
HAL Id: hal-03767498
https://hal.science/hal-03767498v1

Submitted on 1 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Bin Packing with Predictions
Spyros Angelopoulos, Shahin Kamali, Kimia Shadkami

To cite this version:
Spyros Angelopoulos, Shahin Kamali, Kimia Shadkami. Online Bin Packing with Predictions. Thirty-
First International Joint Conference on Artificial Intelligence IJCAI-22, Jul 2022, Vienna, Austria.
pp.4574-4580, �10.24963/ijcai.2022/635�. �hal-03767498�

https://hal.science/hal-03767498v1
https://hal.archives-ouvertes.fr

Online Bin Packing with Predictions

Spyros Angelopoulos1, Shahin Kamali2, and Kimia Shadkami2

1CNRS and Sorbonne Université, Laboratoire d’Informatique de Paris 6, 4 Place Jussieu,
Paris, France 75252. email: spyros.angelopoulos@lip6.fr

2Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada. email:
shahin.kamali@umanitoba.ca, shadkamk@myumanitoba.ca

Abstract

Bin packing is a classic optimization problem with a wide range of applications from load
balancing in networks to supply chain management. In this work we study the online variant of
the problem, in which a sequence of items of various sizes must be placed into a minimum number
of bins of uniform capacity. The online algorithm is enhanced with a (potentially erroneous)
prediction concerning the frequency of item sizes in the sequence. We design and analyze online
algorithms with efficient tradeoffs between consistency (i.e., the competitive ratio assuming no
prediction error) and robustness (i.e., the competitive ratio under adversarial error), and whose
performance degrades gently as a function of the prediction error. This is the first theoretical
study of online bin packing in the realistic setting of erroneous predictions, as well as the first
experimental study in the setting in which the input is generated according to both static and
evolving distributions. Previous work on this problem has only addressed the extreme cases with
respect to the prediction error, has relied on overly powerful and error-free prediction oracles,
and has focused on experimental evaluation based on static input distributions.

1 Introduction

Bin packing is a classic optimization problem and one of the original NP-hard problems. Given a
set of items, each with a (positive) size, and a a bin capacity, the objective is to assign the items
to the minimum number of bins so that the sum of item sizes in each bin does not exceed the
bin capacity. Bin packing is instrumental in modeling resource allocation problems such as load
balancing and scheduling [CGJ96], and has many applications in supply chain management such
as capacity planning in logistics and cutting stock. Efficient algorithms for the problem have been
proposed within AI [Kor02, Kor03, FK07, SK13].

In this work we focus on the online variant of bin packing, in which the set of items is not
known in advance, but is rather revealed in the form of a sequence. Upon the arrival of a new
item, the online algorithm must either place it into one of the currently open bins, as long as
this action does not violate the bin’s capacity, or into a new bin. The online model has several
applications related to dynamic resource management such as virtual machine placement for server
consolidation [SXCL13, WMZ11] and memory allocation in data centers [BBV11].

We rely on the standard framework of competitive analysis for evaluating the performance of the
online algorithms. In fact, as stated in [CGJ96], bin packing has served as an early proving ground

1

ar
X

iv
:2

10
2.

03
31

1v
2

 [
cs

.D
S]

 7
 J

un
 2

02
1

for this type of analysis, in the broader context of online computation. The competitive ratio of
an online algorithm is the worst-case ratio of the algorithm’s cost (total number of opened bins)
over the optimal offline cost (optimal number of opened bins given knowledge of all items). For bin
packing, in particular, the standard performance metric is the asymptotic competitive ratio, in which
the optimal offline cost is unbounded (i.e., the sequence is arbitrarily long) [CGJ96].

While the standard online framework assumes that the algorithm has no information on the
input sequence, a recently emerged, and very active direction in machine learning seeks to leverage
predictions on the input. More precisely, the algorithm has access to some machine-learned information
on the input; this information is, in general, erroneous, namely there is a prediction error η associated
with it. The objective is to design algorithms whose competitive ratio degrades gently as the
prediction error increases. Following [LV18], we refer to the competitive ratio of an algorithm
with error-free prediction as the consistency of the algorithm, and to the competitive ratio with
adversarial prediction as its robustness. Several online optimization problems have been studied
in this setting, including caching [LV18, Roh20], ski rental and non-clairvoyant scheduling [PSK18,
WZ20], makespan scheduling [LLMV20], rent-or-buy problems [Ban20, AGP20, GP19], secretary
and matching problems [AGKK20, LMRX20], and metrical task systems [ACE+20]. See also the
survey [MV20].

1.1 Contribution

We give the first theoretical and experimental study of online bin packing with machine-learned
predictions. Previous work on this problem has either assumed ideal and error-free predictions (given
from a very powerful oracle), or only considered tradeoffs between consistency and robustness (see the
discussion in Section 1.2). In contrast, our algorithms exploit natural, and PAC-learnable predictions
concerning the frequency at which item sizes occur in the input, and our analysis incorporates the
prediction error into the performance guarantee. As in other works on this problem, we assume a
discrete model in which item sizes are integers in [1, k], for some constant k (see Section 2). This
assumption is not indispensable, and in Section 5.2 we extend to items with fractional sizes.

We first present and analyze ProfilePacking, which is an algorithm of optimal consistency,
and is also efficient if the prediction error is small. As the error grows, this algorithm may not be
robust; we show, however, that this is an unavoidable price that any optimally-consistent algorithm
with frequency predictions must pay. We thus design and analyze a class of hybrid algorithms that
combine ProfilePacking and any one of the known robust online algorithms, and which offer a
more balanced tradeoff between robustness and consistency. These algorithms are suited for the usual
setting of inputs generated from an unknown, but fixed distribution. We present a natural heuristic
that updates the predictions based on previously served items, and which is better suited for inputs
generated from distributions that change over time (e.g., in the case of evolving data [GBEB17]).

We perform extensive experiments on our algorithms. Specifically, we evaluate them on a variety
of publicly available benchmarks, such as the BPPLIB benchmarks [DIM], but also on distributions
studied in the context of offline bin packing, such as the Weibull distribution [CCO12]. The results
show that our algorithms outperform the known efficient algorithms without any predictions.

In terms of techniques, we rely on the concept of a profile set, which serves as an approximation
of the items that are expected to appear in the sequence, given the prediction. This is a natural
concept that may be further applicable in other online packing problems, such as multi-dimensional
packing [CKPT17] and vector packing [ACKS13]. It is worth pointing out that our theoretical
analysis is tied to frequency prediction with errors, and treats items “collectively”. In contrast, almost

2

all known online bin packing algorithms are analyzed using a weighting technique [CGJ96], which
treats each bin “individually”, and independently from the others (by assigning weights to items, and
independently comparing a bin’s weight in the online algorithm and the offline optimal solution).

1.2 Related work

Online bin packing has a long history of study. Simple algorithms such as FirstFit (which places
an item into the first bin of sufficient space, and opens a new bin if required), and BestFit (which
works similarly, except that it places the item into the bin of minimum available capacity which can
still fit the item) are 1.7-competitive [JDU+74]. Improving upon this performance requires more
sophisticated algorithms, and many such have been proposed in the literature. The currently best
upper bound on the competitive ratio is 1.57829 [BBD+18], whereas the best known lower bound is
1.54037 [BBG12]. The results above apply to the standard model in which there is no prediction on
the input. Other studies include sequential [GLO10] and stochastic settings [GR20].

The problem has also been studied under the advice complexitymodel [BKLL16, Mik16, ADK+18],
in which the online algorithm has access to some error-free information on the input called advice,
and the objective is to quantify the tradeoffs between the competitive ratio of the algorithm and the
size of the advice (in terms of bits). It should be emphasized that such studies are only of theoretical
interest, not only because the advice is assumed to have no errors, but also because it may encode
any information, with no learnability considerations (i.e., it may be provided by an omnipotent
oracle that knows the optimal solution).

Online bin packing was recently studied under an extension of the advice complexity model, in
which the advice may be untrusted [ADJ+20]. Here, the algorithm’s performance is evaluated only
at the extreme cases in which the advice is either error-free, or adversarially generated, namely with
respect to its consistency and its robustness, respectively. The objective is to find Pareto-efficient
algorithms with respect to these two metrics, as function of the advice size. However, this model is
not concerned with the performance of the algorithm on typical cases in which the prediction does
not fall in one of the two above extremes, does not incorporate the prediction error into the analysis,
and does not consider the learnability of advice. In particular, even with error-free predictions, the
algorithm of [ADJ+20] has competitive ratio as large as 1.5.

2 Online bin packing: model and predictions

We begin with some preliminary discussions related to our problem. The input to the online algorithm
is a sequence σ = a1, . . . , an, where ai is the size of the i-th item in σ. We denote by n the length of
σ, and by σ[i, j] the subsequence of σ that consists of items with indices i, . . . , j in σ.

We denote by k ∈ Z+ the bin capacity. Note that k is independent of n, and is thus constant. We
assume that the size of each item is an integer in [1, k], where k is the bin capacity. This is a natural
assumption on which many efficient algorithms for bin packing rely, e.g., [SK13, FK07, CJK+06].
Furthermore, without any restriction on the item sizes, [Mik16] showed that no online algorithm
with advice of size sublinear in the size of the input can have competitive ratio better than 1.17
(even if the advice is error-free). This negative result implies that some restriction on item sizes is
required so as to leverage frequency-based predictions. Nevertheless, in Section 5.2 we will extend
our algorithms so as to handle fractional items, and we express the performance “loss” due to such
items.

3

Given an online algorithm A (with no predictions), we denote by A(σ) its output (packing)
on input σ, and by |A(σ)| the number of bins in its output. We denote by Opt(σ) the offline
optimal algorithm with knowledge of the input sequence. The (asymptotic) competitive ratio of A is
defined [CGJ96] as limn→∞ supσ:|σ|=n |A(σ)|/|Opt(σ)|.

Consider a bin b. For the purposes of the analysis, we will often associate b with a specific
configuration of items that can be placed into it. We thus say that b is of type (s1, s2, . . . , sl, e),
with si ∈ [1, k], e ∈ [0, k] and

∑l
j=1 sj + e = k, in the sense that the bin can pack l items of sizes

s1, . . . , sl, with a remaining empty space equal to e. We specify that a bin is filled according to type
(s1, s2, . . . , sl, e), if it contains l items of sizes s1, . . . , sl, with an empty space e. Note that a type
induces a partition of k into l + 1 integers; we call each of the sl elements s1, . . . , sl in the partition
a placeholder. We also denote by τk the number of all possible bin types. Observe that τk depends
only on k and not on the length n of the sequence, and is constant, since k is constant.

Consider an input sequence σ. For any x ∈ [1, k], let nx,σ denote the number of items of size x in
σ. We define the frequency of size x in σ, denoted by fx,σ, to be equal to nx,σ/n, hence fx,σ ∈ [0, 1].
Our algorithms will use these frequencies as predictions. Namely, for every x ∈ [1, k], there is a
predicted value of the frequency of size x in σ, which we denote by f ′x,σ. The predictions come with
an error, and in general, f ′x,σ 6= fx,σ. To quantify the prediction error, let fσ and f ′σ denote the
frequencies and their predictions in σ, respectively, as points in the k-dimensional space. In line
with previous work on online algorithms with predictions, e.g. [PSK18], we can define the error η
as the L1 norm of the distance between fσ and f ′σ. It should be emphasized that unlike the ideal
predictions in previous work [ADJ+20], the item frequencies are PAC-learnable. Namely, for any
given ε > 0 and δ ∈ (0, 1], a sample of size Θ((k + log(1/δ))/ε2) is sufficient (and necessary) to
learn the frequencies of k item sizes with accuracy ε and error probability δ, assuming the distance
measure is the L1-distance (see, e.g., [Can20].)

In general, the error η may be bounded by a value H, i.e., we have η ≤ H. We can thus make
a distinction between H-aware and H-oblivious algorithms, depending on whether the algorithm
knows H. Such an upper bound may be estimated e.g., from available data on typical sequences.
Note however, that unless otherwise specified, we will assume that the algorithm is H-oblivious.

We denote by A(σ,f ′σ) the output of A on input σ and predictions f ′σ. To simplify notation, we
will omit σ when it is clear from context, i.e., we will use f ′ in place of f ′σ.

3 Profile packing

In this section we present an online algorithm with predictions f ′ which we call ProfilePacking.
The algorithm uses a parameter m, which is a sufficiently large, but constant integer, that will be
specified later. The algorithm is based on a the concept of a profile, denoted by Pf ′ , which is defined
as a multiset that consists of df ′xme items of size x, for all x ∈ [1, k]. One may think of the profile
as an “approximation” of the multiset of items that is expected as input, given the predictions f ′.

Consider an optimal packing of the items in the profile Pf ′ . Since the size of items in Pf ′

is bounded by k, it is possible to compute the optimal packing in constant time (e.g., using the
algorithm of [Kor02]). We will denote by pf ′ the number of bins in the optimal packing of all items
in the profile. Note that each of these pf ′ bins is filled according to a certain type that is specified
by the optimal packing of the profile. We will simplify notation and use P and p instead of Pf ′ and
pf ′ , respectively, when f ′ is implied.

We define the actions of ProfilePacking. Prior to serving any items, ProfilePacking opens

4

p empty bins of types that are in accordance with the optimal packing of the profile (so that there
are df ′xme placeholders of size x in these empty bins). When an item, say of size x, arrives, the
algorithm will place it into any placeholder reserved for items of size x, provided that such one exists.
Otherwise, i.e., if all placeholders for size x are occupied, the algorithm will open another set of p
bins, again of types determined by the optimal profile packing. We call each such set of p bins a
profile group. Note that the algorithm does not close any bins at any time, that is, any placeholder
for an item of size x can be used at any point in time, so long as it is unoccupied.

We require that ProfilePacking opens bins in a lazy manner, that is, the p bins in the profile
group are opened virtually, and each bin is counted in the cost of the algorithm only after receiving
an item. Last, suppose that for some size x, it is fx > 0, whereas its prediction is f ′x = 0. In this
case, x is not in the profile set P . ProfilePacking packs these special items separately from
others, using FirstFit. (See Appendix for pseudocode of all algorithms).

3.1 Analysis of ProfilePacking

We first show that in the ideal setting of error-free prediction, ProfilePacking is near-optimal. We
will use this result in the analysis of the algorithm in the realistic setting of erroneous predictions. We
denote by ε any fixed constant less than 0.2. We define m to be any constant such that m ≥ 3τkk/ε.

Lemma 1. For any constant ε ∈ (0, 0.2], and error-free prediction (f ′ = f), ProfilePacking has
competitive ratio at most 1 + ε.

Proof. Let ε′ = ε/3 and note that m ≥ τkk/ε′. Given an input sequence σ, denote by PP (σ,f ′) the
packing output by the algorithm. This output can be seen as consisting of g profile group packings
(since each time the algorithm allocates a new set of p bins, a new profile group is generated). Since
the input consists of n items, and the profile has at least m items, we have that g ≤ dn/me.

Given an optimal packing Opt(σ), we define a new packing, denoted by N , that not only packs
items in σ, but also additional items as follows. N contains all (filled) bins of Opt(σ), along with
their corresponding items. For every bin type in Opt(σ), we want that N contains a number of bins
of that type that is divisible by g. To this end, we add up to g − 1 filled bins of the same type in N .

We can argue that |N | is not much bigger than |Opt(σ)|. We have that |N | ≤ |Opt(σ)|+ (g −
1)τk < |Opt(σ)| + nτk/m ≤ |Opt(σ)|(1 + τkk/m) (since |Opt(σ)| ≥ dn/ke). We conclude that
|N | ≤ (1 + ε′)|Opt(σ)|.

By construction, N contains g copies of the same bin (i.e., bins that are filled according to the
same type). Equivalently, we can say that N consists of g copies of the same packing, and we denote
this packing by N . Let q = |N | be the number of bins in this packing. We will show that p is not
much bigger than q, which is crucial in the proof. The number of items of size x in the packing N is
at least dnx/ge, since N contains at least nx items of size x. We also can give the following lower
bound on dnx/ge:

5

dnx/ge ≥ nx/dn/me (g ≤ dn/me)
> nxm/(n+m) (dn/me < (n+m)/m)

= nx(m/n−m2/(n2 +mn))

≥ nxm/n−m2/(n+m) (nx ≤ n)
≥ dnxm/ne − 1−m2/(n+m)

> dnxm/ne − 2. (m2 < n)

In other words, for any x ∈ [1, k], N packs each item of size x that appears in the profile set,
with the exception of at most one such item. From the statement of ProfilePacking, and its
optimal packing of the profile set, we infer that q + k ≥ p. Note that q ≥ |Opt(σ)|/g ≥ n/(kg) ≥
n/(kdn/me) > (dn/mem−m)/(kdn/me) ≥ m/k−m2/kn > m/k−ε′ ≥ τk/ε′−ε′ > (τk−1)/ε′ > k/ε′.
We thus showed that q > k/ε′, and the inequality p ≤ q + k implies that p < q(1 + ε′). We conclude
that the number of bins in each profile group is within a factor (1 + ε′) of the number of bins in
N . Moreover, recall that PP (σ,f ′) consists of g profile groups, and N consists of g copies of N .
Combining this with previously shown properties, we have that |PP (σ,f ′)| ≤ g · p < g(1 + ε′)q ≤
(1 + ε′)(1 + ε′)|Opt(σ)| < (1 + 3ε′)|Opt(σ)| = (1 + ε)|Opt(σ)|.

Next, we analyze the algorithm in the realistic setting of erroneous predictions.

Theorem 2. For any constant ε ∈ (0, 0.2], and predictions f ′ with error η, ProfilePacking has
competitive ratio at most 1 + (2 + 5ε)ηk + ε.

Proof. Let f be the frequency vector for the input σ. Of course, f is unknown to the algorithm.
In this context, PP (σ,f) is the packing output by ProfilePacking with error-free prediction,
and from Lemma 1 we know that |PP (σ,f)| ≤ (1 + ε)|Opt(σ)|. Recall that Pf ′ denotes the profile
set of ProfilePacking on input σ with predictions f ′, and pf ′ denotes the number of bins in
the optimal packing of Pf ′ ; Pf and pf are defined similarly. We will first relate pf and pf ′ in
terms of the error η. Note that the multisets Pf and Pf ′ differ in at most

∑k
x=1 µx elements, where

µx = |dfxme − df ′xme|. We call these elements differing. We have µx ≤ |(fx − f ′x)m| + 1, hence∑k
x=1 µx ≤ k +

∑k
x=1 |(fx − f ′x)m| ≤ k + ηm. We conclude that the number of bins in the optimal

packing of Pf ′ exceeds the number of bins in the optimal packing of Pf by at most k + ηm, i.e.,
pf ′ ≤ pf + k + ηm.

Let g and g′ denote the number of profile groups in PP (σ,f) and PP (σ,f ′), respectively. We
aim to bound |PP (σ,f ′)|, and to this end we will first show a bound on the number of bins opened
by PP (σ,f ′) in its first g profile groups, then in on the number of bins in its remaining g′− g profile
groups (if g′ ≤ g, there is no such contribution to the total cost). For the first part, the bound
follows easily: There are g profile groups, each one consisting of pf ′ bins, therefore the number of
bins in question is at most g · pf ′ ≤ g(pf + k + ηm). For the second part, we observe that since
ProfilePacking is lazy, any item packed by PP (σ,f ′) in its last g′ − g packings has to be a
differing element, which implies from the discussion above that PP (σ,f ′) opens at most g(k + ηm)
bins in its last g′ − g profile groups. The result follows then from the following inequalities:

6

|PP (σ,f ′)|
≤ g(pf + k + ηm) + g(k + ηm)

= g(pf + 2k + 2ηm)

≤ g(pf + 2ηm(1 + ε)) (k ≤ εm)
≤ g(pf + 2ηpfk(1 + ε)) (pf ≥ dm/ke)
= g · pf (1 + 2ηk(1 + ε))

≤ |PP (σ,f)|(1 + 2ηk(1 + ε))

≤ (1 + ε)(1 + 2ηk(1 + ε))|Opt(σ)| (since |PP (σ,f)| ≤ (1 + ε)|Opt(σ)|)
= (1 + 2ηk(1 + ε)2 + ε)|Opt(σ)|
= (1 + 2ηk(1 + ε2 + 2ε) + ε)|Opt(σ)|
< (1 + ηk(2 + 5ε) + ε)|Opt(σ)|. (ε2 < ε/2)

Theorem 2 shows that ProfilePacking has competitive ratio that is linear in k. We can prove
that this is an unavoidable price that any online algorithm with frequency-based predictions must
pay. Specifically, we show the following negative result.

Theorem 3. Fix any constant c < 1. Then for any α > 0, with α ≤ 1/k, any algorithm with
frequency predictions that is (1 + α)-consistent has robustness at least (1− c)k/2.

Proof. Suppose that the prediction indicates that in the input sequence σ, half of the items have
size 1 and the other half have size k − 1, i.e., we have f ′x,σ = 1/2, if x ∈ {1, k − 1}, and f ′x,σ = 0,
otherwise. Define σ1 as the sequence that consists of n items of size 1 followed by n items of size
k − 1, and σ2 as the sequence that consists of n items of size 1 followed by n items of size 1. For
simplicity, assume n is divisible by k. Suppose first that the input is σ1, then the prediction is
error-free. Moreover, Opt(σ1) = n and hence for an algorithm A to be (1 + α)-consistent, no more
than αn+ o(n) bins should receive more than one item of size 1. This implies that A opens at least
(1− kα)n− o(n) bins for the first n items. Next, suppose that the input is σ2. We have f1,σ2 = 1
and fk−1,σ2 = 0, and consequently the error is η = 1. Moreover, Opt(σ2) = 2n/k, while the cost of
A is at least (1 − kα)n − o(n). The competitive ratio of A is at least ((1 − kα)n − o(n))/(2n/k).
Given that α ≤ c/k, A has robustness at least (1− c)k/2.

We conclude that the robustness of ProfilePacking is close-to-optimal and no (1+ε)-consistent
algorithm can do asymptotically better. It is possible, however, to obtain more general tradeoffs
between consistency and robustness, as we discuss in the next section.

Time complexity. We bound the overall time complexity of ProfilePacking for serving a
sequence of n items as a function of n, k, and m. The initial phase of the algorithm runs in time
independent of n. Therefore, the asymptotic time complexity is dominated by the time required to
pack the items into the appropriate bins.

For any x ∈ [1, k], one can maintain Nx and Ex (subsets of NonEmpty and Empty that contain
x) using a hash table, where keys are bin-types and values are the number of bins of a given type.

7

As such, for any i ∈ [1, n], we can pack σ[i] in Nx or Ex (assuming that they are not empty) in
O(1) amortized time. If both Nx and Ex are empty, the algorithm opens a new profile group. This
requires updating k hash tables (for any Ex for x ∈ [1, k]), where we add O(m) new bin-types to
each hash table. Consequently, the time complexity of adding a new profile group is O(mk).

In the ideal case η = 0, O(n/m) profile groups are opened and the time complexity of adding
profile groups is O(kn), which also defines the time complexity of the algorithm. If η > 0, there
are up to n profile groups, which results in a worst-case time complexity of O(kmn) for adding
profile groups. Note that when η > 0, up to Θ(n) items are special and served using FirstFit. The
complexity of packing these items (i.e., the complexity of FirstFit) is O(kn) which is dominated
by O(kmn), namely the time of adding profile groups. In conclusion, the worst-case time complexity
of ProfilePacking is O(kmn). Note that each item is served in amortized time O(km), which is
constant since k and m are constants.

We emphasize that our complexity bounds apply in the worst-case, and are rather pessimistic.
In practice, the algorithms run much faster; see Section 6.4.

4 A hybrid algorithm

In this section we obtain online bin packing algorithms of improved robustness. The main idea is to
let ProfilePacking serve only certain items, whereas the remaining ones are served by an online
algorithm A that is robust. In particular, let A denote any algorithm of competitive ratio cA, in the
standard online model in which there is no prediction. We will define a class of algorithms based on
a parameter λ ∈ [0, 1] which we denote by Hybrid(λ). Let a, b ∈ N+ be such that λ = a/(a+ b). We
require that the parameter m in the statement of ProfilePacking is a sufficiently large constant,
namely m ≥ 5τk max{k, a+ b}/ε.

Upon arrival of an item of size x ∈ [1, k], Hybrid(λ) marks it as either an item to be served by
ProfilePacking, or as an item to be served by A; we call such an item a PP-item or an A-item,
in accordance to this action. Moreover, for every x ∈ [1, k], Hybrid(λ) maintains two counters:
count(x), which is the number of items of size x that have been served so far, and ppcount(x),
which is the number of PP-items of size x that have been served so far.

We describe the actions of Hybrid(λ). Suppose that an item of size x arrives. If there is an
empty placeholder of size x in a non-empty bin, then the item is assigned to that bin (and to
the corresponding placeholder), and declared PP-item. Otherwise, there are two possibilities: If
ppcount(x) ≤ λ· count(x), then it is served using ProfilePacking and is declared PP-item. If
ppcount(x) > λ· count(x), then it is served using A and declared A-item.

Note that in Hybrid(λ), A and ProfilePacking maintain their own bin space, so when serving
according to one of these algorithms, only the bins opened by the corresponding algorithm are
considered. Thus, we can partition the bins used by Hybrid(λ) into PP-bins and A-bins.

Theorem 4. For any ε ∈ (0, 0.2] and λ ∈ [0, 1], Hybrid(λ) has competitive ratio (1 + ε)((1 + (2 +
5ε)ηk + ε)λ+ cA(1− λ)), where cA is the competitive ratio of A.

Proof. We define two partitions of the multiset of items in σ. The first partition is SPP ∪SA, where
SPP and SA are the PP-items and A-items of Hybrid(λ), respectively. The second partition is
S′PP ∪ S′A, where S′PP and S′A are defined such that for any x ∈ [1, k] there are bλnxc items of size x
in S′PP and nx − bλnxc items of size x in S′A. Given Opt(σ), we will define a new packing N , such
that every bin in N contains only items in S′PP or only items in S′A. Let NPP and NA denote the set

8

of bins in N that include items in S′PP and in S′A, respectively. Similarly, let BPP and BA denote
the set of bins in the packing of Hybrid(λ) that contain only PP-items (PP-bins) and A-items
(A-bins), respectively. We prove the following bounds for N , BPP and BA:

(i) |N | ≤ (1 + ε)|Opt(σ)|.

(ii) |BPP | ≤ (1 + (2 + 5ε)ηk + ε)|NPP |.

(iii) |BA| ≤ cA|NA|.

To prove the above bounds, We first explain how to derive N from Opt(σ). This is done
in a way that N contains the filled bins of Opt(σ) and up to (a + b)τk additional filled bins so
as to guarantee that the number of bins of each given type in N is divisible by a + b. Given
that m ≥ 5τk max{k, a + b}/ε, we can use an argument similar to the proof of Lemma 1 to show
|N | ≤ (1+ε)|Opt(σ)|. Since the number of bins of each type inN is divisible by a+b, we can partition
N into NPP and NA so that |NPP | ≤ a(1 + ε)|Opt(σ)|/(a+ b) and |NA| ≤ b(1 + ε)|Opt(σ)|/(a+ b).
That is, |NPP | ≤ λ(1 + ε)|Opt(σ)| and NA ≤ (1− λ)(1 + ε)|Opt(σ)|. Note that N not only packs
items in σ, but also additional items in the added bins. That implies that all items S′PP are packed
in NPP and all items in S′A are packed in NA, and hence (i) follows.

To prove (ii) and (iii), we note that SA ⊆ S′A which implies S′PP ⊆ SPP . This is because the
algorithm declares an item of size x as A-item only if ppcount(x) > λ count(x). Hence, at any
given time during the execution of Hybrid(λ), the number of A-items of size x is no more than a
fraction (1− λ) of count(x).

Next we will show property (ii). First, note that |BPP | = |PP (σPP ,f
′)|, where σPP is the

subsequence of σ formed by the PP -items, and PP abbreviates the output of ProfilePacking.
Consider a sequence σ′PP obtained by removing, for every x ∈ [1, k], the last dx items of size x from
σPP , where dx is the number of items of size x in SPP \ S′PP . We show next that |PP (σPP ,f

′)| =
|PP (σ′PP ,f

′)|. For any x, consider the last PP-item Lx of size x for which Hybrid(λ) opens a
new bin. At the time Lx is packed, ppcount(x) ≤ λ·count(x). Thus, by removing items of size
x that appear after Lx in σPP , the remaining items form a subsequence of σ′PP , and the number
of bins does not decrease. That implies that |PP (σPP ,f

′)| = |PP (σ′PP ,f
′)|. From Theorem 2,

|BPP | = |PP (σPP ,f
′)| = |PP (σ′PP ,f

′)| ≤ (1+(2+5ε)ηk+ε)|Opt(σ′PP)| ≤ (1+(2+5ε)ηk+ε)|NPP |.
Last, to show (iii), we note that the number of bins that Hybrid(λ) opens for items in SA is at

most cA|Opt(SA)| ≤ cA|Opt(S′A)| ≤ cA|NA|. This is because SA ⊆ S′A.
Using properties (i)-(iii), we obtain |Hybrid(σ,f ′)| = |BPP |+ |BA| ≤ (1+(2+5ε)ηk+ε)|NPP |+

cA|NA| ≤ (1 + (2 + 5ε)ηk + ε)λ(1 + ε)|Opt(σ)| + cA(1 − λ)(1 + ε)|Opt(σ)| = (1 + ε)((1 + (2 +
5ε)ηk + ε)λ+ cA(1− λ))|Opt(σ)|.

One can choose A as the algorithm of the best known competitive ratio [BBD+18]. However,
algorithms such as the one of [BBD+18] belong in a class that is tailored to worst-case competitive
analysis (namely the class of harmonic-based algorithms) and do not tend to perform well in typical
instances [KLO15]. For this reason, simple algorithms such as FirstFit and BestFit are preferred
in practice [CGJ96]. We obtain the following corollary.

Corollary 5. For any ε ∈ (0, 0.2] and λ ∈ [0, 1], there is an algorithm with competitive ratio
(1+ε)(1.5783+λ((2+5ε)ηk−0.5783+ε)). Furthermore, Hybrid(λ) using FirstFit has competitive
ratio (1 + ε)(1.7 + λ((2 + 5ε)ηk − 0.7 + ε)).

9

From Theorem 4, it follows that for Hybrid(λ) to be robust, one must chose λ = 1/Ω(k), which
in turn implies that the consistency is not much better than cA. But we can do substantially better
if an upper bound on the error H is known. Specifically, let H-Aware denote the algorithm which
executes Hybrid(1), if H < (cA − 1 − ε)/(k(2 + 5ε)), and Hybrid(0), otherwise. An equivalent
statement is that H-Aware executes ProfilePacking if H < (cA − 1 − ε)/(k(2 + 5ε)), and A,
otherwise. The following corollary follows directly from Theorem 4 with the observation that as long
as η < (cA − 1− ε)/(k(2 + 5ε)), ProfilePacking has a competitive ratio better than cA.

Corollary 6. For any ε ∈ (0, 0.2], H-Aware using algorithm A has competitive ratio min{cA, 1 +
(2 + 5ε)ηk + ε}, where cA is the competitive ratio of A. In particular, choosing FirstFit as A,
H-Aware has competitive ratio min{1.7, 1 + (2 + 5ε)ηk + ε}.

Time complexity. A fraction of at least λ items of each given size are served using ProfilePack-
ing and a fraction of at most 1− λ are served using A. This implies that the running time of the
algorithm is O(kmn+A(k, n)), where A(k, n) denotes the running time of A. In particular, if A is
FirstFit, we have A(k, n) = O(kn) (FirstFit can be implemented by maintaining a pointer for
each x ∈ [1, k] that points to the first bin in the packing with empty space of size at least x and
observing that any such pointer is updated at most n times in the course of the algorithm). Thus,
the time complexity of Hybrid(λ) is O(kmn). Once again, each item is served in O(1) amortized
time.

5 Extensions

5.1 An adaptive heuristic

In all previous algorithms the prediction does not change throughout their execution. While such
algorithms can be useful for inputs that are drawn from a fixed distribution, they may not always
perform well if the input sequence is generated from distributions that change with time, e.g., when
dealing with evolving data streams. We define a heuristic called Adaptive(w), in which predictions
are updated dynamically using a sliding window approach; see e.g. [GBEB17].

Adaptive(w) uses a parameter w ∈ N+ as follows. In the initial phase, Adaptive(w) serves
σ[1, w] using FirstFit; moreover, at the end of this phase, it computes fσ[1,w], namely the
frequency vector of all sizes in σ[1, w]. From this point onwards, the algorithm will serve items
using ProfilePacking with predictions f ′ which are initialized to fσ[1,w]. Specifically, every time
Adaptive(w) encounters item σ[iw], for i ∈ N+, it updates f ′ to fσ[(i−1)w+1,iw].

Time complexity. The running time of Adaptive(w) is dominated by computing an optimal
profile packing, which can be done in time O(mm+1). We note that this is only a crude upper bound,
and in practice, algorithms such as the one of Korf [Kor02, Kor03] perform much better in typical
instances; moreover, since m is a constant, theoretically this time is O(1). Given that the number of
profile groups is O(n/m), Adaptive(w) runs in time O(nmm). If we use FirstFitDecreasing
instead of an optimal algorithm (in Line 27), then it takes time O(m(logm+k)) to compute a profile
packing (sorting the items in the profile set requires time O(m logm) and FirstFit requires time
O(mk)). The overall running time of Adaptive(w) is thus O(n(logm+ k))) in this alternative. As
with all other algorithms, each item is served in O(1) amortized time.

10

5.2 Handling items with fractional sizes

As stated in Section 2, we assume that each item has integral size in [1, k], where k is the bin capacity.
We argue how to extend the algorithms and the analysis so as to handle items with sizes in [1, k]
that may be fractional. The main idea is to treat such fractional items as “special”, in the sense that
they are not predicted to appear in the sequence. ProfilePacking and Hybrid(λ) will then pack
these fractional items separately from all integral ones, using FirstFit.

For the analysis in this setting, we need a measure of “deviation” of the input sequence σ (that
may contain fractional items) from a sequence of integral sizes. The most natural approach is to
define this deviation as the L1 distance between σ, and the sequence in which each item is rounded
to the closest integer in [0, k]. However, we will show that this definition is very restrictive, in that
every online algorithm has consistency far from optimal, even if this deviation is arbitrarily small.

Given an input sequence σ which may include items of fractional sizes, we first need to clarify how
item frequencies are generated. Let bσe be derived from σ so that each fractional item is replaced
with its closest integer. Then we define f to be such that for every x ∈ Z+ with x ∈ [1, k], we have
fx,σ = fx,bσe. The prediction vector f ′ likewise concerns items of integral size in [1, k], and the error
η is the L1 distance between f ′ and f , as defined above.

Theorem 7. Let bxe denote the integer closest to x, and define d(σ) =
∑

x∈σ |x− bxe|. No online
algorithm can have competitive ratio better than 4/3, even if all frequency predictions are error-free
(that is, η = 0), and even if d(σ) = ε, for arbitrarily small ε > 0.

Proof. Let σ = σ1σ2, where σ1 consists of n items of size 0.5− ε/(2n), and σ2 consists of n items
of size 0.5 + ε/(2n). For simplicity, we assume that n and k are even integers. Suppose also that
f ′ is such that fx,bσe = 1, if x = k/2, and 0, otherwise (i.e., only items of size k/2 are predicted to
appear in σ). From the definition of error, it also follows that η = 0, and from the definition of the
deviation d, we have that d(σ) = ε.

Let A be any online algorithm, and note that A(σ1,f
′) = cn, for some c ≥ 1/2. Given that

Opt(σ1) = n/2, the competitive ratio of A is at least 2c. Out of the cn bins of A(σ1,f
′), n− cn

bins must have two items, whereas the remaining cn − (n − cn) = 2cn − n bins must have one
item. Any of these remaining bins can each accommodate another item from σ2. Therefore, out
of the n items in σ2, A can pack at most 2cn − n such items in the cn bins opened for σ1, and
it must place the remaining n − (2cn − n) = 2n − 2cn items in separate (new) bins. It follows
that A(σ,f ′) ≥ cn+ (2n− 2cn) = 2n− cn. Given that Opt(σ) = n, the competitive ratio of A is
therefore at least 2− c. In summary, the competitive ratio of A is max{2c, 2− c}, which is minimized
at 4/3 for c = 2/3.

Given the above negative result, a different measure of “deviation” is the ratio between the total
size of fractional items in σ over the total size of all items in σ. The following theorem shows that
this measure can better capture the performance of the algorithm in the fractional setting.

Theorem 8. Define d̂(σ) = (
∑

x∈σ,x6=bxc x)/(
∑

x∈σ x). Let A be any algorithm with frequency
predictions that has competitive ratio c if all items have integral size. Then there is an algorithm A′

that has competitive ratio at most c+ 2d̂(σ) for inputs with fractional sizes.

Proof. Let σI and σF be the subsequences of σ formed by integer and fractional items, respectively.
We can write A(σ) = A(σI) + FF (σF), where FF (σF) denotes the number of bins opened by
FirstFit when serving σF . For the number of bins opened for integer items, we have A(σI) ≤

11

A(σ) ≤ c ·Opt(σ). Let S(σ) and S(σF) denote the total size of items in σ and σF , respectively,
that is S(σ) =

∑
x∈σ x, and S(σF) =

∑
x∈σ,x6=bxc x. From definition, we have d̂(σ) = S(σF)/S(σ).

Note that FF (σF) ≤ 2S(σF)/k + 1; this is because any pair of consecutive bins contains items of
total size k/2 or larger. Therefore, FF (σF) ≤ 2d̂(σ)S(σ)/k + 1 ≤ 2d̂(σ)Opt(σ) + 1. In summary,
we have A(σ) ≤ c ·Opt(σ) + 2d̂(σ)Opt(σ) + 1, therefore the (asymptotic) competitive ratio of A is
at most c+ 2d̂(σ).

5.3 VM placement: inputs with large items

As discussed in the Introduction, an important application of online bin packing is Virtual Machine
(VM) placement in large data centers. Here, each VM corresponds to an item whose size represents
the resource requirement of the VM, and each bin corresponds to a physical machine (i.e., host) of a
given capacity k. In the context of this application, the consolidation ratio [BB12] is the number of
VMs per host, in typical scenarios. Note that the consolidation ratio is typically much smaller than
k. For example, VMware server virtualization achieves a consolidation ratio of up to 15:1 [VMw],
while Intel’s virtualization infrastructure gives a consolidation ratio of up to 20:1 [Ove10]. Let us
denote by r the consolidation ratio (but note that this quantity is an integer).

The fact that the consolidation ratio is typically much smaller than k has implications in the
analysis of our algorithms. Specifically, we can express the competitive ratio of ProfilePacking
and Hybrid(λ) as a function of r instead of k, as shown in the following result.

Theorem 9. Consider an instance of online bin packing with bins of capacity k, in which the item
sizes are such that at most r items can fit into a bin, for some r ≤ k. Then, for any constant
ε ∈ (0, 0.2], and predictions f ′ with error η, the following hold: (I) ProfilePacking has competitive
ratio at most 1 + (2 + 5ε)ηr + ε; and (II) for any λ ∈ [0, 1], Hybrid(λ) has competitive ratio
(1 + ε)((1 + (2 + 5ε)ηr + ε)λ+ cA(1− λ)), where cA is the competitive ratio of the algorithm A that
is combined with Hybrid(λ).

Proof. The proof of (I) is identical to that of Theorem 2, except that in the fourth inequality
we use the fact that pf ≥ dm/re (instead of pf ≥ dm/ke), given that at most r items fit into
each bin. Moreover, in all subsequent inequalities in the proof, k is replaced with r. The proof
of (II) is identical to that of Theorem 4, except that property (ii) in the proof is replaced by
|BPP | ≤ (1 + (2 + 5ε)ηr+ ε)|NPP |, which directly follows from the same arguments and by applying
part (I) instead of Theorem 2.

Similarly, we can generalize Theorem 3 and obtain the following impossibility result.

Theorem 10. Consider an instance of online bin packing with bins of capacity k, in which the item
sizes are such that at most r items can fit into a bin, for some r ≤ k. Fix any constant c < 1. Then
for any α > 0, with α ≤ 1/r, any algorithm with frequency predictions that is (1 + α)-consistent has
robustness at least (1− c)r/2.

Note that in Theorems 9 and 10, the robustness of the algorithms is now a function of r, and not
a function of k, as in Theorems 2 and 4.

12

6 Experimental evaluation

6.1 Benchmarks
Several benchmarks have been used in previous work on (offline) bin packing (see [CCO12] for a list
of related work). These benchmarks typically rely on either uniform or normal distributions. There
are two important issues to take into account. First, such simple distributions are often unrealistic
and do not capture typical applications of bin packing such as resource allocation [Gen98]. Second,
in what concerns online algorithms, simple algorithms such as FirstFit and BestFit are very
close to optimal for input sequences generated from uniform distributions [CGJ96] and very often
outperform, in practice, many online algorithms of better competitive ratio [KLO15].

We evaluate our algorithms on two types of benchmarks. The first type is based on the Weibull
distribution, and was first studied in [CCO12] as a model of several real-world applications of bin
packing, e.g., the 2012 ROADEF/EURO Challenge on a data center problem provided by Google and
several examination timetabling problems. The Weibull distribution is specified by two parameters:
the shape parameter sh and the scale parameter sc (with sh, sc > 0). The shape parameter defines
the spread of item sizes: lower values indicate greater skew towards smaller items. The scale
parameter, informally, has the effect of stretching out the probability density. In our experiments, we
chose sh ∈ [1.0, 4.0]. This is because values outside this range result in trivial sequences with items
that are generally too small (hence easy to pack) or too large (for which any online algorithm tends
to open a new bin). The scale parameter is not critical, since we scale items to the bin capacity, as
discussed later; we thus set sc = 1000, in accordance with [CCO12].

The second type of benchmarks is generated from the BPPLIB Bin Packing Library [DIM]. This
is a collection of bin packing benchmarks used in various works on (offline) algorithms for bin packing.
We report experimental results for different benchmarks of the BPPLIB Bin Packing Library [DIM],
in particular the benchmarks “GI" [GI16], “Schwerin" [SW97], “Randomly_Generated" [DIM14],
“Schoenfield_Hard28" [Sch02] and “Wäscher" [WG96].

6.2 Input generation

We fix the size of the sequence to n = 106. We set the bin capacity to k = 100, and we also scale
down each item to the closest integer in [1, k]. This choice is relevant for applications such as Virtual
Machine placement, as we explained in Section 5.3. We generate two classes of input sequences.
Sequences from a fixed distribution. For Weibull benchmarks, the input sequence consists of items
generated independently and uniformly at random, for the shape parameter set to sh = 3.0. For
BPPLIB benchmarks, each item is chosen uniformly and independently at random from the item
sizes in one of the benchmark files; this file is also chosen uniformly at random.
Sequences from an evolving distribution. Here, the distribution of the input sequence changes every
50000 items. Namely, the input sequence is the concatenation of n/50000 subsequences. For Weibull
benchmarks, each subsequence is a Weibull distribution, whose shape parameter is chosen uniformly
at random from [1.0, 4.0]. For BPPLIB benchmarks, each subsequence is generated by choosing a
file uniformly at random, then generating 50000 items uniformly at random from that specific file.

6.3 Compared algorithms, predictions and error

We evaluate Hybrid(λ) using FirstFit, for λ ∈ {0, 0.25, 0.5, 0.75, 1}. This means that Hybrid(0)
is identical to FirstFit, whereas Hybrid(1) is identical to ProfilePacking. We fix the size of the

13

profile set tom = 5000. To ensure a time-efficient and simplified implementation of ProfilePacking,
we use the FirstFitDecreasing algorithm [CGJ96] to compute the profile packing, instead of an
optimal algorithm. FirstFitDecreasing first sorts items in the non-increasing order of their sizes
and then applies the FirstFit algorithm to pack the sorted sequence. Using FirstFitDecreasing
helps reduce the time complexity, in particular with regards to Adaptive(w), which must compute
a new profile packing every time it updates the frequency prediction. The experimental results only
improve by using an optimal profile packing instead of FirstFitDecreasing.

We evaluate Hybrid(λ) on fixed distributions, since it is tailored to this type of input. We
generate the frequency predictions to Hybrid(λ) as follows: For a parameter b ∈ N+, we define
the predictions f ′ as fσ[1,b]. In words, we use a prefix of size b of the input σ so as to estimate
the frequencies of item sizes in σ. In our experiments, we consider 100 different prefix sizes. More
precisely, we consider all b of the form b = b100 · 1.05ic, with i ∈ [25, 125]. We also evaluate
Adaptive(w) for 100 values of the sliding window w, equidistant in the range [100, 100000].

We define the prediction error η as the L1 distance between the predicted and the actual
frequencies. Note that for a given input sequence, η is a function of the prefix size b. Since we
consider 100 distinct values for b , for each sequence we consider 100 possible error values. It is
expected that the prediction error decreases in b, which is confirmed in our experiments, as we will
discuss.

As explained earlier, FirstFit and BestFit perform very well in practice, and we use them as
benchmarks for comparing our algorithms. As often in offline bin packing, we also report the L2
lower bound [MT90, FK07] as a lower-bound estimation of the optimal (offline) bin packing solution.

6.4 Implementation details and runtimes

We implemented the algorithms introduced in the main paper (ProfilePacking, Hybrid(λ), and
Adaptive(w)) and compared them to the benchmark algorithms FirstFit, BestFit, and the L2
lower bound of Opt. All these algorithms were implemented in Java. The specifications of the
platform on which we run the experiments is shown in Table 1.

We run experiments on input sequences of length n = 106, with parameters k and m chosen
to be equal to k = 100 and m = 5000. The average time to serve the entire input sequence with
items generated independently at random using the Weibull distribution (with the shape parameter
3.0) is as follows (average is taken over 20 runs of the algorithms so as to have reliable results).
ProfilePacking: 2.995 seconds, Hybrid(λ) with λ = (0.25, 0.5, 0.75): 0.683, 1.394, 2.054 seconds,
respectively (with prediction error η = 0.193), and finally Adaptive(w) takes 1.092 seconds.

Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz
RAM 8.00 GB (7.86 GB usable)
System 64-bit operating system, x64-based processor
Operating System Windows 10 Home, version 1909, OS build 18363.1316
Java version 15.0.1; Java(TM) SE Runtime Environment (build 15.0.1+9-18); Java HotSpot(TM) 64-Bit

Server VM (build 15.0.1+9-18, mixed mode, sharing)

Table 1: Experimental Setup

14

6.5 Results and discussion

Fixed distributions Figure 1 depicts the cost of the algorithms for a typical sequence, as function
of the prediction error. The chosen files are “csBA125_9" (for “GI"), “Schwerin2_BPP32" (for
“Shwerin"), “BPP_750_50_0.1_0.8_2" (for “Randomly_Generated"), “Hard28_BPP832" (for
“Schoenfield_Hard28"), and “Waescher_TEST0082" (for “Wäscher”). We consider a single sequence,
as opposed to averaging over multiple sequences, because each input sequence is associated with
its own prediction error, for any given prefix size (and naively averaging over both the cost and
the error may produce misleading results). We can use a single sequence because the input size is
considerable (n = 106), and the distribution is fixed. Nevertheless, in Section 6.7 we explain how to
properly average over multiple sequences, and we report similar plots and conclusions. The largest
value of prediction error in our experiments is 0.3622 for the Weibull instance, and 0.3082 for the GI
instance.

For all benchmarks, we observe that ProfilePacking (λ = 1) degrades quickly as the error
increases, even though it has very good performance for small values of error. As λ decreases, we
observe that Hybrid(λ) becomes less sensitive to error, which confirms the statement of Corollary 5.

For the Weibull benchmarks, Hybrid(λ) dominates both FirstFit and BestFit for all λ ∈
{0.25, 0.5, 0.75} and for all η < 0.27, approximately. For the GI benchmarks, Hybrid(λ) dominates
FirstFit and BestFit for λ ∈ {0.25, 0.5}, and for practically all values of error. In the “Shwerin"
benchmark, all items have sizes in the range [15, 20]. As such, very good predictions can be obtained
by observing a tiny part of the input sequence, i.e., for small values of the prefix size b. In particular,
the smallest value of b = 391 results in η < 0.099, whereas for the largest value of b, namely b = 22448,
we have that η < 0.0078. As illustrated in Figure 1c, the smaller the parameter λ, the better the
performance of Hybrid(λ); in particular, ProfilePacking performs the best. The results suggest
that for inputs from a small set of item sizes, it is beneficial to choose a small value of λ. This can
be explained by the fact that the prediction error is relatively smaller for these types of inputs. Note
that this finding can be useful in the context of applications such as virtual machine placement in
cloud computing: this is because there is only a small number of different virtual machines that can
be assigned to any given physical machine. See also the discussion in Section 5.3. For the remaining
benchmarks, namely “Randomly_Generated", “Schoenfield_Hard28", and “Wäscher”, the algorithms
exhibit similar performance to the GI benchmark.

In summary, the results demonstrate that frequency-based predictions indeed lead to performance
gains. Even for very large prediction error (i.e., a prefix size as small as b = 338) Hybrid(λ) with
λ ≤ 0.5) outperforms both FirstFit and BestFit, therefore the performance improvement comes
by only observing a tiny portion of the input sequence.

Evolving distributions We report experiments on the performance of Adaptive(w). Recall that
w is the sliding window that determines how often the prediction is updated. This is a parameter
that must be chosen judiciously: if w is too small, we do not obtain sufficient information on the
frequencies, whereas if w is too big, the predictions become “stale”.

Figure 2 depicts the number of bins opened by Adaptive(w) as a function of w for different
benchmarks. Here we report the average cost of the algorithms over 20 randomly generated sequences.
We observe that for the benchmarks “Weibull" and “GI" benchmarks, there is a relatively wide range
for w that leads to marked performance improvement, in comparison to FirstFit and BestFit,
namely w ∈ [2100, 25000]. For the benchmarks “Randomly_Generated" and “Schoenfield_Hard28",
we observe that Adaptive(w) exhibits similar performance as the value of w changes, that is, the

15

error (η)

nu
m

be
r o

f b
in

s

360000

370000

380000

390000

400000

410000

0.05 0.10 0.15 0.20 0.25 0.30 0.35

L2 Lower Bound (Opt) First Fit Best Fit Hybrid (Lambda = 0.25)
Hybrid (Lambda = 0.5) Hybrid (Lambda = 0.75) Profile Packing (Lambda = 1)

(a) Weibull distribution.

error (η)

nu
m

be
r

of
 b

in
s

400000

420000

440000

460000

480000

0.05 0.10 0.15 0.20 0.25 0.30

L2 Lower Bound (Opt) First Fit Best Fit Hybrid (Lambda = 0.25)
Hybrid (Lambda = 0.5) Hybrid (Lambda = 0.75) Profile Packing (Lambda = 1)

(b) GI benchmark from BPPLIB.

error (η)

nu
m

be
r o

f b
in

s

175000

180000

185000

190000

195000

200000

0.02 0.04 0.06 0.08 0.10

 L2 Lower Bound (Opt) First Fit Best Fit Hybrid (λ = 0.25)
Hybrid (λ = 0.5) Hybrid (λ = 0.75) Profile Packing (λ = 1)

Schewerin Fixed

(c) Shwerin benchmark from BPPLIB.

Error (η)

nu
m

be
r o

f b
in

s

425000

450000

475000

500000

525000

0.05 0.10 0.15 0.20 0.25 0.30 0.35

L2 Lower Bound (Opt) First Fit Best Fit Hybrid (λ = 0.25)
Hybrid (λ = 0.5) Hybrid (λ = 0.75) Profile Packing (λ = 1)

RandomlyGenerated Fixed

(d) Randomly_Generated benchmark from BPPLIB.

error (η)

nu
m

be
r o

f b
in

s

375000
380000
385000
390000
395000
400000
405000
410000
415000
420000

0.05 0.10 0.15 0.20 0.25 0.30

 L2 Lower Bound (Opt) First Fit Best Fit Hybrid (λ = 0.25)
Hybrid (λ = 0.5) Hybrid (λ = 0.75) Profile Packing (λ = 1)

Hard28 Fixed

(e) Schoenfield_Hard28 benchmark from BPPLIB.

error (η)

nu
m

be
r o

f b
in

s

280000

285000

290000

295000

0.05 0.10 0.15 0.20 0.25

L2 Lower Bound (Opt) First Fit Best Fit Hybrid (λ = 0.25)
Hybrid (λ = 0.5) Hybrid (λ = 0.75) Profile Packing (λ = 1)

Wascher Fixed

(f) Wäscher benchmark from BPPLIB.

Figure 1: Number of opened bins for sequences from a fixed distribution. For the purpose of
visualization, some of the plots are truncated, e.g., the plot of ProfilePacking in (c) and (d).

number of opened bins is minimized when w takes values in the range [2000,4000]; this holds also
for “Schwerin" (Figure 2c) although the difference is marginal in this case. We also observe that
for “Randomly_Generated" and “Schoenfield_Hard28", the performance curve of Adaptive(w) is
similar to that on the GI benchmark of the main paper.

16

When Adaptive(w) opens a new profile group, the predicted frequencies are updated based
on the w most recently packed items. These w items follow a distribution that may have changed
since the time a new profile group was opened. As such, the performance of Adaptive(w) depends
on how diverse are the distributions that form the benchmark. In particular, for “Schwerin", the
distribution does not evolve drastically, which explains why Adaptive(w) performs consistently
better than FirstFit and BestFit. This is not in case for the “Wäscher" benchmark, and here
Adaptive(w) does not offer any advantage over FirstFit and BestFit. Note, however, that these
two baseline algorithms are remarkably close to the L2 lower bound, which means that they output
near-optimal packings for this benchmark, and which in turn leaves very little room for any potential
improvement. These experiments demonstrate that even though Adaptive(w) yields improvements
in many situations, there are settings in which more sophisticated approaches will be required, as we
explain in the Conclusions section of the main paper.

6.6 Experiments on the profile size

In previous experiments, we assumed that the profile size is m = 5000. In this section we report
experiments on other values of m. More precisely, we evaluated the performance on two sequences
of length n = 106 in which the item sizes are generated using Weibull distribution (with sh = 3) and
the GI-benchmark, respectively, as in Section 6.2. of the main paper. As before, we choose k = 100.
Predictions are generated based on a prefix of length b = 1000 of the input; this corresponds to
error values of η = 0.1922 and η = 0.2045 for the Weibull and GI-instances, respectively. We run
Hybrid(λ) (λ ∈ {0.25, 0.5, 0.75, 1}) for 100 different values of m, equidistant in [100, 100100].

Figure 3 depicts the number of bins opened by the algorithms. The experiments show that the
parameter m has little impact on the performance of Hybrid(λ), that is, as long as m is sufficiently
large (e.g., when m ≥ 1000), the performance of Hybrid(λ) is consistent and independent of the
choice of m.

6.7 Further experiments on fixed distribution
In the experiments on Hybrid(λ) for a fixed distribution that we presented in the main paper, we
showed the performance of the algorithm on a typical sequence. More precisely, as explained in
Section 6.5, we considered a single sequence, as opposed to averaging the cost of the algorithm over
multiple input sequences, because each input sequence is associated with its own prediction error, for
any given size of the prefix (and averaging over both the cost and the error may produce misleading
results). We argued that this should not be an issue, because the input sequence is of considerable
size (n = 106), and the distribution is fixed.

In this section we present further experimental results based on averaging over both the cost
and the error which give further justification for this choice. Our setting here is as follows: Given a
fixed distribution (either Weibull with sh = 3, or a file from the GI Benchmark), we generate 20
random sequences. For each sequence, we compute FirstFit, BestFit, and the L2 lower bound.
The average costs of these algorithms, over the 20 sequences, serve as the benchmark costs for
comparison.

For Hybrid(λ), and every λ ∈ [0.25, 0.5, 0.75, 1], we generate predictions for 100 values of the
prefix size b (where b is of the form b = 100 · 1.05i, with i ∈ [25, 125], as in the main paper). Consider
a sequence σ. For each of the above predictions for σ, we compute the prediction error as well as the
cost of Hybrid(λ) on σ with the corresponding prediction and store a pair of the form (error,

17

sliding window (w)

nu
m

be
r

of
 b

in
s

345000

350000

355000

360000

0 25000 50000 75000

L2 Lower Bound (Opt) First Fit Best Fit Adaptive

WeibullDynamic

(a) Weibull distribution.

sliding window (w)

nu
m

be
r

of
 b

in
s

375000

380000

385000

390000

395000

400000

0 25000 50000 75000

L2 Lower Bound (Opt) First Fit Best Fit Adaptive

GI Dynamic

(b) GI benchmark from BPPLIB.

sliding window (w)

nu
m

be
r o

f b
in

s

175000

180000

185000

190000

195000

200000

0 25000 50000 75000

L2 Lower Bound(Opt) First Fit Best Fit Adaptive

Scherwin Adaptive

(c) Shwerin benchmark from BPPLIB.

sliding window (w)

nu
m

be
r o

f b
in

s
440000

450000

460000

470000

480000

0 25000 50000 75000

L2 Lower Bound(Opt) First Fit Best Fit Adaptive

Randomly Generated Adaptive

(d) Randomly_Generated benchmark from BPPLIB.

sliding window (w)

nu
m

be
r o

f b
in

s

385000

390000

395000

400000

405000

410000

0 25000 50000 75000 100000

L2 Lower Bound(Opt) First Fit Best Fit Adaptive

Hard28 adaptive

(e) Hard28 benchmark from BPPLIB.

sliding window (w)

nu
m

be
r o

f b
in

s

150000

160000

170000

180000

190000

200000

0 25000 50000 75000

L2 Lower Bound(Opt) First Fit Best Fit Adaptive

Wascher evolving

(f) Wäscher benchmark from BPPLIB.

Figure 2: Number of opened bins for sequences from an evolving distribution.

cost), where error is the error with a two-digit decimal precision, and the cost is the cost of the
algorithm. For example, if error = 0.2341 and cost = 143000, we store the pair (0.23, 143000).
This means that for a fixed sequence, we store up to 100 such pairs (assuming η < 1). Last, we
evaluate the average of pairs with the same rounded error over the 20 sequences. For example, if for
σ1 we have obtained the pair (0.23,100000), for σ2 the pair (0.23, 150000), and for σ3 the pair (0.23,
350000), then we take the average as the pair (0.23, 200000).

Figure 4 depicts the plots obtained by this method, for both the Weibull and the GI benchmarks.
We observe that Hybrid(λ) exhibits similar performance tradeoffs as the plots for a single sequence,
namely Figure 1 in the main paper.

18

profile size (m)

nu
m

be
r o

f b
in

s

360000

370000

380000

390000

0 25000 50000 75000

L2 Lower Bound(Opt) First Fit Best Fit Hybrid (λ = 0.25)
Hybrid (λ = 0.5) Hybrid (λ = 0.75) Profile Packing (λ = 1)

Profile Experiment Weibull

(a) Weibull benchmark.

profile size (m)

nu
m

be
r o

f b
in

s

400000

420000

440000

460000

480000

0 25000 50000 75000

L2 Lower Bound(Opt) First Fit Best Fit Hybrid (λ = 0.25)
Hybrid (λ = 0.5) Hybrid (λ = 0.75) Profile Packing (λ = 1)

profile experiment GI

(b) GI benchmark from BPPLIB.

Figure 3: Number of opened bins as function of the profile size.

error (η)

nu
m

be
r o

f b
in

s

360000

370000

380000

390000

400000

410000

0.05 0.10 0.15 0.20 0.25 0.30 0.35

L2 Lower Bound(Opt) First Fit Best Fit Hybrid (λ = 0.25)
Hybrid (λ = 0.5) Hybrid (λ = 0.75) Profile Packing (λ = 1)

AVG Error Weibull

(a) Weibull benchmark.

error (η)

nu
m

be
r o

f b
in

s

400000

420000

440000

460000

480000

0.05 0.10 0.15 0.20 0.25 0.30

L2 Lower Bound(Opt) First Fit Best Fit Hybrid (λ = 0.25)
Hybrid (λ = 0.5) Hybrid (λ = 0.75) Profile Packing (λ = 1)

AVG Error Weibull

(b) GI Benchmark from BPPLIB.

Figure 4: Average number of bins vs average error over 20 sequences.

7 Conclusion

We gave the first results for online bin packing in a setting in which the algorithm has access to
learnable predictions. We believe that our approach can be applicable to generalizations of the
problem such as online vector bin packing [ACKS13]. Here, it will be crucial to devise time-efficient
profile packing algorithms, since the profile size increases exponentially in the vector dimension.

Previous work on the experimental evaluation of online bin packing algorithms has focused on
fixed input distributions. In our work we supplemented the analysis with a model for evolving input
distributions, as well as a heuristic based on a sliding window. This should be considered only as a
first step towards this direction. Future work needs to address more sophisticated input models and
algorithms, drawn from the rich literature on evolving data streams; see e.g., the survey [KMG+17].

References

[ACE+20] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Si-
mon. Online metric algorithms with untrusted predictions. In Proceedings of the 37th

19

International Conference on Machine Learning (ICML), pages 345–355, 2020.

[ACKS13] Yossi Azar, Ilan Reuven Cohen, Seny Kamara, and Bruce Shepherd. Tight bounds for
online vector bin packing. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), pages 961–970, 2013.

[ADJ+20] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc P. Renault.
Online computation with untrusted advice. In Proceedings of the 11th Innovations in
Theoretical Computer Science Conference (ITCS), pages 52:1–52:15, 2020.

[ADK+18] Spyros Angelopoulos, Christoph Dürr, Shahin Kamali, Marc P. Renault, and Adi Rosén.
Online bin packing with advice of small size. Theory of Computing Systems, 62(8):2006–
2034, 2018.

[AGKK20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and
online matching problems with machine learned advice. In Proceedings of the 33rd
Conference on Neural Information Processing Systems (NeurIPS), 2020.

[AGP20] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ML predictions for
online algorithms. In International Conference on Machine Learning (ICML), pages
303–313. PMLR, 2020.

[Ban20] Soumya Banerjee. Improving online rent-or-buy algorithms with sequential decision
making and ML predictions. In Proceedings of the 33rd Conference on Neural Information
Processing Systems (NeurIPS), 2020.

[BB12] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurr. Comput. Pract. Exp., 24(13):1397–1420, 2012.

[BBD+18] János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A new
and improved algorithm for online bin packing. In Proceedings of the 26th European
Symposium on Algorithms (ESA), volume 112, pages 5:1–5:14, 2018.

[BBG12] János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain classes
of bin packing algorithms. Theoretical Computer Science, 440:1–13, 2012.

[BBV11] Doina Bein, Wolfgang Bein, and Swathi Venigella. Cloud storage and online bin packing.
In Proceedings of the 5th International Symposium on Intelligent Distributed Computing
(IDC), pages 63–68. Springer, 2011.

[BKLL16] Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz. Online bin
packing with advice. Algorithmica, 74(1):507–527, 2016.

[Can20] Clément L. Canonne. A short note on learning discrete distributions, 2020. arXiv
math.ST:2002.11457.

[CCO12] Ignacio Castiñeiras, Milan De Cauwer, and Barry O’Sullivan. Weibull-based benchmarks
for bin packing. In Proceedings of the 18th International Conference on Principles and
Practice of Constraint Programming (CP), volume 7514, pages 207–222, 2012.

20

[CGJ96] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin
packing: A survey. In Approximation Algorithms for NP-Hard Problems, page 46–93.
Springer, 1996.

[CJK+06] Janos Csirik, David S Johnson, Claire Kenyon, James B Orlin, Peter W Shor, and
Richard R Weber. On the sum-of-squares algorithm for bin packing. Journal of the
ACM (JACM), 53(1):1–65, 2006.

[CKPT17] Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approxi-
mation and online algorithms for multidimensional bin packing: A survey. Comput. Sci.
Rev., 24:63–79, 2017.

[DIM] M. Delorme, M. Iori, and S. Martello. BPPLIB–a bin packing problem library. http:
//or.dei.unibo.it/library/bpplib, Accessed: 2021-05-2.

[DIM14] Maxence Delorme, Manuel Iori, and Silvano Martello. Bin packing and cutting stock
problems: mathematical models and exact algorithms. In Decision models for smarter
cities, 2014.

[FK07] Alex S. Fukunaga and Richard E. Korf. Bin completion algorithms for multicontainer
packing, knapsack, and covering problems. Journal of Artificial Intelligence Research
(JAIR), 28:393–429, 2007.

[GBEB17] Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, and Albert Bifet. A
survey on ensemble learning for data stream classification. ACM Computing Surveys
(CSUR), 50(2):1–36, 2017.

[Gen98] Ian P. Gent. Heuristic solution of open bin packing problems. Journal of Heuristics,
3(4):299–304, 1998.

[GI16] Timo Gschwind and Stefan Irnich. Dual inequalities for stabilized column generation
revisited. INFORMS Journal on Computing, 28(1):175–194, 2016.

[GLO10] András György, Gábor Lugosi, and György Ottucsák. On-line sequential bin packing.
Journal of Machine Learning Research, 11:89–109, 2010.

[GP19] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with
expert advice. In Proceedings of the 36th International Conference on Machine Learning
(ICML), pages 2319–2327, 2019.

[GR20] Varun Gupta and Ana Radovanovic. Interior-point-based online stochastic bin packing.
Operations Research, 68(5):1474–1492, 2020.

[JDU+74] David S. Johnson, A. Demers, J. D. Ullman, Michael R. Garey, and Ronald L. Graham.
Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM
Journal on Computing (SICOMP), 3:256–278, 1974.

[KLO15] Shahin Kamali and Alejandro López-Ortiz. All-around near-optimal solutions for the
online bin packing problem. In International Symposium on Algorithms and Computation
(ISAAC), pages 727–739, 2015.

21

http://or.dei.unibo.it/library/bpplib
http://or.dei.unibo.it/library/bpplib

[KMG+17] Bartosz Krawczyk, Leandro L Minku, João Gama, Jerzy Stefanowski, and Michał
Woźniak. Ensemble learning for data stream analysis: A survey. Information Fusion,
37:132–156, 2017.

[Kor02] Richard E. Korf. A new algorithm for optimal bin packing. In Proceedings of the 18th
AAAI Conference on Artificial Intelligence, pages 731–736, 2002.

[Kor03] Richard E. Korf. An improved algorithm for optimal bin packing. In Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI), pages 1252–1258,
2003.

[LLMV20] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In Proceedings of the 14th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1859–1877, 2020.

[LMRX20] Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and
instance-robust predictions for online matching, flows and load balancing. CoRR,
abs/2011.11743, 2020.

[LV18] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned
advice. In Proceedings of the 35th International Conference on Machine Learning (ICML),
pages 3302–3311, 2018.

[Mik16] Jesper W. Mikkelsen. Randomization can be as helpful as a glimpse of the future in
online computation. In Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), volume 55, pages 39:1–39:14, 2016.

[MT90] Silvano Martello and Paolo Toth. Lower bounds and reduction procedures for the bin
packing problem. Discrete Applied Mathematics, 28(1):59–70, 1990.

[MV20] M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. In Tim Roughgarden,
editor, Beyond the Worst-Case Analysis of Algorithms, pages 646–662. Cambridge
University Press, 2020.

[Ove10] Intel Executive Overview. Implementing and expanding a virtualized environ-
ment, 2010. https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/intel-it-virtualization-best-practices-paper.pdf,
accessed: 2021-05-25.

[PSK18] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML
predictions. In Proceedings of the 31st Conference on Neural Information Processing
Systems (NeurIPS), volume 31, pages 9661–9670, 2018.

[Roh20] Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1834–1845, 2020.

[Sch02] Jon E. Schoenfield. Fast, exact solution of open bin packing problems without linear
programming. Draft, US Army Space and Missile Defense Command, 2002.

22

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-it-virtualization-best-practices-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-it-virtualization-best-practices-paper.pdf

[SK13] Ethan L. Schreiber and Richard E. Korf. Improved bin completion for optimal bin packing
and number partitioning. In Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI), pages 651–658, 2013.

[SW97] Petra Schwerin and Gerhard Wäscher. The bin-packing problem: A problem generator
and some numerical experiments with ffd packing and mtp. International Transactions
in Operational Research, 5(4):377–389, 1997.

[SXCL13] Weijia Song, Zhen Xiao, Qi Chen, and Haipeng Luo. Adaptive resource provisioning for
the cloud using online bin packing. IEEE Transactions on Computers, 63(11):2647–2660,
2013.

[VMw] VMware. Server consolidation. https://www.vmware.com/ca/solutions/consolidation.html,
accessed: 2021-05-25.

[WG96] Gerhard Wäscher and Thomas Gau. Heuristics for the integer one-dimensional cutting
stock problem: A computational study. Operations-Research-Spektrum, 18(3):131–144,
1996.

[WMZ11] Meng Wang, Xiaoqiao Meng, and Li Zhang. Consolidating virtual machines with dynamic
bandwidth demand in data centers. In Proceedings of the 30th IEEE Conference on
Computer Communications (INFOCOM), pages 71–75, 2011.

[WZ20] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. In Proceedings of the 34th Annual Conference on Neural
Information Processing Systems (NeurIPS), 2020.

23

Appendix

A Details on the algorithms

A.1 ProfilePacking

Algorithm 1 describes ProfilePacking in pseudocode. Lines 1 to 8 are the initialization phase
of the algorithm, in which the algorithm forms the profile set, computes an optimal packing of
the profile set, and opens the first profile group. The optimal packing (Line 4) can be replaced
by FirstFitDecreasing in order to reduce the time complexity, as we did in the experiments.
The initial phase is followed by serving the sequence of requests in Lines 9 to 30. The algorithm
maintains two multisets of bins in its packing. The multiset Empty , which describes the bins that
are virtually opened but do not contain any item yet, and NonEmpty , which describes bins that
contribute to the actual cost. When placing an item into either a bin of NonEmpty (Lines 16) or
Empty (Lines 24), any bin with a placeholder of appropriate size can be selected. In our experiments,
we break ties for bins in Empty in favor of bins that contain a larger number of placeholders. This
improves the typical performance of the algorithm.

A.2 Hybrid(λ)

Algorithm 2 describes Hybrid(λ) in pseudocode. This algorithm combines ProfilePacking
and a given robust algorithm A. The initialization phase of Hybrid(λ) is similar to that of
ProfilePacking (Lines 1- 8 of Algorithm 1). As with ProfilePacking, for any x ∈ [1, k], the
algorithm maintains Nx and Ex as the set of NonEmpty and Empty bins with a placeholder of size
x, respectively. The i-th item σ[i] ∈ [1, k] is placed in a placeholder in Nx and declared as PP-item
if such a placeholder is available (Lines 9-12 of Algorithm 2). Otherwise, the item is declared as
either PP-item (Lines 16-28) or A-item (Lines 30-31), depending on the frequency of PP-items of
size x, and packed accordingly.

A.3 H-Aware

Algorithm 3 describes H-Aware in pseudocode. The algorithm receives as input an upper bound
H on the prediction error (i.e., we assume that η ≤ H) and chooses between ProfilePacking
(when H is small) and a given robust algorithm A (when H is large). Note that the algorithm also
receives a small value ε that is used to set the profile size parameter m (we require that m ≥ 5kτk/ε).
For practical purposes, however, any large value of m suffices. The running time of H-Aware is
O(kmn+A(k, n)), where A(k, n) denotes the running time of A. As in Hybrid(λ), if A is FirstFit,
we have A(k, n) = O(kn), and the time complexity of H-Aware becomes O(kmn).

A.4 Adaptive(w)

Algorithm 4 describes Adaptive(w) in pseudocode. The algorithm packs the first w items using the
FirstFit strategy (Lines 8-9). From that point onwards, the algorithm maintains the number cx of
items of size x ∈ [1, k] among the last w items (Lines 11-14). As in ProfilePacking, Adaptive(w)
maintains Nx and Ex as the set of bins in NonEmpty and Empty with an available placeholder for
x. The algorithm places each item σ[i] of size x in a bin of Nx, if Nx is not empty (Lines 16-18), and

24

in a bin of Ex (Lines 32-36), otherwise. If Ex is empty, it opens a new profile group (Lines 21-30).
If there is no placeholder available in NonEmpty and Empty , the algorithm opens a new profile
(Lines 33-28). In doing so, the algorithm generates item frequencies f ′, as observed among the last
w items, to form a new profile set and an optimal packing of it.

Algorithm 1 ProfilePacking
. packing items using ProfilePacking with parameter (profile size) m into bins of capacity k.
Input: σ: the input sequence with items in [1, k]

f ′: predicted item frequencies (∀x ∈ [1, k], f ′x ∈ [0, 1])
Output: a packing of σ (a set of bins that contain all items in σ)

. form the profile set.
1: Pf ′ ← φ
2: for x ∈ {1, . . . k}
3: Pf ′ ← Pf ′ ∪ {df ′xme items of size x}

. compute an optimal packing of the profile set in which each bin is partitioned to placeholders.
4: Optf ′(P) = optimal packing of Pf ′ .
5: pf ′ ← |Optf ′(P)|
6: Group ← pf ′ empty bins in accordance with Optf ′(P). . open the first profile group
7: Empty ← Group . bins that are opened but empty
8: NonEmpty ← φ . bins that contribute to the cost

9: for i ∈ (1, . . . , n) do . packing the sequence in an online manner
10: x← σ[i]
11: if Optf ′(P) has no placeholder of size x then
12: use FirstFit to pack σ[i] . x is a special item
13: else
14: Nx ← bins in NonEmpty with placeholder for x
15: if Nx 6= φ then . place σ[i] in a non-empty bin
16: B ← any bin of Nx

17: place σ[i] in a placeholder of size x in B
18: else
19: Ex ← bins in Empty with placeholder for x
20: if Ex = φ then . open a new profile group
21: Group ← pf ′ new bins as in Optf ′(P)
22: Empty ← Empty ∪ Group
23: end if

. place σ[i] in a (virtually) opened empty bin
24: B ← any bin of Ex
25: place σ[i] in a placeholder of size x in B
26: Empty ← Empty \ {B}
27: NonEmpty ← NonEmpty ∪ {B}
28: end if
29: end if
30: end for
31: return NonEmpty . return the set of non-empty bins

25

Algorithm 2 Hybrid(λ)
. packing items using Hybrid(λ) that combines ProfilePacking with parameter m and robust
algorithm A to pack an input sequence into bins of capacity k.
Input: σ: the input sequence with items in [1, k]

f ′: predicted item frequencies (∀x ∈ [1, k], f ′x ∈ [0, 1])
Output: a packing of σ (a set of bins that contain all items in σ)

1: Initialize ProfilePacking (Lines 1- 8 of Algorithm 1)
2: for x ∈ {1, . . . k} do
3: count(x), ppcount(x) ← 0

4: end for

5: for i ∈ (1, . . . , n) do . packing the sequence in an online manner
6: x← σ[i]
7: count(x) ← count(x) +1
8: Nx ← bins in NonEmpty with a placeholder for x
9: if Nx 6= φ then

10: ppcount(x) ← ppcount(x) +1 . σ[i] is treated as a pp-item
11: B ← any bin of Nx

12: place σ[i] in a placeholder of size x in B
13: else
14: . decide between ProfilePacking and A
15: if ppcount(x) ≤ λ ppcount(x) then . σ[i] is treated as a pp-item
16: ppcount(x) ← ppcount(x) +1
17: if Optf ′(P) has no placeholder of size x then
18: use FirstFit to pack σ[i] . x is a special item
19: else
20: Ex ← bins in Empty with placeholder for x
21: if Ex = φ then . open a new profile group
22: Group ← pf ′ new bins as in Optf ′(P)
23: Empty ← Empty ∪ Group
24: end if
25: B ← any bin of Ex . place σ[i] in a (virtually) opened empty bin
26: place σ[i] in placeholder of size x in B
27: Empty ← Empty \{B}
28: NonEmpty ← NonEmpty ∪ {B}
29: end if
30: else
31: use A to pack x . σ[i] is treated as an A-item
32: end if
33: end if
34: end for
35: return NonEmpty . return the set of non-empty bins

26

Algorithm 3 H-Aware
. packing items using H-Aware that chooses between ProfilePacking with parameter m and
robust algorithm A with competitive ratio cA to pack an input sequence into bins of capacity k.
Input: σ: the input sequence with items in [1, k]

f ′: predicted item frequencies (∀x ∈ [1, k], f ′x ∈ [0, 1])
H: an upper bound on error (η ≤ H)
ε: a small positive value (ε < 0.2)

Output: a packing of σ (a set of bins that contain all items in σ)

1: Packing = φ . the resulting packing
2: if H < (cA − 1− ε)/(k(2 + 5ε)) then
. Error cannot be large; use ProfilePacking

3: Packing = ProfilePacking(σ, f ′)
4: else
. Error can be large; ignore predictions and use A

5: Packing = A(σ)
6: end if
7: return Packing . return the set of non-empty bins

27

Algorithm 4 Adaptive(w)

. packing items using Adaptive(w) with sliding window w and profile size m.
Input:
σ: the input sequence with items in [1, k]

Output:
a packing of σ (a set of bins that contain all items in σ)

1: Empty ← φ . bins that are opened but empty
2: NonEmpty ← φ . bins that contribute to the cost
3: for x ∈ {1, . . . , k}
4: cx ← 0 . no. items of size x among the last w items

. packing the sequence in an online manner
5: for i ∈ (1, . . . , n) do
6: x← σ[i]
7: cx ← cx + 1
8: if i ≤ w then
9: use FirstFit to pack x . initial phase

10: else
11: . updating frequencies in the last w requests
12: y ← σ[i− w]
13: cy ← cy − 1
14: end if
15: Nx ← bins in NonEmpty with a placeholder for x
16: if Nx 6= φ then . place σ[i] in a non-empty bin
17: B ← any bin of Nx

18: place σ[i] in a placeholder of size x in B
19: else
20: Ex ← bins in Empty with placeholder for x
21: if Ex = φ then . open a new profile group
22: Pf ′ ← φ
23: for x ∈ {1, . . . k} do
24: f ′x ← cx/w
25: Pf ′ ← Pf ′ ∪ {df ′xme items of size x}
26: end for
27: Optf ′(P) = optimal packing of Pf ′ .
28: pf ′ ← |Optf ′(P)|
29: Group ← pf ′ bins in accordance to Optf ′(P).
30: Empty ← Empty ∪ Group
31: end if
32: . place σ[i] in a (virtually) opened empty bin
33: B ← any bin of Ex
34: place σ[i] in a placeholder of size x in B
35: Empty ← Empty \ {B}
36: NonEmpty ← NonEmpty ∪ {B}
37: end if
38: end forreturn NonEmpty . return the set of non-empty bins

28

	1 Introduction
	1.1 Contribution
	1.2 Related work

	2 Online bin packing: model and predictions
	3 Profile packing
	3.1 Analysis of ProfilePacking

	4 A hybrid algorithm
	5 Extensions
	5.1 An adaptive heuristic
	5.2 Handling items with fractional sizes
	5.3 VM placement: inputs with large items

	6 Experimental evaluation
	6.1 Benchmarks
	6.2 Input generation
	6.3 Compared algorithms, predictions and error
	6.4 Implementation details and runtimes
	6.5 Results and discussion
	6.6 Experiments on the profile size
	6.7 Further experiments on fixed distribution

	7 Conclusion
	A Details on the algorithms
	A.1 ProfilePacking
	A.2 Hybrid()
	A.3 H-Aware
	A.4 Adaptive(w)

