
HAL Id: hal-03767690
https://hal.science/hal-03767690v1

Submitted on 13 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine readable grammar for optimizing automatic
retrieval in text corpus

Prihantoro Prihantoro

To cite this version:
Prihantoro Prihantoro. Machine readable grammar for optimizing automatic retrieval in text corpus.
Kongres Internasional Masyarakat Linguistik Indonesia (International Congress of the Indonesian
Linguistic Society), Feb 2014, Bandar Lampung, Indonesia. �hal-03767690�

https://hal.science/hal-03767690v1
https://hal.archives-ouvertes.fr

MACHINE READABLE GRAMMAR FOR OPTIMIZING AUTOMATIC RETRIEVAL

IN TEXT CORPUS: A Comparison of Regular Expression and Local Grammar Graph

Prihantoro

Universitas Diponegoro

Abstract

Machine Readable Grammar (MRG) is aimed at supporting the computer to perform Natural Language

Processing (NLP) tasks. As for this paper, it discusses the one of the essences of MRG, which is to perform

automatic retrieval in a text corpus. In automatic retrieval, the MRG serves a crucial importance in

performing queries of the target expressions. In this research, I use Unitex, a Java based corpus processing

software. It can manage texts from languages with their own alphabets such as Chinese, Greek, Japanese,

Korean and etc. This software allows two different methods of queries. The first one is by using regular

expression. This method resembles queries used in search engines like Google, Yahoo, Naver and some other

well known search engines. The second one is by using Local Grammar Graphs (LGGs), which are the

representation of finite state transducers (FSTs). When queries are performed by using LGGs, users can set

various constraints and perform more complex retrievals. In terms of speed, regular expression works faster.

But the advantage of LGGs is that it allows users to perform multiple retrievals and generate outputs at the

same time. However, it depends completely to decide which MRG that suits their goal.

Keywords: Machine Readable Grammar, Corpus, Regular Expression, Local Grammar Graphs

1. CORPUS LINGUISTICS AND NATURAL LANGUAGE PROCESSING

Corpus linguistic deals with linguistic data and how to perform processing on the linguistic data. The

classification of corpora (Baker, Hardie, & McEnery, 2006) might vary, such as from the size (large-small),

text variation (general-specific), language (monolingual-multilingual-paralell). From the accessibility,

corpora are often distinguished by open access or closed access corpus. The data is machine readable, and

organized in a structured way to allow further processing (Adolphs, 2006). The advancement of computer

technology allows robust processing with computer, improving speed of processing and reducing space and

time at the same time. As corpus linguistics tends to approach the data, Natural Language Processing is most

likely about corpus data processing (Kao & Poteet, 2007). What this section emphasises is the crucial

importance of corpus data and corpus processing. The advencement of computer technology allows the

automation of all manual processes to resullt on several applications from the simplest one such as

concordance in the research of collocation for language learning (Nesselhauf, 2005), text mining (Clark, Fox,

& Lapin, 2010), dialogue (Mitkov, 2003) for automatic question and answering system.

2. MACHINE READABLE GRAMMAR

Grammars are used to describe the behavior of a natural language expressions, which is considered as

characters string. In computational term, users implement the grammar to capture or generate natural

language expressions (Mitkov, 2003). For instance, the following ‘S => NP VP’ grammar can be

implemented to capture sentences and generate sentences in English. However, this grammar does not apply

for Fijian as the typology of this language is S=>VP NP.

This paper discusses grammar from the perspective of capturing natural language expressions by

using queries, namely information retrieval (Tzoukermann, Klavans, & Stralkowski, 2003). There are two

types of queries discussed in this paper. The first one is regular expression. Queries by regular expression is

composed by using existing text characters on computer keyboard. This resembles browsing via search

engines like Google, Yahoo or other existing search engines, when we input text characters as a query, and

we are most likely to get the results of the retrieval on the basis of character similarity. In regular expression,

the query is sent to the corpus data and users will get the result, which can be equal or more than character

based retrieval. In regular expression based query, besides alphabet, we can use any other characters to

amplify the retrieval. Consider the following regular expression [^a-z]. It is used to retrieve all characters that

are not alphabet. COCA or Contemporary American English Corpus (Davies, 2010) is one of the corpora that

makes use of regular expression.

Another type of query is by using Finite State Automata or Transducer (FSA or FST). FSA or FST

(Ludeling & Kyto, 2009) is an abstract machine used to generate or to recognize language. These are very

basic concepts in several NLP based applications such as information extraction, opinion mining, automatic

summarizing and information retrieval. Unitex makes use of FSA in the form of Local Grammar Graphs

(Gross, 1997). LGGs can be applied offline as the works of Prihantoro (2011b & 2011c), though it is possible

to integrate LGGs and Unitex online as well. See the documentation on Unitex manual (Paumier, 2008). As

for now, consider the visualization of FSA and LGGs as illustrated by figure 1:

Figure 1. Finite State Automaton (FSA) and Local Grammar Graphs (LGGs)

Figure one contains some characters such as numbers <0,1,2,3>, letters <a,h>, and symbol <!>. The

circles are called states. Number <0> is the start state, and number <3> is the final state. Each character is

inserted between states. This FSA allows the recognition or the generation of recursive <ha>strings such as :

<ha!>, <haha!>, <hahaha!>. FST is FSA that has an output. By using FSA, strings with output such as

<hahaha!/LAUGH> is possible to create or recognize. As for the LGGs, the application of recursive states

[ha] will obtain the same result.

3. CORPUS PROCESSING SOFTWARE AND DATA

The corpus processing software used in this research is UNITEX. It is capable of performing some NLP tasks

such as creating machine readable dictionary and grammar, information retrieval, information extraction, text

annotation and etc. The corpus in this research is obtained from the default corpus of UNITEX, which is a

classic work of Sir Walter Scott, Ivanhoe. In this research, I evaluate both input and output (Mc Enery &

Hardie, 2012) of two different machine readable grammars (regular expression and local grammar graph) to

perform automatic retrieval on the corpus. The result is evaluated on the basis of its speed and concordance

generation. The procedures can be summarized as follow: 1) text is uploaded to Unitex, 2) The text is

annotated by existing lexical resource (for English), 3) Queries are applied by using both regular expression

and LGGs, 4) the concordances are compared, 5) analyzing the advantages and disadvantages of the two

MRGs.

4. APPLICATION

The accuracy of the automatic retrieval can be effective both by using regular expressions or Local

Grammar Graphs (LGGs). Both are effective to perform automatic retrieval on the basis of character

similarity, or morphological or semantic feature. However, regular expression works faster than LGGs. This

is because, regular expression works on the surface text, while the LGGs work deep on the automaton.

Regardless of the difference, to some extent, equal result can be gained. As for now, let us consider the

interfaces of regular expression and LGGs are expressed by figure 1:

Figure 1. The Interface for Retrieval by Regular Expressions and Local Grammar Graph

For regular expression, Unitex user must entry the query on the query box, as presented by the left

side of figure one. It retrieves the string of [and]. The same result is obtained by applying the LGG on the

right side of figure 1. The retrieval here is simply character based. Therefore, it retrieves only the string,

equal to the query. The next sub-section describes more retrieval under different grounds such as

morphological or semantic feature. Even the character based retrieval performed by the next sub-section is

more complex.

4.1 Character based

We sometimes are required to retrieve words containing specific character strings. For instance, we

are requested to retrieve all words that begin with {anti-}, or ends {-al}. Figure 2 shows the result of a

retrieval by using query <<ess$>>.

Figure 2. The Concordance for <<ess$>> Retrieval

 By complying to the query, Unitex retrieves all strings that are 1) separated by spaces, 2) ended by {-

ess}. As figure 2 shows, the concordance shows all words ended by [–ess], where mostly are nouns derived

from adjectives. However, this retrieval does not have morphological constraint such as part of speech (POS).

Therefore, verb strings such as ‘impress’, ‘harness’, quantifier like ‘less’, or nouns that are not derived from

adjectives such as ‘actress’, or ‘waitress’ are included in the concordance result. The next sub section

describes how to set morphological constraint on automatic retrieval.

4.2 Morphological Feature

Retrieving under the constraint of morphological feature is more complex than character based retrieval as it

requires the corpus annotated. When the corpus is annotated, the retrieval beyond character based, such as

morphological features based retrieval is made possible (Meyer, 2004). One of the functionalities of Unitex is

to perform annotation by using lexical resources (often referred as ‘machine readable dictionary’). When the

corpus is already annotated, it is possible to retrieve the strings with morphological constraint by using

annotation code. Consider the retrieval of prepositions as shown by figure 3.

Figure 3. The Retrieval of Strings with <PREP> Prepositional Constraint

 By writing a simple query <PREP>, Unitex has managed to retrieve all prepositions, even to the

extent of archaic preposition ‘betwixt’. This made possible by the annotation code on lexical resource that

annotate all prepositions with PREP code. By applying this query, however, we cannot specify word forms.

The retrieval of word forms requires the query written by lowercases as presented by figure 4.

Figure 4. The Retrieval of Word Forms of <go>

The use of lower cases, with single left-right brackets, indicated that it initiates the retrieval of word

forms. Therefore, it retrieves all word forms of ‘go’ such as ‘goes’, ‘gone’, ‘went’, and ‘go’. Some lexical

items, simplex or compound, are also semantically annotated. It makes possible for the user to retrieve with

additional constraint, which is semantic.

4.3 Semantic Feature

 One of the semantic feature annotations is <+Anl> for ‘animal’. By using this annotation code it is

possible to retrieve all strings that are 1) nouns, and also 2) animal. Figure 5 shows the concordance as a

result of the retrieval. Notice that it retrieve all animals, regardless of its quantity (singular or plural). It has

also managed to retrieve the compound ‘flying fish’.

Figure 5. The Retrieval of <+Anl> Animal Strings

4.4 LGGs: Multiple Retrieval and Output Manipulation

The previous sub section has described retrieval that can be performed by both regular expression

and LGGs. However, there are some limits to which regular expressions can apply. First, we cannot perform

multiple retrieval by regular expression. However, it is possible by using LGGs. See the LGGs presented by

figure 6 and its concordance:

Figure 6. Multiple Retrieval and Output

 We can see that all retrievals in the previous sub section can be summarized with LGGs as shown in

figure 7. The LGGs also give output, in this case numbers, to label each retrieval (from 1 – 4). Another

example of LGGs function, which is to manipulate output, is shown by figure 7. The figure shows the LGGs

applied to retrieve compound noun, which involves determiner. In figure 7, a morphological constraint

(numeral) is set to the determiner, so that it only retrieves determiners that are numerals. A constraint is also

set to noun to retrieve only human nouns. See the LGGs and the concordance displayed by figure 7:

Figure 7. Output Manipulation (Permutation)

 The brackets surround each token in figure 7 is labeled by ‘a’ and ‘b’. The output is the permutation

of the two, therefore resulting in ‘b’ ‘a’. It reverses the order of DET N, to N Det. Another output is given,

which is to name label a as NUMBER, and name label b as HUMAN.

5. CONCLUSION

In this paper, two machine readable grammars are discussed: regular expression and Local Grammar

Graphs (LGGs). One has the advantage over another. Regular expression is a machine readable grammar that

works faster than LGGs. The reason is it is more memory-efficient (Yu, Chen, Diao, & Katz, 2006). LGGs,

on the other hand, allow the user to perform multiple retrievals and give output to the retrieval. Users can also

perform phrasal retrieval more effectively by using LGGs. As each grammar has its own advantage, then it is

the users’ decision to use one of which. The decision is made upon the aim of the retrieval.

REFERENCES

Adolphs, S. (2006). Introducing Electronic Text Analysis. London: Routledge.

Baker, P., Hardie, A., & McEnery, T. (2006). A Glossary of Corpus Linguistics. Edinburgh: Edinburgh

University Press.

Clark, A., Fox, C., & Lapin, S. (2010). Natural Language Processing and Text Mining. Oxford: Blackwell.

Davies, M. (2010). The Corpus of Contemporary American English as the First Reliable Monitor Corpus of

English. Language and Literary Computing , 447-464.

Gross, M. (1997). The Construction of Local Grammars. In E. Roche, & Y. Schabes, Finite State Language

Processing (pp. 329-354). Massachusetts: MIT Press.

Kao, A., & Poteet, S. (2007). Natural Language Processing and Text Mining. London: Springer.

Ludeling, A., & Kyto, M. (2009). Corpus Linguistics: An International Handbook. Berlin and New York:

Walter de Gruyter.

Mc Enery, T., & Hardie, A. (2012). Corpus Linguistics: Method, Theory and Practice. Cambridge:

Cambridge University Press.

Meyer, C.-F. (2004). English Corpus Linguistics: An Introduction. Edinburgh: Cambridge University Press.

Mitkov, R. (2003). Handbook of Computational Linguistics. Oxford: Oxford University Press.

Nesselhauf, N. (2005). Collocation in a Learner Corpus. Amsterdam: John Benjamins Publishing.

Paumier, S. (2008). Unitex Manual. Paris: Universite Paris Est Marne La Valee & LADL.

Prihantoro. (2011b). Local Grammar Based Auto Prefixing Model for Automatic Extraction in Indonesian

Corpus (Focus on Prefix MeN-). Proceedings of International Congress of Indonesian Linguists

Society (KIMLI) (pp. 32-38). Bandung: Universitas Pendidikan Indonesia Press.

Prihantoro. (2011c). Transducer for Auto-Convert of Archaic to Present Day English: A Support for

Computer Assisted Language Learning. Proceeding for The 16th English in Southeast Asia

Conference. Yogyakarta: Sanata Dharma University Press.

Tzoukermann, E., Klavans, J., & Stralkowski, T. (2003). Information Retrieval. In R. Mitkov, The Oxford

Handbook of Computational Linguistics (pp. 529-544). Oxford: Oxford University Press.

Yu, F., Chen, Z., Diao, Y., & Katz, R.-H. (2006). Fast and Memory-Efficient Regular Expression Matching

for Deep Packet Inspection. Architecture for Networking and Communication System , 93-102.

