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Abbreviations and Acronyms: 

GPCR: G Protein Coupled Receptor; PKD: Polycystic Kidney Disease ;ADPKD: Autosomal 

Dominant Polycystic Kidney Disease; AVP: arginine vasopressin; V2R vasopressin V2 receptor; 

SIADH: Syndrome of inappropriate antidiuretic hormone secretion; ADH: antidiuretic hormone; 

QSAR: Quantitative Structure Activity Relationship; GA: Genetic Algorithm; MLR: Multiple 

Linear Regression; POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; RMSD: Root mean-

square deviation; NPT: constant number of particles, pressure, and temperature; PDB: Protein Data 

Bank. 

 

ABSTRACT 

We have developed two computational approaches, ligand and receptor-based to study the 

physicochemical properties relevant to the biological activity of vasopressin V2 receptor (V2R) 

antagonist and eventually to predict the binding mode to V2R of its antagonist. The Quantitative 

Structure Activity Relationship (QSAR) model so obtained, showed a correlation of the antagonist 

activity with the hydration energy (EH2O) as hydrophilic descriptor, and the polarizability (P) as 

electronic descriptors, appeared to give a positive contribution to the antagonist activity, whereas 

using the calculated partial charge on atom N7 (q6) of the common substructure as electronic 

descriptor yielded a negative contribution to the antagonist activity. To study the molecular 

interactions, V2R was modeled and further relaxed on a 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocoline (POPC) membrane using Molecular Dynamics Simulations. Receptor antagonist 

complexes were obtained by Molecular Docking, and the stability of the selected complexes were 

studied also using Molecular Dynamics. Amino acid residues Q96, W99, F105, K116, F178, A194, 

F307 and M311 were identified with the most relevant antagonist-receptor interactions on the 

studied complexes. The proposed QSAR model could explain the molecular properties relevant to 

the antagonist activity, contributing to the antagonist-receptor interaction also in agreement with the 

binding mode of the complexes obtained by Molecular Docking and Molecular Dynamics. These 

models will be used in further studies looking for potential new V2R antagonist molecules. 

 

Keywords: V2R, AVP, Vasopressin Antagonist, GPCR, QSAR, Docking, Molecular Dynamics 

Simulations.  

  



1. INTRODUCTION 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic condition with an incidence 

of 1:400, to 1:1000 in the world population. Patients develop multiple fluid-filled cyst in both 

kidneys, increasing the total kidney volume and leading to Chronic Kidney Disease. In contrast to 

the normal renal cells, the PKD cystic cells have an increased cAMP induced proliferation by 

activating the Ras/B-Raf/MEK/ERK pathway, mediated by the decrease in intracellular calcium 

levels [1]. The absence of renal cysts in PCK rats lacking arginine vasopressin (AVP) might indicate 

that the receptors on the collecting ducts activating other Adenylate Cyclases, do not have a 

significant role on the generation of cysts [2, 3].  

AVP is a nonapeptide hormone consisting of a six amino acid ring closed by a disulphide bridge 

between cysteines 1 and 6, followed by a tripeptide tail. This hormone is synthesized in the 

hypothalamus, principally produced by neurons with the cell body within the supraoptic and the 

paraventricular nuclei, and their axon terminations in the neural lobe of the posterior pituitary gland 

in which AVP is released into the circulation [4]. The primary function of AVP is to maintain body 

fluid balance by keeping plasma osmolality within narrow limits [5]. Increase in plasma osmolality 

or decrease in plasma volume trigger its release to induce expression of water transport proteins in 

the late distal tubule and collecting ducts of the kidneys, to increase water reabsorption [5]. Due to 

its role in the regulation of osmolarity by increasing the ability of the kidney to reabsorb water 

reducing the urinary volume, it is also known as Antidiuretic Hormone (ADH). 

AVP physiological roles are mediated by three receptor subtypes V1a, V1b (also called V3), and V2 

all belong to vasopressin/oxytocin receptor family and they are class-A G-protein coupled receptor 

(GPCR). The V1a receptors are mainly distributed on vascular smooth muscle, but also present in 

myocardium, platelets, and hepatocytes. V1a stimulation is associated with vasoconstriction and 

cardiac hypertrophy, together with platelet aggregation, and glycogenolysis [4, 6, 7]. The V1b 

receptors have little selective distribution and their activation is part of the adaptive reaction to 

stress, leading to stimulation of adrenocorticotropic hormone and endorphin release [4, 6]. The 

activity of each receptor is mediated by G proteins which activate a phosphatidyl-inositol-calcium 

second messenger system. 

The V2 receptor (V2R) is expressed predominantly in the principal cells of the renal collecting duct 

system, in which its activation leads to increased resorption of free water [4–6]. V2R is the major 

activator of adenylyl cyclase signaling pathway in principals cell of collecting ducts in kidney. The 

increase of cAMP intracellular concentration by the activation of V2R promote proliferation in 

PKD cystic cells, suggesting that V2R antagonists can be used as treatment for PKD to retard 

development and growth of the cysts [8–10].  



Selective peptide antagonist of V2R were developed [11, 12] but these efforts have encountered 

many obstacles due to the residual agonist activity, heterogeneity in species response and very low 

oral bioavailability limiting their clinical use [13]. These limitations make the development of new 

non-peptide V2R antagonists more attractive.  

Orally and intravenously active non-peptide vasopressin receptor antagonists are called vaptans. 

The first success in this field was mozavaptan (OPC-31260), a benzazepine derivative and a potent, 

selective, competitive and orally active vasopressin V2 receptor antagonist [14], soon followed by 

its use in humans [15] and the first to gain approval for clinical use in Japan since 2006 for the 

treatment of tumor-associated to Syndrome of inappropriate Antidiuretic Hormone secretion 

(SIADH). 

Among the non-peptide V2R antagonists developed and experimentally tested, only two compounds 

of this class have been approved in the United States, Canada and the European Union [13]. The 

U.S. Food and Drug Administration (FDA) approved conivaptan and tolvaptan for euvolemic and 

hypervolemic hyponatremia [16]. Tolvaptan is also approved to slow kidney function decline in 

adults at risk of rapidly progressing Autosomal Dominant Polycystic Kidney Disease (ADPKD), the 

only drug approved to treat this condition so far [16]. 

Besides the retardation of progressive renal failure in ADPKD and the treatment for euvolemic or 

hypervolemic hyponatremia, experiments show that V2R antagonists can be used for rescue 

treatment in Congenital Nephrogenic Diabetes Insipidus [17], treatment of diabetic nephropathy 

[18], congestive heart failure [19], and also in the prevention of ascites formation in cirrhosis [20]. 

Other indications for treatment with vasopressin-receptor antagonists will probably emerge. 

In this work we have used a computational modeling approach to study a family of non-peptide 

V2R antagonists, with their IC50 being determined experimentally, identifying physicochemical 

properties relevant to the biological activity of these compounds and relevant interactions with 

V2R. 

 

2. METHODS 

2.1. Data set of V2R Antagonist 

To obtain a reliable QSAR model we used chemical information from the assays AID-217680, AID-

2176881 and AID-483985, all in the PubChem's Bio Assay Database 

(https://pubchem.ncbi.nlm.nih.gov) completing a series of 53 antagonists. In these assays, the 

biological activity at V2R was assessed as the displacement of [3H]-AVP from its AVP-V2R 

binding site and the inhibition of intracellular cAMP accumulation. The IC50 value is the 

concentration of compound which inhibits [3H]-AVP binding by 50%. In our study, the negative 

https://pubchem.ncbi.nlm.nih.gov/


logarithm of the biological activity, pIC50, was used as the dependent variable to determine QSAR 

correlation equations. The 3D structure of each antagonist were generated from its SMILES in 

Pubchem database.  

 

2.2. Estimation of molecular properties 

The specific action of drugs depends on many intrinsic features such as hydrophobic, electronic, 

and steric properties. In a QSAR model, the biological activity is expressed as a function of 

molecular descriptors. A molecular descriptor encodes as a number, the result of a mathematical and 

logical procedure using the information of specific properties of molecules. In this study we 

calculated as a hydrophobic descriptor, the logarithm of the octanol/water partition coefficient 

(LogP) and hydration energy; as steric descriptors: approximate surface area (ASA), grid surface 

area (GSA), molar volume (MV)[21, 22], and molar refractivity (MR); as for electronic descriptors: 

polarizability (P) [23], dipole moment (μ), total energy (TE), highest occupied molecular orbital 

eigenvalue (eHOMO), lowest unoccupied molecular orbital eigenvalue (eLUMO), partial atomic 

charges of the pharmacophore atoms (q1 to q11), electrophilicity index (ω), chemical hardness (η), 

chemical softness (s) [24]. Electronic descriptors were calculated by Kohn-Sham’s DFT B3LYP/6-

31G method as included in Gaussian 09 program routines [25]. The other descriptors were 

calculated with QSAR properties available in Hyperchem v8 software [26]. 

 

2.3. Cluster analysis 

Cluster analysis is used in QSAR models to build the training and test sets as well as to determine 

the structural diversity of the dataset. In cluster analysis, the antagonists were classified in groups, 

called clusters, with a relative homogeneity. The structural diversity or similarity between the 

compounds is determined by calculating the Euclidean distance between each couple of objects: the 

smaller the distance, the more of the objects are considered similar to each other [27]. To check the 

structural diversity of the dataset and to define the number of possibles clusters, a hierarchical 

cluster analysis of these molecules was performed using k-NNCA algorithm to construct the 

dendrogram. The complete linkage distance (Euclidean metric) was used as the connection function 

to merge the objects into clusters. The complete linkage measures the proximity between two 

groups, calculating the distance among the farthest objects, or the similarity among the objects with 

lesser similarities. The Euclidean distance is the square root of the sum of the squared differences 

among the values of two objects for each variable [28, 29].  

To select the training and test sets we used the k-mean cluster algorithm (k-MCA). Such algorithms 

use a switching method to divide N data points into k groups (clusters) to minimize the sum of 



distances/dissimilarities among the objects within the same cluster. The k-mean approach requires 

that k (the number of clusters) must be known before clustering [29]. The k values were set taking 

into account the dendrogram obtained for the first cluster analysis. Both hierarchical and partitional 

(non-hierarchical) cluster analyses were implemented using the STATISTICA 8 software [30]. After 

the cluster analysis, the compounds were separated in two sets: 80% of compounds in each cluster 

were selected for the training set and 20% of each cluster for the test set. The training set was used 

to develop the QSAR model and the test set was used for external cross-validation of the model.  

 

2.4. QSAR model 

A correlation matrix was performed to determine among the calculated molecular descriptors the 

ones that do not correlate to each other. A Genetic Algorithm (GA) was used as a metaheuristic 

method for the molecular descriptors selection and optimization of the functions [31–34]. The 

length of the equation was set for three terms and a constant, and the GA was used for input 

selection to establish which of the descriptors will have the best multiple linear regression (MLR). 

Several statistical parameters were employed to validate the model. A good QSAR model should 

have the highest squared correlation coefficient, R² and Fisher-test, with the lowest standard 

deviation (S). The P-value is another important parameter used for modeling validation and it 

should be lower than 0.01. The predictive power of the model was then determined by examining 

the leave-one-out (LOO) cross-validation (q²). The q² is known as the predictive variance, with a 

value higher than 0.5. To validate the QSAR model, an external prediction test set of compounds (in 

the model range) was used, as the predictive ability of a QSAR model shall only be estimated using 

an external test set [35, 36]. All the procedures used to build the QSAR model were performed with 

BuildQSAR software [37] and validated with STATISTICA 8 software [30].  

 

2.5. The applicability domain  

The applicability domain is the theoretical region of the chemical space, defined by the model 

descriptors and the modeled response, therefore by the nature of the compounds in the training and 

test sets, as represented in each model by specific molecular descriptors. The applicability domain 

of a QSAR model is “the range within which it tolerates a new molecule“ [28], a QSAR model is 

only valid within the same domain for which it was developed. Even if the models are developed 

for the same chemical structures, the applicability domain for new structures can differ from model 

to model, depending on specific descriptors.  

In multiple predictor models, performing simple single-variable range checks is not sufficient to 

verify the applicability domain. For MLR, one of the most used approaches with normally 



distributed data for a multiple predictor problem is a distance-based measure like the leverage (h). 

As the leverage of a compound measures its influence on the model, it becomes possible to verify 

whether a new chemical will fit within the structural model domain. The leverage used as a 

quantitative measure of model applicability domain is also suitable for evaluating the degree of 

extrapolation, which represents a sort of compound distance from the model experimental space. 

The warning leverage (h*) is a critical value or cut-off. Predictions should be considered unreliable 

for compounds with high leverage (h>h*, being the critical value h*=3p’/n, where p’ is the number 

of model variables plus one, and n is the number of the compounds) [28].  

 

2.6. V2R modeling 

GPCRdb template tool (https://gpcrdb.org/structure/template_selection) was used to identify the 

possible templates for V2R and the human OX2 orexin receptor (PDB ID 4S0V) was selected for 

V2R modeling. The alignment between the template sequence and V2R was made with a Clustal X  

v2.1 profile [38] taking into account the alignment already obtained with the GPCRdb template 

tool. The model was built by homology with YASARA program v12.8.26 [39]. YASARA uses 

knowledge-based energies to validate the receptor model normalizing them to remove the 

dependencies on the size and shape of the protein, and also on its amino acid composition, obtaining 

estimates for the expected average energy and its standard deviation from gold-standard reference 

structures. Then it calculates how many standard deviations it is away from the average, thereby 

obtaining a Z-score to evaluate the quality of the models. 

To minimize and equilibrate the receptor model, it was inserted in  a 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) membrane patch, generated with the VMD [40] Build 

Membrane plugin, which mimics its natural environment. POPC was selected because its 

abundance in biological membranes and because it does not introduce any curvature in the 

structure. The receptor model was oriented on the membrane, according to the orientation of the 

orexin receptor (ID PDB 4S0V) on the membrane in the MemProtMD database [41]. The 

membrane with the receptor inserted was oriented in the XY plane. The system was solvated in a 93 

× 92 × 113 Å periodic box of TIP3P water and NaCl was added at physiological concentration, 

neutralizing the system. The energy of the system was minimized with 1000 steps of conjugate 

gradient and a further equilibration for 10ns (0.5ns to 300K lipids tails; 0.5ns to 300K membrane; 

9ns to 310K, on the whole system) was performed with NAMD2 [42] with an integration time step 

of 2 fs. A Langevin thermostat and barostat were used to maintain an NPT system, the cut-off for 

non-bonding interactions was 12 Å, a smooth switching function at 10 Å was used for van der 

Waals interactions, and Particle Mesh Ewald (PME) for electrostatic interactions. The membrane 

parameters were checked with MEMBPLUGIN [43] of VMD. 

https://gpcrdb.org/structure/template_selection


 

2.7. Molecular docking 

The receptor model obtained in the previous simulation was used to perform docking studies to 

predict the binding modes of three antagonist of the studied family. The receptor model and the 

antagonists were prepared using AutoDockTools [44] to perform the molecular docking with 

AutoDock Vina [45], where the antagonist and the sidechains of the receptor residues (Q96, W99, 

F105, K116, and F307) were flexible. The search space was restricted to a 28 x 20 x 14 Å box. The 

default parameters for configuration files were used in Autodock Vina, running it 5 times and saving 

10 conformations of each compound for each run to generate a total of 50 conformations for each 

compound. The docking results were visually analyzed using UCSF Chimera [46]. All docking 

results were clustered using a tolerance value of 2.0 Å RMSD and three representative orientations 

in the binding site were identified to select one conformation per compound. The interactions 

between the selected antagonist conformation and the V2R were analyzed using BINANA [47].  

 

2.8. Molecular dynamic simulations of complexes in POPC 

The topologies and parameters of the selected antagonists for CHARMM 36 force field [48] were 

generated using CHARMM-GUI [49, 50]. The complex in the POPC membrane was minimized 

(10000 steps) and equilibrated for 100 ps at 310K with NAMD2. A molecular dynamic simulation 

was performed for 50 ns (310K, NTP and constant area) with NAMD2, saving frames and 

calculating energy every 5000 steps. 

For the equilibration and the production simulations, a Langevin thermostat and barostat were used 

to maintain an NPT system, the cut-off for non-bonding interactions was 12 Å, a smooth switching 

function at 10 Å was used for van der Waals interactions and Particle Mesh Ewald (PME) for 

electrostatics interactions. The integration time step was 2 fs. VMD [40] was used for the analysis 

and visualization of the molecular dynamic simulations.  

 

2.9. Complex free energy calculations using linear interaction energy methods 

The linear interaction energy (LIE) method was used to estimate the free energy of antagonist-

receptor binding. For this purpose, in addition to the previous simulation of the complex in the 

membrane in a cubic water box, a second simulation of the antagonist only in the water box is 

needed, which was carried out using the same parameters as the simulation of the antagonist-

receptor complexes. Eq.1 shows the improved LIE formula suggested by Almlöf et al. [51, 52] and 

takes into account the intra-ligand electrostatic interactions. 



(1) 

 

Where 〈Vel
l–S〉and 〈Vvdw

l–S〉are MD-generated interaction energy averages from the non-

bonded electrostatic and van der Waals interactions of the ligand with its surrounding environment 

(s). 〈Vel
l–l〉 is the electrostatic intramolecular ligand-ligand average energy. The ∆’s denote the 

change in average values when transferring the ligand from solution (free state) into the binding site 

of the solvated receptor (bound state). Coefficients α and β are scaling factors for the energy terms, 

while γ is an empirical constant. In this study, α was considered as 0.18 which is considered to be a 

robust value from previous works [51–53]. The β specific values for each antagonist was calculated 

using the parameterization model E proposed by Almlöf et al. [51, 52] (Eq.2). 

        
       

    
        (2) 

Where wi, β0, and Δβi, were calculated from explicit solvent FEP calculations of single chemical 

group (wi = 1 if group is neutral and 11 if it is an anion or a cation), β0 = 0.43 and Δβi was obtained 

by the model proposed by Almlöf et al [51].  

The balance (difference) between the electrostatic (polar) and the van der Waals (nonpolar) 

contributions to the free energy binding in the LIE method was defined as the parameter D (Eq. 3) 

(3) 

 

LIE-D is an approach based on the linear correlation between the γ coefficient and the D parameter 

that accounts for the balance (difference) between the polar and nonpolar binding free energy 

contribution. The relationship between the γ coefficient and D parameter takes the form: 

(4) 

 

The values of f and g were estimated by Miranda et al. [52] as -0.95 and -2.06 respectively.  

 

3. RESULTS AND DISCUSSION 

3.1. Construction of training and test sets using Cluster Analysis 

We selected a series of 53 compound antagonists of V2R to construct the training and test sets. All 

the selected molecules have the same core substructure Figure 1, but show structure variability due 

to substituent structural diversity. All compounds have a common substructure (4-formamido-

benzamide) remarked in a rectangle in the top panel of Figure 1. The nitrogen of the benzamide in 

the common substructure (represented the partial charge q1) is part of a benzazepine, benzene-

piperidine, or benzoxazine condensed ring. The R1 substituent is generally a ring except for 

ΔGbind = β (Δ〈Vel
l–S〉+ Δ〈Vel

l–l 〉)+ α Δ〈Vvdw
l–S〉+ γ 

D = β (Δ〈Vel
l–S〉+ Δ〈Vel

l–l 〉) - α Δ〈Vvdw
l–S〉 [kcal/mol] 

 γ = f x D + g [kcal/mol] 



compounds A03 and A07. We display in Table 1 the compounds we used in this study with 

PubChem ID and the experimental biological activities of V2R antagonists’ activity expressed as 

IC50 and pIC50. 

To classify the molecules of the datasets, depending on their structural variability we performed a 

hierarchical cluster analysis, the resulting dendrogram was constructed using the Euclidean distance 

(x-axis) and the complete linkage (y-axis), illustrating the results of the k-NNCA developed in this 

dataset. The dendrogram shows 6 different subsets demonstrating the molecular variability among 

the compounds of this dataset (Figure 2). To evaluate the output dendrogram and to split the whole 

dataset into training and test sets, we performed a k-mean cluster analysis (k-MCA) [54].  

The selection of the training and test sets was carried out by randomly taking molecules belonging 

to each cluster. From the initial 53 compounds, 42 (80% of the dataset) were chosen to form the 

training set and the remaining 11 compounds, (20% of the dataset) were used as a test set for the 

external cross-validation of the model. 

 

3.2. Development and validation of the QSAR model 

GA combined with MLR is widely used for QSAR and QSPR studies [31–34]. In this method, a GA 

is performed to search the feature space and select the major descriptors relevant to the activities or 

properties of the compounds. This method can deal efficiently with a large search space, and it has 

fewer chances to only find a local optimal solution than other algorithms. GA is a well-estimated 

method for parameter selection and to overcome the shortages of MLR in variable selection. After a 

GA, the MLR is employed to correlate the selected descriptors with the activity values using a 

classic regression method to yield the explicit equations. 

The variables selected by the genetic algorithm as the best model of V2R antagonist activity are 

shown in equation 5. To further validate the variables thus obtained, we performed an MLR analysis 

of the 43 compounds on the initial training set, with the 11 compound test set for the external cross-

validation. 

 

pIC
50

 = - 7.968 (± 3.584) q6 + 0.095 (± 0.059) EH2O + 0.161 (± 0.027) P - 5.842 (± 2.894)            (5) 

n = 43; R = 0.89; R
2
= 0.80; s = 0.40; F = 53,61; p< 0.0001; q

2
 = 0.75 

 

Test set:  

n = 11; R = 0.86; R
2
= 0.74; s = 0.41; F = 25.04; p< 0.0007; q

2
 = 0.56 

 



The R
2
 (R-square statistic or coefficient of determination) indicates that the model could explain 80 

% of the variance for the experimental values of pIC50. The model shows a q
2 

of 0.75. This value of 

more than 0.5 could be considered as proof of the high predictive ability of the model, along with 

the good prediction of the test set (R
2
= 0.74). The good R

2
 and q

2 
values obtained in equation 5 for 

both training and test set can be explained with the experimental values for all the compounds of the 

series. The calculated values for pIC50, are highly similar to the experimental, sustaining the 

reliability of the QSAR model (Figure 3, Table 2). 

In the correlation study with the calculated descriptors, a low correlation was observed between the 

variables, indicating the reliable information content on each term in the equation (Table 4). The 

selected variables by the genetic algorithm were P (polarizability) EH2O (hydration energy), and q6 

(partial charge of nitrogen in the common substructure 4-formamidobenzamide (Figure 1)). For 

each one of the variables, the coefficients were significant (Table 5), indicating their relative 

contribution to the combined prediction of the biological activity as the dependent variable. 

Calculating the value of the coefficients on the regression analysis we ensure a good prediction 

starting from the group of the independent variables (q6, EH2O and P), facilitating the 

interpretation of the independent influence of each variable on the final equation.  

The variable q6 represents the partial charge of the N7 in the 4-formamidobenzamide common 

substructure, involved on an amide bond associated with the variable zone of the compounds. The 

partial charge q6 is the most negative, with the highest module value for all the studied charges, 

having a fully negative value range and a negative coefficient on equation 5, could indicate the 

favorable tendency of an increased antagonist activity with more negative values of q6. It could be 

explained by the fact that N7 is involved in a hydrogen bond, or because it just reflects the variation 

of partial charge depending on the nature of substituent R1. The partial charge q6, calculated only 

for the common substructure is -0.712 and the substituent on R1 is making it more negative, except 

for compounds A53, A24, and A12. In the case of A12, the N7 is substituted by a methyl, which has 

a strong inductive effect (+i) over the nitrogen. Compounds A53 and A24 both have a benzene ring 

with a nitro substituting in the ortho position as R1. The common substructure in most compounds 

is formed entirely by a conjugated system with a substituted benzene ring as R1, which might 

contribute to a whole conjugated system. If we compare the compounds by the position of the 

substituent on the benzene ring at R1, we observe a lower partial charge on q6 associated with an 

ortho substituent, calling for a combination of steric and electronic factors, where the ortho 

substituent could break the conjugation planarity. 

Hydration energy (EH2O) is the amount of energy released when one mole of a compound is 

hydrated, and represents the measure of the water molecules affinity for the compound. More 

negative hydration energy values could be associated with more polar groups in the compound, and 



less negative hydration energy could be attributed to the presence of a higher number of nonpolar 

groups [55]. The range of values for this variable in the data set is negative and it has a positive 

coefficient on equation 5, thus indicating that more negative values of hydration energy are 

unfavorable for the antagonist activity, suggesting a binding site with possible hydrophobic 

interactions, as more hydrophilic compounds are shown unfavorable for the activity. 

Polarizability refers to the tendency of any compound to acquire an electric dipole moment in 

proportion to an applied electric field, on our model the Polarizability component is having a 

correlation coefficient of 0.7 with the pIC50, making it the descriptor with the highest correlation to 

the activity, being the other variables the fine adjustments necessary to improve the model in 

general. The range of polarizability values in the data set is positive and has a positive coefficient in 

equation 5, so it has a favorable contribution to antagonist activity.  

As mentioned above, the compounds in the studied dataset have conjugated systems in their 

structure, and systems with delocalized π electrons exhibit high polarizabilities. The aromatic 

systems’ planarity with their high polarizability and multipole moment, are all factors of key 

importance for the 3D architecture of aromatic complexes [56]. Soft interactions like dispersion, are 

predominant in stacking and can be estimated from the polarizability [57]. In general, the studied 

compounds have three aromatic rings in their structure that could be involved in pi-interactions with 

the residues in the receptor-binding site. 

In general, the obtained QSAR model provides indications that the binding mode of V2R 

antagonists might fundamentally be involving hydrophobic and electron density interactions. 

 

3.3. The applicability domain (AD) of the QSAR model 

A QSAR model needs to show not only a good accuracy, but also some reliability for predictions of 

new compounds. These models cannot be universal and should be constrained to a defined chemical 

space, commonly known as the applicability domain (AD). The AD can be described as the 

physicochemical, structural or biological spatial information based on which the model training set 

is developed. The QSAR model applies to make predictions for new compounds within the specific 

domain [57]; in summary, the AD is the degree to which a QSAR model tolerates (reliably) new 

compounds. 

A crucial problem in chemometrics and QSAR studies is the definition of the AD with a regression 

model. We will define it here as a squared area within ± 2 bands for standardized residuals and a 

leverage threshold of h=0.23 for inhibitory activity (Eq. 5). Thus, compounds with standardized 

residuals greater than 2 standard deviations will be considered unreliable. For the graphical 

visualization of outliers for the response (standardized residuals > 2) or for the structure (leverage > 



0.23) in the regression model, the Williams plot for Eq. 5 is shown in Figure 4. Of the 53 

compounds in the dataset, only two compounds (A02 and A12) have a leverage higher than the 

critical value.  

A02 (conivaptan) has the highest value of polarizability (57.51) of the dataset, while the other 

compounds are between 36.87 to 55.95. A02 shows a diphenyl moiety as substituent of the amide in 

the common substructure, while the other compounds exhibit only a single aromatic ring or an 

aliphatic substituent, A02 also have a condensed 3 ring system of 3,4,5,6-tetrahydroimidazol[4,5-

d][1]benzazepine, while the other compounds have only a 2 ring system. The presence of extra 

rings on A02, might account for the increase on the polarizability for this compound with a different 

electronic structure than the rest. 

A12 shows the highest value of q6 (-0.515) of the dataset, while the other compounds are between -

0.705 to -0.844, and it also has the highest value of hydration energy (EH2O), with -3.44 kcal/mol, 

while the other compounds are between -5.05 to -14.07 kcal/mol. Compound A12 show a minor 

difference in the common substructure with all the antagonists of this family having a methyl group 

as substituent for the N amide, directly altering the partial charge (q6) of N7 on the 4-

formamidobenzamide and increasing the hydration energy value. The structure of A12 and A01 

differ only in the aforementioned methyl group, A12 has a difference of 0.203 on q6, and of 2.36 

kcal/mol in the value of hydration energy compared to A01, evidencing the influence that this single 

methyl group can have. 

 

3.4. V2R modeling 

We selected the human OX2 orexin receptor (PDB ID 4S0V) as the template for V2R modeling, as 

suggested by the GPCRdb template tool. The selected template has 27% of identity and 46% of 

similarity with V2R. In the corresponding alignment, the fragments corresponding to 

transmembrane helices and the conserved motifs are preserved (Figure 5). In both the OX2 receptor 

and V2R, the natural ligand is a peptide, and the selected structure has an antagonist bound being on 

an inactive conformation, suitable to study the binding modes of antagonists to the V2 receptor. 

To relax the obtained model in a more natural environment, it was minimized and equilibrated for 

10ns in a POPC membrane, solvated and with NaCl added at physiological concentration (0.15M). 

At the end of the simulation the membrane parameters, like thicknesses and per lipid area, were 

calculated to check the correct packing. The membrane thickness (distances between phosphates of 

each monolayer) was 38.91 Å, and the per lipid area was 64.54 Å
2
. These parameters are reasonable 

for a POPC membrane at 310K, according to experimental parameters obtained at different 

temperatures [59]. 



During the current work, another X-ray structure from the class A of GPCR was released in the 

Protein Data Bank (PDB ID 6TPK): the oxytocin receptor (OXTR) which is also a member of the 

vasopressin receptor family. Although OXTR exhibits slightly better sequence identity and 

similarity: 41% and 56% respectively, its lower resolution (3.20Å versus 2.50Å), a missing region 

(loop and helix 8), and a shorter loop (…) make it a less relevant template. However, in an effort for 

further validation, the V2R model was compared to OXTR; the superimposition between the V2R 

model and OXTR is shown in Figure 6, where we considered the two conformations of V2R before 

and after membrane relaxation. 

The RMSD values, using OXTR as reference and comparing the model before and after the 

membrane relaxation were 1.02Å and 1.15Å respectively. The main differences between OXTR and 

the models were that OXTR lacks the ICL3, a long intracellular loop involved in the interaction 

with the G-protein usually missing in GPCR solved structures and the helix 8, parallel to the 

membrane and useful for orienting the receptor in the membrane. Comparing the bundled helices, 

the main difference relative to the binding site is that the TM2 of relaxed model in the membrane is 

in the same position as that of the OXTR, while the model before relaxing has the TM2 slightly 

tilted towards the interior of the cavity decreasing its volume. The difference in the orientation of 

TM2 in the model before relaxation could be caused by the difference in the proline position in this 

transmembrane section between V2R and the template (Figure 5). Proline in the middle of alpha 

helices cause a kink, by being unable to complete the H-bonding chain of the helix and because of 

steric and/or rotameric effects keeping it out from the preferred helical geometry [60]. Proline one 

position earlier on the sequence of the template TM2 with respect to that of the model, can affect 

the orientation of the kink and result on a different orientation in the model. This odd orientation 

could later be corrected during the relaxation in the membrane showing this process as very 

favorable. 

The comparison between the V2R model after relaxation and OXTR brings more confidence in the 

model’s quality and the protocol used for relaxation.  

 

3.5. V2R-antagonist complexes 

Visual inspection of the binding site revealed that the side chains of residues W99 and F307 are 

occluding its entrance, therefore these two residues were considered as flexible for the molecular 

docking. To improve docking results other residues of the binding site (Q96, F105 and K116) were 

also considered as flexible.  

The antagonists selected as ligands for the molecular docking were: mozavaptan (A01), conivaptan 

(A02), and tolvaptan. Tolvaptan also shares the common substructure of the studied compound 



series for the QSAR model and it is the only drug approved to treat Polycystic Kidney Disease. All 

the rotatable bonds of the ligands were flexible.  

The 50 complexes for each antagonist obtained by molecular docking were clustered for analysis. 

Three orientations of the antagonists in the binding site were identified and shown in Figure 7. The 

first with the condensed ring of the antagonist toward TM2 and TM7 (CR-27), the second with the 

condensed ring towards TM5 and TM6 (CR-56) and the last one with the condensed ring towards 

the entrance of the cavity (CR-UP). The binding energies of the complexes obtained for the three 

identified conformations differ by less than 1 kcal/mol in each of the antagonists studied. This 

difference in the energy value is lower than the standard error of the Autodock Vina scoring 

function [45], so we might need more studies to select the best conformation. 

We expect a good antagonist to bind with high affinity to the receptor binding site but failing to 

activate it, blocking the access of any agonist to the binding site. A study with meta-dynamics 

enhanced sampling revealed the existence of three binding sub-sites for V2R, proposed to respond 

to the vasopressin entry pathway [61]. The compounds that bound in both the vestibule and the 

intermediate sites block the access to the orthosteric site so that an agonist will never be able to 

bind, if there is an antagonist already bound to any of the non-activating sites. Two of the 

antagonists studied by Saleh et al. [61], with high structural similarity to those in this study, were 

predicted to bind to vestibule site for V2R and intermediate site for V1aR, so it is to be expected 

that the antagonists in our study are located in one of these sites. Therefore, we eliminated from our 

subsequent analysis the CR-UP conformation, showing the antagonist penetrating deeper into the 

cavity with part of it located in the orthosteric site.  

To study the stability of the compounds in the binding site and make a better estimation of the 

binding energy, a molecular dynamic simulation of the best complex of the two remaining 

orientation was performed. Figure 8 shows the RMSD for the two different conformations of the 

three studied antagonists. The conformations of the studied antagonists tend to stabilize along the 

molecular dynamics simulations, being CR-27 the conformation with lower RMSD for each of the 

antagonist. For mozavaptan, the conformation CR-56 is the conformation with more fluctuations 

along the trajectory and it has the highest RMSD value among all antagonist conformations. The 

change in the antagonist’s conformation for the six complexes in the molecular dynamics simulation 

is shown in Figure 9. The two representative conformations for each antagonist are represented 

from left to right (CR-27 and CR-56 respectively). Tolvaptan is represented in green, conivaptan in 

blue and mozavaptan in pink. The starting conformation at 0 ns is represented by the light colored 

ligand and the final conformation at 50 ns by the dark-colored ligand. Mozavaptan CR-56 

conformation showed a significant change in the orientation of the antagonist with respect to the 

starting conformation, also reflected in the high RMSD value observed for this conformation. For 



this reason, this conformation was eliminated from the subsequent analysis.  

In order to predict which binding conformation could be the best for each antagonist, we estimated 

the binding free energy variation using LIE-D method. This method is flexible enough to consider 

different interaction patterns, even though the ligands share some common chemical scaffolds and 

are bound to the same protein receptor [52]. 

For tolvaptan, the conformation with the best binding free energy is tolvaptan CR-27 (-14.34 

kcal/mol) with overn 2 kcal/mol of difference with CR-56, that was thus discarded from further 

analysis. The conformations of conivaptan have similar energies between them, so it is not possible 

to select which of the two conformations is the best using this criterion. The inhibition constant (Ki) 

was calculated from the estimated binding free energy for these conformations and compared with 

experimental values (Table 6). The values of the calculated Ki follow the same trend than the 

experimental inhibition constants [62, 63], except for the tolvaptan, with the Ki for conformation 

CR-27 one order lower than the experimental value and the Ki conformation CR-56 one order 

higher, suggesting as expected that CR-27 was the best conformation for tolvaptan.  

The binding free energy and Ki values obtained for the different conformations of the antagonists 

bound to V2R allowed us to select the CR-27 conformations (or the CR-56 conformation for 

conivaptan only) as the possible binding modes of these antagonists to V2R. From these 

conformations, the analysis of the main antagonist-receptor complex interactions can be carried out. 

3.6. Interactions analysis of the best antagonist-V2R complexes 

The antagonists must block the access or interact with those residues favoring the union of any 

agonist for the receptor activation, and/or also sterically blocking the residues involved in triggering 

the activation mechanism. The most relevant contacts between the antagonist and the receptor are 

summarized in Table 7. The interactions observed for the mozavaptan and tolvaptan complexes are 

very similar, while conivaptan interacts with a greater number of residues, since it is a compound 

with a greater volume than those mentioned above. 

In the analysis of the obtained complexes, there are some common interaction involving the 

hydrophobic (C192, A194, L310, M311), aromatic (W99, F105, F178, F307) and polar (Q96, K116, 

Q119, Q291) residues. The residues Q96, Q119, Q291, K116 are highly conserved in all the AVP 

and OXT receptors’ family, and are known to have a key role in agonist binding [64]. Previous 

studies with V1aR suggest that the residues Q96, Q119, Q291 are K116 are specifically involved 

with the ligand binding process but do not intrinsically modulate the efficacy of the functional 

response [64]. An analysis of the presence of H-bonds along the molecular dynamic simulation was 

performed to study the nature of the interactions between the antagonists and these polar residues of 

the receptor. The percentage of frames of the trajectory with a determined number of H-bonds is 



shown in the Table 8. In all the studied conformations the occurrence of H-bonds is low, 

approximately between 13 and 38%, although interactions with some polar residues are observed in 

greater percentages of the trajectory (Table 7), which suggests other kind of interactions.  

The antagonists interact with the aromatic residues W99, F105, F178 and F307. These residues are 

not directly involved in the receptor activation and they are near or at the entrance of the binding 

site, suggesting that the antagonist binding site might not be located deep into the cavity. The fact 

that the antagonists interact with residues near the entrance of the cavity agrees with the binding 

sites predicted by Saleh et al. [61].  

Some of these residues have been shown to be involved in vasopressin binding. W99 plays a 

fundamental role in stabilizing the vasopressin/receptor interactions responsible for the high-affinity 

binding of agonists to the V2 receptor and receptor selectivity. A mutation of W99 (W99R) greatly 

impaired the binding properties of the receptor and had a minor effect on its intracellular routing 

[65]. Other important residue for AVP binding is F105, the mutation F105V was reported to show 

cell surface expression and a maximal AVP-induced cAMP formation (Vmax) comparable to the 

wild type, but with a reduced ligand binding ability [66, 67].  

An interesting interaction for the V2R antagonists is with F307, a non-conserved residue in 

vasopressin/oxytoxin family since V1aR has a threonine in this position. The relevance of this 

interaction is because some antagonists could bind to both V2R and V1aR due to the similarity of 

its binding site, but the interaction with F307 would be unique for V2R making it attractive for the 

design of antagonists having less selectivity for V1aR. 

Other antagonist-receptor interactions found were with residues C192, A194 and M311. While 

C192 and A194 are conserved among the entire family, M311 is not seeming to cooperate in the 

selective binding of some antagonists [68]. The M311V mutation in the TM7 of V2R has impaired 

the ligand capacity and binding [69] suggesting that in V2R the residue M311 could take part in the 

binding of peptide agonists [67, 70] 

Taking into account the interactions and the estimated binding free energy, we considered CR-27 

conformation (and CR-56 for conivaptan) as the best for the three antagonists studied by molecular 

dynamics. Figure 10 shows the CR-27 conformation of tolvaptan in complex with V2R.  

In general, the main interactions observed here are involved in the binding of ligands to V2R, but 

are not involved on the receptor activation, which suggest that the studied conformations of the 

antagonists can block the binding of agonists and unable to activate the receptor. The presence of 

few H-bonds with polar residues and the other interactions observed are with aromatic residues and 

non-polar residues suggest that the main antagonist-receptor interactions are mostly hydrophobic in 

nature and could involve pi-clouds. 

 



4. CONCLUSION 

In summary, two computational approaches, ligand and receptor based were developed to study the 

physicochemical properties relevant to the biological activity of V2R antagonists and to predict 

their binding mode to V2R. The proposed QSAR model allows us to clarify the contribution of 

three molecular descriptors to the biological activity. Our model described the antagonist activity in 

correlation with polarizability, hydration energy and partial charge on atom N7, explaining the 

molecular properties contributing to the antagonist-receptor interaction and relevant to the 

antagonist activity, which is also in agreement with the binding modes for the complexes obtained 

by molecular docking and molecular dynamics simulation.  

A good quality model based on the structure of OX2 orexin receptor was obtained and used to 

estimate the antagonist orientations in the binding site of V2R. The conformations of studied 

antagonist were analyzed by molecular dynamics. In general, the CR-27 conformation is considered 

as the best conformation for the antagonist binding (through interaction analysis and binding free 

energy estimation). Most of the relevant interactions observed along the molecular dynamics 

simulation involve the electronic density by the interaction of the antagonist rings mainly with the 

aromatic residues (W99, F105, F178 and F307), which is in correspondence with what is expected 

according to the polarizability variable of our QSAR model. Other relevant interactions are 

hydrophobic in nature (A194 and M311) which agrees with the expected effect of the hydration 

energy to the antagonist activity in the QSAR model. 

The results obtained by both developed approaches are in fair agreement and contribute to a better 

understanding of V2R antagonism. These results represent a step forward for the efficient search of 

potential new V2R antagonist molecules. 
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