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Abstract

In the online (time-series) search problem, a player is presented with a sequence of prices
which are revealed in an online manner. In the standard definition of the problem, for each re-
vealed price, the player must decide irrevocably whether to accept or reject it, without knowl-
edge of future prices (other than an upper and a lower bound on their extreme values), and the
objective is to minimize the competitive ratio, namely the worst case ratio between the maxi-
mum price in the sequence and the one selected by the player. The problem formulates several
applications of decision-making in the face of uncertainty on the revealed samples.

Previous work on this problem has largely assumed extreme scenarios in which either the
player has almost no information about the input, or the player is provided with some powerful,
and error-free advice. In this work, we study learning-augmented algorithms, in which there is
a potentially erroneous prediction concerning the input. Specifically, we consider two different
settings: the setting in which the prediction is related to the maximum price in the sequence,
as well as the setting in which the prediction is obtained as a response to a number of binary
queries. For both settings, we provide tight, or near-tight upper and lower bounds on the worst-
case performance of search algorithms as a function of the prediction error. We also provide
experimental results on data obtained from stock exchange markets that confirm the theoret-
ical analysis, and explain how our techniques can be applicable to other learning-augmented
applications.
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1 Introduction
The online (time series) search problem formulates a fundamental setting in decision-making under
uncertainty. In this problem, a player has an indivisible asset that wishes to sell within a certain
time horizon, e.g., within the next d days, without knowledge of d. On each day i, a price pi is
revealed, and the player has two choices: either accept the price, and accrue a profit equal to pi, or
reject the price, in which case the game repeats on day i + 1. If the player has not sold by day d
(i.e., has rejected all prices p1, . . . , pd−1), then the last price pd is accepted by default.

This problem was introduced and studied in [18] by means of competitive analysis. Namely,
the competitive ratio of the player’s strategy (or algorithm) is defined as the worst case ratio, over
all price sequences, of the maximum price in the sequence divided by the price accepted by the
player. Thus, the competitive ratio provides a worst-case guarantee that applies even to price
sequences that are adversarially generated. Since the problem formulates a basic, yet fundamental
transaction setting, a player that follows a competitively efficient algorithm has a safeguard against
any amount of volatility with respect to prices.

El-Yaniv et al. [18] gave a simple, deterministic algorithm that achieves a competitive ratio
equal to

√
M/m, where M,m are upper and lower bounds on the maximum and minimum price

in the sequence, respectively, and which are assumed to be known to the algorithm. This bound
is tight for all deterministic algorithms. Randomization can improve the competitive ratio to an
asymptotically tight bound equal to O(log(M/m)). See also the surveys [17, 29].

Online search is a basic paradigm in the class of online financial optimization problems.
Several variants and settings have been studied through the prism of competitive analysis; see,
e.g., [13, 26, 35, 11]. The problem has also been studied as a case study for evaluating several
performance measures of online algorithms, including measures alternative to competitive analy-
sis [9, 1]. Extensions of online search such as one-way trading and portfolio selection have also
been studied extensively both within competitive analysis; e.g., [18, 19, 8], as well as from the
point of view of regret minimization; e.g., [21, 33, 14]. We refer also to the survey [25].

Previous work on competitive analysis of online financial optimization problems, including
online search, has largely assumed a status of almost complete uncertainty in regards to the input.
Namely, the algorithm has either no knowledge, or very limited knowledge concerning the input.
This models a scenario that is overly pessimistic: indeed, in everyday financial transactions, the
players have some limited, albeit potentially erroneous information on the market.

This observation illustrates the need for a study of online financial optimization problems us-
ing the framework of learning-enhanced competitive algorithms [27, 30]. Such algorithms have
access to some machine-learned information on the input which is associated with a prediction
error η. The objective is to design algorithms whose competitive ratio degrades gently as the
prediction error increases, but also quantify the precise tradeoff between the performance and the
prediction error. Several online optimization problems have been studied in this setting, including
caching [27, 32], ski rental and non-clairvoyant scheduling [30, 34], makespan scheduling [23],
rent-or-buy problems [7, 2, 20], secretary and matching problems [6, 24], and metrical task sys-
tems [5]. See also the survey [28]. A related line of research is the untrusted advice framework
proposed by [3] in which the algorithm’s performance is evaluated at the extreme cases in which
the advice is either error-free, or adversarially generated.

To our knowledge, there is no previous work on competitive analysis of online financial opti-
mization problems in the learning-enhanced model. Note that this is in contrast to analysis based
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on regret minimization, which inherently incorporates predictions as “experts” [12, 22].

1.1 Contribution
We present the first results on competitive online search in a setting that provides predictions
related to the price sequence. We show that the obtained competitive ratios are optimal under
several models. We also introduce new techniques for leveraging predictions that we argue can be
applicable to other learning-augmented online problems. More precisely, we study the following
two settings:

The prediction is the best price Here, the prediction is the best price that the player is expected
to encounter. We further distinguish between the model in which no other information on this
prediction is available to the player, which we call the oblivious model, and the model in which an
upper bound to the prediction error is known, which we call the non-oblivious model. In the latter,
the player knows that the error is bounded by some given value H , i.e., η ≤ H . The oblivious
model is more suitable for markets with very high volatility (e.g., cryptocurrencies), whereas the
non-oblivious model captures less volatile markets (e.g., fiat currencies), in which we do not expect
the prices to fluctuate beyond a (reasonable) margin. For both models, we give optimal (tight)
upper and lower bounds on the competitive ratio as function of the prediction error. A novelty in
the analysis, in comparison to previous work, is that we perform an asymmetric analysis in regards
to the error, namely we distinguish between positive and negative error, depending on whether the
best price exceeds the prediction or not. This distinction is essential in order to prove the optimality
of our results.

The prediction is given as response to binary queries In this model, the prediction is given
as a response to n binary queries, for some fixed n. For example, each query can be of the form
“will a price at least equal to p appear in the sequence?”. This model captures settings in which
the predictions define ranges of prices, as opposed to the single-value prediction model, and was
introduced recently in the context of a well-known resource allocation problem in AI, namely
the contract scheduling problem [4]. The prediction error is defined as the number of erroneous
responses to the queries, and we assume non-oblivious algorithms which know an upper bound
H < n on the error. Online search was previously studied under an error-free query model in [11],
however their proposed solution is non-robust: a single query error can force the algorithm to
accept a price as bad as the smallest price in the sequence.

We present two different algorithms in this model, and prove strict upper bounds on their
competitive ratios, as functions of n and H . The first algorithm uses the n queries so as to choose
a price from n suitably defined intervals, then accepts the first price in the sequence that is at least
as high as the chosen price; moreover, its performance is guaranteed as long as at most half of the
query responses are correct. We then present an algorithm based on robust binary search, which
allows to select a suitable price from a much larger space of 2n intervals, thus leading to improved
performance, at the expense of a relatively smaller (but still high) tolerance to errors (i.e., the
theoretical analysis assumes that H < n/4). This result is the main technical contribution of this
work, and we expect that it can find applications in many other settings in which we must identify
a “winner” from a large set of candidates, in the presence of errors. We give such a concrete
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application in Section 5. We complement the robust binary-search upper bound with a theoretical
lower bound on the competitive ratio in this query model.

For both models, we evaluate experimentally our algorithms on real-world data, in which the
prices are the exchange rates for cryptocurrencies or fiat currencies. Our experimental results
demonstrate that the algorithms can benefit significantly from the predictions, in both models, and
that their performance decreases gently as the error increases.

1.2 Notation and definitions
Let σ = (σi)

d
i=1 be a sequence of prices revealed on days 1, d. Given an algorithm A, A(σ) is

the profit of A on σ; since σ and A are often implied from context, we simply refer to the profit
of the algorithm as its accepted price. We denote by p∗ the optimal price in the input. Given an
algorithm A, we denote its competitive ratio by CR(A). Recall that m,M are the known lower and
upper bounds on the prices in the sequence, respectively. We denote by ON∗ the optimal online
algorithm without predictions, i.e., the algorithm of competitive ratio

√
M/m.

A reservation algorithm with price q is an algorithm that accepts the first price in the sequence
that is at least q. For example, it is known that ON∗ can be described as a reservation algorithm
with price

√
M/m.

2 Algorithms with Best-Price Prediction
In this setting, the prediction is the highest price that will appear in the sequence. In the remainder
of the section, we denote this prediction with p ∈ [m,M ], and recall that p∗ is the optimal price.
The prediction p is associated with an error η, defined as follows. If p∗ ≤ p, we define η to be such
that 1− η = p∗/p, and we call this error negative, in the sense that the best price is no larger than
the predicted price. Note also that the negative error ranges in [0, (M −m)/M ], that is, η < 1, in
this case. If p∗ > p, we define η to be such that 1 + η = p∗/p, and we call the error positive, in the
sense that the best price is larger than the predicted price. Since 1 < p∗/p ≤ M/m, the positive
error ranges in (0, (M −m)/m]. Naturally, the online algorithm does not know neither the error
value, nor its parity. The parity is a concept that we introduce for the benefit of the analysis.

Depending on the volatility of the market, the positive and negative error can fluctuate within
a certain range. Let Hn, Hp denote upper bounds on the negative and positive errors, respectively,
i.e., Hn ≤ (M − m)/M , and Hp ≤ (M − m)/m. We distinguish between non-oblivious and
oblivious algorithms, namely between algorithms that know Hn and Hp, and algorithms that do
not, respectively.

2.1 Oblivious algorithms
We first study oblivious algorithms, and show matching upper and lower bounds on the competitive
ratio. Given algorithm A with prediction p, define the function sA(p,m,M) ∈ [m,M ] as the
smallest price revealed on day 1 (i.e., the smallest value of p1) such that A accepts that price on
day 1. Define also rA = sA(p,m,M)/p. We first show a lower bound on the competitive ratio.
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Theorem 1. For any algorithm A with prediction p,

CR(A) ≥

{
(1− η)/rA, if η ≤ 1− rA
(1− η)M/m, if η > 1− rA,

if the error is negative, and

CR(A) ≥

{
(1 + η)/rA, if η ≥ rA − 1

M/m, if η < rA − 1,

if the error is positive.

Proof. Case 1: η is negative, i.e., p∗ = p(1 − η). The adversary chooses p∗ = (1 − η)M , which
implies that p =M .

Suppose first that rA ≤ 1 − η, hence rA · p ≤ p∗. The adversary presents the sequence
rA · p, p∗, . . . , p∗ . From the definition of rA, A accepts the price on day 1, and CR(A) ≥ p∗/(rA ·
p) = (1− η)/rA.

Next, suppose that rA > 1 − η. We have rA · p > (1 − η) · p = p∗. The adversary presents
the sequence p∗,m, . . . ,m. By definition, A rejects the price on day 1, hence its profit is m, and
CR(A) ≥ p(1− η)/m = (1− η)M/m.

Case 2: η is positive, i.e., p∗ = p(1 + η). The adversary chooses p∗ = M , which implies that
p =M/(1 + η).

Suppose first that rA ≤ 1+η, that is, rA ·p ≤ p∗. The adversary chooses the sequence of prices
rA·p, p∗, p∗, . . . , p∗. By definition,A accepts on day 1, therefore CR(A) ≥ p∗/(rA·p) = (1+η)/rA.

Next, suppose that rA > 1 + η, which implies rA · p > (1 + η) · p = p∗ = M . The intuition
here is that A does not accept on day 1 a price equal to M , which is clearly a bad decision. The
adversary chooses the sequence of prices M,m, . . . ,m, and thus CR(A) ≥M/m.

Next, we show a class of algorithms whose competitive ratio matches Theorem 1. For any
r > 0, define the oblivious reservation algorithm, named ORAr as the algorithm with reservation
price r · p, given the prediction p.

Theorem 2. The algorithm ORAr (with reservation price r · p) has competitive ratio

CR(ORAr) ≤

{
(1− η)/r, if η ≤ 1− r
(1− η)M/m, if η > 1− r,

if the error is negative, and

CR(ORAr) ≤

{
(1 + η)/r, if η ≥ r − 1

M/m, if η < r − 1,

if the error is positive.

Proof.
negative error: Let η ≤ 1 be a negative error. Thus, we have p∗ = p(1− η).
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Figure 1: The competitive ratio of ORAr as function of the error η, and the parameter r. Here
we choose M/m = 10, and thus the ranges of negative and positive error are [0, 0.9] and (0, 9),
respectively.

First, suppose r ≤ (1− η), which means r · p ≤ p∗. Therefore, ORAr has a profit of at least r · p,
and thus CR(ORAr) ≤ (1−η)p

r·p = 1−η
r

.
Next, suppose r > (1 − η). We have p∗ = p(1 − η) ≤ (1 − η) ·M . On the other hand, the profit
of ORAr is at least m. Therefore, we have CR(ORAr) ≤ (1− η)M/m.
positive error: Let η be a positive error. Thus, we have p∗ = p(1 + η).
First, suppose r ≤ (1 + η), that is, r · p ≤ p∗, and ORAr has a profit of at least r · p. On the other
hand, we have p∗ = p(1 + η), and thus CR(ORAr) ≤ p(1+η)

r·p = 1+η
r

.
Next, suppose r > (1 + η). Then, we have p∗ ≤ M and the profit of ORAr is at least m, and thus
CR(ORAr) ≤M/m.

Figure 1 illustrates the competitive ratio of ORAr, as function of η, for different values of the
parameter r. First, we observe that there is no value of r∗ such that ORAr∗ dominates ORAr with
r 6= r∗. More precisely, for any pair of r1 and r2, there are some values of η for which ORAr1 has
a better competitive ratio while for other values of η, ORAr2 has a better competitive ratio.

For positive error, the competitive ratio degrades linearly in the error with slope 1/r. Note
however that if r = 1.5, we have CR(ORAr) =M/m(= 10) for η < r−1 = 0.5, since for positive
error in (0, 0.5), ORAr does not trade at day even if the trading price is M . For the other values of
r, we have r ≤ η + 1 for which CR(ORAr) ≤ (1 + η)/r, and hence the algorithm performs better
when r becomes larger.

For negative but small values of error, we have that CR(ORAr) = (1 − η)/r, thus the perfor-
mance improves linearly in the error, again with slope 1/r. For larger values, i.e., if η > 1 − r,
there is a “jump” in the competitive ratio, which increases from 1 to (1− r)M/m. Following this
jump, CR(ORAr) improves linearly with the error, this time with slope M/m.

Even though ORAr is optimal according to Theorems 1 and 2, its competitive ratio may be
worse than ON∗ for certain ranges of error (namely, for small negative or large positive error).
However, this is unavoidable: the next corollary shows that there is no oblivious algorithm with
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best-price prediction that improves upon ON∗ for all values of the error, i.e., cannot dominate ON∗

for all values of error.

Corollary 1. For any oblivious algorithm A with best-price prediction, there exists some range of
error η for which CR(A) >

√
M/m.

Proof. First, suppose that the error is negative and in the range (1− rA, 1−
√
m/M). Theorem 1

shows that CR(A) > (1 − η)M/m ≥ (
√
m/M)M/m =

√
M/m. Next, suppose that the error is

positive and η ≥ rA
√
M/m − 1. Therefore, η > rA − 1 and again by Theorem 1, the CR(A) ≥

(1 + η)/rA ≥
√
M/m.

2.2 Non oblivious algorithms
In this section, we show matching upper and lower bounds on the competitive ratio, in the set-
ting in which the algorithm knows upper bounds Hn and Hp on the negative and positive error,
respectively.

We call an algorithm A robust if for all values of M and m, and all values of η (negative or
positive), CR(A) ≤

√
M/m. In light of Corollary 1, without knowing Hn and Hp, no online

algorithm can be robust. In what follows, we will show that there exist robust non-oblivious
algorithms. In particular, we define the algorithm ROBUST-MIX which works as follows. If (1 +
Hp)/(1−Hn) >

√
M/m, then ROBUST-MIX ignores the prediction and applies ON∗. Otherwise,

i.e., if (1 +Hp)/(1−Hn) ≤
√
M/m, ROBUST-MIX is an algorithm with reservation price equal

to p′ = p(1−Hn). Note that since Hn ≤ (M −m)/M , we have p′ ≥ mp/M .

Theorem 3. CR(ROBUST-MIX) ≤{
min{(1− η)/(1−Hn),

√
M/m}, for negative error

min{(1 + η)/(1−Hn),
√
M/m}, for positive error.

Proof. Consider first the case of negative error. Suppose that 1/(1 − Hn) ≤
√
M/m. We have

p′ = p(1−Hn) ≤ p(1− η) = p∗. Thus, the reservation price p′ of ROBUST-MIX is no larger than
p∗, and the algorithm indeed accepts a price at least as high as p′. Therefore, CR(ROBUST-MIX) ≤
p∗/p′ = p(1−η)

p(1−Hn)
= (1−η)/(1−Hn). If 1/(1−Hn) >

√
M/m, then (1+Hp)/(1−Hn) >

√
M/m,

hence ROBUST-MIX applies ON∗ and CR(ROBUST-MIX) ≤
√
M/m.

Next, we consider the case that the error is positive. Suppose that (1+Hp)/(1−Hn) ≤
√
M/m.

We have p′ = p(1 − Hn) ≤ p ≤ p(1 + η) = p∗. Again, this implies that ROBUST-MIX accepts
a price at least as high as p′, and thus CR(ROBUST-MIX) ≤ p∗/p′ = (p(1 + η))/(p(1 − Hn)) =
(1 + η)/(1−Hn). If (1 +Hp)/(1−Hn) >

√
M/m, then ROBUST-MIX applies ON∗ and hence

CR(ROBUST-MIX) ≤
√
M/m.

We also prove a matching bound which establishes that ROBUST-MIX is the optimal non-
oblivious algorithm:

Theorem 4. Any non-oblivious algorithm has competitive ratio at least{
min{(1− η)/(1−Hn),

√
M/m}, for negative error

min{(1 + η)/(1−Hn),
√
M/m}, for positive error.
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Proof. Let A denote a non-oblivious algorithm. Note that A must be robust, otherwise its compet-
itive ratio is larger than

√
M/m for some value of the error. Let s′A(p,m,M,Hn, Hp) ∈ [m,M ]

be the smallest price for which A accepts on day 1. Define rA = s′A(p,m,M,Hn, Hp)/p. It must
hold that rA < 1; otherwise, by Theorem 1, CR(A) = M/m for positive values of error smaller
than rA − 1, contradicting the robustness of A.

Let ε > 0 be any small value such that ε <
√
m/M · ηp. By Theorem 1, for a value of negative

error equal to ηn = 1− rA + ε, the competitive ratio of A must be at least (1− ηn)M/m = (rA −
ε)M/m. Given thatA is robust, it follows that (rA−ε)M/m ≤

√
M/m, that is, rA ≤

√
m/M+ε.

We further use the assumption that A is robust to establish that rA ≤ 1 − Hn. By way of
contradiction, suppose that Hn > 1− rA. For a fixed value of positive error 0 < ηp ≤ Hp, we have

CR(A) ≥ min{(1 + ηp)/rA,M/m} ≥
min {(1 + ηp)/(

√
m/M + ε),M/m} >

√
M/m.

Since rA ≤ 1−Hn, for any values of negative error η, we have η ≤ 1− rA and by Theorem 1,
CR(A) ≥ (1 − η)/rA ≥ (1 − η)/(1 − Hn). For values of positive error η, CR(A) ≥ min{(1 +
η)/rA,M/m} ≥ (1 + η)/(1−Hn).

3 Query-based Predictions
In this section, we study the setting in which the prediction is in the form of responses to n binary
queries Q1, . . . , Qn, for some fixed n. Hence, the prediction P is an n-bit string, where the i-th bit
is the response to Qi. We assume that the algorithm knows an upper bound H on η. Therefore,
the responses to least k −H queries are guaranteed to be correct, and the responses to at most H
queries may be incorrect (or wrong). We assume the setting of non-oblivious algorithms in this
model. This is because without an upper bound on the error, the algorithm is in a state of complete
lack of knowledge concerning the truthfulness of the queries, and it is not obvious how to use them
in a meaningful way.

We present two algorithms, both of which use comparison queries concerning the best price p∗.
That is, the queries are in the form of “Is p∗ ≤ b, for some given value b?”. In our first algorithm,
the values of b form a strictly increasing sequence, which allows us to narrow p∗ within an interval
(range) from a candidate set of n intervals. The second algorithm implements a robust version of
binary search, in which the candidate set of intervals is exponential in n, hence we can narrow p∗

within an interval of much smaller size, and thus obtain a much better estimate on p∗.

3.1 Robust Linear Interval Search algorithm
Define m = a0, a1, . . . , an = M so that rn = a1/a0 = a2/a1 = . . . = an/an−1, which implies
that rn = (M/m)1/n. Define the n intervals E1, . . . , En, where Ei = [m, ai) (we have 1 ≤ i ≤ n).
Query Qi asks whether the best price p∗ is in Ei or not, and the response denoted by “1” or “0”,
respectively.

Consider the n-bit string P formed by responses to Q1, . . . , Qn. If all responses were correct,
then P would consist of j 0s followed by (n− j) 1s for some j ∈ [1, n]. This would prove that p∗

is in the range [aj, aj+1). The algorithm then could use aj as its reservation price, which yields a
competitive ratio of at most aj+1

aj
= (M/m)1/n.
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We describe the algorithm Robust Linear Interval Search (RLIS), that works in the presence of
error. From the way queries are defined, it may be possible to detect and correct some of the wrong
responses in P as follows. Suppose the response to Qi is 1, while the response to at least H + 1
queries Qj that come after Qi (that is, j > i) are 0. Given that the number of incorrect responses
cannot exceed H , we infer that the response to Qi must be incorrect. With a similar argument, if
the response to Qi is 0 and the responses to at least H + 1 queries that come before Qi are 1, then
the response to Qi must be incorrect. Thus RLIS starts with a preprocessing phase which corrects
these two types of incorrect responses. This results in an updated prediction string P ′ in which
every 1-bit is followed by at most H 0-bits and every 0-bit is preceded by at most H 1-bits.

If all responses in P ′ are 0, RLIS sets its reservation price to an−H+1. Otherwise, let i1 denote
the index of the first 1 in P ′, and let α ≤ H be the number of 0s after index i1. Define l =
max{0, i1 − (H + 1− α)}, then RLIS sets its reservation price to al.

Algorithm 1 describes RLIS in pseudocode. The queries that RLIS asks and hence their re-
sponses can be pre-computed and stored in the prediction array P . Note that the algorithm has
two phases: a pre-processing phase in which it detects and corrects some of the predictions in P
(Lines 4 to 13). The pre-processing phase results in an updated prediction array P ′ which is used
to set the reservation price (Lines 14 to 22). In terms of time complexity, it is straightforward to
verify that both phases of the algorithm can be completed in O(n), and therefore RLIS sets its
reservation price in time O(n).

Theorem 5. Algorithm RLIS has competitive ratio at most (M/m)2H/n.

Proof. First suppose all responses in P ′ are 0. There can only be a suffix of at most H 0-responses
in P ′ which are incorrect, that is, p∗ is in the range [an−(H−1),M ]. Given that RLIS has reservation
price an−(H−1), and p∗ ≤M , its competitive ratio is at most M/an−(H−1) = (M/m)(H−1)/n.

Next, suppose that P ′ contains a 1-bit. We consider two cases, depending on the presence or
absence of a 0-bit in P ′ after index i1. If there is no 0-response after index i1 (that is α = 0), then
p∗ ≤ ai1+H−1 (because at most H queries can be wrong), while the profit of RLIS is at least al.
The competitive ratio is thus at most ai1+H−1/al ≤ (M/m)2H/n.

Next, suppose that there is a 0-response after index i1, and let j0 > i1 denote the index of the
last such 0 in P ′. We will show that p∗ ≥ al, where l is the reservation price of RLIS. Suppose
first that the response to Qi1 is incorrect. Then, p∗ ≥ ai1 . Suppose next that the response to Qi1 is
correct. In this case, the α 0-responses after index i1 must be wrong. Since there can be up to H
errors, at most (H − α) 0-responses that immediately precede index i1 can be wrong. Therefore,
p∗ ≥ al where l = max{0, i1 − (H + 1− α)}. This also implies that RLIS has profit at least al.

To finish the proof, we need an upper bound on p∗. If the response to Qj0 is incorrect, then
p∗ ≤ aj0 . Otherwise, there are j0 − i1 − α wrong 1-responses before j0, from the definition of
j0. Therefore, up to H − (j0 − i1 − α) 1-responses that follow j0 can also be wrong. That is,
p∗ can be as large as aj′ , where j′ = min{n, j0 + H − (j0 − i1 − α)} = min{n,H + i1 + α}.
Given that the reservation price is al, the competitive ratio of the algorithm is therefore at most
aj′/al ≤ (rn)

2H = (M/m)2H/n.

3.2 Robust Binary Interval Search algorithm
Algorithm RLIS uses the queries so as to select a reservation price from n candidate intervals. We
will now show how to increase this number to 2n using a new Robust Binary Search algorithm
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Algorithm 1 Robust Linear Interval Search (RLIS)

1: Input: m,M (lower and upper bounds for the best price); binary string P = (p1, p2, . . . , pn)
of responses; an upper bound H for the number of incorrect answers.

2: Output: a reservation price rp

3: . Preprocessing phase: detect and correct errors
4: P ′ ← a copy of P
5: for i← 1 to n do
6: suc(i)← no. indices j such that j > i and P [j] = 0
7: pre(i)← no. indices j such that j < i and P [j] = 1
8: if (i = 1 & suc(i) ≥ H + 1) or
9: (i = 0 & pre(i) ≥ H + 1) then

10: P ′[i]← 1− P ′[i] . fix the detected error
11: end if
12: end for
13: . Setting the reservation price
14: if (∃ an index i such that P ′[i] = 1) then
15: i1 ← the smallest i so that P ′[i] = 1.
16: α← suc(i) . (α ≤ H)
17: l = max{0, i1 − (H + 1− α)}
18: else
19: l = n−H + 1
20: end if
21: al−1 ← m · (M/m)(l−1)/n . the reservation price
22: return al−1

(RBIS). Partition the interval [m,M ] into 2n intervals L1, L2, . . . , L2n , where Li = (ai−1, ai],
a0 = m, and a2n = M . We define the ai’s so that ρ = a1/a0 = a2/a1 = . . . = a2n/a2n−1 , where
ρ = (M/m)1/2

n .
Suppose that L1, . . . , L2n correspond to the 2n leaves of a binary tree T of height n, and that the

best price p∗ is in the interval Lx for some x ∈ [1, 2n]. With perfect queries (zero error), it is possi-
ble to find Lx using binary search on T , which leads to a competitive ratio ax/ax−1 = (M/m)1/2

n ,
by choosing a reservation price equal to ax−1. This is the approach of [11]. Unfortunately this sim-
ple approach is very inefficient even if a single error occurs (e.g., if Q1 receives a wrong response,
the search will end in a leaf Ly, where |x− y| is as large as 2n/2.)

Searching with erroneous queries is a well-studied topic, see e.g., the book [10]. A related
problem to ours was studied in [31] and [15], however there are important differences with respect
to our setting. First, these works consider a “dual” problem to ours in which the objective is to
minimize the number of queries so as to locate an exact leaf in the binary tree. Second, there are
certain significant implementation issues that need to be considered. Specifically, [15] assumes
that when reaching a leaf, an oracle can respond whether this is the sought element or not (in other
words, the algorithm receives an error-free response to a query of the form “is an element exactly
equal to x”). For our problem and, arguably, for many other problems with query-based predic-
tions, this assumption cannot be made. Moreover [31] does not have an efficient implementation,
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specifically in comparison to [15]. We propose a new algorithm using some ideas of [15] that is
applicable to our problem, and has an efficient implementation.

Algorithm description Recall that T is a binary search tree with leaves L1, L2, . . . , L2n and that
we search for the leaf Lx. We denote by l(v), r(v) the left and right child of v, respectively, and by
Tv the subtree rooted at v.

We describe the actions of the algorithm. Suppose the algorithm is at node v at the beginning
of iteration i (in the first iteration, v is the root of T ). The algorithm first asks a main query,
defined as follows: “Is x ≤ q?", where q is such that Lq is the rightmost leaf of the left subtree
of v. We denote by main(v) the response to this query. As we discuss shortly, the search may
visit the same node multiple times, so we emphasize that main(v) is the response to the most
recent main query at v. Next, the algorithm finds the first ancestor of v in T , say w, for which
main(w) 6=main(v). We denote this ancestor of v by anc(v), if it exists, and define anc(v) = ∅,
otherwise. The algorithm continues by asking a checkup query which is a repetition of the main
query asked for w. We denote the response to the checkup query as check(v). The algorithm
continues by taking one of the following actions, after which iteration i+ 1 begins:

• Move-down: If anc(v) = ∅ or check(v) = main(anc(v)), RBIS moves one level down
in T . That is, if main(v) is Yes (respectively No), RBIS moves to l(v) (respectively r(v)).

• Move-up: If check(v)6=main(anc(v)), RBIS moves one level up to the parent of v. In
this case, RBIS increments a counter mu, which is originally set to 0.

The algorithm continues as described above until it exhausts its number n of queries. Suppose
the search stops at some node u, and let au denote the (H −muend)-th ancestor of u (or the root,
if such an ancestor does not exist), where muend is the content of mu at the end of the search. Let
Ll be the leftmost leaf in Tau , i.e the subtree rooted at au. Then RBIS returns this leftmost leaf in
Tau . In particular, for the online search problem, the algorithm sets its reservation price to al−1.

Algorithm 2 describes RBIS in psuedocode. Queries of RBIS depend on the location of the
search node in the search tree T , which indeed depends on the errors in previously responded
queries. As such, unlike RLIS, it is not possible to provide the responses to all queries in advance.
Therefore, we assume RBIS has access to a response oracle that answers its queries in real time.
The algorithm has an initializing phase (Lines 5 to 10), a search phase where it applies Moves-down
and Moves-up operations in the search tree (Lines 11 to 36) and a final phase where it computes
the reservation price (Lines 37 to 42). All these phases take O(n) time, and therefore RBIS sets its
reservation price in time O(n).
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Algorithm 2 Robust Binary Interval Search (RBIS)
1: Input: m,M (lower and upper bounds for the best price); A response oracle OR; an upper

bound H for the number of incorrect answers.
2: Output: a reservation price rp
3: . Initializing
4: T ← a full binary tree with 2n leaves L = (L1, . . . , L2n)
5: for every node x ∈ T do
6: main(x)← −1
7: end for
8: uq ← 0 . no. used queries
9: mu← 0 . no. Move-up operations

10: v ← root of T
11: . Searching in the tree
12: while uq ≤ k do
13: Tleftv ← subtree of T rooted at the left child of v
14: qv ← index of the right-most leaf of Tleftv in L
15: Quq ← “is p∗ ≤ m · (M/m)qv/2

n?" . main query of v
16: main(v)← OR.response(Quq)
17: uq ← uq + 1
18: w ← the first ancestor of v s.t. main(w) 6= main(v) . w is anc(v)
19: if w 6= φ then
20: Tleftw ← subtree of T rooted at the left child of w
21: qw ← index of the right-most leaf of Tleftw in L
22: Quq ← “is p∗ ≤ m · (M/m)qw/2

n?" . the checkup query at v
23: check(v)← OR.response(Quq)
24: uq ← uq + 1
25: end if
26: if (w = φ) or (check(v) = main(w) ) then
27: if main(v) = “Yes" then . Move-down operation
28: v ← left child of v
29: else
30: v ← right child of v
31: end if
32: else
33: v ← parent of v . Move-up operation
34: mu← mu+ 1
35: end if
36: end while
37: . Search ends; setting the reservation price
38: au ← the (H −mu)’th ancestor of u
39: Tau ← the tree rooted at au
40: Ll ← the index of the leftmost leaf of Tau in L
41: al ← m · (M/m)l/2

n
. set the reservation price

42: return al
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Analysis We first show the following useful lemmas.

Lemma 1. Suppose a Move-down operation takes place at node v, and let ch(v) denote the child of
v to which the search moves. Then either Lx is in Tch(v) or at least one of the responses main(v)
and check(v) are incorrect.

Proof. If anc(v) = ∅, then all previous main queries have received the same response (involving
Move-down operations, either all to the left or all to the right). Therefore, if main(v) is correct,
then for every node y on the path from the root to v, main(y) is also correct and Lx is in Tch(v),
hence the lemma follows.

Next, suppose that main(v) is correct, but Lx 6= Tch(v). Since the algorithm moves down, it
must be that main(anc(v))=check(v). To prove the lemma, it suffices to show these two re-
sponses are wrong. Without loss of generality, suppose that main(v) is Yes and main(anc(v))
is No (the opposite case is handled symmetrically). Given that main(v) is correct, Lx must be
either in Tch(v) or in the left subtree of anc(v). In the former case, the lemma follows directly. In
the latter case, main(anc(v)), which is precisely check(v), is incorrect, and thus the lemma
again follows.

The proof of the following lemma is based on Lemma 1, by showing that the search ends
sufficiently deep in the tree.

Lemma 2. The following hold: (i) Node au is at depth at least bn/2c − 2H in T ; and (ii) Lx is a
leaf of Tau .

Proof. To prove (i), note that since there are n queries, and each iteration invokes up to two queries,
the number of iterations is at least bn/2c. Among these iterations, muend of them are Move-up
iterations and the remaining bn/2c−muend are Move-down iterations. Therefore, the search ends
at a node u of depth bn/2c − 2muend. Given that au is the H −muend’th ancestor of u, its depth
is at least bn/2c − 2muend − (H − muend) ≤ bn/2c − 2H . The last inequality holds because
muend ≤ H .

We prove (ii) by way of contradiction. Suppose that Lx is not in Tau . Recall that au is the
(H−muend)’th ancestor of node u. Therefore, the algorithm must have made at leastH−muend+
1 Move-down operations, in a subtree that does not contain Lx. From Lemma 1, any of these
operations include at least one incorrect response to their main or checkup query, resulting in at
least H −muend + 1 incorrect responses for iterations with Move-down operations on the search
path from au to u. In addition, each Move-up query is associated with a wrong response. To see
that, suppose there is a Move-up query at node v. If Lx is not in Tv, then the main query at the
parent of v has been incorrectly answered. Otherwise, if Lx is in Tv, then check(v) is incorrectly
responded (Move-up operation implies check(v) 6= main(anc(v)) and main(anc(v)) is
correctly answered because Lx ∈ Tv). We conclude that, in addition to the H − muend + 1
incorrect responses for iterations with Move-down operations, there are muend incorrect responses
associated with the Move-up queries. Therefore, the total number of wrong responses to queries
must be at least H+1, contradicting the fact that the number of wrong responses is at most H .

Theorem 6. For every H ≤ n/4, RBIS has competitive ratio at most (M/m)2
2H−n/2

.
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Proof. Let Ll = [al−1, al) and Lr = [ar−1, ar) denote the leftmost and rightmost leaves in the
subtree rooted at au. Recall that the algorithm selects al−1 as its reservation price, while Lemma 2
guarantee ensures that Lx, and thus p∗ is located in the subtree rooted at au, that is, p∗ < ar.
Therefore, the competitive ratio of RBIS is at most ar/al−1 = ρr−l+1. Moreover, by Lemma 2,
since au is at depth at least d = bn/2c − 2H of T , the number of leaves in the subtree rooted at au
is at least 2n−d < 2n/2+2H , and thus CR(Rbis) ≤ ρ2

n−d
< (M/m)2

n/2+2H/2n = (M/m)2
2H−n/2 .

Lower bounds We can complement Theorem 6 with the following impossibility result, assuming
comparison-based queries over a binary search tree.

Theorem 7. The competitive ratio of any online search algorithm with n comparison-based queries
over a binary tree is at least (M/m)2

2H−n
, assuming n ≥ 11.

Proof. For the sake of contradiction, suppose there is an algorithm A that achieves a compet-
itive ratio better than ρ = (M/m)2

2H−n . Consider the following search problem that we call
DUALSEARCH(m): an adversary selects an integer x so that 1 ≤ x ≤ 2m , and the goal is to find x
using a minimum number of queries, out of which up to H queries are incorrectly answered. [15]
proved that one cannot solve DUALSEARCH(m) using less than m + 2H queries (and this holds
even if algorithms can receive error-free responses to “=" queries).

Let Q be an instance of DUALSEARCH(m) that asks for x = x0 in a search space of size
m = n − 2H . We show that A can be used to solve DUALSEARCH(m). For that, we form
an instance Q′ of the search problem in which the best value p∗ is defined as follows. Partition
the interval [m,M ] into 2n−2H intervals L1, L2, . . . , L2n−2H , where Li = (ai−1, ai], a0 = m, and
a2n = M . We define the ai’s so that ρ = a1/a0 = a2/a1 = . . . = a2n−2H/a2n−2H−1 . Now, let
p∗ = ax0 . In order to solve the instance Q of DUALSEARCH(m), we apply A on the instance
Q′ of the search problem, assuming it is allowed to ask n queries. Let rA denote the smallest
price revealed on day 1 such that A accepts that price on day 1. Suppose rA is in interval Ly
(y ∈ [1..2n−2H ]). Then, return y as the answer to the instance Q of DUALSEARCH(m). Given
the upper bound for CR(A) ≤ ρ, it must hold that x0 = y. Otherwise, if y < x0, we will have
CR(A) ≥ ax0/rA ≥ ax0/ax0−1 > ρ, and if y > x0, we will have CR(A) ≥ ax0/m ≥ ρ2.

To summarize, we showed that if an online search algorithm A asks n questions (out of which
up to H are answered incorrectly) and has a competitive ratio better than ρ, then A can be used to
solve an instance of DUALSEARCH(m) on a search spacem = n−2H . This, however, contradicts
the result of [15] and we can conclude that A cannot achieve a competitive ratio better than ρ.

4 Experimental evaluation

4.1 Benchmarks and input generation
We evaluate our algorithms on benchmarks generated from real-world currency exchange rates,
which are publicly available on several platforms. Specifically, we rely on [16]. We used two
currency exchange rates (Bitcoin-to-USD and Ethereum-to-USD) and two fiat currency
exchange rates (Euro-to-USD and Yen-to-CAD). In all cases, we collected the closing daily
exchange rates for a time horizon starting on January 1st, 2018 and ending on September 1st, 2021,
which we use as the daily prices.
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For each benchmark, 20 instances I1, I2, . . . , I20 of the online search problem are generated
as follows. We select 20 starting days from the time horizon so that consecutive starting days are
evenly distanced. Each starting day and the 199 days that follow it form an instance (of length 200)
of the search problem. For each such instance, we select m and M to be respectively the minimum
and maximum exchange rates. In all experiments, the reported profits are the average taken over
these 20 instances. In particular, we use the average profit of the optimal online algorithm ON∗

(without any prediction) as the baseline for our comparisons. Similarly, the average value of the
best prices (over all instances) is reported as an upper bound for attainable profits.

4.2 Algorithms with Best-Price Prediction
We test our algorithms using several values of prediction error. For the Bitcoin-to-USD and
Ethereum-to-USD benchmarks, we select 500 values of negative error equally distanced in
[0, 0.5], as well as 500 equally-distanced values of positive error in [0, 0.5]. For the Euro-to-USD
and Yen-to-CAD benchmarks, we select 500 values of negative/positive error in a smaller range
in [0, 0.04]. This smaller range is consistent with the fact that fiat currencies are substantially less
volatile than cryptocurrencies. That is, the values ofm andM are very close in instances generated
from the fiat currencies. This implies that the range of error ([0, (M−m)/M ] and [0, (M−m)/m]
for negative and positive errors, respectively) is much smaller for fiat currencies.

For each selected value, say η0, and for each instance Ix of the problem, we test our algorithms
for prediction error equal to η0, that is, the predicted value is generated by applying the error η0 on
the best price in Ix. The average profit of the algorithm over all instances is reported as its average
profit for η0. Choosing η ≤ 0.5 implies that the prediction p is at least half and at most twice
the best price. For real data, such as currency exchange prices, this range of error is sufficient to
capture all instances.

Oblivious algorithms For the Bitcoin-to-USD and Ethereum-to-USD benchmarks, we
evaluate ORAr with different values of the parameter r ∈ {0.5, 0.75, 1.0, 1.25, 1.5} and for the
Euro-to-USD and Yen-to-CAD benchmarks, we set r ∈ {0.96, 0.98, 1.00, 1.02, 1.05}. Given
that the range of error is smaller in the fiat currencies, the reservation price must be closer to the
predicted value for p∗, that is, r should be closer to 1. (recall that rp is the reservation price of an
algorithm in this class). Figure 2 illustrates the average profit for instances generated from different
benchmarks. The findings are consistent with Theorem 2. Specifically, for positive error, for all
reported values of r, ORAr degrades with η (consistently with the linear increase in the competitive
ratio in Theorem 2). For small values of negative error, the average profit increases by η, followed
by a “drop" when η takes a certain larger value (e.g., when η becomes 0.251 for the algorithm
with r = 0.75). This follows precisely Theorem 2, as illustrated in Figure 1. For larger values of
negative error, the algorithms gain a fixed profit (e.g., 15890 in the Bitcoin-to-USD bench-
mark), which is the average value of the last-day price. For these values of error, the algorithm
sets a reservation price that is too large, and results in the player accepting the last-day price. Last,
we note that, as predicted by our competitive analysis, no algorithm dominates another in terms of
collected profit.

The results demonstrate that predictions about best price lead to profit gains even for oblivious
algorithms. In particular, all algorithms result in better profit when compared to ON∗, as long
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Figure 2: The average profit of ORAr with different values of r over instances generated from
different benchmarks.

as η < 0.5 (for the Bitcoin-to-USD benchmark), η < 0.2 (for the Ethereum-to-USD
benchmark) and η < 0.02 (for the Euro-to-USD and Yen-to-CAD benchmarks).

Non-oblivious algorithms We tested ROBUST-MIX with upper bound H on both the positive
and negative error. For the Bitcoin-to-USD and Ethereum-to-USD benchmarks, we set
H = Hn = Hp for H ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For the Euro-to-USD and Yen-to-CAD
benchmarks, we set H = Hn = Hp for H ∈ {0.005, 0.01, 0.02, 0.03, 0.04}. The smaller range of
η in fiat currencies implies that we need to test smaller values of H .

For each such value of H , and for each selected error η, we report the average profit over
the 20 instances from different benchmarks. Since the setting is non-oblivious, we only report
profits for η ≤ H . Figure 3 illustrates the average profit for instances generated from different
benchmarks. The results are consistent across all benchmarks. We observe that all algorithms
improve as the negative error increases and they degrade as the positive error increases. This is
consistent with Theorem 3. Algorithms with smaller H have an advantage over those with larger
H , again consistently with Theorem 3. These results demonstrate that non-oblivious algorithms
can benefit from best-price predictions in all benchmarks.
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Figure 3: The average profit of ROBUST-MIX with different values of H over instances generated
from different benchmarks.

4.3 Query-based algorithms
In our experiments, we set the number of queries to n = 25. We test RLIS and RBIS with H taken
from {3, 5, 8, 10, 13}, and for all values of η ∈ [0, H]. Let Alg denote any of our algorithms (RLIS

or RBIS for a certain value of H). For each instance Ix from our benchmarks and each selected
value of η0, the following process is repeated 1000 times for Alg. First, the (correct) responses to
the 25 queries asked by Alg are generated; then out of these 25 responses, η0 of them are selected
uniformly at random, and flipped. This is the prediction P that is given to Alg; we run Alg with
this prediction, and record its profit. After running 1000 tests, the average value of the reported
profits is recorded as the average profit of Alg for Ix, for a value of error equal to η0.

Figures 4 and 5 depict the average profit (as a function of η) for RLIS and RBIS, respectively.
Since this is a non-oblivious setting, the profit is only reported for values of η ≤ H . The results
are consistent over all benchmarks. We observe that both algorithms attain profit significantly
better than ON∗ for reasonable values of error, and their profit degrades gently with the error. In
particular, RBIS with H ∈ {3, 5} accrues an optimal profit. For a fixed value of η, smaller values
of H yield to better profit for both algorithms. This is consistent with Theorems 5 and 6, which
bound the competitive ratios as an increasing function of H . We also observe that RBIS performs
better than RLIS, which is again consistent with Theorems 5 and 6. We also observe that even if

17



error (η)

av
er

ag
e 

pr
of

it

5000

10000

15000

20000

25000

0 2 4 6 8 10 12

ON* M RLIS (H = 3) RLIS (H = 5) RLIS (H = 8)
RLIS (H = 10) RLIS (H = 13)

(a) average profit for the Bitcoin-to-USD bench-
mark

error (η)

av
er

ag
e 

pr
of

it

200

400

600

800

1000

0 2 4 6 8 10 12

ON* M RLIS (H = 3) RLIS (H = 5) RLIS (H = 8)
RLIS (H = 10) RLIS (H = 13)

(b) average profit for the Ethereum-to-USD
benchmark

error (η)

av
er

ag
e 

pr
of

it

1.14

1.15

1.16

1.17

1.18

1.19

0 2 4 6 8 10 12

ON* M RLIS (H = 3) RLIS (H = 5) RLIS (H = 8)
RLIS (H =10) RLIS (H = 13)

(c) average profit for the Euro-to-USD benchmark

error (η)

av
er

ag
e 

pr
of

it

82

83

84

85

86

87

0 2 4 6 8 10 12

ON* M RLIS (H = 3) RLIS (H = 5) RLIS (H = 8)
RLIS (H = 10) RLIS (H = 13)

(d) average profit for the Yen-to-CAD benchmark

Figure 4: The average profit of RLIS with different values of H over instances generated from
different benchmarks.

H is relatively large (e.g., H = 8), RBIS results in better profit in comparison to ON∗.

5 Conclusion
We gave the first theoretical study, with supporting experimental evaluation over real data, of a
fundamental problem in online decision making, and in a learning-augmented setting. Despite the
simplicity of the problem in its standard version, the learning-augmented setting is quite complex
and poses several challenges. Future work should expand the ideas in this work to generalizations
of online search such as one-way trading and online portfolio selection.

Our robust binary search algorithm can be useful in other query-based optimization settings,
with or without predictions, since it addresses a broad setting: select a “good” candidate, using
noisy queries, while maximizing the size of the candidate space (exponential in the number of
queries).
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