (S2: Details of the Molecular
		84	Dynamics Simulations). All trajectory and topology files used in this
		85	work can be found online at the following addresses: 6K, 50K, 100K,
		86	and 250K at https://doi.org/10.6084/m9.figshare.c.5403930.v1, and 30K
		87	at https://doi.org/10.6084/m9.figshare.3983526.v1.
		88	QTPy and BitQT used the same quality threshold value k for each
		89	trajectory; 4 Å for trajectories 6K and 30K, 3 Å for trajectory 250K
		90	and 2 Å for trajectories 50K and 100K. These values were set after a
		91	trial/error procedure aided by visual inspection of the generated clusters
		92	uniformity. However, as qtcluster does not use the RMSD metric (Steipe,
		93	2002), we adjusted the k values for each trajectory ran with this software.
		94	We multiplied the corresponding k by 2.4, in analogy with a previously
		95	published report of qtcluster's authors (see S.I of Guardiani et al. (2012)).
		96	All calculations were performed on an AMD Ryzen5 Hexa-core
		97	Workstation with a processor speed of 3.6 GHz and 64 GB RAM under a
		98	64-bit Xubuntu 18.04 operating system. Run times and RAM peaks were
			recorded with the /usr/bin/time Linux command.
		102	
		103	any pair of its elements (equation 1), the exact QT algorithm applied to an
		104	MD trajectory can be described as follows: After the user sets a similarity
		105	threshold k, one arbitrary frame is selected and marked as a candidate
		106	cluster C 1 . The remaining frames are iteratively added to C 1 if and only if
		107	two conditions hold:Condition 1-the entering frame increases the diameter
		108	of C 1 by the minimum amount, and Condition 2-the diameter of C 1
		109	does not exceed the threshold k. A second candidate cluster is formed
		110	by starting with another frame and repeating the procedure. Note that all
		111	frames are made available to the second candidate cluster (frames from the
		112	first candidate cluster are not discarded from consideration). This process
	The construction of a binary-encoded similarity matrix, instead of the	113	continues for all frames n in the trajectory until Cn candidate clusters have
	classical half/single-precision float matrix, leads to considerable RAM	114	been formed. The one with more frames is set as a cluster, its elements
	savings regarding the existing QT implementations. This binary matrix	115	removed from further consideration, and the entire process repeated until
	also allows implementing the fundamental clustering steps as bitwise	116	no more clusters can be discovered.
	operations faster than the corresponding set operations when dealing with	117	
	considerable amounts of data. Our proposal, BitQT, is free and publicly		
	available at GitHub (https://github.com/LQCT/BitQT.git).		

It has been devised using a parallel with the Maximum Clique Problem (MCP).

A clique is a fully connected sub-graph, i.e. all pairs of nodes in it are connected by an edge, so the MCP is concerned with searching for the biggest clique in a graph. In our workflow, molecular trajectories are represented as graphs in which each frame is depicted as a node. The similarity between frames is encoded as binary (unweighted) edges, and clusters are found following a heuristic search of big cliques. 99 3

Table 1 .

 1 Run time and RAM consumption of analyzed QT implementations on different trajectories.1

	BitQT

 BitQT and QTPy are governed by the trajectory 59 size. In contrast, qtcluster is dominated by the size of the atomic selection. It is worth noting that QTPy is the only one that implements the 63 exact version of QT (Heyer et al., 1999). As we have commented before,

	45			
	46	selected inter-atomic distances for each conformation in RAM. In practice,
	47	qtcluster allocates the values of only one triangle of that matrix for every
	48	conformation.		
	49	The RAM used by the qtcluster similarity matrix (in GB) is expressed
	50	by equation 4, in which N is the total number of frames in the trajectory,
	51	m is the size of the numeric type used to express the similarity values
	52	(in bytes), and natoms is the number of selected atoms. It is clear why
	53	qtcluster crashed at 100K but could process 250K; the 100K trajectory
	54	contained 660 atoms and 250K only 160. Substituting in equation 4
	55	and taking m = 4 we obtain 81 GB for 100K and about 12 GB for
	56	250K. Inconveniently, qtcluster can analyze big trajectories only when
	57	the number of selected atoms is relatively small.
		V RAM qtcluster =	m * N *	natoms * (natoms-1) 2 2 30	(4)
	58	In a nutshell, while the three algorithms have quadratic memory
	complexity, the costs of 64		
	65	the exact QT has a very high computational cost evinced in the QTPy run
	66	times. The RMSD computation step can be safely discarded as the main
	67	contributor to the slow time performance of QTPy because it employs the
	68	same library that BitQT for this purpose (MDTraj). Given its slowness,
	69	QTPy applications are limited to the processing of small trajectories or as
	70	a reference for the development of future QT algorithms applied to the
		MD field.		
	78			
	79	it to handle relatively long MD trajectories. The accelerated computing
	80	of optimal RMSD distances through the MDTraj engine joined to the
	81	developed binary-based heuristic for searching cliques are the cornerstones
	82	of its cheap cost.		
	83	4.2 Preservation of the Quality Threshold
	84	As we discussed earlier in section 3, there are two fundamental restrictions
	85	in the QT original algorithm: Condition 1, which requires the diameter
	86	of clusters to be of minimum size, and Condition 2, which ensures the
	87	respect of a quality threshold in the values of intra-cluster similarity. BitQT
	88	conveniently relaxed the former, but it carefully does preserve the latter
	89	one. The previous claim implies that all clusters returned by BitQT must
	90	have a diameter less equal than the quality threshold k.
	91	Figure 2 shows the distribution of all clusters' diameter for every
	92	analyzed trajectory. As it is appreciated, pairwise distances between frames
	93	of the same cluster never surpass the predefined quality threshold k (4 Å for
		6K and 30K, 3 Å for 250K, and 2 Å for 50K and 100K).

60 Run time reported in Table 1 exhibits a general trend; QTPy is the 61 slowest choice, followed by qtcluster, which is greatly outperformed by 62 BitQT.

71 qtcluster was designed as a high-speed alternative for the QT 72 partitioning of MD. The similarity metric employed by this script (equation 73 3) is cheaper than the more customary RMSD and avoids any alignment. 74 Somewhat similar to BitQT, qtcluster only preserves the original condition 75 assuring the collective similarity of retrieved clusters. For big trajectories, 76 however, qtcluster is not a fast option. 77 Comparatively, BitQT has the best run time performance allowing

Acknowledgements D.H.C. thanks Joan-Emma Shea and Zach Levine for providing the 6K trajectory used in this work.

Funding

This work was supported by the Eiffel Scholarship Program of Excellence of Campus France [P744468L to R.G.A]; the Project Hubert Curien-Carlos J. Finlay [41814TM to R.G.A, F.L, and L.M.C]; and the Fondo Nacional de Desarrollo Científico y Tecnológico [CONICYT FONDECYT/INACH/POSTDOCTORADO/No. 3170107 to E.W.H.R].