
HAL Id: hal-03767658
https://hal.science/hal-03767658

Submitted on 2 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Elaborating on Sub-Space Modeling as an Enrollment
Solution for Strong PUF

Amir Ali Pour, David Hély, Vincent Beroulle, Giorgio Di Natale

To cite this version:
Amir Ali Pour, David Hély, Vincent Beroulle, Giorgio Di Natale. Elaborating on Sub-Space Model-
ing as an Enrollment Solution for Strong PUF. 18th IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS 2022), May 2022, Los Angeles, United States. �hal-03767658�

https://hal.science/hal-03767658
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Elaborating on Sub-Space Modeling as an
Enrollment Solution for Strong PUF

Amir Ali-pour∗, David Hely†, Vincent Beroulle‡ and Giorgio Di Natale§
(∗, ‡) Univ. Grenoble Alpes, Grenoble INP, LCIS, 26000 Valence, France

(†) Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
§ Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, 38000 Grenoble, France,

(∗, ‡, §) Email: firstname.lastname@univ-grenoble-alpes.fr

Abstract—In this work we present sub-space modeling of
strong PUF as a cost efficient solution for PUF enrollment for
the designers’ community. Our goal is to demonstrate a method
which can reduce the overall cost in terms of number of CRPs
required for training, training time and memory. Instead of
modifying the estimated model structure, we propose to reduce
the complexity of the modeling target. This means to provide
secured access to the internal responses of strong PUF during
the enrollment and capture internal CRPs to model each sub-
component of the PUF independently. It also necessitates to
permanently remove the internal access after the enrollment
to prevent exposure of the internal responses. This means that
the internal responses should not be directly accessible after
enrollment. Our sub-space modeling method requires lesser
number of CRPs compared to modeling the whole PUF. We
experimentally prove that sub-space modeling can significantly
reduce the cost of training compared to some of the latest works.
For instance, we could model 128-stage 6-XOR Arbiter PUF with
just above 90% prediction accuracy with 5000 CRPs. Here the
response in the CRP is a vector including the responses of the
sub-components. Our results show that sub-space modeling is
potentially a cost-efficient solution to enroll strong PUF with
high complexity.

Index Terms—Physically Unclonable Function (PUF), XOR
Arbiter PUF, PUF Enrollment, Machine Learning (ML), Logistic
Regression (LR)

I. INTRODUCTION

Physically Unclonable Functions (PUFs) are considered
nowadays as one of the emerging security primitives for
resource-constraint ecosystems in the field of IoT [1]. PUFs
are pervasively used to generate device-specific data which can
be used in several applications such as light-weight device
authentication, and encryption key generation [2]. PUF is
characterized as a hardware bound function which utilizes the
unit-specific micro-variations to generate device-specific data.
The functionality of PUF is based on mapping a bit-vector
challenge (the input) to a response (output) and generate a
so called Challenge-Response-Pair (CRP). Variations of PUF
structure exist, which differ in how the PUF functions and how
many device-specific data the PUF can generate.

Strong PUF is a macro variant which aims at generating an
abundance of device-specific identifiers. Very large number
of CRPs can be generated by an strong PUF depending on

This material is based upon the work supported by the French National
Research Agency in the framework of the “Investissements d’avenir” program
(ANR-15-IDEX-02).

the size of the challenge, so called the input dimensiality of
the PUF [3]. This characteristic in turn makes strong PUF an
ideal primitive for cryptographic applications such as single-
use (one-time pad; OTP) key generation [4], [5].

Usually strong PUF is enrolled via a database of CRPs
captured from the PUF circuit before deployment [2], [4].
However, several authentication and key generation protocols
exist which suggest enrolling PUF with its software model
equivalent, or an estimation model which can identify the
PUF [6]–[9]. In the primary approach, a software model is
the stored data on the verifier server to provide access to the
full CRP space of the enrolled strong PUF. This in turn solves
the shortage of CRPs on the verifier server, eliminating the
requirement to re-enroll and thus restock on the CRP database.
It also can be considered as a compact solution for enrolling
the PUF, therefore, requiring less memory space on the storage
device of the verifier server [9].

The common approach in building the equivalent software
model of PUF is to use Machine Learning (ML) modeling
techniques. The idea is to train a probabilistic model which can
estimate the CRP characteristic of the PUF with high probabil-
ity. In this approach, a set of CRPs is captured and a training
algorithm is used to converge the model’s characteristic to an
estimation of the target PUF’s CRP characteristic, according
to the captured CRP set [10], [11].

An important challenge in ML-based modeling of PUF is
to deal with the structural complexity of the PUF (for instance
k-XOR Arbiter PUF with k larger than 4). Usually the strong
PUF with high complexity require significantly large number
of CRPs for training [12]–[17]. This on one hand is appealing
for the designers’ community to implement strong PUF with
high complexity to protect against model building attacks. On
the other hand, it imposes additional cost for protocols which
rely on enrolling the PUF with ML-based modeling. This is
due to the fact that CRP collection is done usually during the
manufacturing test phase, since doing it post fabrication is an
expensive operation. Therefore, spending more time during
the test phase to collect large number of CRPs, increases
the time of testing and consequently the manufacturing cost.
In addition, large CRP training set size leads to spending
hours of training time per PUF model. This in turn leads to
excessive computation power usage and thus increasing the
cost of modeling. These factors generally imply that modeling

strong PUF with high complexity using the conventional ML
methods is an expensive solution for enrollment.

This work is inspired to put sub-space modeling into
practice as a cost-efficient solution for enrollment. In sub-
space modeling, the assumption is that the designer can access
the internal values of strong PUF with large complexity
during the test phase. In this way, the designer has multiple
modeling targets with reduced complexity, which in turn need
fewer CRPs for training compared to the whole PUF. In this
work, we show how sub-space modeling can be performed
on XOR Arbiter PUF to provide a model with a significantly
reduced cost. Our contributions will be to develop an ML-
based enrollment solution with the following features:
• Able to generate (at server level) all the possible CRPs

of the target PUF.
• Requiring a small amount of memory at server level to

store such an information.
• Providing a constant and short enrollment time per PUF,

thus applicable in a real industrial/commercial environ-
ment.

In turn, sub-space modeling can be a suitable enrollment
solution for the designers community compared to other
conventional modeling methods. Given that with ML-based
enrollment, access to the full CRP space is provided which can
emerge into new protocols for authentication and encryption
key generation. Such protocols require also novel approaches
to restrict CRP access after enrollment. This is crucial, as it
prevents openly accessible CRPs to all parties after enrollment
to avoid model-building attacks. Moreover, it is important that
the physical access to the I/O PUF is disabled once the PUF
is enrolled successfully. An example of that can be found in
[6], where it is suggested to permanently disable the physical
access-points to the PUF, e.g., by burning irreversible fuses so
that other parties cannot access directly the PUF.

The structure of our paper is the following. In section
II we present the preliminaries to PUF and modeling PUF
for enrollment with Machine Learning (ML). In section III
explains our proposed method. In section IV we describe our
evaluation setup and later present the experimental works and
the comparisons. In section V presents the conclusion of our
work.

II. PRELIMINARIES

A. Xor Arbiter PUF

One of the known strong PUF structures is the XOR Arbiter
PUF. Arbiter PUF was first introduced in 2002 by Gassend et
al in [18]. The idea of Arbiter PUF is based on the delay
difference between two racing paths which are structurally
similar, but due to minor process variations, differ in time of
passing a signal given to them at the same time. The structure
of XOR Arbiter PUF is based on multiple Arbiter PUFs whose
input (challenge) are of the same size, and triggered by a
global input. The output of the XOR Arbiter PUF is also the
XOR of the output of each Arbiter PUF. Fig. 1 shows the
structure of an n-stage k-XOR XOR Arbiter PUF.

As shown in Fig. 1, the structure of a n-stage k-XOR
Arbiter PUF can be divided into k n-stage Arbiter PUFs with
independent responses. Thus each n-stage Arbiter PUF can be
considered a sub-component of the main XOR Arbiter PUF.
Such architecture then can benefit from sub-space modeling.
Accordingly, each n-stage Arbiter PUF can be modelled
independently, and merged after to build the model of the
whole n-stage k-XOR Arbiter PUF.

B. Strong PUF Enrollment with ML

The goal of PUF enrollment with ML-based modeling is
to replace the conventional CRP database with an estimated
model of the PUF. Let us denote the estimated model of PUF
as hPUF . The enrollment of PUF with ML-based modeling
means that the verifier server will own hPUF which provides
access to the full CRP space of the PUF circuit with some
miss-prediction error which is tolerable. During the enrollment
the server has open access to the PUF CRPs to build the hPUF

(see Fig. 2 (a)). Let us consider ci as a challenge input to
the PUF circuit. If we observe the PUF circuit as a function
fPUF of ci, then it’s estimation can be defined as a function
gPUF of ci and a set of internal values θ of the model. thus
hPUF = {gPUF , θ}. The estimation should then follow (1):

fPUF (ci) = ri ≈ r′i = gPUF (ci,θ) = hPUF (ci) (1)

Where ri is the PUF circuit’s response to the challenge ci and
r′i is the estimated model’s prediction of ri for ci. The model
then goes through an iterative training phase, where a learning
algorithm modifies the internal values with respect to the CRP
set and the function gPUF .

We also assume that once the PUF is enrolled via its
corresponding hPUF model, the PUF then is protected with a
masking protocol to provide a secure communication channel
in mission mode that ensures adversaries won’t be able to build
easily an accurate model of the PUF (See Fig. 2 (b)).

At the beginning of the training phase, model hPUF has
a significant probability of erroneous estimation of the PUF’s
CRP characteristic. Therefore, the training runs iteratively until
the probability of erroneous estimation is converged to zero or
an acceptable minimum value. Since modeling here is done for
the enrollment, we define metrics which are important for the
enrollment, and we use them to evaluate the cost of training
and the performance of the estimated models:

. . .

. . .

Arb

stage1 stage2 stage nstage n-1

. . .

. . .

Arb

cn-1
. . . cnc2c1

. .
 . r

APUF_1

APUF_k

. .
 .

Fig. 1: The structure of n-stage k-XOR Arbiter PUF

Server

Response
Masking

BlockPUF

PUF I/O
Device I/O

C
hallenge

M
as

ke
d

R
es

po
ns

e

R
es

po
ns

eC
hallenge

Storage

PUF

Server Storage

a) Enrollment mode b) Mission mode

Response

Challenge

Se
cu

re
 c

ha
nn

el

O
pe

n
C

R
P

Ac
ce

ss

model
hPUF

model
hPUF

Fig. 2: Schematic of a communication between PUF and a
verifier server, via an estimation model of PUF.

• Prediction Accuracy (ε): Proportion of correctly pre-
dicted responses to total number of predictions.

• Enrollment CRP Set Size (css): Size (in bytes) of the
CRP set collected to enroll a given PUF circuit.

• Total Time of Training (T): Time of training until an
estimated model is generated with acceptable accuracy.

• Estimated Model Size (ms): A measure of size (in bytes)
of the internal trainable parameters θ of an estimated
model of a PUF.

III. SUB-SPACE MODELING METHOD

A schematic of our proposed method is shown in Fig. 3.
Here the illustration shows sub-space modeling for a variant
of XOR Arbiter PUF. As shown in Fig. 3, the internal data
from each sub-component (r1 to rk), in conjunction to their
corresponding challenge values (e.g. {c1 ... ck} + {r1} for
APUF 1, {c1 ... ck} + {r2} for APUF 2, etc.) are fed
separately to trainer functions to discretely generate estimation
models of each sub-component. After the trainer functions
provide accurate estimated models of each sub-component,
we merge the sub-models into forming a whole model which
represents the whole PUF. We also take the assumptions below
on how we can provide data for training.
• The strong PUF structure should be dividable into smaller

sub-components (see Fig. 3) with reduced complexity.
We assume that these sub-components are themselves
functions of the input challenge to the PUF.

• An accompanying hardware extractor should be pro-
vided which has physical access to the internal sub-
components’ I/O (see Fig. 3). The extractor can capture
the value of the internal sub-components in addition to
the response of the whole-PUF, for any given challenge.

• We represent CRvP for samples taken from PUF and
its internal data. A CRvP comprises a Challenge vector,
and Response vector (Rv) which is a vector of values
comprising the responses of internal sub-components as
well as the response of the whole PUF.

• Number of sub-components addressed by the extractor
are enumerable. We assume that the connectivity of the

Verifier Server

PUF model
storage

Estimated model for APUF_ 1

Estimated model for APUF _ 2

Estimated model for APUF _ l

CRP Trainer

CRP

CRP

TrainerAPUF_2

APUF_L Trainer

.

PUF_ A
1
2

l

Compile
modelTest & Store

APUF_1

+

1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0

CRP extraction

PUF- enabled device _ A

Stage1 Stage2 Stage3 Stagen

Stage1 Stage2 Stage3 Stagen

. . .

. . . Arbiter

Arbiter

Stage1 Stage2 Stage3 Stagen. . . Arbiter

c1 c2 c3 cn

rr1 r2 rk. . .

Input

Output

. . .

. . .

. . .

. . .

APUF_1

APUF_2

APUF_L

Internal response extractor

. . .

CRPAPUF_1

CRPAPUF_2

. . .

PU
F_

A
 m

od
el

Fig. 3: Showing how sub-space modeling can be used for
strong PUF modeling with separable components. Here the
PUF variant is a n-stage k-XOR Arbiter PUF.

internal values to the extractor does not disturb the design
and functionality of the PUF itself.

• Once the enrollment is successful and the accurate model
is stored, the physical access to the internal values within
the PUF circuit is permanently removed. This is essential
to prevent future threads which may be able to regain
access to the internal values via the extractor.

We also measure the accuracy of the model before storing
it on sever. We compare the model’s predicted responses with
the puf responses for a set of challenges in a CRP set dedicated
for testing (different from the ones used for training). After
testing the model’s prediction accuracy, it is stored for the
given strong PUF on the verifier server for future use.

IV. EVALUATION SETUP AND EXPERIMENTAL RESULTS

In this section we evaluate our sub-space modeling with
simulated CRP datasets of variants of XOR Arbiter PUF.

A. Experimental Setup

In our evaluation, we used a python based simulator of
XOR Arbiter PUF [20]. This simulator has been used already

TABLE I: LR training hyper-parameters

Inverse
regularization (C)

Tolerance for
stopping (tol) Max iter Solver

1.0 0.0000001 10000 liblinear

TABLE II: A comparison of cost of training in modeling variants of XOR Arbiter PUF. Here SS refers to our proposed sub-
space modeling method. R is the modeling method used in [12], T is the modeling method used in [14], M* is the modeling
method first proposed in [19] and then revisited in [17]. S also is the modeling method used in [15].

XOR size
4 5 6 7

css(MB) ε T (h) ms(KB) css(MB) ε T (h) ms(KB) css(MB) ε T (h) ms(KB) css(MB) ε T (h) ms(KB)
R 0.377 99% 2:52 4.1 7.9 99% 16:36 5.1 N/A NA
T 3.1 98% 0:02 4.1 34.6 98% 00:12 5.1 236.2 98% 4:45 6.1 629.8 98% 66:53 7.2
M* 15.7 95% <0:01 10.6 15.7 95% <0:01 25.3 157.4 95% <0:01 67.1 472.4 95% 0:02 199.7
S 0.944 98% 0:05 180.2 6.3 97% 1:5 1280 18.9 97% 6:1 3072 44.1 96% 18:2 10752
SS 0.490 98% <0:01 4.1 1.48 97% <0:01 5.1 1.16 97% <0:01 6.1 1.5 96% <0:01 7.2

in Ruhrmair’s work in [12]. In this simulation, a n-stage k-
XOR Arbiter PUF is simulated as a XOR function of k n-
stage Arbiter PUFs. n-stage Arbiter itself is simulated as the
sum of the signal propagation delays in each stage. The delay
values in the simulator are generated randomly with a standard
normal distribution, with mean 0 and standard deviation 1.
During the instantiation of a PUF instance, the delay values
are generated and allocated to the instance model. The PUF
instance model is then ready to get a challenge vector and
generate the corresponding responses.

We used the simulator to generate 10 instances of 128-stage
{2, 3, 4, 5, 6, 7, 8, 9 and 10}-XOR Arbiter PUF variants. For
each variant we generated 100, 000 CRvP , therefore a total
of 9 Million CRvP s for all the instances of all the variants
have been generated. Noting that in this simulation we did
not model the PUF instability noise explicitly. Therefore the
randomness is only due to the signal propagation delay as we
discussed earlier.

For modeling we used Sklearn’s Logistic Regression (LR)
to model each sub-component independently. The reason we
chose LR is that comparing to other modeling techniques, LR
shows to converge considerably faster, using less computation
power. Also LR seems to be a good starting point to explore
modeling techniques due to the fact that LR is relatively
the simplest modeling technique compared to others such as
Artificial Neural Networks or Support Vector Machine. In
terms of the training specifications and hyper parameters, our
entire parametric consideration for training with LR are given
in Table I.

Noting in addition, that we measure css in terms of bytes
for n-stage k-XOR Arbiter PUF as in (2), where N is the
number of CRPs in a given training set.

css(byte) =
N × (n+ k + 1)

8
(2)

B. Experimental Results and Discussions

First we measure the cost of training using sub-space
modeling, and compare it to some of the known and recent
modeling methods. TableII shows the cost of training with
respect to various k in n-stage k-XOR Arbiter PUF. Here
we compare our sub-space modeling method (SS), to other
modeling methods practiced for XOR Arbiter PUF modeling.

10
00

20
00

30
00

40
00

50
00

10
00

0
12

50
0

15
00

0
17

50
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0
90

00
0

CRvP set size

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ed

ict
io

n
ac

cu
ra

cy
 (

)

2_XOR
3_XOR

4_XOR
5_XOR

6_XOR
7_XOR

8_XOR
9_XOR

10_XOR

Fig. 4: Demonstrating the convergence of prediction accuracy
ε of the XOR PUF variants with respect to increasing css.

Noting that the competing methods (R,T,M* and S) in Table. II
are not optimized for enrollment. These methods are generally
proposed to model the whole XOR Aribter PUF using a back-
propagation technique to adjust the internal values θ directly
according to the response behavior of the whole PUF model.
Therefore they do not consider the internal responses.

From Table II, R is the modeling solution of [12] which uses
Logistic Regression with RMSProp as the training function.
In T [14] also, the modeling approach is the same as R, while
the training is optimized to be faster. In M* [19] and S [15],
Artificial Neural Networks are used as the underlying model
and Adam optimizer as the training function.

As shown in Table. II, sub-space modeling indeed is capable
of reducing the cost of training. Our solution (SS) seems to
have the highest efficiency in terms of css, especially for
modeling 5 6 and 7 XOR sizes. The exception is for 4-
XOR where R shows to have a better result in terms of css.
Given however that for the same XOR size, our solution takes
significantly less training time T compared to R. The closer
case in terms of css to our solution, is S. However in terms
of T and model size ms, our solution shows better results
overall. In terms of T , our model seems to have overall the
best performance as well. Given also that closer case in terms
of T to our model is M*. However for M*, the css seems to

be much more overall. It can thus be implied here that sub-
space modeling overall can be considered to have the highest
efficiency in terms of all factors that constitute the cost of
modeling, for modeling strong PUF with increased complexity.

Next in sub-space modeling, we measure the prediction
accuracy with respect to increasing the number of CRvP s
for a larger scale of XOR Arbiter PUF variants. Fig. 4
shows the evolution of prediction accuracy ε with respect to
increasing CRvP set size for XOR sizes {2, 3, 4, 5, 6, 7, 8, 9
and 10}. We observe that the convergence point for ε degrades
proportionally with increasing XOR size k. For instance, for
4-XOR variants the convergence point for ε is at 0.98 while
for 10-XOR it is at 0.93. Another conclusion is that ε for
all variants start to converge to its maximum value at around
10,000 CRvP . The peak for ε could be seen in the range
of 10, 000 to 40, 000 CRvP s. While from 40, 000 CRvP s
above, the ε seems to degrade slightly. Which could be due
to overfitting the model with too many CRvP s. This means
that sub-space modeling at this stage has a downside which
is the degradation in the maximum prediction accuracy with
increasing PUF complexity.

To further analyze prediction accuracy degradation, we
measured the distribution of ε over all the sub-components of
all the variants of k-XOR for k in {2, 3, 4, 5, 6, 7, 8, 9 and 10}.
Fig. 5 shows the histogram of all the sub-model’s prediction
accuracy with respect to several CRvP set sizes. We observe
that the prediction accuracy is less concentrated for smaller
CRvP set sizes like 1000 or 2000. This easily justifies the
low prediction accuracy of the whole model. Since the rate
of miss-prediction at these CRvP set sizes are quite high,
and as we know that the accuracy of the whole model can be
defined as a product of the accuracy (see 3) of the sub-models.
Therefore, the effect of internal miss-prediction on the whole
model’s prediction accuracy will be significant. For instance
for a 2-XOR Arbiter PUF we have:

εWPUF =

Probability of two correctly predicted responses at the same time︷ ︸︸ ︷
(εSPUF1 × εSPUF2)

+

((1− εSPUF1)× (1− εSPUF2))︸ ︷︷ ︸
Probability of two incorrectly predicted responses at the same time

(3)
Where εWPUF refers to the prediction accuracy ε of the whole
PUF model, and εSPUFi refers to the prediction accuracy ε of
the ith sub-model. Given also that this equation extends for
larger XORs, where there needs to be computed the product
of miss-prediction probability of every even number of sub-
models. Here in (3), if we give the average prediction accuracy
to the parameter εSPUFi , it yields approximately the prediction
accuracy value for the whole model as indicated in Fig. 4.

Looking at Fig. 5 (e), it is apparent that for the 40, 000
CRvP s where the peak value of ε is achievable, the ε
values are distributed around .992. This also justifies why the
accuracy for modeling variants of k-XOR with increasing k,
degrades as well. Again, according to formula (3), variation
as small as 0.01% in the prediction accuracy of the sub-space

40
,0

00
 C

R
PS

90
,0

00
 C

R
PS

nu
m

be
r o

f e
st

im
at

ed
 m

od
el

s

prediction accuracy

a) 1000 CRPs

b) 2000 CRPs

c) 5000 CRPs

d) 30,000 CRPs
prediction accuracy

To
ta

l n
um

be
r o

f e
st

im
at

ed
 m

od
el

s

To
ta

l n
um

be
r o

f e
st

im
at

ed
 m

od
el

s

prediction accuracy

To
ta

l n
um

be
r o

f e
st

im
at

ed
 m

od
el

s

prediction accuracy

To
ta

l n
um

be
r o

f e
st

im
at

ed
 m

od
el

s

prediction accuracy

To
ta

l n
um

be
r o

f e
st

im
at

ed
 m

od
el

s

prediction accuracy

e) 40,000 CRPs

nu
m

be
r o

f e
st

im
at

ed
 m

od
el

s

prediction accuracy

f) 40,000 CRPs vs 90,000 CRPs

Area where overfitting happened

Indicator of average prediction accuracy

Indicator of .999 prediction accuracy

Fig. 5: Histograms showing the distribution of prediction
accuracy ε for various training CRP set sizes.

models, can lead to variation of up to 1% of the whole model.
For instance, according to and extended version of formula (3)
for 10-XOR, we need in average, 99.9% prediction accuracy
achieved for each sub-model to then achieve 99% prediction
accuracy for the whole model. However, with our observation
of the prediction accuracy of models trained with the most
optimal training set size, the sub-space models’ prediction
accuracy are not concentrated on 99.9%.

For larger than 40, 000 CRvP s, it appears that we overfitted
a population of sub-models (see the outlined area in 5 (f))
which deteriorated the estimation of the whole model’s predic-
tion accuracy. Fig. 5 (f) shows that a considerable number of
models trained with 90, 000 CRvP , appear to have prediction
accuracy lesser than the median 99.2% at 40, 000 CRvP s.
This means that only increasing the CRvP set size is not a
solution to achieve the highest accuracy for the whole model,
as it can lead to overfitting the sub-models.

Our general observation on the sub-space modeling here
infers that sub-space modeling seems to be a considerably
resource efficient modeling technique. Given however, that its
overall accuracy is more sensitive to minor prediction accuracy
variations in the sub-models. Therefore special care should be

given to stabilize the prediction accuracy of the sub-model
on the maximum achievable accuracy. For instance, if the
maximum achievable accuracy is 99.9%, we set this as the
target accuracy for all the sub-space models. This then requires
that each sub-space model is trained with discrete attention to
the number of CRvP s in order to obtain exactly the target
prediction accuracy for the whole PUF model.

Moreover, the number of the sub-components seem to affect
the prediction accuracy of the whole model. It is observable
that with larger number of sub-components, the accumulation
of the probability of miss-prediction errors of the sub-models
lead to higher values. Therefore, it is important to manage the
number of sub-models. For future extensions of the work, it
is potential to try with various dividing factors for sub-space
modeling. One example is to divide a k-XOR Arbiter PUF
with k being an even number, to k

2
of 2-XOR PUFs and model

each 2-XOR Arbiter PUF separately.

V. CONCLUSION AND FUTURE PERSPECTIVE

In this work we presented a technique for modeling strong
PUF, using captured internal data of the sub-components of
the PUF with high complexity. We showed that sub-space
modeling requires significantly less data in order to yield
an accurate estimated model of the PUF. For instance, we
showed that it is possible to model 128-stage 10-XOR Arbiter
PUF with 93% prediction accuracy using 40, 000 CRvP s
which is equivalent to 683KB of data. This proved that sub-
space modeling is a potential cost-efficient solution for the
designers community whose priority for enrolling strong PUF
is to provide an estimation model of the PUF. However,
we observed that the maximum achievable accuracy can be
limited with sub-space modeling, due to the internal models’
prediction accuracy variation. As expected, we observed that
even a small prediction accuracy variation of around 0.1%
in the internal models can cause the accuracy degradation of
the whole model up to 1%. Depending on the complexity of
the whole PUF also, this degradation can be magnified. And
moreover, only adding more training data showed not to be
the solution to overcome the prediction accuracy degradation.
Therefore, this would be an open problem to solve in sub-
space modeling of strong PUF with high complexity.

For future works, we consider other estimated model struc-
ture as well which can produce the same result as LR and
have the capability to be extended. In specific, Artificial Neural
Networks are the promising models which can replace LR to
deal with the whole model prediction accuracy degradation.
Moreover, we include other variants of strong PUF to gener-
alize our modeling method for PUF enrollment.

REFERENCES

[1] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical
unclonable functions and applications: A tutorial,” Proceedings of the
IEEE, vol. 102, no. 8, pp. 1126–1141, 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6823677/

[2] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey
on lightweight entity authentication with strong pufs,” ACM
Comput. Surv., vol. 48, no. 2, Oct. 2015. [Online]. Available:
https://doi.org/10.1145/2818186

[3] M. S. Alkatheiri, Y. Zhuang, M. Korobkov, and A. R. Sangi,
“An experimental study of the state-of-the-art pufs implemented
on fpgas,” in 2017 IEEE Conference on Dependable and
Secure Computing. IEEE, 2017, pp. 174–180. [Online]. Available:
http://ieeexplore.ieee.org/document/8073844/

[4] R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit,
and C. Yang, “Physical key-protected one-time pad,” Scientific reports,
vol. 3, no. 1, pp. 1–6, 2013.

[5] B. T. Bosworth, I. A. Atakhodjaev, M. R. Kossey, B. C. Grubel,
D. S. Vresilovic, J. R. Stroud, N. MacFarlane, J. Villalba, N. Dehak,
A. B. Cooper, M. A. Foster, and A. C. Foster, “Unclonable
photonic keys hardened against machine learning attacks,” APL
Photonics, vol. 5, no. 1, p. 010803, 2020. [Online]. Available:
https://doi.org/10.1063/1.5100178

[6] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Slender puf protocol: A lightweight, robust, and secure authentication
by substring matching,” in 2012 IEEE Symposium on Security and
Privacy Workshops, 2012, pp. 33–44.

[7] A. Alipour, D. Hely, V. Beroulle, and G. Di Natale, “Power of
prediction: Advantages of deep learning modeling as replacement for
traditional PUF CRP enrollment,” in TrueDevice2020, 2020. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02954099

[8] M. S. E. Quadir and J. A. Chandy, “Embedded systems authentication
and encryption using strong puf modeling,” in 2020 IEEE International
Conference on Consumer Electronics (ICCE), 2020, pp. 1–6.

[9] A. Alipour, V. Beroulle, B. Cambou, J. Danger, G. D. Natale, D. Hely,
S. Guilley, and N. Karimi, “Puf enrollment and life cycle management:
Solutions and perspectives for the test community,” in 2020 IEEE
European Test Symposium (ETS), 2020, pp. 1–10, ISSN: 1558-1780.

[10] J.-Q. Huang, M. Zhu, B. Liu, and W. Ge, “Deep learning modeling
attack analysis for multiple fpga-based apuf protection structures,” in
2018 14th IEEE International Conference on Solid-State and Integrated
Circuit Technology (ICSICT). IEEE, 2018, pp. 1–3. [Online]. Available:
https://ieeexplore.ieee.org/document/8565728/

[11] M. Khalafalla and C. Gebotys, “PUFs deep attacks: Enhanced modeling
attacks using deep learning techniques to break the security of
double arbiter PUFs,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 204–209. [Online].
Available: https://ieeexplore.ieee.org/document/8714862/

[12] U. Ruhrmair, F. Sehnke, J. S olter, G. Dror, S. Devadas, and J. u.
Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proceedings of the 17th ACM conference on Computer and
communications security - CCS ’10. ACM Press, 2010, p. 237. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1866307.1866335

[13] F. Ganji, D. Forte, and J.-P. Seifert, “Pufmeter a property testing tool for
assessing the robustness of physically unclonable functions to machine
learning attacks,” IEEE Access, vol. 7, pp. 122 513–122 521, 2019.

[14] J. Tobisch and G. T. Becker, “On the scaling of machine learning attacks
on pufs with application to noise bifurcation,” in Radio Frequency
Identification, S. Mangard and P. Schaumont, Eds. Cham: Springer
International Publishing, 2015, pp. 17–31.

[15] P. Santikellur and R. S. Chakraborty, “A computationally efficient tensor
regression network-based modeling attack on xor arbiter puf and its
variants,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 40, no. 6, pp. 1197–1206, 2020.

[16] K. T. Mursi, Y. Zhuang, M. S. Alkatheiri, and A. O. Aseeri,
“Extensive examination of XOR arbiter PUFs as security primitives
for resource-constrained IoT devices,” in 2019 17th International
Conference on Privacy, Security and Trust (PST). IEEE, 2019, pp.
1–9. [Online]. Available: https://ieeexplore.ieee.org/document/8949070/

[17] N. Wisiol, K. T. Mursi, J.-P. Seifert, and Y. Zhuang, “Neural-network-
based modeling attacks on xor arbiter pufs revisited.” IACR Cryptol.
ePrint Arch., vol. 2021, p. 555, 2021.

[18] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on
Computer and communications security, ser. CCS ’02. Association
for Computing Machinery, 2002, pp. 148–160.

[19] K. T. Mursi, B. Thapaliya, Y. Zhuang, A. O. Aseeri, and M. S.
Alkatheiri, “A fast deep learning method for security vulnerability study
of XOR PUFs,” Multidisciplinary Digital Publishing Institute (MDPI)
Electronics, vol. 9, no. 10, p. 1715, 2020, number: 10 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/2079-9292/9/10/1715

[20] http://www.pcp.in.tum.de/code/lr.zip.

