
HAL Id: hal-03767412
https://hal.science/hal-03767412

Submitted on 1 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Near Instance-Optimal PAC Reinforcement Learning for
Deterministic MDPs

Andrea Tirinzoni, Aymen Al-Marjani, Emilie Kaufmann

To cite this version:
Andrea Tirinzoni, Aymen Al-Marjani, Emilie Kaufmann. Near Instance-Optimal PAC Reinforcement
Learning for Deterministic MDPs. EWRL 2022 - European Workshop on Reinforcement Learning,
Sep 2022, Milan, Italy. �hal-03767412�

https://hal.science/hal-03767412
https://hal.archives-ouvertes.fr

European Workshop on Reinforcement Learning 15 (2022) September 2022, Milan, Italy.

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni tirinzoni@fb.com
Meta AI
Paris, France

Aymen Al-Marjani aymen.al_marjani@ens-lyon.fr
UMPA, ENS Lyon
Lyon, France

Emilie Kaufmann emilie.kaufmann@univ-lille.fr
Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 - CRIStAL
Lille, France

Abstract
In probably approximately correct (PAC) reinforcement learning (RL), an agent is required to identify an ε-optimal policy
with probability 1 − δ. While minimax optimal algorithms exist for this problem, its instance-dependent complexity
remains elusive in episodic Markov decision processes (MDPs). In this paper, we propose the first nearly matching
(up to a horizon squared factor and logarithmic terms) upper and lower bounds on the sample complexity of PAC RL
in deterministic episodic MDPs with finite state and action spaces. In particular, our bounds feature a new notion of
sub-optimality gap for state-action pairs that we call the deterministic return gap. While our instance-dependent lower
bound is written as a linear program, our algorithms are very simple and do not require solving such an optimization
problem during learning. Their design and analyses employ novel ideas, including graph-theoretical concepts (minimum
flows) and a new maximum-coverage exploration strategy.

Keywords: PAC reinforcement learning, best policy identification, instance optimality

1. Introduction

In reinforcement learning (RL, Sutton and Barto, 2018), an agent interacts with an environment modeled as a Markov
decision process (MDP) by sequentially selecting actions and receiving feedback in the form of reward signals.
Depending on the application, the agent may seek to maximize the cumulative rewards received during learning (which
is typically phrased as a regret minimization problem) or to minimize the number of learning interactions (i.e., the
sample complexity) for identifying a near-optimal policy. The latter pure exploration problem was introduced in Fiechter
(1994) under the name of Probably Approximately Correct (PAC) RL: given two parameters ε, δ > 0, the agent must
return a policy that is ε-optimal with probability at least 1 − δ. Our work focuses on this problem in the context of
episodic (a.k.a. finite-horizon) tabular MDPs.

The PAC RL problem has been mostly studied under the lens of minimax (or worst-case) optimality. In the episodic
setting, the algorithm proposed in Dann et al. (2019) has sample complexity bounded by O(SAH2 log(1/δ)/ε2) for an
MDP with S states, A actions, horizon H , and time-homogeneous transitions and rewards (i.e., not depending on the
stage). This is minimax optimal for such a context (Dann and Brunskill, 2015). Similarly, in Ménard et al. (2021) the
authors designed a strategy with O(SAH3 log(1/δ)/ε2) complexity in time-inhomogeneous MDPs, which was later
shown to be minimax optimal Domingues et al. (2021b).

While the minimax framework provides a strong notion of statistical optimality, it does not account for one of the most
desirable properties for an RL algorithm: the ability to adapt to the difficulty of the MDP instance. For this reason,
researchers recently started to investigate the instance-dependent complexity of PAC RL. Earlier attempts were made in
the simplified setting where the agent has access to a generative model (i.e., it can query observations from any state-
action pair using a simulator) in γ-discounted infinite-horizon MDPs (Zanette et al., 2019; Al Marjani and Proutiere,
2021). The online setting, where the agent can only sample trajectories from the environment, has been studied by
Al Marjani et al. (2021) for discounted MDPs and by Wagenmaker et al. (2022) for episodic time-inhomogeneous

©2022 Tirinzoni, Al-Marjani, and Kaufmann.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

TIRINZONI, AL-MARJANI, AND KAUFMANN

MDPs. All these works derive sample complexity bounds that scale with certain gaps between optimal value functions.
For instance, in the episodic setting, the value gap ∆h(s, a) := V ⋆

h (s)−Q⋆
h(s, a)

1 intuitively characterizes the degree
of sub-optimality of action a for state s at stage h. Unfortunately, these bounds are known to be sub-optimal and how
to achieve instance optimality remains one of the main open questions. In fact, recent works on regret minimization
(Tirinzoni et al., 2021; Dann et al., 2021) showed that value gaps are often overly conservative, and the same holds for
PAC RL. We refer the reader to Appendix A for a deeper discussion on problem-dependent results in RL and the review
of other related PAC learning frameworks.

The main challenge towards instance optimality is that existing lower bounds for exploration problems in MDPs
(Al Marjani and Proutiere, 2021; Tirinzoni et al., 2021; Al Marjani et al., 2021; Dann et al., 2021) are written in terms
of non-convex optimization problems. Their “implicit” form makes it hard to understand the actual complexity of the
setting and, thus, to design optimal algorithms. Existing solutions either derive explicit sufficient complexity measures
that inspire algorithmic design (Wagenmaker et al., 2022), or solve (a relaxation of) the optimization problem from the
lower bound using the empirical MDP as a proxy for the unknown MDP (Al Marjani et al., 2021). The latter extends
the Track-and-Stop idea originally proposed in Garivier and Kaufmann (2016) for bandits (H = 1), and requires in
particular a large amount of forced exploration. Both solutions have limitations. On the one hand, it is not clear if
and how such sufficient complexity measures or relaxations are related to an actual lower bound. On the other hand,
strategies solving a black-box optimization problem to find an optimal exploration strategy are typically very inefficient
and often come with either only asymptotic (δ → 0) guarantees or with poor (far from minimax optimal) sample
complexity in the regime of moderate δ.

Contributions This paper presents a complete study of PAC RL in tabular deterministic episodic MDPs with time-
inhomogeneous transitions, a sub-class of stochastic MDPs where state transitions are deterministic and the agent
observes stochastic rewards from unknown distributions. Our first contribution is an instance-dependent lower bound
on the sample complexity of any PAC algorithm. We show that the number of visits nτh(s, a) to any state-action-stage
triplet (s, a, h) at the stopping time τ satisfies

E[nτh(s, a)] ≳
log(1/δ)

max(∆h(s, a), ε)2
, (1)

where ∆h(s, a) := V ⋆
1 −maxπ∈Πs,a,h

V π
1 , with V π

1 the expected return of policy π, V ⋆
1 the optimal expected return,

and Πs,a,h the set of all deterministic policies that visit (s, a) at stage h. We call these quantities the deterministic return
gaps due to their closeness with the return gaps introduced in Dann et al. (2021) for general MDPs. In deterministic
MDPs, the deterministic return gaps are actually H times larger than the return gaps and they are never smaller than
value gaps. Our lower bound on the sample complexity τ is then the value of a minimum flow with local lower bounds
(1), i.e., roughly the minimum number of policies that must be played to ensure (1) for all (s, a, h). To our knowledge,
this is the first instance-dependent lower bound for the PAC setting in episodic MDPs.

On the algorithmic side, we design EPRL, a generic elimination-based method for PAC RL, and couple it with a novel
adaptive sampling rule called maximum-coverage sampling. The latter is a simple strategy which does not require
solving the optimization problem from the lower bound at learning time in a Track-and-Stop fashion. Instead, it greedily
selects the policy that maximizes the number of visited under-sampled triplets (s, a, h), i.e. those having received
the least amount of visits so far. We prove that EPRL is (ε, δ)-correct under any sampling rule. Moreover, we show
that the sample complexity of EPRL with max-coverage sampling matches our instance-dependent lower bound up to
logarithmic factors and a multiplicative O(H2) term, while also being minimax optimal. Finally, we perform numerical
simulations on random deterministic MDPs which reveal that EPRL can indeed improve over existing minimax-optimal
algorithms tailored for the deterministic case.

2. Preliminaries

LetM := (S,A, {fh, νh}h∈[H], s1, H) be a deterministic time-inhomogeneous finite-horizon MDP, where S is a finite
set of S states, A is a finite set of A actions, fh : S ×A → S and νh : S ×A → P(R) are respectively the transition
function and the reward distribution at stage h ∈ [H], s1 ∈ S is the unique initial state, and H is the horizon. Without
loss of generality, we assume that, at each stage h ∈ [H] and state s ∈ S, only a subset Ah(s) ⊆ A of actions is
available. We denote by rh(s, a) := Ex∼νh(s,a)[x] the expected reward after taking action a in state s at stage h.

1. V ⋆ and Q⋆ respectively denote the optimal value and action-value functions, that are defined in Section 2.

2

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

A deterministic policy π = {πh}h∈[H] is a sequence of mappings πh : S → A. We let Π := {π | ∀h ∈ [H], s ∈
S : πh(s) ∈ Ah(s)} be the set of all valid deterministic policies. Executing a policy π ∈ Π on MDP M yields
a deterministic sequence of states and actions (sπh, a

π
h)h∈[H], where sπ1 = s1, aπh = πh(s

π
h) for all h ∈ [H], and

sπh = fh−1(s
π
h−1, a

π
h−1) for all h ∈ {2, . . . ,H}. We let Sh := {s ∈ S | ∃π ∈ Π : sπh = s} be the subset of states

that are reachable at stage h ∈ [H]. Finally, we define N :=
∑H

h=1

∑
s∈Sh

|Ah(s)| as the total number of reachable
state-action-stage triplets.

For each (s, a, h), the action-value function Qπ
h(s, a) of a policy π ∈ Π quantifies the expected return when starting

from s at stage h, playing a and following π thereafter. In deterministic MDPs, it has the simple expression Qπ
h(s, a) =

rh(s, a) + V π
h+1(fh(s, a)), where V π

h (s) := Qπ
h(s, πh(s)) is the corresponding value function (with V π

H+1(s) = 0).
The expected return of π is simply its value at the initial state, i.e., V π

1 (s1) =
∑H

h=1 rh(s
π
h, a

π
h). We let Π⋆ := {π⋆ ∈

Π : V π⋆

1 (s1) = maxπ∈Π V
π
1 (s1)} be the set of optimal policies, i.e., those with maximal return. Finally, we denote

by V ⋆
h (s) and Q⋆

h(s, a) the optimal value and action-value function, respectively. These are related by the Bellman
optimality equations as Q⋆

h(s, a) = rh(s, a) + V ⋆
h+1(fh(s, a)) and V ⋆

h (s) = maxa∈Ah(s)Q
⋆
h(s, a).

Learning problem The agent interacts with an MDPM in episodes indexed by t ∈ N. At the beginning of the
t-th episode, the agent selects a policy πt ∈ Π based on past history through its sampling rule, executes it onM, and
observes the corresponding deterministic trajectory (sπ

t

h , a
πt

h)h∈[H] together with random rewards (yth)h∈[H], where
yth ∼ νh(sπ

t

h , a
πt

h). At the end of each episode, the agent may decide to terminate the process through its stopping rule
and return a policy π̂ prescribed by its recommendation rule. We denote by τ its random stopping time. An algorithm
for PAC identification is thus made of a triplet ({πt}t∈N, τ, π̂). The goal of the agent is two-fold. First, for given
parameters ε, δ > 0, it must return an ε-optimal policy with probability at least 1− δ.

Definition 1 An algorithm is (ε, δ)-PAC on a set of MDPs M if, for allM∈M, it stops a.s. with

PM

(
V π̂
1 (s1) ≥ V ⋆

1 (s1)− ε
)
≥ 1− δ.

Second, it should stop as early as possible, i.e., by minimizing the sample complexity τ . Henceforth, we assume that the
transition function f is known but not the reward distribution ν. Note that if the transitions are unknown, the agent can
still estimate them (since it knows thatM is deterministic) with at most N ≤ SAH episodes.

Minimum flows We review some basic concepts from graph theory which will be at the core of our algorithms
and analyses later. Full details can be found in Appendix B. First note that a deterministic MDP (without reward)
can be represented as a directed acyclic graph (DAG) with one arc for each available state-action-stage triplet. Let
E := {(s, a, h) : h ∈ [H], s ∈ Sh, a ∈ Ah(s)} be the set of arcs in the DAG. The minimum flow problem, originally
introduced in Voitishin (1980) and later studied in, e.g., Adlakha et al. (1991); Adlakha (1999); Ciurea and Ciupala
(2004), consists of findining a flow (i.e., an allocation of visits) of minimal value which satisfies certain demand
constraints in each arc of the graph. In our specific setting, we define a flow as any non-negative function η : E → [0,∞)
that belongs to the following set
Ω :=

{
η : E → [0,∞) |

∑
(s′,a′):fh−1(s′,a′)=s ηh−1(s

′, a′) =
∑

a∈Ah(s)
ηh(s, a) ∀h > 1, s ∈ Sh

}
.

This implies that a flow, seen as an allocation of visits to the arcs, satisfies the navigation constraints (i.e., incoming and
outcoming flows are equal at each state). The minimum flow for a non-negative lower-bound function c : E → [0,∞)
is the solution to the following linear program (LP):

φ⋆(c) := min
η∈Ω

∑
a∈A1(s1)

η1(s1, a) s.t. ηh(s, a) ≥ ch(s, a) ∀(s, a, h) ∈ E .

Intuitively, the goal is to minimize the amount of flow leaving the initial state while satisfying the navigation and
demand constraints. We note that more efficient algorithms exist for this problem than the LP formulation, e.g., the
variant of the Ford-Fulkerson method proposed in Ciurea and Ciupala (2004) which is guaranteed to find an integer
solution when the lower bound function is integer-valued.

3

TIRINZONI, AL-MARJANI, AND KAUFMANN

3. The Complexity of PAC RL in Deterministic MDPs

Before stating our lower bound, we formally introduce the new notion of sub-optimality gap it features and compare it
with other notions that appeared in the literature.

On sub-optimality gaps The most popular notion of sub-optimality gap is the so-called value gap. It was introduced
first in the discounted infinite-horizon setting (e.g., Zanette et al., 2019) and later for episodic MDPs (e.g., Simchowitz
and Jamieson, 2019; Xu et al., 2021). Formally, in the latter context, the value gap of any action a ∈ Ah(s) in state
s ∈ Sh at stage h ∈ [H] is ∆h(s, a) := V ⋆

h (s)−Q⋆
h(s, a). Such a notion of gap appears in the complexity measure for

PAC RL proposed in Wagenmaker et al. (2022). In the deterministic setting, such a complexity measure can be written
as C(M, ε) =

∑
(s,a,h)

1

max(∆̃h(s,a),ε)2
, where ∆̃h(s, a) = mina′:∆h(s,a′)>0 ∆h(s, a

′) if a is the unique optimal action

at (s, h), and ∆̃h(s, a) = ∆h(s, a) otherwise. Intuitively, the (inverse) value gap is proportional to the difficulty of
learning whether an action a is sub-optimal for state s at stage h. Then, C(M, ε) is proportional to the difficulty of
learning a near optimal action at all states and stages. Recent works (Tirinzoni et al., 2021; Dann et al., 2021) showed
that this is actually not necessary: if one only cares about computing a policy maximizing the return at the initial state,
it is not necessary to learn an optimal action at states which are not visited by such an optimal policy, in particular when
the return of all policies visiting the state is small. The return gap Dann et al. (2021) was introduced to cope with this
limitation. In deterministic MDPs, it can be expressed as gaph(s, a) :=

1
H minπ∈Πs,a,h

∑h
ℓ=1 ∆ℓ(s

π
ℓ , a

π
ℓ), where we

denote by Πs,a,h := {π ∈ Π : sπh = s, aπh = a} the subset of deterministic policies that visit (s, a) at stage h. In words,
the return gap of (s, a, h) is proportional to the sum of value gaps along the best trajectory (i.e., one with maximal
return) that visits (s, a) at stage h. Intuitively, this means that, if ∆h(s, a) is extremely small but all policies visiting
(s, a) at stage h need to play a highly sub-optimal action before, then ∆h(s, a)≪ gaph(s, a). In the deterministic case,
our lower bound reveals that the normalization by H is not necessary, and we define the deterministic return gap to be

∆h(s, a) := V ⋆(s1)− max
π∈Πs,a,h

V π(s1). (2)

Using the well-known relationship V ⋆
1 (s1)− V π

1 (s1) =
∑H

h=1 ∆h(s
π
h, a

π
h) (e.g., Tirinzoni et al., 2021, Proposition 5),

it is easy to see that ∆h(s, a) ≤ ∆h(s, a) = H × gaph(s, a).

Lower Bound We now present our instance-dependent lower bound based on deterministic return gaps, which will
guide us in the design and analysis of sample efficient algorithms. This result is the first instance-dependent lower bound
for PAC RL in the episodic setting. Lower bounds for ε-best arm identification in a bandit model (which corresponds
to H = S = 1) were derived in Mannor and Tsitsiklis (2004); Degenne and Koolen (2019); Garivier and Kaufmann
(2021), while problem-dependent regret lower bounds for finite-horizon MDPs are provided in Dann et al. (2021);
Tirinzoni et al. (2021).

We consider the class M1 of deterministic MDPs with Gaussian rewards of unit variance2, in which νh(s, a) =
N (rh(s, a), 1). Let Πε := {π ∈ Π : V π

1 (s1) ≥ V ⋆
1 (s1) − ε} be the set of all ε-optimal policies and denote by

Zε
h := {s ∈ Sh, a ∈ Ah(s) : Πs,a,h ∩ Πε ̸= ∅} the set of state-action pairs that are reachable at stage h by some

ε-optimal policy. Note that ∆h(s, a) ≤ ε for all (s, a) ∈ Zε
h.

Theorem 2 Fix any MDPM∈M1. Then, any algorithm which is (ε, δ)-PAC on the class M1 must satisfy, for any
h ∈ [H], s ∈ Sh, and a ∈ Ah(s),

EM[nτh(s, a)] ≥ ch(s, a) :=
log(1/4δ)

4max(∆h(s, a),∆
h

min, ε)
2
, (3)

where ∆
h

min := min(s′,a′):∆h(s′,a′)>0 ∆h(s
′, a′) if |Zε

h| = 1 and ∆
h

min := 0 otherwise. Moreover, for c : E → [0,∞)

the lower bound function defined above,

EM[τ] ≥ φ⋆(c). (4)

The first lower bound (3) is on the number of visits required for any state-action-stage triplet. It intuitively shows that
an (ε, δ)-PAC algorithm must visit each triplet proportionally to its inverse deterministic return gap. The second one

2. If the variance is σ2, the same lower bound holds with the quantities ch(s, a) multiplied by σ2.

4

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

(4) shows that the actual sample complexity of the algorithm must be at least the value of a minimum flow computed
with the local lower bounds (3), i.e. that the algorithm must play the minimum number of episodes (i.e., policies) that
guarantees (3) for each (s, a, h). Intuitively, due to the navigation constraints of the MDP, there might be no algorithm
which tightly matches (3) for each (s, a, h), and (4) is exactly enforcing these constraints. While φ⋆(c) has no explicit
form, Lemma 17 in Appendix B gives an idea of how it scales with the gaps:

max
h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

log(1/4δ)

4max(∆h(s, a),∆
h
min, ε)2

≤ φ⋆(c) ≤
∑

h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

log(1/4δ)

4max(∆h(s, a),∆
h
min, ε)2

.

Observe that the quantity on the right-hand side resembles the complexity measure C(M, ε) Wagenmaker et al. (2022),
except that value gaps are replaced by return gaps. This implies that, in general, our lower bound can be much smaller
than this complexity. For instance, in an MDP with extremely small value gaps in states which are not visited by an
optimal policy, φ⋆(c) does not scale with such gaps at all.

In Appendix C.2 we further provide a Ω
(
SAH2 log (1/δ)/ε2

)
minimax lower bound for PAC RL in deterministic

MDPs, with a reduced H2 dependency compared to the H3 that appear in the stochastic case Domingues et al. (2021b).
We note that faster rates for deterministic MDPs have already been obtained in other RL settings (e.g., Yin and Wang,
2021). The BPI-UCRL algorithm Kaufmann et al. (2021) particularized to deterministic MDPs is matching this lower
bound and is thus minixal optimal. We now present the first algorithm which is simultaneously minimax optimal for
deterministic MDPs and nearly matching (up to O(H2) and logarithmic factors) the lower bound of Theorem 2.

4. EPRL and Max-Coverage Sampling

We propose a general Elimination-based scheme for PAC RL, called EPRL (Algorithm 1). At each episode t ∈ N, the
algorithm plays a policy πt selected by some sampling rule. Then, based on the collected samples, the algorithm updates
its statistics and eliminates all actions which are detected as sub-optimal with enough confidence. This procedure is
repeated until a stopping rule triggers.

Formally, EPRL maintains an estimate r̂th(s, a) :=
1

nt
h(s,a)

∑t
l=1 y

l
h1
(
slh = s, alh = a

)
, with r̂0h = 0, of the unknown

mean reward rh(s, a) for each (s, a, h). Here nth(s, a) :=
∑t

l=1 1
(
slh = s, alh = a

)
is the number of times (s, a) is

visited at stage h up to episode t. We define the following upper and lower confidence intervals to the value functions of
a policy π ∈ Π:

Q
t,π

h (s, a) := r̂th(s, a) + bth(s, a) + V
t,π

h+1(fh(s, a)), V
t,π

h (s) := Q
t,π

h (s, πh(s)),

Qt,π

h
(s, a) := r̂th(s, a)− bth(s, a) + V t,π

h+1(fh(s, a)), V t,π
h (s) := Qt,π

h
(s, πh(s)),

where bth(s, a) is a bonus function, i.e., the width of the confidence interval at (s, a, h). As common in the literature,
we assume that rewards are bounded in [0, 1], which allows us to choose 3

bth(s, a) :=

√
β(nth(s, a), δ)

nth(s, a)
∧ 1, β(t, δ) :=

1

2
log

(
e(t+ 1)N

δ

)
. (5)

Elimination rule Algorithm 1 keeps a set of active (or candidate) actions At
h(s) for each stage h ∈ [H], state

s ∈ Sh, and episode t ∈ N. Let Πt := {π ∈ Π | ∀s, h : πh(s) ∈ At
h(s) ∨ At

h(s) = ∅} be the subset of active
policies that only play active actions at episode t. Note that an active policy can play an arbitrary action in states
where all actions have been eliminated. As can be seen in Line 7 of Algorithm 1, action a is eliminated from At

h(s)

if maxπ∈Πs,a,h∩Πt−1 V
t,π

1 (s1) ≤ maxπ∈Π V
t,π
1 (s1) where we recall that Πs,a,h denotes the set of all deterministic

policies that visit s, a at stage h, that is when we are confident that none of the policies visiting (s, a) at stage h is
optimal. The maximum restricted to Πs,a,h can be easily computed by standard dynamic programming (e.g., it is
enough to set the reward to −∞ for all state-action pairs different than (s, a) at stage h). If Πs,a,h ∩Πt−1 = ∅, we set
the maximum to −∞ so that the elimination rule triggers.

3. Our analysis extends trivially to σ2-subgaussian rewards by using the threshold β(t, δ) := 2σ2 log
(

π2t2N
3δ

)
and removing the

clipping of the bonuses, in which case all stated results change only by constant factors.

5

TIRINZONI, AL-MARJANI, AND KAUFMANN

Algorithm 1 Elimination-based PAC RL (EPRL) for deterministic MDPs

1: Input: deterministic MDP (without reward)M := (S,A, {fh}h∈[H], s1, H), ε, δ
2: Initialize A0

h(s)← Ah(s) for all h ∈ [H], s ∈ Sh
3: Set n0h(s, a)← 0 for all h ∈ [H], s ∈ Sh, a ∈ Ah(s)
4: for t = 1, . . . do
5: Play πt ← SAMPLINGRULE()
6: Update statistics nth(s, a), r̂

t
h(s, a)

7: At
h(s)← A

t−1
h (s) ∩

{
a ∈ A : maxπ∈Πs,a,h∩Πt−1 V

t,π

1 (s1) ≥ maxπ∈Π V
t,π
1 (s1)

}
8: where Πt−1 ←

{
π ∈ Π | ∀s, h : πh(s) ∈ At−1

h (s) ∨ At−1
h (s) = ∅

}
(need not be stored/computed)

9: if maxπ∈Πt

(
V

π,t

1 (s1)− V π,t
1 (s1)

)
≤ ε or ∀h ∈ [H], s ∈ Sh : |At

h(s)| ≤ 1 then

10: Stop and recommend π̂ ∈ argmaxπ∈Πt V
π,t

1 (s1)
11: end if
12: end for

13: function MAXCOVERAGE()
14: Let kt ← minh∈[H],s∈Sh,a∈At−1

h (s) n
t−1
h (s, a) + 1 and t̄kt ← inf l∈N{l : kl = kt}

15: if tmod 2 = 1 then
16: return πt ← argmaxπ∈Π

∑H
h=1 1

(
aπh ∈ A

t̄kt−1

h (sπh), n
t−1
h (sπh, a

π
h) < kt

)
17: else
18: return πt ← argmaxπ∈Πt−1

∑H
h=1 b

t−1
h (sπh, a

π
h) (MAXDIAMETER)

19: end if

Remark 3 While defining Πt simplifies the presentation, EPRL neither stores nor enumerates the set of active policies.
In particular, EPRL does not eliminate policies but rather (s, a, h) triplets. The setsAt

h(s) can be updated in polynomial
time by dynamic programming without ever computing Πt.

Stopping rule EPRL uses two different stopping rules (Line 8). The first one checks whether, for all active policies
π ∈ Πt, the confidence interval on the return, V

π,t

1 (s1) − V π,t
1 (s1) = 2

∑H
h=1 b

t
h(s

π
h, a

π
h), which we refer to as

diameter, is below ε. The second one checks whether each set At
h(s) contains either 1 action or 0 actions (which

happens when the state is unreachable by an optimal policy). In both cases, we recommend the optimistic (active)
policy (Line 9).

Sampling rule While EPRL may be used with different sampling rules, we recommend the max-coverage sampling
rule described in Algorithm 1. This sampling rule aims at ensuring that no (s, a, h) triplet remains under-visited for too
long. This is achieved by selecting the policy which greedily maximizes the number of visited under-sampled triplets,
denoted by Ut. The quantity kt = min(s,a,h):a∈At−1

h (s) n
t−1
h (s, a)+1 can be interpreted as the target minimum number

of visits from active triplets that we want to achieve in round t and permit to define

πt = argmax
π∈Π

H∑
h=1

1 ((sπh, a
π
h, h) ∈ Ut) with Ut =

{
(s, a, h) : a ∈ Atkt−1

h (s), nt−1
h (s, a) < kt

}
,

where tk = inf{t : kt = k} is the first round in which the target is set to k. The argmax over Π can be computed
using dynamic programming. We emphasize that this argmax is not restricted to the set of active policies, meaning
that we may play eliminated actions in order to augment the coverage (that is, the minimal number of visits) faster.
Every even round, max-coverage instead chooses an active policy maximizing the diameter featured in the stopping rule
(max-diameter sampling). As we shall see in our analysis, this dichotomous behavior is needeed in order to maintain
minimax-optimality.

Comparison with other elimination-based algorithms The work of Even-Dar et al. (2006) provides a heuristic
using action eliminations to find an ε-optimal policy in a discounted MDP. However, no sample complexity guarantees
are given for this algorithm, which uses a different elimination rule, based on confidence intervals on the optimal value

6

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

function, and a uniform sampling rule. The MOCA algorithm of Wagenmaker et al. (2022) also uses a different action
elimination rule compared to ours. In particular, the decision to eliminate (s, a, h) is made based only on rewards that
can be obtained after visiting (s, a, h). Moreover, this algorithm uses a complex phased-based sampling rule, while the
sampling rule of EPRL is fully adaptive.

5. Theoretical guarantees

Our first result, proved in Appendix D.2.1, shows that EPRL is (ε, δ)-PAC under any sampling rule. It follows from the
fact that 1) the choice of bonus function (5) ensures that all the confidence intervals are valid and 2) state-action pairs
from optimal trajectories are never eliminated when this holds.

Theorem 4 Algorithm 1 is (ε, δ)-PAC provided that the sampling rule makes it stop almost surely.

We now analyze the sample complexity of EPRL combined with max-coverage sampling.

Theorem 5 (Informal version of Theorem 28 in Appendix D.3) With probability at least 1− δ, the sample complexity
of EPRL combined with the maximum-coverage sampling rule satisfies τ = Õ(φ⋆(g)), where g : E → [0,∞) is the
lower bound function defined by

gh(s, a) :=
8H2

max
(
∆h(s, a),∆min, ε

)2
(
3

2
log

(
2eN2

δ

)
+ 4 log

(
4H

max
(
∆h(s, a),∆min, ε

)))+ 2.

Moreover, with the same probability, τ = Õ(SAH2

ε2 log(1/δ)), where Õ hides logarithmic terms.

First note that EPRL combined with such a sampling rule is minimax optimal, since it matches the worst-case lower
bound derived in Appendix C.2. In addition, the leading term in the instance-dependent complexity is the value of
a minimum flow with a lower bound function g that, in case multiple disjoint optimal trajectories exist4, matches
the gap-dependence in (2). If we suppose that there exist at least two disjoint optimal trajectories, in which case
∆min = ∆

h

min = 0, then, thanks to Lemma 18 in Appendix B, one can easily see that φ⋆(g) ≤ 48H2φ⋆(c) + φ⋆(g′),
where g′h(s, a) := Õ(H2/max

(
∆h(s, a), ε

)2
) does not depend on δ and c is the “optimal” lower bound function from

(2). Hence, in the asymptotic regime (δ → 0), φ⋆(g) matches our lower bound up to a O(H2) multiplicative factor.

Remark 6 Note that, from Theorem 2, φ⋆(c) is the optimal complexity only for Gaussian reward distributions. While
the above upper bound holds for rewards in [0, 1], it can be trivially extended to any sub-Gaussian distribution by using
the threshold given in Footnote 4. In this case, the bound remains the same up to constants and, when instantiated for
Gaussian distributions with unit variance, the multiplicative mismatch factor of φ⋆(g) becomes exactly 192H2.

Finally, our sample complexity bound has an extra multiplicative O(log(H) log(H log(1/δ)/ε)) logarithmic term.
While this term makes the dependence on δ sub-optimal by a log log(1/δ) factor, we show in Appendix E that it can be
removed in the specific case of tree-based MDPs (Dann et al., 2021).

Remark 7 We believe that the sub-optimality on H could be reduced to a single H factor by boosting the lower bound.
In Appendix E, we show that this is indeed possible in tree-based MDPs. As for the upper bound, reducing H2 to H is
likely to require tighter concentration bounds on values.

4. When there is a unique optimal trajectory, our upper bound scales with ∆min = minh∈[H] ∆
h
min at all stages h, while the lower

bound scales with ∆
h
min at stage h. We believe the latter should be improvable to obtain a dependence on ∆min matching the

one in the upper bound.

7

TIRINZONI, AL-MARJANI, AND KAUFMANN

Remark 8 In Appendix D.4, we prove that, when using the max-diameter sampling rule (Line 17 in Algorithm 1)
at each step, the sample complexity is Õ(

∑
(s,a,h)H

2/max(∆h(s, a),∆min, ε)
2). While this scales with the same

gaps as Theorem 5, it is only a naive upper bound to the minimum flow value (see Section 3). The intuition is that
max-diameter sampling alone does not ensure that all triplets are visited sufficiently often, which prevents us from
tightly controlling their elimination times.

Proof sketch The complete proof is given in Appendix D.3. It first relies on the following crucial result which relates
the deterministic return gaps to the sum of confidence bonuses.

Lemma 9 (Diameter vs gaps) With probability at least 1 − δ, for any t ∈ N, h ∈ [H], s ∈ Sh, a ∈ Ah(s), if
a ∈ At

h(s) and the algorithm did not stop at the end of episode t,

max

(
∆h(s, a)

4
,
∆min

4
,
ε

2

)
≤ max

π∈Πt−1

H∑
h=1

bth(s
π
h, a

π
h),

where ∆min := minh∈[H] mins∈Sh
mina:∆h(s,a)>0 ∆h(s, a) if there exists a unique optimal trajectory (s⋆h, a

⋆
h)h∈[H],

and ∆min := 0 in the opposite case.

In our analysis, we refer to the set of consecutive time steps {t ∈ N : kt = k} as the k-th period. Using the fact that
in period k + 1 each active triplet has been visited at least k times, one can use Lemma 9 to obtain an upper bound
κs,a,h ≃ H2 log(1/δ)

max(∆h(s,a),∆min,ε)
2 on the last period in which (s, a, h) is active (Lemma 37 in Appendix D.3). A crucial

step of the proof is then to upper bound the duration of the k-th period, dk :=
∑τ

t=1 1 (kt = k).

Lemma 10 dk ≤ 2(log(H) + 1)φ⋆(ck) where ckh(s, a) = 1(a ∈ Atk−1
h (s), ntk−1

h (s, a) < k).

The intuition behind this result is as follows. Recall that the goal of the max-coverage sampling rule in period k is
to visit at least once each (s, a, h) that is active (i.e., a ∈ Atk−1

h (s)) and undersampled (i.e., ntk−1
h (s, a) < k). By

definition, the minimum flow φ⋆(ck) is the minimum number of policies that need to be played to achieve this goal.
Interestingly, Lemma 10 shows that the number of policies played by max-coverage to visit all active undersampled
triplets is very close to its theoretical minimum, despite the fact that the algorithm never computes an actual minimum
flow. We prove this by interpreting max-coverage sampling as a greedy maximization of some coverage function
(related to a minimum flow problem) and leveraging the theory of sub-modular maximization (e.g., Krause and Golovin,
2014).

Thanks to Lemma 10, we have that τ ≤ 2(log(H) + 1)
∑kτ

k=1 φ
⋆(ck), where kτ is the index of the period at which the

algorithm stops. To bound this quantity we carefully apply the theory of minimum flows and their dual problem of
maximum cuts. Let us define a cut C as any subset of states containing the initial state and let E(C) be the set of arcs that
connect states in C with states not in C. The well-known min-flow-max-cut theorem (Theorem 13 stated in Appendix
B) states that, for any lower bound function c, φ⋆(c) = maxC∈C

∑
(s,a,h) ch(s, a), where C denotes the set of all valid

cuts. Then,

kφ⋆(ck) ≤ max
C∈C

∑
(s,a,h)∈E(C)

k1
(
a ∈ At̄k−1

h (s)
)
≤ max

C∈C

∑
(s,a,h)∈E(C)

(κs,a,h + 1) = φ⋆(g),

where g : E → [0,∞) is defined by gh(s, a) = κs,a,h + 1. The proof is concluded by using this result in the
decomposition into periods, while noting that

∑kτ

k=1
1
k ≤ max(s,a,h) log(κs,a,h) + 1.

6. Experiments

We compare numerically EPRL to the minimax optimal BPI-UCRL algorithm Kaufmann et al. (2021), adapted to the
deterministic setting, on synthetic MDP instances. For EPRL, we experiment with the two sampling rule: max-coverage

8

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

(maxCov) and max-diameter (maxD, see Line 17 of Algorithm 1). We defer to Appendix F some implementation
details, including a precise description of the BPI-UCRL baseline.

We generate random “easy” deteministic MDP instances with Gaussian rewards of variance 1 using the following
protocol. For fixed S,A,H the mean rewards rh(s, a) are drawn i.i.d. from a uniform distribution over [0, 1] and for
each state-action pair, the next state is chosen uniformly at random in {1, . . . , S}. Finally, we only keep MDP instances
whose minimum value gap, denoted by ∆min, is larger than 0.1. Our first observation is that depending on the MDP, the
identity of the best performing algorithm can be different. In Figure 1 we show the distribution of the sample complexity
(estimated over 10 Monte Carlo simulations) for three different MDPs obtained from our sampling procedure with
S,A = 2 and H = 3 and for algorithms that are run with parameters δ = 0.1 and ε = 1.5∆min.

BPI_UCRL maxD maxCov
2500

3000

3500

4000

4500

5000

5500

6000

BPI_UCRL maxD maxCov
2500

3000

3500

4000

4500

5000

5500

BPI_UCRL maxD maxCov

600

800

1000

1200

1400

1600

Figure 1: Distribution of stopping times on particular MDPs over 10 runs, with ε = 1.5∆min. The horizontal lines
represent the average sample complexity.

To get a better understanding of this phenomenon, we then generated 10 MDP instances of size (S,A,H) = (2, 2, 3)
and for each MDP we ran EPRL and BPI-UCRL for 25 values of ε in a grid [0.05∆min, 10∆min] and δ = 0.1. We
ran 10 Monte-Carlo simulations for each value of the triplet (MDP, algorithm A, ε), in order to estimate the expected
sample complexity EA[τδ]. In Figure 2 we plot the relative performance (ratio of sample complexities) of different
algorithms as a function of the value of ε/∆min: each point corresponds to a different MDP and a different value of ε.
We observe that for large values of ε/∆min, BPI-UCRL has a smaller sample complexity than both versions of EPRL,
with a ratio never exceeding 2 (resp. 3) for max-diameter (resp. max-coverage). However, in the more interesting
small ε/∆min regime EPRL is better by several orders of magnitude. This is expected since, for small ε, EPRL is able,
through its elimination rule, to identify the optimal policy long before the diameter goes below ε. We observe that the
threshold of ε/∆min at which EPRL algorithms become a better choice than BPI-UCRL seems to vary with the MDP.

Our experiments also reveal an intriguing phenomenon: the use of max-diameter sampling within EPRL often
outperforms max-coverage sampling, even if there exists MDPs (2 out of 10 in our experiments) in which max-coverage
is indeed empirically better. We leave as future work to obtain a better characterizations of MDPs for which EPRL with
max-coverage sampling performs best.

7. Discussion

We derived an instance-dependent and a worst-case lower bound characterizing the complexity of PAC RL in determin-
istic MDPs, and proposed a general elimination algorithm together with a novel maximum-coverage sampling rule that
nearly matches them (up to O(H2) and logarithmic factors). We conclude with some discussion about our results and
future directions.

Max-coverage vs max-diameter While minimax optimality can be easily achieved with very simple strategies (like
max-diameter or BPI-UCRL), instance optimality requires careful algorithmic design. Our coverage-based strategy
is built around the idea of “uniformly” exploring the whole MDP, while using an elimination strategy to ensure that
no (s, a, h) is sampled much more than what the lower bound prescribes. Notably, this sampling rule is very simple,
while exiting PAC RL algorithms with instance-dependent complexity are all quite involved (Wagenmaker et al., 2022;

9

TIRINZONI, AL-MARJANI, AND KAUFMANN

0 1 2

10 3

10 2

10 1

100

maxD
maxCov

0 1 2

0.6

0.8

1.0

Figure 2: Ratios in log-scale EA[τδ]/EBPI−UCRL[τδ] for A in {maxD, maxCov} (left) and EmaxD[τδ]/EmaxCov[τδ]
(right) as a function of ε/∆min.

Al Marjani et al., 2021). Moreover, max-coverage sampling naturally extends to stochastic MDPs, e.g., by doing
optimistic planning on an MDP with a reward function equal to 1 for under-sampled triplets and 0 for the others.
Finally, in our experiments on random instances, we observed that max-diameter is often comparable or better than
max-coverage. We leave as future work to investigate whether the latter is also provably near instance-optimal.

Computational aspects Our sampling rule requires solving one dynamic program per episode, which takes O(N)
time. The bottleneck is the elimination rule, which requires O(N2) per-episode time complexity to solve one dynamic
program for each active triplet. However, we note that eliminations could be checked periodically (e.g., even at
exponentially-separated times) without significantly compromising the sample complexity guarantees.

Improving our results Our instance-dependent upper bound for max-coverage sampling is sub-optimal by a factor
H2 and a multiplicative O(log log(1/δ)) term. In Appendix E, we show that, for the specific sub-class of tree-based
MDPs (Dann et al., 2021), we can obtain improved results in all these aspects. In particular, we show that (1) the lower
bound scales with an extra factor H and it is fully explicit, (2) the multiplicative log terms in the sample complexity of
coverage-based sampling can be removed, and (3) maximum-diameter sampling also achieves near instance-optimal
guarantees.

Beyond Gaussian distributions As it is common, e.g., in the bandit literature, the gaps in our lower and upper bounds
are optimal only for Gaussian reward distributions. Generalizing Theorem 2 to general distributions is actually simple
(see, e.g., Kaufmann et al. (2016) and Lemma 19 in Appendix C). However, this would yield gaps written in terms of
KL divergences between arm distributions rather than differences of mean rewards as in the Gaussian case. How to
match such gaps is an interesting open question.

Instance optimality in stochastic MDPs The main open question is how to achieve (near) instance-optimality for
PAC RL in stochastic MDPs. We believe that many of the results presented in this paper could help in this direction.
First, our instance-dependent lower bound could be extended to the stochastic case by modifying return gaps to
include visitation probabilities and minimum flows to account for stochastic navigation constraints. Second, on the
algorithmic side, our maximum-coverage sampling rule easily extends to stochastic MDPs as mentioned above, while
our elimination rule could also be adapted by computing the optimistic return of policies visiting a certain (s, a, h) with
a least some probability, which corresponds to a constrained MDP problem (e.g., Efroni et al., 2020). Studying how
these components behave in stochastic MDPs is an exciting direction for future work.

10

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

References
Veena Adlakha, Barbara Gladysz, and Jerzy Kamburowski. Minimum flows in (s, t) planar networks. Networks, 21(7):

767–773, 1991.

Veena G Adlakha. An alternate linear algorithm for the minimum flow problem. Journal of the Operational Research
Society, 50(2):177–182, 1999.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed exploration for provable
policy gradient learning. Advances in Neural Information Processing Systems, 33:13399–13412, 2020.

Aymen Al Marjani and Alexandre Proutiere. Adaptive sampling for best policy identification in markov decision
processes. In International Conference on Machine Learning, pages 7459–7468. PMLR, 2021.

Aymen Al Marjani, Aurélien Garivier, and Alexandre Proutiere. Navigating to the best policy in markov decision
processes. Advances in Neural Information Processing Systems, 34, 2021.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning. Advances in
neural information processing systems, 21, 2008.

Marco Brandizi, Natalja Kurbatova, Ugis Sarkans, and Philippe Rocca-Serra. graph2tab, a library to convert experimen-
tal workflow graphs into tabular formats. Bioinformatics, 28(12):1665–1667, 2012.

S Bubeck and R Munos. Open loop optimistic planning. In Conference on Learning Theory, 2010.

Apostolos N Burnetas and Michael N Katehakis. Optimal adaptive policies for markov decision processes. Mathematics
of Operations Research, 22(1):222–255, 1997.

Eleonor Ciurea and Laura Ciupala. Sequential and parallel algorithms for minimum flows. Journal of Applied
Mathematics and Computing, 15(1):53–75, 2004.

Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning. In Advances
in Neural Information Processing Systems (NIPS), 2015.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable reinforcement
learning. In International Conference on Machine Learning, pages 1507–1516. PMLR, 2019.

Christoph Dann, Teodor V. Marinov, Mehryar Mohri, and Julian Zimmert. Beyond value-function gaps: Improved
instance-dependent regret bounds for episodic reinforcement learning. CoRR, abs/2107.01264, 2021. URL https:
//arxiv.org/abs/2107.01264.

Rémy Degenne and Wouter M. Koolen. Pure exploration with multiple correct answers. In NeurIPS, 2019.

Rémy Degenne, Wouter M Koolen, and Pierre Ménard. Non-asymptotic pure exploration by solving games. In Advances
in Neural Information Processing Systems, pages 14492–14501, 2019.

Omar Darwiche Domingues, Yannis Flet-Berliac, Edouard Leurent, Pierre Ménard, Xuedong Shang, and Michal
Valko. rlberry - A Reinforcement Learning Library for Research and Education. https://github.com/
rlberry-py/rlberry, 2021a.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic reinforcement learning in
finite mdps: Minimax lower bounds revisited. In Algorithmic Learning Theory (ALT), 2021b.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps. arXiv preprint
arXiv:2003.02189, 2020.

E. Even-Dar, S. Mannor, and Y. Mansour. Action Elimination and Stopping Conditions for the Multi-Armed Bandit and
Reinforcement Learning Problems. Journal of Machine Learning Research, 7:1079–1105, 2006.

11

https://arxiv.org/abs/2107.01264
https://arxiv.org/abs/2107.01264
https://github.com/rlberry-py/rlberry
https://github.com/rlberry-py/rlberry

TIRINZONI, AL-MARJANI, AND KAUFMANN

Zohar Feldman and Carmel Domshlak. Simple regret optimization in online planning for markov decision processes.
Journal of Artifial Intelligence Research, 51:165–205, 2014.

Claude-Nicolas Fiechter. Efficient reinforcement learning. In Proceedings of the Seventh Conference on Computational
Learning Theory (COLT), 1994.

Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In Conference on
Learning Theory, pages 998–1027. PMLR, 2016.

Aurélien Garivier and Emilie Kaufmann. Nonasymptotic sequential tests for overlapping hypotheses applied to
near-optimal arm identification in bandit models. Sequential Analysis, 40(1):61–96, 2021.

J.-B. Grill, M. Valko, and R. Munos. Blazing the trails before beating the path: Sample-efficient monte-carlo planning.
In Neural Information Processing Systems (NeurIPS), 2016.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for reinforcement
learning. arXiv:2002.02794, 2020.

Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard Leurent, and Michal Valko.
Planning in markov decision processes with gap-dependent sample complexity. Advances in Neural Information
Processing Systems, 33:1253–1263, 2020.

Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, University College London, 2003.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification in multi-armed
bandit models. The Journal of Machine Learning Research, 17(1):1–42, 2016.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent, and Michal Valko.
Adaptive reward-free exploration. In Algorithmic Learning Theory (ALT), 2021.

Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for near-optimal planning in
large markov decision processes. Machine Learning, 49(2-3):193–208, 2002.

Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3:71–104, 2014.

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge University Press, 2019.

S. Mannor and J. Tsitsiklis. The Sample Complexity of Exploration in the Multi-Armed Bandit Problem. Journal of
Machine Learning Research, pages 623–648, 2004.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent, and Michal Valko.
Fast active learning for pure exploration in reinforcement learning. In International Conference on Machine Learning
(ICML), 2021.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in structured reinforcement learning. In Advances
in Neural Information Processing Systems, pages 8874–8882, 2018.

Max Simchowitz and Kevin G. Jamieson. Non-asymptotic gap-dependent regret bounds for tabular mdps. In NeurIPS,
pages 1151–1160, 2019.

Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps: Pac analysis. Journal of
Machine Learning Research, 10(11), 2009.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ambuj Tewari and Peter L. Bartlett. Optimistic linear programming gives logarithmic regret for irreducible mdps. In
NIPS, pages 1505–1512. Curran Associates, Inc., 2007.

12

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Andrea Tirinzoni, Matteo Pirotta, Marcello Restelli, and Alessandro Lazaric. An asymptotically optimal primal-dual
incremental algorithm for contextual linear bandits. Advances in Neural Information Processing Systems, 33:
1417–1427, 2020.

Andrea Tirinzoni, Matteo Pirotta, and Alessandro Lazaric. A fully problem-dependent regret lower bound for finite-
horizon mdps. arXiv preprint arXiv:2106.13013, 2021.

Damianos Tranos and Alexandre Proutière. Regret analysis in deterministic reinforcement learning. In CDC. IEEE,
2021.

Yu V Voitishin. Algorithms for solving for the minimal flow in a network. Cybernetics, 16(1):131–134, 1980.

Andrew Wagenmaker, Max Simchowitz, and Kevin G. Jamieson. Beyond no regret: Instance-dependent PAC reinforce-
ment learning. In Conference On Learning Theory (COLT), 2022.

Po-An Wang, Ruo-Chun Tzeng, and Alexandre Proutiere. Fast pure exploration via frank-wolfe. In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.

Haike Xu, Tengyu Ma, and Simon S Du. Fine-grained gap-dependent bounds for tabular mdps via adaptive multi-step
bootstrap. arXiv preprint arXiv:2102.04692, 2021.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with pessimism. In NeurIPS,
2021.

Andrea Zanette, Mykel J. Kochenderfer, and Emma Brunskill. Almost horizon-free structure-aware best policy
identification with a generative model. In NeurIPS, pages 5626–5635, 2019.

Xuezhou Zhang, Yuzhe Ma, and Adish Singla. Task-agnostic exploration in reinforcement learning. In NeurIPS, 2020.

Zihan Zhang, Simon Du, and Xiangyang Ji. Near optimal reward-free reinforcement learning. In International
Conference on Machine Learning, (ICML), 2021.

13

TIRINZONI, AL-MARJANI, AND KAUFMANN

Appendix

Table of Contents
A Additional Related Work 15

B Minimum Flows and Maximum Cuts 16
B.1 The minimum flow problem . 16

B.2 Layered DAGs with unlimited capacity . 18

B.3 Minimum flows and minimum policy covers . 20

C Lower Bounds 21
C.1 Instance-dependent lower bound . 21

C.2 Worst-case lower bound . 24

D Sample Complexity Bounds (Proofs of Section 4) 26
D.1 Good event . 26

D.2 Properties of Algorithm 1 . 27

D.3 Maximum-coverage algorithm (Proof of Theorem 5) . 29

D.4 Maximum-diameter sampling . 38

D.5 Auxiliary Results . 41

E Refined Results for Tree-based MDPs 42
E.1 Instance-dependent lower bound . 42

E.2 Sample complexity of maximum-diameter sampling . 45

E.3 Sample complexity of maximum-coverage sampling . 46

F Experiment Details 47

14

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Appendix A. Additional Related Work

In this section, we mention other PAC learning problems that are related to our setting, and discuss problem-dependent
guarantees for regret minimization.

Other PAC frameworks The PAC RL problem, which concerns the identification of an ε-optimal policy, should
not be confused with the PAC-MDP setting introduced by Kakade (2003). The latter is closer to regret minimization,
as the agent interacts with the MDP online and seeks to maximize the number of learning steps where an ε-optimal
policy is played. It has been studied mostly in the discounted infinite-horizon setting. We refer the reader to Strehl
et al. (2009) for a review of this setting. Other PAC pure exploration problems have been studied in the literature.
In Monte-Carlo planning, the goal is to find an ε-optimal action in a given state with high probability, rather than a
complete policy. Most works have obtained worst-case upper bounds on the sample complexity of planning, scaling in
terms of ε and some appropriate notion of near-optimality dimension (Kearns et al., 2002; Bubeck and Munos, 2010;
Grill et al., 2016). Another line of work has derived problem-dependent guarantees in MDPs with a finite branching
factor (Feldman and Domshlak, 2014; Jonsson et al., 2020), exhibiting a scaling with the value gap at step h = 1.
Finally, in reward-free exploration (Jin et al., 2020; Kaufmann et al., 2021; Zhang et al., 2021; Ménard et al., 2021) or
task agnostic exploration (Zhang et al., 2020) the goal is to explore the MDP in order to be able to find a near-optimal
policy w.r.t. a reward function which is revealed only after the exploration phase. In the minimax sense, this setting is
harder than our PAC RL problem: with an arbitray set of possible reward functions, existing algorithms exhibit an extra
multiplicative dependence on the number of states in their sample complexity.

Instance-dependent bounds for regret minimization The majority of instance-dependent results in the RL literature
concerns regret minimization. The earliest works in this context focused on ergodic average-reward MDPs (Burnetas
and Katehakis, 1997; Tewari and Bartlett, 2007; Ok et al., 2018). These works presented asymptotic lower bounds
(expressed as linear programs) on the expected regret of any “good” strategy, together with algorithms matching them
as the number of learning steps tend to infinity. Average-reward communicating MDPs were studied by Auer et al.
(2008); Tranos and Proutière (2021), with the latter proposing an asymptotic regret lower bound for deterministic MDPs.
In the episodic setting, Simchowitz and Jamieson (2019); Xu et al. (2021) derived finite-time regret bounds which
are roughly O(

∑
s,a,h

log T
∆h(s,a)

), where T is the number of episodes and ∆h(s, a) are the value gaps defined above.
These results were later improved by Dann et al. (2021), who derived regret bounds of the same shape but scaling with
tighter “return gaps”. Moreover, Dann et al. (2021) and Tirinzoni et al. (2021) concurrently derived similar asymptotic
instance-dependent lower bounds for the episodic setting. However, similarly to the one of Al Marjani and Proutiere
(2021), these lower bounds are written as non-convex optimization problems and it is an open question whether and
how they can be matched.

PAC identification in structured bandits Learning in a finite-horizon MDP can be seen as a structured bandit
problem with one arm for each deterministic policy whose return can be described by only N parameters (the mean
rewards), see, e.g., Appendix B.6 of Tirinzoni et al. (2021). As in our setting, instance-dependent lower bounds for
structured bandits are often written as optimization problems with no closed-form solution. For this reason, the majority
of (near) instance-optimal algorithms for structured bandits either repeatedly solve such an optimization problem during
the learning process (Garivier and Kaufmann, 2016) or solve it incrementally using, e.g., no-regret learners (Degenne
et al., 2019), primal-dual methods (Tirinzoni et al., 2020), or Frank-Wolfe (Wang et al., 2021). Notably, our coverage-
based sampling rules achieve near instance optimality without doing any of this. This is advantageous for at least
two reasons: (1) the optimization problem in (4) depends on unknown quantities (such as the gaps) whose estimation
typically requires performing additional exploration than what prescribed by the lower bound, hence negatively affecting
the sample complexity. (2) Repeatedly solving the minimum flow problem (4), despite being a linear program, can
be very computationally demanding, while findind an integer minimum flow or computing its greedy approximation
is much more efficient. We wonder whether, taking inspiration from our work, near optimal strategies for general
structured bandits could be designed without ever solving the optimization problems from lower bounds.

15

TIRINZONI, AL-MARJANI, AND KAUFMANN

Appendix B. Minimum Flows and Maximum Cuts

First note that a deterministic MDP (without reward)M := (S,A, {fh}h∈[H], s1, H) can be represented as a layered
directed acyclic graph (DAG) G(M) := (N , E , s1, sH+1) with nodes N := {(s, h) : h ∈ [H], s ∈ Sh}, arcs
E := {(s, a, h) : h ∈ [H], s ∈ Sh, a ∈ Ah(s)}, a unique source node (s1, 1), and a fictitious sink node (sH+1, H + 1)
which is the endpoint of every arc (s, a,H) ∈ E . In particular, for node (s, h) ∈ N , there is one arc for each a ∈ Ah(s)
which connects the node to (fh(s, a), h+ 1). The graph is layered, in the sense that the set of nodes can be partitioned
into H subsets ({(s, h) : s ∈ Sh})h∈[H], one for each stage, and transitions are possible only between adjacent stages.
Let Ih(s) := {(s′, a′) ∈ S ×A | s′ ∈ Sh−1, a

′ ∈ Ah−1(s), fh−1(s
′, a′) = s} be the set of incoming arcs into (s, h).

B.1 The minimum flow problem

In Section 2, we introduced a specific instance of the minimum flow problem for layered DAGs with unbounded
capacities. Here we introduce the general problem as described, e.g., by Ciurea and Ciupala (2004). While we still use
notation for layered DAGs, we note that all results in this section hold for general directed graphs.

Recall that a flow is a non-negative function η : E → [0,∞) satisfying the navigation constraints whose value is given
by φ(η) :=

∑
a∈A1(s1)

η1(s1, a). Let c, c : E → [0,∞) be two non-negative functions. We say that a flow η is feasible
if

ch(s, a) ≤ ηh(s, a) ≤ ch(s, a) ∀(s, a, h) ∈ E .
That is, ch(s, a) acts as a lower bound on the flow we require through arc (s, a, h), while ch(s, a) is the capacity of that
arc. Finding a feasible flow of minimum value can be clearly solved as a linear program,

minimize
η∈RSAH

∑
a∈A1(s1)

η1(s1, a),

subject to∑
(s′,a′)∈Ih(s)

ηh−1(s
′, a′) =

∑
a∈Ah(s)

ηh(s, a) ∀(s, h) ∈ N \ {(s1, 1), (sH+1, H + 1)},

ch(s, a) ≤ ηh(s, a) ≤ ch(s, a) ∀(s, a, h) ∈ E .

We let φ⋆(c, c) be its optimal value.

Residual graph The residual of an arc (s, a, h) ∈ E is defined as

ρh(s, a) := ηh(s, a)− ch(s, a)
For each (s, a, h) ∈ E , we also define the residual of a fictitious backward arc (which does not exist in our layered
DAG) as

ρbwh (s, a) := ch(s, a)− ηh(s, a).
Then, we define the residual graph Gη(M) as a graph with the same nodes as G(M) and one arc for each forward or
backward arc of G(M) with strictly positive residual. Note that, in our layered DAG setting, even if the original graph
Gη(M) has only forward arcs (transitions are only possible from two successive stages), its residual graph Gη(M)
might contain backward arcs if the fictitious backward arcs introduced before have positive residual. Intuitively, a
forward arc (s, a, h) in Gη(M) means that we can decrease the flow in (s, a, h) by at most ρh(s, a) units, while its
corresponding backward arc means that we can increase the flow by at most ρbwh (s, a) units. Finally, we call any path
from the source node (s1, 1) to the sink node (sH+1, H + 1) in Gη(M) a decreasing path. This is a path where we can
reduce the amount of flow while still satisfying all constraints.

Maximum cuts A source-sink cut is a partition of the set of nodes N into two subsets C ⊆ N and N \ C such
that (s1, 1) ∈ C and (sH+1, H + 1) ∈ N \ C. As such, we will identify a cut by a single subset of states C ⊆
N \ {(sH+1, H + 1)} such that (s1, 1) ∈ C. The set of forward arcs of a cut C is

E(C) := {(s, a, h) ∈ E : (s, h) ∈ C, (fh(s, a), h+ 1) ∈ N \ C}.

16

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

The value of a cut C, as defined by Ciurea and Ciupala (2004), is

ψ(C, c, c) :=
∑

(s,a,h)∈E(C)

ch(s, a)−
∑

(s,a,h)∈Ebw(C)

ch(s, a),

where we also define Ebw(C) := {(s, a, h) ∈ E : (s, h) ∈ N \ C, (fh(s, a), h+ 1) ∈ C} as the set of backward arcs in
the cut. We now present an important result (Lemma 12) which shows that the value of any feasible flow is at least the
value of any cut. Its proof is based on the following lemma.

Lemma 11 Let η be any flow (not necessarily feasible) and C be any source-sink cut. Then,

φ(η) =
∑

(s,a,h)∈E(C)

ηh(s, a)−
∑

(s,a,h)∈Ebw(C)

ηh(s, a).

Proof We have

φ(η)
(a)
=

∑
a∈A1(s1)

η1(s1, a)

(b)
=

∑
(s,h)∈C

 ∑
a∈Ah(s)

ηh(s, a)−
∑

(s′,a′)∈Ih(s)

ηh−1(s
′, a′)

(c)
=

∑
(s,a,h)∈E(C)

ηh(s, a)−
∑

(s,a,h)∈Ebw(C)

ηh(s, a).

where (a) is from the definition of flow value, (b) uses the balance constraints together with (s1, 1) ∈ C, and (c) uses
that the flow through every arc with both endpoints in C cancels since it appears once in the left term and once in the
right one.

Lemma 12 Let η be any feasible flow and C be any source-sink cut. Then,

φ(η) ≥ ψ(C, c, c).

Proof We have

φ(η)
(a)
=

∑
(s,a,h)∈E(C)

ηh(s, a)−
∑

(s,a,h)∈Ebw(C)

ηh(s, a)

(b)

≥
∑

(s,a,h)∈E(C)

ch(s, a)−
∑

(s,a,h)∈Ebw(C)

ch(s, a)

(c)
= ψ(C, c, c),

where (a) follows from Lemma 11, (b) uses the feasibility constraints, and (c) uses the definition of value of a cut.

Thanks to Lemma 12, we know that, if we find a flow and a cut whose values coincide, then it must be that we found a
minimum flow and its value coincides with the one of a maximum cut. This is what is shown in the next theorem.

Theorem 13 (Theorem 1.1 of Ciurea and Ciupala (2004)) If there exists a feasible flow, the value of the minimum
flow with non-negative lower bounds c equals the value of the maximum source-sink cut.

Theorem 14 (Theorem 1.2 of Ciurea and Ciupala (2004)) A feasible flow η is minimum if, and only if, the residual
graph Gη(M) contains not decreasing path (i.e., no path from source to sink).

17

TIRINZONI, AL-MARJANI, AND KAUFMANN

Note that Theorem 13 is the equivalent of Theorem 15 stated in Section 2 for DAGs with unbounded capacities. We
prove both theorems in the following unified proof.

Proof [Proof of Theorem 13 and Theorem 14] Let η be a feasible flow. We prove both theorems by showing that the
following three statements are equivalent:

1. there exists a cut C such that φ(η) = ψ(C, c, c);

2. η is a minimum flow;

3. there is no path from source to sink in Gη(M).

Note that, by Lemma 12 we clearly have that 1 =⇒ 2. In fact, if a stricly better flow that η existed, call it η′, then we
would have

φ(η′) < φ(η) = ψ(C, c, c),

which is a contradiction since φ(η′) ≥ ψ(C, c, c) by Lemma 12.

Clearly, 2 =⇒ 3 by definition of decreasing path. If a path from source to sink existed in Gη(M), then we could
decrease the flow along it while still satisfying all constraints. Hence, η would not be a minimum flow, which is a
contradiction.

It remains to prove that 3 =⇒ 1. We do so by building an explicit cut C from the residual graph Gη(M) which satifies
property 1. This uses the same construction as in the well-known proof of the max-flow-min-cut theorem. Suppose that
η is a feasible flow with no decreasing paths in Gη(M). Let C be the set of nodes that are reachable from (s1, 1) in
Gη(M). It must be that (s1, 1) ∈ C and (sH+1, H + 1) /∈ C since the sink node is unreachable from the source node in
Gη(M). Therefore, C is a valid cut. From Lemma 11, we know that

φ(η) =
∑

(s,a,h)∈E(C)

ηh(s, a)−
∑

(s,a,h)∈Ebw(C)

ηh(s, a).

It only remains to prove that ηh(s, a) = ch(s, a) for all (s, a, h) ∈ E(C) and ηh(s, a) = ch(s, a) for all (s, a, h) ∈
Ebw(C).
Take any (s, a, h) ∈ E(C). Since (s, h) ∈ C and (fh(s, a), h+ 1) /∈ C, we must have that the forward arc (s, a, h) does
not belong to Gη(M). But this means that ρh(s, a) = 0, which in turns implies that ηh(s, a) = ch(s, a). This proves
the first claim.

Now take any (s, a, h) ∈ Ebw(C). Here we have the opposite situation: (fh(s, a), h + 1) ∈ C but (s, h) /∈ C. This
means that there is no arc from the first node to the second in Gη(M). But if ηh(s, a) < ch(s, a) we would have
ρbwh (s, a) > 0 and thus there would be a backward arc between those two nodes. This is a contradiction, and thus it
must be that ηh(s, a) = ch(s, a). This concludes the proof of 3 =⇒ 1, which in turns proves the main theorems.

B.2 Layered DAGs with unlimited capacity

In all our applications, we will consider DAGs with unlimited capacity, i.e., ch(s, a) =∞ for all s ∈ S, a ∈ A, h ∈ [H].
In this case, some of the previously-introduced quantities can be simplified using the notation adopted in Section 2.
First, we can simplify the notation for a minimum flow φ⋆(c) and for the value of a cut ψ(C, c) by dropping c. The
upper-bound constraints in the definition of feasible flow and in the LP can be simply dropped. Moreover, backward
arcs in the residual graph have always residual equal to∞. This means that backward arcs are always present in the
residual graph, which has the intuitive meaning that we can always arbitrarily increase the flow along each forward arc
in the original graph.

Now note that, by definition of value of a cut, if a cut C contains an available backward arc (i.e., one of the arcs in the
original graph connects a node outside the cut with a node inside the cut), its value is −∞. Therefore, if a feasible flow

18

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

exists (whose value must be non-negative), then, by Theorem 15, we know that a cut C with backward arcs cannot be a
maximum cut. Therefore, we can define the set of valid cuts C as

C := {C ⊆ N \ {(sH+1, H + 1)} | (s1, 1) ∈ C, Ebw(C) = ∅} .

Then, for all C ∈ C, we clearly have ψ(C, c) =
∑

(s,a,h)∈E(C) ch(s, a) since there is no backward arc. Moreover, by
Theorem 13 together with the fact that cuts not belonging to C cannot be maximizers,

φ⋆(c) = max
C∈C

ψ(C, c) = max
C∈C

∑
(s,a,h)∈E(C)

ch(s, a).

We formally state this result in the following theorem.

Theorem 15 Consider a layered DAG with unlimited capacity. If there exists a feasible flow,

φ⋆(c) = max
C∈C

ψ(C, c).

Useful properties We prove some simple properties of flows and cuts which will be useful later on.

Lemma 16 (Monotonicity) Let c1, c2 : E → [0,∞) be such that c1h(s, a) ≤ c2h(s, a) for all (s, a, h) ∈ E . Then,

φ⋆(c1) ≤ φ⋆(c2).

Proof This can be immediately seen from the LP formulation: any feasible flow η for c2 is also feasible for c1.

Lemma 17 (Flow bounds) For any lower bound function c,

max
h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

ch(s, a) ≤ φ⋆(c) ≤
∑

h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

ch(s, a).

Proof Both inequalities are easy to see from Theorem 15 and the definition of value of a cut. The upper bound is trivial
since φ⋆(c) = maxC∈C

∑
(s,a,h)∈E(C) ch(s, a) and the set of outgoing arcs E(C) from a cut C can contain at most all

possible arcs E . To see the lower bound, note that Ch := {s ∈ Sl : l ≤ h} is a valid cut for any h ∈ [H] whose outgoing
arcs are all those connecting states at stage h with states at stage h+ 1. Thus,

φ⋆(c) = max
C∈C

∑
(s,a,h)∈E(C)

ch(s, a) ≥ max
h∈[H]

∑
(s,a,h)∈E(Ch)

ch(s, a) = max
h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

ch(s, a).

Lemma 18 Let c1, c2 be two non-negative lower bound functions and α > 0. Then,

φ⋆(αc1 + c2) ≤ αφ⋆(c1) + φ⋆(c2).

Proof We first prove that φ⋆(αc1) = αφ⋆(c1). This can be easily seen from the linear programming formulation
stated above: by performing the change of variables η′h(s, a) = ηh(s, a)/α, we obtain exactly α times the value
of a minimum flow with lower bound function c1. Next, we prove that φ⋆(c1 + c2) ≤ φ⋆(c1) + φ⋆(c2). Let η1
and η2 be minimum flows for the problems with lower bounds c1 and c2, respectively. The proof follows by noting
that η := η1 + η2 is a feasible flow for the problem with lower bound function c1 + c2 and that is value is exactly
φ(η) = φ(η1) + φ(η2) = φ⋆(c1) + φ⋆(c2). Combining these two results concludes the proof.

19

TIRINZONI, AL-MARJANI, AND KAUFMANN

Algorithm 2 Extract policy cover from minimum flow

Input: deterministic MDP (without reward)M := (S,A, {fh}h∈[H], s1, H), feasible integer flow η
Initialize Πcover ← ∅
while φ(η) > 0 do

Initialize a policy π with arbitrary actions
for h = 1, . . . ,H do
πh(sh)← argmaxa∈Ah(sh)

ηh(s, a)

ηh(sh, πh(sh))← ηh(sh, πh(sh))− 1
sh+1 ← fh(sh, πh(sh))

end for
Πcover ← Πcover ∪ {π}

end while

s1

s2 s3

s4 s5

a1 am

a1

am

a

Figure 3: Example to show why eliminating actions from the sampling rule is not a good idea. The size of a minimum
policy cover is m+ 1 when ā is used and 2m when it is unavailable.

B.3 Minimum flows and minimum policy covers

A crucial problem in the analysis of our sampling rules is the problem of computing a minimum policy cover. Formally,
given a subset E ′ ⊆ E of the arcs (i.e., of the state-action-stage triplets), the goal is to find a set of policies Πcover ⊆ Π
of minimum size such that

∀(s, a, h) ∈ E ′,∃π ∈ Πcover : (s
π
h, a

π
h) = (s, a).

That is, Πcover is the smallest set of policies that, played together, visit all arcs in E ′. This problem can be easily reduced
to a minimum flow problem with lower bound function

ch(s, a) := 1 ((s, a, h) ∈ E ′) ,

which intuitively demands at least one visit to all (s, a, h) ∈ E ′, and zero visits from the other triplets. Moreover, since
c is integer-valued, an integer minimum flow exists which can be computed by existing algorithms (e.g., Brandizi
et al., 2012). Suppose that η is one such integer minimum flow. A policy cover can be easily extracted from it by
the procedure shown in Algorithm 2, which is similar to the method proposed by Brandizi et al. (2012) to obtain a
minimum path cover in a layered DAG.

Eliminating arcs In our applications, we compute minimum policy covers for subsets of the arcs E ′ that contain only
non-eliminated actions. One natural question is: what if, instead of setting the lower bound function to zero for arcs not
in E ′, we use a lower bound function that is uniformly equal to one but solve the minimum flow problem on a sub-graph
with only arcs in E ′ available? One argument against this idea is that the resulting minimum policy cover might have a
strictly larger size. Figure 3 shows an example. Suppose that we want to compute a minimum policy cover visiting all
arcs except ā. Then, if we set the lower bound function for ā to zero and solve the minimum flow problem on the full
MDP, we get an optimal value of 1 +m by sending a flow of one on each action in s1 and then redirecting m− 1 flow
to ā. If instead we make ā unavailable, we cannot do this trick and the optimal flow becomes 2m.

20

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Appendix C. Lower Bounds

We first present an important result to derive lower bounds, a change-of-distribution lemma which is a direct instantiation
of Lemma 1 in Kaufmann et al. (2016) (see also Lemma 8 in Tirinzoni et al. (2021) and references therein).

Lemma 19 LetM and M̃ be two MDPs with identical state-action space and deterministic transitions but possibly
different rewards distributions denoted by (νMh (s, a))s,a,h and (νM̃h (s, a))s,a,h respectively. For every algorithm, every
stopping time τ and every event E ∈ Fτ , it holds that

H∑
h=1

∑
s∈Sh

∑
a∈Ah

EM[nτh(s, a)]KL
(
νMh (s, a), νM̃h (s, a)

)
≥ kl

(
PM(E),PM̃(E)

)
where KL denotes the Kullback-Leibler divergence and kl(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)) the
binary relative entropy.

If the rewards follow Gaussian distributions with variance σ2, we have

KL
(
νMh (s, a), νM̃h (s, a)

)
=

(
rMh (s, a)− rM̃h (s, a)

)2
2σ2

.

C.1 Instance-dependent lower bound

In this section, we prove Theorem 2. We first state and prove three lemmas which bound the local number of visits to
different (s, a, h). Then, we combine them to prove the main result.

Lemma 20 (Lower bound for sub-optimal pairs) For any h ∈ [H] and any non-ε-optimal pair (s, a) /∈ Zε
h,

E[nτh(s, a)] ≥
2 log(1/3δ)

(∆h(s, a) + ε)2
.

Proof Consider the alternative MDP M̃ := (S,A, {fh, ν̃h}h∈[H], s1, H) which is equivalent toM except that the
reward is modified only at (s, a, h) as ν̃h(s, a) = N (rh(s, a) + ∆, 1) with ∆ > ∆h(s, a) + ε, while ν̃h′(s′, a′) =
νh′(s′, a′) on all other state-action-stage triplets. It is easy to see that, for any π ∈ Πs,a,h,

Ṽ π
1 (s1) =

H∑
l=1

r̃l(s
π
l , a

π
l) =

H∑
l=1

rl(s
π
l , a

π
l) + ∆ = V π

1 (s1) + ∆.

Similarly, for any policy π /∈ Πs,a,h, we have Ṽ π
1 (s1) = V π

1 (s1). Let π0 ∈ argmaxπ∈Πs,a,h
V π
1 (s1). Then,

Ṽ π0

1 (s1) = V π0

1 (s1) + ∆

> V π0

1 (s1) + ∆h(s, a) + ε

= V ⋆
1 (s1) + ε

≥ max
π/∈Πs,a,h

V π
1 (s1) + ε

= max
π/∈Πs,a,h

Ṽ π
1 (s1) + ε.

21

TIRINZONI, AL-MARJANI, AND KAUFMANN

This means that5 PM̃(π̂ ∈ Πs,a,h) ≥ 1 − δ. Moreover, PM(π̂ ∈ Πs,a,h) ≤ δ since (s, a, h) is not visited by any
ε-optimal policy. Therefore, Lemma 19 implies that

E[nτh(s, a)] ≥
2

∆2
kl(PM(π̂ ∈ Πs,a,h),PM̃(π̂ ∈ Πs,a,h)) ≥

2

∆2
kl(δ, 1− δ) ≥ 2

∆2
log(1/3δ).

This holds for any ∆ > ∆h(s, a) + ε and the proof is concluded by taking the limit.

Lemma 21 (Lower bound for non-unique ε-optimal pairs) For any h ∈ [H] and any ε-optimal pair (s, a) ∈ Zε
h, if

|Zε
h| > 1,

E[nτh(s, a)] ≥
log(1/4δ)

4ε2
.

Proof Take any pair (s, a) in Zε
h. We distinguish two cases.

Case 1: PM(π̂ ∈ Πs,a,h) ≤ 1/2. We can build the same alternative MDP M̃ as in the proof of Lemma 20, for which
we have PM̃(π̂ ∈ Πs,a,h) ≥ 1− δ. Thus, using Lemma 19,

E[nτh(s, a)] ≥
2

∆2
kl(PM(π̂ ∈ Πs,a,h),PM̃(π̂ ∈ Πs,a,h))

≥ 2

∆2
kl(1/2, 1− δ)

=
2

∆2
kl(1/2, δ)

≥ 1

∆2
log(1/4δ),

where we used the fact that kl(x, y) = kl(1 − x, 1 − y) and kl(x, y) ≥ x log(1/y) − log(2). By taking the limit
∆→ ∆h(s, a) + ε and using ∆h(s, a) ≤ ε, we thus conclude that E[nτh(s, a)] ≥

log(1/4δ)

(∆h(s,a)+ε)2
≥ log(1/4δ)

4ε2 .

Case 2: PM(π̂ ∈ Πs,a,h) > 1/2. Consider the alternative MDP M̃ := (S,A, {fh, ν̃h}h∈[H], s1, H) which is
equivalent to M except that the reward is modified only at (s, a, h) as ν̃h(s, a) = N (rh(s, a) − ∆, 1) with ∆ >
2ε−∆h(s, a), while ν̃h′(s′, a′) = νh′(s′, a′) on all other state-action-stage triplets. Then, for π0 ∈ argmax

π∈Π\Πs,a,h

V π
1 (s1),

Ṽ π0

1 (s1) = V π0

1 (s1) ≥ V ⋆
1 (s1)− ε± max

π∈Πs,a,h

V π
1 (s1)

= ∆h(s, a)− ε+ max
π∈Πs,a,h

V π
1 (s1)

= ∆h(s, a)− ε+ max
π∈Πs,a,h

Ṽ π
1 (s1) + ∆ > max

π∈Πs,a,h

Ṽ π
1 (s1) + ε,

where the first inequality is due to the fact that, since Zε
h > 1, there exists at least one ε-optimal policy which does not

visit (s, a) at step h (i.e., which belongs to Π \Πs,a,h). This implies that PM̃(π̂ ∈ Πs,a,h) ≤ δ. Thus, using Lemma 19,

E[nτh(s, a)] ≥
2

∆2
kl(PM(π̂ ∈ Πs,a,h),PM̃(π̂ ∈ Πs,a,h)) ≥

2

∆2
kl(1/2, δ) ≥ 1

∆2
log(1/4δ).

By taking the limit ∆→ 2ε−∆h(s, a), we thus conclude that E[nτh(s, a)] ≥
log(1/4δ)

(2ε−∆h(s,a))2
≥ log(1/4δ)

4ε2 .

5. Recall that we use π̂ to denote the policy returned by the recommendation rule of the algorithm

22

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Lemma 22 (Lower bound for unique ε-optimal pairs) For any h ∈ [H] and any ε-optimal pair (s, a) ∈ Zε
h, if

|Zε
h| = 1,

E[nτh(s, a)] ≥
2 log(1/3δ)

(∆
h

min + ε)2
,

where ∆
h

min := min(s′,a′):∆h(s′,a′)>0 ∆h(s
′, a′).

Proof Note that, since (s, a) ∈ Zε
h and |Zε

h| = 1, then Πε ∩ (Π \Πs,a,h) = ∅ (i.e., all ε-optimal policies visit (s, a, h)).
Therefore, PM(π̂ ∈ Πs,a,h) ≥ 1− δ. We now use a construction similar to the one in Case 2 of the proof of Lemma 21.

Consider the alternative MDP M̃ := (S,A, {fh, ν̃h}h∈[H], s1, H) which is equivalent toM except that the reward is
modified only at (s, a, h) as ν̃h(s, a) = N (rh(s, a)−∆, 1) with ∆ > maxπ∈Πs,a,h

V π
1 (s1)−maxπ∈Π\Πs,a,h

V π
1 (s1)+

ε, while ν̃h′(s′, a′) = νh′(s′, a′) on all other state-action-stage triplets. Then, for π0 ∈ argmax
π∈Π\Πs,a,h

V π
1 (s1),

Ṽ π0

1 (s1) = V π0

1 (s1) = max
π∈Π\Πs,a,h

V π
1 (s1)± max

π∈Πs,a,h

V π
1 (s1)

= max
π∈Π\Πs,a,h

V π
1 (s1)− max

π∈Πs,a,h

V π
1 (s1) + max

π∈Πs,a,h

Ṽ π
1 (s1) + ∆ > max

π∈Πs,a,h

Ṽ π
1 (s1) + ε.

This implies that PM̃(π̂ ∈ Πs,a,h) ≤ δ. Thus, applying Lemma 19,

E[nτh(s, a)] ≥
2

∆2
kl(PM(π̂ ∈ Πs,a,h),PM̃(π̂ ∈ Πs,a,h)) ≥

2

∆2
kl(1− δ, δ) ≥ 2

∆2
log(1/3δ).

Now note that, since an optimal policy belongs to Πs,a,h,

max
π∈Πs,a,h

V π
1 (s1)− max

π∈Π\Πs,a,h

V π
1 (s1) = V ⋆

1 (s1)− max
π∈Π\Πs,a,h

V π
1 (s1)

= V ⋆
1 (s1)− max

s′∈Sh

max
a′∈Ah(s′):(s′,a′)̸=(s,a)

max
π∈Πs′,a′,h

V π
1 (s1)

= min
(s′,a′):∆h(s′,a′)>0

∆h(s
′, a′) = ∆

h

min.

By taking the limit ∆→ ∆
h

min + ε, we conclude that E[nτh(s, a)] ≥
2 log(1/3δ)

(∆
h
min+ε)2

.

We are now ready to prove the main theorem.

Proof [Proof of Theorem 2] The first statement follows easily from Lemma 20, Lemma 21, and Lemma 22. In fact, for
(s, a) /∈ Zε

h, Lemma 20 yields

E[nτh(s, a)] ≥
2 log(1/3δ)

(∆h(s, a) + ε)2
≥ log(1/3δ)

2max(∆h(s, a), ε)2
=

log(1/3δ)

2max(∆h(s, a),∆
h

min, ε)
2

since ∆h(s, a) ≤ ∆
h

min. For (s, a) ∈ Zε
h when |Zε

h| > 1, the result follows trivially from Lemma 21 by noting that
∆

h

min = 0 and ∆h(s, a) ≤ ε. For (s, a) ∈ Zε
h when |Zε

h| = 1, using Lemma 22 with ∆h(s, a) ≤ ε,

E[nτh(s, a)] ≥
2 log(1/3δ)

(∆
h

min + ε)2
≥ log(1/3δ)

2max(∆
h

min, ε)
2
=

log(1/3δ)

2max(∆h(s, a),∆
h

min, ε)
2
.

To prove the second statement, note that the visitation counts nτh(s, a) form a feasible flow. Therefore, given local lower
bounds ch(s, a) for each state-action-stage triplet (s, a, h), the minimum expected stopping when satisfying all such
lower bounds is exactly the value of the minimum flow φ⋆(c).

23

TIRINZONI, AL-MARJANI, AND KAUFMANN

s1

s1

a1 a2

s2

s2

s2

s3

s3

s3

s4

s4

s4

s5

s5

s5

s6

s6

s6

s6 s6 s6s5 s5 s5

s7

s7 s7 s7

s7

s7

s8

s8

s8

s8

s8

s8

s1

a1

a1

a2

Figure 4: Example of hard instance with S = 8, A = 3, and H = 3. The reward is zero everywhere.

C.2 Worst-case lower bound

In order to derive a worst-case lower bound, we build a deterministic variant of the hard MDP instance introduced by
Domingues et al. (2021b) for the time-inhomogeneous stochastic setting. A major complication is that stochasticity
plays a crucial role for obtaining the right minimax dependence on the horizon H in the latter context. Here we present
a different analysis where we shall achieve the optimal dependence by leveraging the theory of minimum flows.

An example of our hard instance is shown in Figure 4. Fix some S ≥ 2, A ≥ 2, and H ≥ 3 log2(S). As common in
existing worst-case lower bounds for MDPs (Lattimore and Szepesvari, 2019; Domingues et al., 2021b), we arrange
S − 1 states in a full binary tree. As such, we will assume that S − 1 =

∑d−1
i=0 2i = 2d − 1 for some integer d ≥ 1

which represents the depth of the tree. The condition H ≥ 3 log2(S) is to make sure that there are enough stages
to build the binary tree. These assumptions are made only to simplify the exposition, while our result can be easily
generalized to any number of states and stages by considering non-complete binary trees (see also Appendix D of
Domingues et al. (2021b)).

The starting state s1 has two available actions, a1 and a2. Action a1 makes the agent transition to the root s2 of the
binary tree containing all other S − 1 states. When taking action a2, the agent remains in state s1. Such an action is
only available up to stage H̄ − 1, where the value of H̄ will be specified later. In stage H̄ , only a1 is available and the
agent must thus transition to state s2. In other words, the agent can reach the root of the binary tree s2 from stage h = 2
(when taking a1 at stage 1) to stage h = H̄ + 1 (when taking action a2 for all h = 1, . . . , H̄ − 1 and a1 in stage H̄). In
the leaf states of the binary tree, all A actions are available whose effect effect is to keep the agent in the same state
until the final stage.

The intuition behind the hardness of this MDP instance is as follows. In order to learn a near-optimal policy, the agent
must figure out which leaf state-action pair of the tree to reach (roughly SA choices) and at which stage to reach it
(exactly H̄ choices). In graph-theoretical words, any flow leaving the initial state must pass through one of the tree
leaves at one stage from 1 + d to H̄ + d. If we “cut” the tree at those state-action-stage triplets (see the dashed line in
Figure 4), we have that the value of the flow (and thus τ) can be written as the sum of visits to Ω(SAH̄) triplets. By
constructing variants of this hard MDP where we raise or lower the reward of some of these triplets by roughly ε/H ,
we can prove (Lemma 24 stated in Appendix C) that each of these triplets needs to be explored roughly Ω(H̄ε2 log(1/δ))

times. Summing them up and choosing H̄ ≥ Ω(H) yields that τ must be at least Ω(SAH2

ε2 log(1/δ)).

24

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Theorem 23 For any S,A ≥ 2 and H ≥ 3 log2(S) such that S = 2d for some integer d ≥ 1, there exists an MDPM
with S states, A actions, and H stages such that any algorithm which is (ε, δ)-PAC on the class M1 must satisfy

EM[τ] ≥ SAH2

72ε2
log(1/4δ).

Now we state a result that is key in the proof of Theorem 23.

Lemma 24 LetM be any MDP with rh(s, a) = 0 for all s, a, h. Then, for any 1 ≤ h̄ ≤ H̄ ≤ H and any policy
π ∈ Π,

H̄∑
h=h̄

E[nτh(sπh, aπh)] ≥
(H̄ − h̄+ 1)2

4ε2
log(1/4δ).

Proof Fix some 1 ≤ h̄ ≤ H̄ ≤ H and policy π ∈ Π. Define the event

Eπ :=

H̄∑

h=h̄

1
(
(sπ̂h, a

π̂
h) = (sπh, a

π
h)
)
≥ H̄ − h̄+ 1

2

 .

We distinguish two cases.

Case 1: PM(Eπ) ≤ 1/2. Consider the alternative MDP M̃ := (S,A, {fh, ν̃h}h∈[H], s1, H) which is equivalent to
M except that the reward is modified as

ν̃h(s, a) =

{
N (2ε/(H̄ − h̄+ 1), 1) if (s, a) = (sπh, a

π
h), h̄ ≤ h ≤ H̄,

νh(s, a) otherwise.

Note that, for any policy π′ ∈ Π, since the mean reward in M̃ is non-zero only for state-action pairs visited by π in
stages from h̄ to H̄ ,

Ṽ π′

1 (s1) =
2ε

H̄ − h̄+ 1

H̄∑
h=h̄

1
(
(sπ

′

h , a
π′

h) = (sπh, a
π
h)
)
.

This implies that Ṽ π
1 (s1) = Ṽ ⋆

1 (s1) = 2ε. Moreover, Ṽ π′

1 (s1) < ε if
∑H̄

h=h̄ 1
(
(sπ

′

h , a
π′

h) = (sπh, a
π
h)
)
< H̄−h̄+1

2 .

Therefore, the event Eπ must have PM̃(Eπ) ≥ 1 − δ, otherwise the returned policy would not be ε-optimal in M̃.
Thus, applying Lemma 19,

H̄∑
h=h̄

E[nτh(sπh, aπh)] ≥
(H̄ − h̄+ 1)2

2ε2
kl(PM(Eπ),PM̃(Eπ)) ≥ (H̄ − h̄+ 1)2

4ε2
log(1/4δ),

where the second inequality uses the same steps as in the proof of Case 1 of Lemma 21.

Case 2: PM(Eπ) > 1/2. We use a similar construction as in Case 1, except that this time we build a new MDP by
lowering the reward at pairs visited by π. Consider the alternative MDP M̃ := (S,A, {fh, ν̃h}h∈[H], s1, H) which is
equivalent toM except that the reward is modified as

ν̃h(s, a) =

{
N (−∆, 1) if (s, a) = (sπh, a

π
h), h̄ ≤ h ≤ H̄,

νh(s, a) otherwise.

25

TIRINZONI, AL-MARJANI, AND KAUFMANN

Here ∆ > 2ε/(H̄ − h̄+1). Note that Ṽ ⋆
1 (s1) = 0, which is attained by any policy not visiting state-action pairs visited

by π from h̄ to H̄ . Moreover, for any π′ ∈ Π, Ṽ π′

1 (s1) < −ε if
∑H̄

h=h̄ 1
(
(sπ

′

h , a
π′

h) = (sπh, a
π
h)
)
≥ H̄−h̄+1

2 and thus

π′ is not ε-optimal for M̃. Therefore, PM̃(Eπ) ≤ δ. Thus, applying Lemma 19,

H̄∑
h=h̄

E[nτh(sπh, aπh)] ≥
2

∆2
kl(PM(Eπ),PM̃(Eπ)) ≥ 1

∆2
log(1/4δ),

where the second inequality uses the same steps as in the proof of Case 2 of Lemma 21. This holds for any
∆ > 2ε/(H̄ − h̄+ 1) and the proof is concluded by taking the limit.

We now prove the main theorem.

Proof [Proof of Theorem 23] Let us consider the hard instance described above and exemplified in Figure 4. Let us
enumerate by (s̄i)

n
i=1 the leaf states of the binary tree. For any i ∈ [n], a ∈ [A], j ∈ [H̄], let us denote by πiaj the

policy which chooses action a1 in s1 at stage j (and thus action a2 in all stages before), which traverses the tree from
stage j + 1 to stage j + d, reaching the leaf state s̄i and playing always action a thereafter.

Now fix some j ∈ [H̄]. Applying Lemma 24 on the segment of stages from j + d to j + d+ H̄ ,

1

nA

n∑
i=1

A∑
a=1

j+d+H̄∑
h=j+d

E[nτh(sπ
iaj

h , aπ
iaj

h)] ≥ (H̄ + 1)2

4ε2
log(1/4δ).

Since this holds for any j ∈ [H̄],
H̄∑
j=1

n∑
i=1

A∑
a=1

j+d+H̄∑
h=j+d

E[nτh(sπ
iaj

h , aπ
iaj

h)] ≥ nAH̄(H̄ + 1)2

4ε2
log(1/4δ).

Now note that the lefthand side can be equivalently written as
H̄∑
j=1

n∑
i=1

A∑
a=1

j+d+H̄∑
h=j+d

E[nτh(sπ
iaj

h , aπ
iaj

h)] =

H̄∑
l=0

H̄∑
j=1

n∑
i=1

A∑
a=1

E[nτj+d+l(s
πiaj

j+d+l, a
πiaj

j+d+l)].

Each element of the outer sum over l = 0, . . . , H̄ is exactly equal to E[τ] since it is the value of a cut at depth l below
each unrolled binary tree (e.g., the one shown in Figure 4 is for l = 0). Therefore,

E[τ] ≥ nAH̄(H̄ + 1)

4ε2
log(1/4δ).

Now note that n = 2d−1 = S/2. Then, we only need to choose H̄ . Clearly, we need that 2H̄ + d ≤ H to have all the
segments above within the horizon, i.e., H ≥ 2H̄ + log2(S). If we choose H̄ = H/3, then H ≥ 3 log2(s). With this
choice we get

E[τ] ≥ SAH2

72ε2
log(1/4δ).

Appendix D. Sample Complexity Bounds (Proofs of Section 4)

D.1 Good event

We consider the following concentration event
G :=

{
∀t ∈ N,∀h ∈ [H], s ∈ Sh, a ∈ Ah(s) : |r̂th(s, a)− rh(s, a)| ≤ bth(s, a)

}
,

where we recall that the bonuses bth(s, a) are defined in (5).

26

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Lemma 25 The good event G holds with probability at least 1− δ.

Proof Let kl(x, y) (resp. TV(x, y)) denote the Kullback-Leibler divergence (resp. the total variation distance) between
two Bernoulli distributions with means x and y. By applying Pinsker’s inequality followed by Proposition 2 of Jonsson
et al. (2020) and a union bound, we have that

P
(
∃t ∈ N, h ∈ [H], s ∈ Sh, a ∈ Ah(s) : 2|r̂th(s, a)− rh(s, a)|2 >

log(N/δ) + log (e(nth(s, a) + 1))

nth(s, a)

)
= P

(
∃t ∈ N, h ∈ [H], s ∈ Sh, a ∈ Ah(s) : 2TV(r̂th(s, a), rh(s, a))

2 >
log(N/δ) + log (e(nth(s, a) + 1))

nth(s, a)

)
≤ P

(
∃t ∈ N, h ∈ [H], s ∈ Sh, a ∈ Ah(s) : kl(r̂

t
h(s, a), rh(s, a)) >

log(N/δ) + log (e(nth(s, a) + 1))

nth(s, a)

)
≤ δ.

The proof is concluded by noting that |r̂th(s, a)− rh(s, a)| ≤ 1 holds almost surely, which justifies the clipping of the
bonuses.

D.2 Properties of Algorithm 1

D.2.1 CORRECTNESS (PROOF OF THEOREM 4)

For a given subset of policies Π′ ⊆ Π, we define Sh(Π′) := {s ∈ Sh | ∃π ∈ Π′ : sπh = s} as the set of states which are
visited by some policy in Π′ at stage h. Thus, Sh = Sh(Π) is the set of all states reachable at stage h, while Sh(Π⋆) is
the subset of states visited by optimal policies.

Lemma 26 Under event G, for any t ∈ N, h ∈ [H], s ∈ Sh(Π⋆), and a ∈ argmaxa∈Ah(s)
Q⋆

h(s, a), we have
a ∈ At

h(s), i.e., a is never eliminated.

Proof Take any h ∈ [H], s ∈ Sh(Π⋆), a ∈ argmaxa∈Ah(s)
Q⋆

h(s, a). Let us prove the result by induction. It clearly
holds for t = 0 since the sets of active actions are initialized with the full sets of actions. Suppose it holds for t− 1
with t ≥ 1. Since this implies that a ∈ At−1

h (s), it is enough to show that

max
π∈Πs,a,h∩Πt−1

V
t,π

1 (s1) ≥ max
π∈Π

V t,π
1 (s1)

to guarantee that a ∈ At
h(s). Then, for some optimal policy π⋆ ∈ Π⋆,

max
π∈Πs,a,h∩Πt−1

V
t,π

1 (s1) ≥ V
t,π⋆

1 (s1) ≥ V π⋆

1 (s1) = max
π∈Π

V π
1 (s1) ≥ max

π∈Π
V t,π

1 (s1),

where the first inequality holds since there exists an optimal policy that visits (s, a) at stage h whose actions (at all
visited states) are active by the inductive hypothesis, while the second and the third one are due to event G. This
concludes the proof.

Lemma 27 Under event G, if the algorithm stops at the end of time τ ≥ 1 and returns a policy π̂, then V π̂
1 (s1) ≥

V ⋆
1 (s1)− ε.

27

TIRINZONI, AL-MARJANI, AND KAUFMANN

Proof We have two possible cases. First, suppose the algorithm stops with the first stopping rule. Under event G, we
know that some optimal policy π⋆ ∈ Π⋆ is always active, hence π⋆ ∈ Πτ . Then,

V ⋆
1 (s1)− V π̂

1 (s1) = V π⋆

1 (s1)− V π̂
1 (s1) ≤ V

π⋆,τ

1 (s1)− V π̂,τ
1 (s1)

≤ max
π∈Πτ

V
π,τ

1 (s1)− V π̂,τ
1 (s1)

= V
π̂,τ

1 (s1)− V π̂,τ
1 (s1)

≤ max
π∈Πτ

(
V

π,τ

1 (s1)− V π,τ
1 (s1)

)
≤ ε,

where the first inequality holds by event G, the second inequality holds since π⋆ ∈ Πτ , the equality is by definition of
the recommendation rule, and the last inequality is due to the stopping rule.

In the second case, if the algorithm stops with the second stopping rule, then Lemma 26 ensures that for all states visited
by some optimal policy exactly the (necessarily unique) optimal action is left active. Therefore, the recommended
policy plays only optimal actions in states that are visited by an optimal policy, which implies that the policy itself is
optimal.

Proof [Proof of Theorem 4] This is a simple combination of Lemma 27, which shows that the algorithm is ε-correct on
event G, and Lemma 25, which guarantees that G holds with probability at least 1− δ.

D.2.2 DIAMETER VS GAPS (PROOF OF LEMMA 9)

We prove Lemma 9 stated in Section 4, an important result for Algorithm 1 which relates the diameter of active policies
to the sub-optimality gaps of non-eliminated actions. Here we prove that the result holds under the good event G, which
in turns holds with probability at least 1− δ.

Proof [Proof of Lemma 9] Suppose the good event G holds and let t be any episode at the end of which the algorithm
did not stop. We derive separately a gap-dependent bound for sub-optimal state-action pairs and an ε-dependent bound
for all state-action pairs.

Gap-dependent bound (suboptimal state-action pairs) Let h ∈ [H], s ∈ Sh, a ∈ Ah(s) be such that ∆h(s, a) > 0
(i.e., this is a sub-optimal state-action pair at stage h) and a ∈ At

h(s) (i.e., the action has not been eliminated at the end
of episode t). Then, by definition of the elimination rule,

max
π∈Πs,a,h∩Πt−1

V
t,π

1 (s1) ≥ max
π∈Π

V t,π
1 (s1).

Using the good event, this implies that, for any optimal policy π⋆,

max
π∈Πs,a,h∩Πt−1

(
V π
1 (s1) + 2

H∑
h=1

bth(s
π
h, a

π
h)

)
≥ max

π∈Π

(
V π
1 (s1)− 2

H∑
h=1

bth(s
π
h, a

π
h)

)

≥ V ⋆
1 (s1)− 2

H∑
h=1

bth(s
π⋆

h , aπ
⋆

h).

Thus,

2 max
π∈Πt−1

H∑
h=1

bth(s
π
h, a

π
h) + 2

H∑
h=1

bth(s
π⋆

h , aπ
⋆

h) ≥ V ⋆
1 (s1)− max

π∈Πs,a,h

V π
1 (s1) = ∆h(s, a).

Since all state-action pairs along each optimal trajectory are active under the good event (Lemma 26),
∑H

h=1 b
t
h(s

π⋆

h , aπ
⋆

h) ≤
maxπ∈Πt−1

∑H
h=1 b

t
h(s

π
h, a

π
h). Therefore, expanding the definition of the bonuses,

∆h(s, a) ≤ 4 max
π∈Πt−1

H∑
h=1

bth(s
π
h, a

π
h).

28

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

ε-dependent bound If the algorithm did not stop at the end of episode t, by the first stopping rule,

ε

2
≤ max

π∈Πt

H∑
h=1

bth(s
π
h, a

π
h) ≤ max

π∈Πt−1

H∑
h=1

bth(s
π
h, a

π
h).

Gap-dependent bound (unique optimal trajectory) Finally, let us consider the special case where the optimal
trajectory (s⋆h, a

⋆
h)h∈[H] is unique. The derivation above holds for any state-action pair not belonging to an optimal

trajectory (i.e., with positive gap). In this case, it can be trivially extended to optimal state-action pairs. Since the
algorithm did not stop at the end of episode t, it must be that at least some sub-optimal state-action pair is active
(otherwise there would be at most one active action in each state and the stopping condition would be verified). That is,
there exist h ∈ [H], s ∈ Sh, a ∈ Ah(s) with ∆h(s, a) ≥ ∆min > 0 such that a ∈ At

h(s). Using the same derivation as
above, we obtain

∆min ≤ 4 max
π∈Πt−1

H∑
h=1

bth(s
π
h, a

π
h).

D.3 Maximum-coverage algorithm (Proof of Theorem 5)

D.3.1 STATIC MAXIMUM-COVERAGE SAMPLING

For the purpose of the analysis, we introduce a variant of the maximum-coverage sampling rule, that we refer to as
static maximum-coverage. As we will see, static maximum-coverage and (standard) maximum-coverage are very
related, in the sense that in each period k there exists a function Ck : 2Π → [0,∞), called a coverage function, such
that static-maximum coverage directly maximizes the function Ck, while maximum-coverage greedily builds a set of
policies that maximizes it. The pseudo-code of static maximum-coverage is given in Algorithm 3.

Algorithm 3 Static maximum-coverage sampling

function STATICMAXCOVERAGE()
Let kt ← minh∈[H],s∈Sh,a∈At−1

h (s) n
t−1
h (s, a) + 1 and t̄kt ← inf l∈N{l : kl = kt}

if kt > kt−1 then
Let ckt

h (s, a)← 1
(
a ∈ At̄kt−1

h (s), n
t̄kt−1

h (s, a) < kt

)
Compute ηkt , an integer minimum flow on G(M) with lower bounds ckt

Extract a minimum policy cover Πt
cover from ηkt using Algorithm 2

end if
if tmod 2 = 1 then

Choose πt arbitrarily from Πt
cover and remove it: Πt+1

cover ← Πt
cover \ {πt}

return πt

else
Let Πt+1

cover ← Πt
cover

return πt ← MAXDIAMETER()
end if

end function

function MAXDIAMETER()
return πt ← argmaxπ∈Πt−1

∑H
h=1 b

t−1
h (sπh, a

π
h)

end function

29

TIRINZONI, AL-MARJANI, AND KAUFMANN

In words, static maximum-coverage precomputes a set of policies of minimum size, which we call a minimum policy
cover6, that guarantees at least one visit to all active under-sampled (s, a, h), i.e., all those such that a ∈ At̄kt−1

h (s) and

n
t̄kt−1

h (s, a) < kt. It is easy to see that (see also Appendix B.3) this problem can be reduced to finding a minimum

flow with lower bound function ckt

h (s, a) := 1
(
a ∈ At̄kt−1

h (s), n
t̄kt−1

h (s, a) < kt

)
. Stated otherwise, we require the

resulting flow to have a value of at least 1 for every active (s, a, h) that has less than k visits. Once a minimum (integer)
flow ηk has been computed, a policy cover can be easily extracted using Algorithm 2. Finally, once a minimum policy
cover Πt̄k

cover for period k has been extracted, our sampling rule simply switches between playing a policy in this set to
ensure good coverage of the whole MDP and playing the policy prescribed by the maximum-diameter sampling rule.

D.3.2 MAIN THEOREM

We state the following theorem, which simultaneously upper bound the sample complexity of max-coverage sampling
and its static version.

Theorem 28 (Formal statement of Theorem 5) With probability at least 1− δ, the sample complexity of Algorithm 1
combined with either the static maximum-coverage (in which case CH := 1) or the maximum-coverage (in which case
CH := log(H) + 1) sampling rule is bounded by

τ ≤ 2CH

(
max
(s,a,h)

log
(
gh(s, a)

)
+ 1

)
φ⋆(g),

where g : E → [0,∞) is the lower bound function defined by

gh(s, a) :=
8H2

max
(
∆h(s, a),∆min, ε

)2 (log(eN2

δ

)
+ Lh(s, a)

)
+ 2

with Lh(s, a) := log(2) + 4 log

(
4H

max(∆h(s,a),∆min,ε)

)
+ log log

(
eN2

δ

)
. Moreover, with the same probability,

τ ≤ 48SAH2

ε2

(
log

(
eSAH

δ

)
+ 4 log

(
20SAH2 log

(
eSAH

δ

)
ε

))
+ 2.

Theorem 5 stated in the main text follows from Theorem 28 by noting that

log

(
eN2

δ

)
+ log log

(
eN2

δ

)
≤ 3

2
log

(
eN2

δ

)
.

In the next sub-sections, we prove Theorem 28.

D.3.3 DECOMPOSITION INTO PERIODS

Recall that kt, defined in Algorithm 1 for both the static maximum-coverage and the maximum-coverage sampling
rules, is the “target” number of visits at time t. We shall refer to the set of consecutive time steps {t ∈ N : kt = k}
as the k-th period. This is intuitively the set of time steps where the sampling rule is trying to make all active triplets
reach k visits. Let dk :=

∑τ
t=1 1 (kt = k) be the duration of the k-th period. Note that the period could be empty

(e.g., this might happen when some under-sampled triplets are eliminated), in which case we have dk = 0. The sample
complexity can thus be decomposed as

τ =

kτ∑
k=1

τ∑
t=1

1 (kt = k) =

kτ∑
k=1

dk.

Our goal in this section is to bound the duration of each period. In particular, while the duration of the k-th period can
be trivially bounded by twice the size of the minimum policy cover Πt̄k

cover for the static maximum-coverage sampling
rule, we shall see that a similar bound holds also for maximum-coverage.

6. A similar concept of “policy cover” was considered by Agarwal et al. (2020), where the authors propose an algorithm that
incrementally builds a set of policies exploring the whole state-action space in the context of policy gradient methods.

30

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Static maximum-coverage sampling The following bound can be easily derived from the definition of the sampling
rule.

Theorem 29 (Period duration for static maximum-coverage) When using the static maximum-coverage sampling
rule, for any non-empty period k ∈ N,

dk ≤ 2φ⋆(ck).

Proof If k is a non-empty period, there exists a time t̄k at which the period starts where a minimum policy cover Πt̄k
cover is

computed. The size of this cover is exactly the value φ⋆(ck) of a minimimum flow computed with lower bound function
ckh(s, a) := 1

(
a ∈ At̄k−1

h (s), nt̄k−1
h (s, a) < k

)
. The stated bound easily follows from the fact that a new policy in the

cover is played every two episodes and that the period necessarily ends when all policies in the cover have been played.

Maximum-coverage sampling Let t̄k := inft∈N{t : kt = k} be the first time step in the period as defined in
Algorithm 1 (which exists if the period is non-empty). We start by proving the following result, which allows us to
better characterize the duration of period k in terms of the first time where all active triplets at the beginning of the
period receive at least k visits.

Lemma 30 For any non-empty period k ∈ N, almost surely

dk ≤ d̃k := inf
t∈N
{t : min

h∈[H],s∈Sh,a∈At̄k−1

h (s)

nt−1
h (s, a) ≥ k} − t̄k <∞.

Proof Since period k ends when all active pairs are visited at least k times,

dk = inf
t∈N
{t : kt > k} − t̄k = inf

t≥t̄k
{t : min

h∈[H],s∈Sh,a∈At−1
h (s)

nt−1
h (s, a) ≥ k} − t̄k.

≤ inf
t∈N
{t : min

h∈[H],s∈Sh,a∈At̄k−1

h (s)

nt−1
h (s, a) ≥ k} − t̄k.

where the inequality holds sinceAt−1
h (s) ⊆ At̄k−1

h (s) for each h ∈ [H], s ∈ Sh, and t ≥ t̄k. To see why d̃k <∞, note
that, by definition, the sampling rule visits at least one undersampled triplet (s, a, h) (i.e., such that nt−1

h (s, a) < k)
every two steps. Since there are at most N triplets that need to be visited, we get that d̃k ≤ 2N <∞ almost surely.

Reduction to submodular maximization Let us define the set function Ck : 2Π → [0,∞) as

Ck(Π′) :=

H∑
h=1

∑
s∈Sh

∑
a∈At̄k−1

h (s)

1
(
nt̄k−1
h (s, a) < k, ∃π ∈ Π′ : (sπh, a

π
h) = (s, a)

)
∀Π′ ⊆ Π.

Moreover, let Π̄k
i := {πt | t = t̄k, . . . , t̄k + i− 1} be the set containing the first i policies played by the maximum-

coverage sampling rule in period k. We note that the first policy selection strategy (the one called at odd steps) is
essentially a greedy algorithm approximating the maximization of Ck. In fact, maximizing Ck corresponds to finding
a set of policies that visit all active triplets at time t̄k − 1 that have less than k visits (which, by definition of period,
means that they have exactly k − 1 visits). Instead of directly maximizing the set function Ck, such policy selection
strategy greedily builds the set Π̄k

i by adding, at each round where it is used, the policy visiting the most of these
undervisited triplets. Moreover, we note that Ck is a coverage function, a kind of function which is known to be
monotone submodular and for which greedy maximization is very efficient (Nemhauser et al., 1978). Let us prove some
of its important properties.

31

TIRINZONI, AL-MARJANI, AND KAUFMANN

First, we relate the maximization of Ck to the computation of a minimum flow with lower bound function ckh(s, a)←
1
(
a ∈ At̄k−1

h (s), nt̄k−1
h (s, a) < k

)
, i.e., the same as the one used by the static maximum-coverage sampling rule.

Let Nk :=
∑

h∈[H]

∑
s∈Sh

∑
a∈At̄k−1

h (s)
1
(
nt̄k−1
h (s, a) < k

)
be the total number of triplets that need to be visited in

period k.

Proposition 31 (Maximization vs minimum flow) For each v ≥ φ⋆(ck),

max
Π′⊆Π:|Π′|≤v

Ck(Π′) = max
Π′⊆Π

Ck(Π′) = Nk.

Proof Clearly, Ck(Π′) ≤ Nk for all Π′ ⊆ Π, which is attained when all undervisited state-action-stage triplets are
visited at least once. When the cardinality of Π′ can be at least φ⋆(ck), we can choose Π′ to include a set of φ⋆(ck)
policies realizing a minimum 1-flow (i.e., a minimum policy cover as the one computed by static maximum-coverage
sampling in period k). These, by definition, cover all undervisited triplets, and thus attain the maximal value Nk.

Proposition 32 (Monotonicity) For each Π′ ⊆ Π′′ ⊆ Π, Ck(Π′) ≤ Ck(Π′′).

Proof This is trivial: since Π′′ contains Π′, it must visit at least all the triplets visited by Π′.

Proposition 33 (Sub-modularity) Function f is sub-modular, i.e., for every Π′ ⊆ Π′′ ⊆ Π and π̄ ∈ Π \Π′′,

Ck(Π′ ∪ {π̄})− Ck(Π′) ≥ Ck(Π′′ ∪ {π̄})− Ck(Π′′).

Proof Note that

Ck(Π′ ∪ {π̄})− Ck(Π′) :=

H∑
h=1

∑
s∈Sh

∑
a∈At̄k−1

h (s),n
t̄k−1

h (s,a)<k

1
(
(sπ̄h, a

π̄
h) = (s, a),¬∃π ∈ Π′ : (sπh, a

π
h) = (s, a)

)

=

H∑
h=1

1
(
¬∃π ∈ Π′ : (sπh, a

π
h) = (sπ̄h, a

π̄
h), a

π̄
h ∈ A

t̄k−1
h (sπ̄h), n

t̄k−1
h (sπ̄h, a

π̄
h) < k

)
≥

H∑
h=1

1
(
¬∃π ∈ Π′′ : (sπh, a

π
h) = (sπ̄h, a

π̄
h), a

π̄
h ∈ A

t̄k−1
h (sπ̄h), n

t̄k−1
h (sπ̄h, a

π̄
h) < k

)
= Ck(Π′′ ∪ {π̄})− Ck(Π′′),

where the inequality holds since Π′ ⊆ Π′′.

Proposition 34 (Greedy maximization) Let Π̄k
i be the set containing the first i ≥ 0 policies computed by the

maximum-coverage sampling rule in period k. Then, for any positive integer v,

Ck(Π̄k
i) ≥ (1− e−⌊(i+1)/2⌋/v) max

Π′⊆Π:|Π′|≤v
Ck(Π′).

Proof This is a simple extension to Theorem 1.5 of Krause and Golovin (2014), which in turns is a slight generalization
of a well-known result by Nemhauser et al. (1978). We report the proof for completeness since we have to deal explicitly
with time steps where the maximum-diameter rule (which is not a greedy maximizer of Ck) is used.

32

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Fix some positive integers i, v. If i is such that t̄k + i− 1 is odd (i.e., the first sampling rule is used at step t̄k + i− 1),
then using Equation 3 to 7 in the proof of Theorem 1.5 of Krause and Golovin (2014),

C⋆ := max
Π′⊆Π:|Π′|≤v

Ck(Π′) ≤ Ck(Π̄k
i−1) + v(Ck(Π̄k

i)− Ck(Π̄k
i−1)).

In particular, note that their inequality 6 holds since, by definition of our first sampling rule,

πt̄k+i−1 ∈ argmax
π∈Π

(
Ck(Π̄k

i−1 ∪ {π})− Ck(Π̄k
i−1)

)
.

Rearranging, we get

C⋆ − Ck(Π̄k
i) ≤ (1− 1/v)(C⋆ − Ck(Π̄k

i−1)).

On the other hand, if i is such that t̄k+ i−1 is even (i.e., the maximum-diameter sampling rule is used at step t̄k+ i−1),
then, by monotonicity of Ck,

C⋆ − Ck(Π̄k
i) ≤ C⋆ − Ck(Π̄k

i−1).

Therefore, unrolling this recursion from i ≥ 0 and using that Ck(Π̄k
0) = Ck(∅) = 0,

C⋆ − Ck(Π̄k
i) ≤ (1− 1/v)⌊(i+1)/2⌋C⋆.

Using that 1− x ≤ e−x and rearranging concludes the proof.

Theorem 35 (Period duration for maximum-coverage) When using the maximum-coverage sampling rule, for any
non-empty period k ∈ N,

dk ≤ 2φ⋆(ck)(log(H) + 1).

Proof Let i := supi∈N{i : Ck(Π̄k
i) ≤ Nk − φ⋆(ck)} be the last iteration in period k at which at least φ⋆(ck) triplets

still need to be visited by the algorithm. Then, by Proposition 34 combined with Proposition 31,

Nk − φ⋆(ck) ≥ Ck(Π̄k
i) ≥ (1− e−⌊(i+1)/2⌋/φ⋆(ck)) max

Π′⊆Π:|Π′|≤φ⋆(ck)
Ck(Π′) = (1− e−⌊(i+1)/2⌋/φ⋆(ck))Nk.

Thus,

⌊(i+ 1)/2⌋ ≤ φ⋆(ck) log(Nk/φ
⋆(ck)) ≤ φ⋆(ck) log(H),

where the second inequality holds since φ⋆(ck) ≥ maxh∈[H]

∑
s∈Sh

∑
a∈At̄k−1

h (s)
1
(
nt̄k−1
h (s, a) < k

)
by Lemma

17 and Nk ≤ Hmaxh∈[H]

∑
s∈Sh

∑
a∈At̄k−1

h (s)
1
(
nt̄k−1
h (s, a) < k

)
. This implies that i ≤ 2φ⋆(ck) log(H)− 1 if i

is odd, while i ≤ 2φ⋆(ck) log(H) if i is even. Finally, note that d̃k ≤ i + 2φ⋆(ck) since at iteration i + 1 less than
φ⋆(ck) triplets are missing and the algorithm visits at least a new one every two rounds. Then, the proof is concluded
by Lemma 30.

D.3.4 ELIMINATION PERIODS

We now bound the period indexes at which sub-optimal state-action pairs are eliminated. All results in this section hold
for both the static maximum-coverage and the maximum-coverage sampling rule.

Lemma 36 (Cover property) For any non-empty period k ∈ N, h ∈ [H], s ∈ Sh, and any action a ∈ At̄k−1
h (s) that

is active when the period begins,

nt̄k−1
h (s, a) ≥ k − 1.

33

TIRINZONI, AL-MARJANI, AND KAUFMANN

Proof This is trivial from the definition of period: t̄k is the first time with kt̄k = k and kt̄k := min
h∈[H],s∈Sh,a∈At̄k−1

h (s)
nt̄k−1
h (s, a)+

1.

Lemma 37 (Elimination periods) Recall that kτ is the period in which Algorithm 1 stops and define

κs,a,h := inf
k∈N

{
k : a /∈ At̄k+1−1

h (s)
}
∧ kτ

as the period at the end of which (s, a, h) is eliminated. Then, under the good event G, for any h ∈ [H], s ∈ Sh, a ∈
Ah(s),

κs,a,h ≤ κs,a,h :=
8H2

max
(
∆h(s, a),∆min, ε

)2 (log(eN2

δ

)
+ Lh(s, a)

)
+ 1

where

Lh(s, a) := log(2) + 4 log

(
4H

max
(
∆h(s, a),∆min, ε

))+ log log

(
eN2

δ

)
.

Proof Take any k ∈ N, h ∈ [H], s ∈ Sh, a ∈ Ah(s) such that a ∈ At̄k+1−1
h (s). Under G, we have,

max

(
∆h(s, a)

4
,
∆min

4
,
ε

2

)
(a)

≤ max
π∈Πt̄k+1−2

H∑
h=1

b
t̄k+1−1
h (sπh, a

π
h)

(b)

≤ max
π∈Πt̄k+1−2

H∑
h=1

√√√√β(n
t̄k+1−1
h (sπh, a

π
h), δ)

n
t̄k+1−1
h (sπh, a

π
h)

(c)

≤ max
π∈Πt̄k+1−2

H∑
h=1

√
β(t̄k+1 − 1, δ)

n
t̄k+1−1
h (sπh, a

π
h)

(d)

≤ max
π∈Πt̄k+1−2

H∑
h=1

√
β(Nk, δ)

n
t̄k+1−1
h (sπh, a

π
h)

(e)

≤ H

√
β(Nk, δ)

k
,

where (a) uses Lemma 9, (b) follows by expanding the definition of the bonuses, (c) uses that any active state-action-
stage triplet cannot be visited more than t times and the end of round t, (d) uses that t̄k+1 − 1 ≤

∑k
k′=1 dk′ ≤ Nk

since a trivial bound on the duration of each period is N , and (e) uses Lemma 36. Note that

β(Nk, δ) =
1

2
log

(
e(Nk + 1)N

δ

)
≤ 1

2
log

(
eN2

δ

)
+

1

2
log (1 + k) .

Therefore, we have that, if (s, a, h) is active at the end of period k,

k ≤ H2
log
(

eN2

δ

)
+ log (1 + k)

2max
(

∆h(s,a)
4 , ∆min

4 , ε2

)2 ≤ 8H2
log
(

eN2

δ

)
+ log (1 + k)

max
(
∆h(s, a),∆min, ε

)2 .
Using Lemma 44 with C = 8H2

max(∆h(s,a),∆min,ε)
2 and B = log

(
eN2

δ

)
, we obtain

k ≤ 8H2

max
(
∆h(s, a),∆min, ε

)2 (log(eN2

δ

)
+ L′

h(s, a)

)
,

34

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

where

L′
h(s, a) := log(2) + 2 log

(
8H2

max
(
∆h(s, a),∆min, ε

)2 +
4H

max
(
∆h(s, a),∆min, ε

) log(eN2

δ

)1/2
)
.

The proof is concluded by noting that κs,a,h is smaller than the first integer k ∈ N not satisfying the inequality above
and that L′

h(s, a) ≤ Lh(s, a).

D.3.5 SAMPLE COMPLEXITY

We prove first the instance-dependent bound and then the worst-case one.

Theorem 38 Under the good event G, the sample complexity of Algorithm 1 when combined with either the static
maximum-coverage (in which case CH := 1) or the maximum-coverage (in which case CH := log(H) + 1) sampling
rule is bounded by

τ ≤ 2CH(log(κ) + 1)φ⋆(g),

where g : E → [0,∞) is defined as gh(s, a) = κs,a,h + 1, with κs,a,h being the upper bound on the elimination period
of (s, a, h) from Lemma 37, and κ := maxh∈[H],s∈Sh,a∈Ah(s) κs,a,h.

Proof Using the decomposition into periods introduced in Section D.3.3 followed by Theorem 29 (for static maximum-
coverage sampling) or Theorem 35 (for maximum-coverage sampling),

τ =

kτ∑
k=1

τ∑
t=1

1 (kt = k) =

kτ∑
k=1

dk ≤ 2CH

kτ∑
k=1

φ⋆(ck),

where we recall that ckh(s, a) := 1
(
a ∈ At̄k−1

h (s), nt̄k−1
h (s, a) < k

)
. Let 1k : E → [0, 1] be another lower bound

function such that 1k
h(s, a) = 1

(
a ∈ At̄k−1

h (s)
)

. Then,

kτ∑
k=1

φ⋆(ck) ≤
kτ∑
k=1

φ⋆(1k),

where the inequality is due to Lemma 16 and ckh(s, a) ≤ 1k
h(s, a) for all s, a, h. Let k ≥ 1 and Ck be any maximum cut

for the minimum flow problem with lower bounds 1k. Then, by Theorem 15,

φ⋆(1k) = ψ(Ck, 1k) =
∑

(s,a,h)∈E(Ck)

1kh(s, a) =
∑

(s,a,h)∈E(Ck)

1
(
a ∈ At̄k−1

h (s)
)
,

35

TIRINZONI, AL-MARJANI, AND KAUFMANN

where we recall that, since Ck is a maximum cut, it has no backward arc and thus its value is simply the sum of lower
bounds on its forward arcs. Plugging this back into our sample complexity bound,

τ ≤ 2CH

kτ∑
k=1

∑
(s,a,h)∈E(Ck)

1
(
a ∈ At̄k−1

h (s)
)

= 2CH

kτ∑
k=1

∑
(s,a,h)∈E(Ck)

1 (k − 1 ≤ κs,a,h)

= 2CH

kτ∑
k=1

1

k

∑
(s,a,h)∈E(Ck)

k1 (k − 1 ≤ κs,a,h)

≤ 2CH

kτ∑
k=1

1

k

∑
(s,a,h)∈E(Ck)

(κs,a,h + 1)

≤ 2CH

kτ∑
k=1

1

k
max
C∈C

∑
(s,a,h)∈E(C)

(κs,a,h + 1)

≤ 2CH(log(kτ) + 1)max
C∈C

∑
(s,a,h)∈E(C)

(κs,a,h + 1)

≤ 2CH(log(κ) + 1)max
C∈C

∑
(s,a,h)∈E(C)

(κs,a,h + 1),

where in the last inequality we applied Lemma 37. Now note that the maximization in the last line computes a maximum
cut for the problem with lower bound function g : E → [0,∞) defined by gh(s, a) = κs,a,h + 1. Therefore, the
statement follows by applying Theorem 15.

Theorem 39 [Worst-case bound] Under the good event G, the sample complexity of Algorithm 1 when combined with
either the static maximum-coverage or the maximum-coverage sampling rule is bounded by

τ ≤ 48SAH2

ε2

(
log

(
eSAH

δ

)
+ 4 log

(
20SAH2 log

(
eSAH

δ

)
ε

))
+ 2.

Proof The proof is an easy extension of the one of Theorem 42 where we only need to handle the fact that the
maximum-diameter sampling rule is called once every two episodes. We report the full steps for completeness.

Take any time T at the end of which the algorithm did not stop. Then, for any t ≤ T such that t is odd,

ε

2
≤ max

π∈Πt

H∑
h=1

bth(s
π
h, a

π
h) =

H∑
h=1

bth(s
πt+1

h , aπ
t+1

h) ≤
H∑

h=1

√
β(t, δ)

nth(s
πt+1

h , aπ
t+1

h) ∨ 1
,

where the first inequality follows from the first stopping rule, the equality uses the fact that the second sampling
rule is used at time t + 1, and the last inequality uses the definition of the bonuses together with nth(s, a) ≤ t. Let
n̄th(s, a) :=

∑
l≤t:(l mod 2)=0 1

(
(slh, a

l
h) = (s, a)

)
be the number of visits to (s, a, h) restricted to even steps (i.e.,

36

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

those by the second sampling rule). Then, we have the following sequence of inequalities (explained below):

ε

2
⌊(T + 1)/2⌋

(a)

≤
∑

t≤T :(t mod 2)=1

H∑
h=1

√
β(t, δ)

nth(s
πt+1

h , aπ
t+1

h) ∨ 1

(b)

≤
∑

t≤T :(t mod 2)=1

H∑
h=1

√
β(t, δ)

n̄th(s
πt+1

h , aπ
t+1

h) ∨ 1

(c)
=

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

∑
t≤T :(t mod 2)=1

1
(
(sπ

t+1

h , aπ
t+1

h) = (s, a)
)√ β(t, δ)

n̄th(s, a) ∨ 1

(d)

≤
√
β(T, δ)

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

∑
t≤T :(t mod 2)=1

1
(
(sπ

t+1

h , aπ
t+1

h) = (s, a)
)√ 1

n̄th(s, a) ∨ 1

(e)

≤
√
β(T, δ)

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

n̄T
h (s,a)∑
i=2

√
1

i− 1
+ 1

(f)

≤
√
β(T, δ)

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

(
2
√
n̄Th (s, a)− 1 + 1

)
(g)

≤
√
β(T, δ)

2

√√√√N

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

n̄Th (s, a) +N

(h)

≤
√
β(T, δ)

(
2
√
NH⌊T/2⌋+N

)
,

where (a) is by summing both sides of the inequality derived at the beginning over all odd t from 1 to T , (b) uses that
nth(s, a) ≥ n̄th(s, a) for all s, a, h, t, (c) is trivial, (d) uses the monotonicity of β(·, δ), (e) uses the standard pigeon-hole
principle, (f) uses the inequality

∑m
i=1

√
1/i ≤ 2

√
m, (g) uses Cauchy-Schwartz inequality, and (h) uses that the total

number of even episodes up to time T is ⌊T/2⌋. Therefore, we obtain the inequality,

εT

4
≤
√
β(T, δ)

(√
2NHT +N

)
=

√
1

2
log

(
eN

δ

)
+

1

2
log (T + 1)

(√
2NHT +N

)
.

Taking the square of both sides and using (x+ y)2 ≤ 2(x2 + y2),

ε2T 2

16
≤
(
log

(
eN

δ

)
+ log (T + 1)

)(
2NHT +N2

)
. (6)

This is exactly the same inequality we obtained in (8) for the proof of Theorem 42, except that we have a factor 16 on
the left-hand side instead of a factor 4. By repeating exactly the same steps as for Theorem 42, we obtain

T ≤ 48NH

ε2

(
log

(
eN

δ

)
+ 4 log

(
20NH log

(
eN
δ

)
ε

))
.

The proof is concluded by noting that τ cannot be larger than the bound above plus two (since the maximum-diameter
rule is called only every two steps) and that N ≤ SAH .

Proof [Proof of Theorem 5] The proof simply combines Theorem 38 and Theorem 39 together with the fact that the
good event G holds with probability at least 1− δ (Lemma 25).

37

TIRINZONI, AL-MARJANI, AND KAUFMANN

D.4 Maximum-diameter sampling

We now state the main Theorem which gives guarantees on the sample complexity of EPRL when it is coupled with
Maximum Diameter sampling (Line 17 in Algorithm 1).

Theorem 40 With probability at least 1−δ, the sample complexity of Algorithm 1 combined with the maximum-diameter
sampling rule is bounded as

τ ≤
∑

h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

8H2

max
(
∆h(s, a),∆min, ε

)2 (log(eNδ
)
+ L

)
+N + 1,

where L := 2 log(2) + 2 log

(
8NH2

max(∆min,ε)
2

)
+ log log

(
eN
δ

)
. Moreover, with the same probability,

τ ≤ 16SAH2

ε2

(
log

(
eSAH

δ

)
+ 4 log

(
10SAH2 log

(
eSAH

δ

)
ε

))
+ 1.

We start by deriving the instance-dependent bound stated in Theorem 40.

Theorem 41 Under event G, the sample complexity of Algorithm 1 combined with the maximum-diameter sampling
rule is bounded as

τ ≤
∑

h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

8H2

max
(
∆h(s, a),∆min, ε

)2 (log(eNδ
)
+ L

)
+N + 1,

where L := 2 log(2) + 2 log

(
8NH2

max(∆min,ε)
2

)
+ log log

(
eN
δ

)
.

Proof We use the following “target trick” to obtain a sample complexity which scales as the sum of inverse gaps.
Instead of bounding the number of times each state-action pair is visited, we imagine that each played policy “targets”
some state-action pair and bound the number of times each state-action pair is targeted. Formally, we say that the policy
πt played at time t targets (s, a) at stage h if the following event occurs:

Gt
s,a,h :=

{
h ∈ argmin

l∈[H]

nt−1
l (sπ

t

l , a
πt

l), sπ
t

h = s, aπ
t

h = a

}
.

Intuitively, we say that policy πt targets the state-action pair (along its trajectory) that has been visited the least so far.
Then, since at each time step at least one state-action-stage triplet is targeted,

τ ≤
H∑

h=1

∑
s∈Sh

∑
a∈Ah(s)

Zτ
h(s, a), (7)

where Zτ
h(s, a) :=

∑τ
t=1 1

(
Gt

s,a,h

)
is the number of times (s, a, h) is targeted up to the stopping time. Thus, we shall

focus on bounding Zt
h(s, a) for some fixed time t. Note that Zt

h(s, a) ≤ nth(s, a) since a targeted state-action-stage
triplet is necessarily visited at time t. Moreover, nth(s, a) can be much larger than Zt

h(s, a) since (s, a, h) could be
visited even without being the target.

Bounding Zt
h(s, a) Let t be any episode at which the algorithm did not stop. For any (s, a, h),

max

(
∆h(s, a)

4
,
∆min

4
,
ε

2

)
(a)

≤ max
π∈Πt−1

H∑
h=1

bth(s
π
h, a

π
h)

(b)

≤ max
π∈Πt−1

H∑
h=1

bt−1
h (sπh, a

π
h)

(c)
=

H∑
h=1

bt−1
h (sπ

t

h , a
πt

h)
(d)

≤
H∑

h=1

√
β(t, δ)

nt−1
h (sπ

t

h , a
πt

h) ∨ 1
,

38

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

where (a) is from Lemma 9, (b) from the monotonicity of the bonuses, (c) from the definition of the maximum-diameter
sampling rule, and (d) from the definition of the bonuses. Now we distinguish two cases. If Gt

s,a,h holds, then

∀l ∈ [H] : nt−1
l (sπ

t

l , a
πt

l) ≥ nt−1
h (s, a) ≥ Zt−1

h (s, a).

Plugging this into the inequality above and rearranging, we obtain

max

(
∆h(s, a)

4
,
∆min

4
,
ε

2

)
≤ H

√
β(t, δ)

Zt−1
h (s, a)

=⇒ Zt
h(s, a) ≤

16H2β(t, δ)

max
(
∆h(s, a),∆min, ε

)2 + 1.

On the other hand, in case Gt
s,a,h does not hold, then Zt

h(s, a) = Zt−1
h (s, a) and we can recursively apply the reasoning

above to obtain the same bound on Zt
h(s, a).

Bounding τ Evaluating this bound at t = τ − 1, plugging it into (7), and expanding the definition of the threshold β,
we obtain

τ ≤
∑

h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

(
16H2β(τ − 1, δ)

max
(
∆h(s, a),∆min, ε

)2 + 1

)
+ 1

=
∑

h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

8H2

max
(
∆h(s, a),∆min, ε

)2 (log(eNδ
)
+ log(τ)

)
+N + 1.

LetB =
∑

h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

8H2

max(∆h(s,a),∆min,ε)
2 andC =

∑
h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

8H2

max(∆h(s,a),∆min,ε)
2 log

(
eN
δ

)
+

N + 1. We conclude by applying Lemma 43 with these values, while noting that

B2 + 2C ≤ 4

(
8NH2

max
(
∆min, ε

)2
)2

log

(
eN

δ

)
.

We now prove the worst-case bound stated in Theorem 40.

Theorem 42 Under event G, the sample complexity of Algorithm 1 combined with the maximum-diameter sampling
rule is bounded as

τ ≤ 16SAH2

ε2

(
log

(
eSAH

δ

)
+ 4 log

(
10SAH2 log

(
eSAH

δ

)
ε

))
+ 1.

Proof Take any time T at the end of which the algorithm did not stop. Then, for any t ≤ T ,

ε

2
≤ max

π∈Πt

H∑
h=1

bth(s
π
h, a

π
h) =

H∑
h=1

bth(s
πt+1

h , aπ
t+1

h) ≤
H∑

h=1

√
β(t, δ)

nth(s
πt+1

h , aπ
t+1

h) ∨ 1
,

39

TIRINZONI, AL-MARJANI, AND KAUFMANN

where the first inequality follows from the first stopping rule, the equality uses the definition of the maximum-diameter
sampling rule, and the last inequality uses the definition of the bonuses together with nth(s, a) ≤ t. Then,

ε

2
(T + 1)

(a)

≤
T∑

t=0

H∑
h=1

√
β(t, δ)

nth(s
πt+1

h , aπ
t+1

h) ∨ 1

(b)
=

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

T∑
t=0

1
(
(sπ

t+1

h , aπ
t+1

h) = (s, a)
)√ β(t, δ)

nth(s, a) ∨ 1

(c)

≤
√
β(T, δ)

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

T∑
t=0

1
(
(sπ

t+1

h , aπ
t+1

h) = (s, a)
)√ 1

nth(s, a) ∨ 1

(d)

≤
√
β(T, δ)

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

nT
h (s,a)∑
i=2

√
1

i− 1
+ 1

(e)

≤
√
β(T, δ)

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

(
2
√
nTh (s, a)− 1 + 1

)
(f)

≤
√
β(T, δ)

2

√√√√N

H∑
h=1

∑
s∈Sh

∑
a∈Ah(s)

nTh (s, a) +N

(g)
=
√
β(T, δ)

(
2
√
NHT +N

)
,

where (a) is by summing both sides of the inequality derived at the beginning over all t from 0 to T , (b) is trivial, (c) uses
the monotonicity of β(·, δ), (d) uses the standard pigeon-hole principle, (e) uses the inequality

∑m
i=1

√
1/i ≤ 2

√
m, (f)

uses Cauchy-Schwartz inequality, and (g) uses that the total number of samples after T episodes is TH . Therefore, we
obtain the inequality,

εT

2
≤
√
β(T, δ)

(√
2NHT +N

)
=

√
1

2
log

(
eN

δ

)
+

1

2
log (T + 1)

(√
2NHT +N

)
.

Taking the square of both sides and using (x+ y)2 ≤ 2(x2 + y2),

ε2T 2

4
≤
(
log

(
eN

δ

)
+ log (T + 1)

)(
2NHT +N2

)
. (8)

Let us first find a crude bound on T . Using log(1 + T) ≤
√
1 + T followed by some trivial bounds,

ε2T 2

4
≤
(
log

(
eN

δ

)
+
√
1 + T

)(
2NHT +N2

)
≤ 3

(
log

(
eN

δ

)
+
√
1 + T

)
N2HT

≤ 3

(
log

(
eN

δ

)
+ 1

)
N2HT

√
1 + T

≤ 6 log

(
eN

δ

)
N2HT

√
1 + T

≤ 12 log

(
eN

δ

)
N2HT 3/2.

From this we obtain

T ≤

(
48N2H log

(
eN
δ

)
ε2

)2

.

40

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Plugging this back into the log term in (8),

ε2T 2

4
≤

(
log

(
eN

δ

)
+ 2 log

(
2
48N2H log

(
eN
δ

)
ε2

))(
2NHT +N2

)
≤

(
log

(
eN

δ

)
+ 4 log

(
10NH log

(
eN
δ

)
ε

))(
2NHT +N2

)
.

Solving the inequality for T , one can easily show that

T ≤ 16NH

ε2

(
log

(
eN

δ

)
+ 4 log

(
10NH log

(
eN
δ

)
ε

))
.

This holds for any T at the end of which the algorithm did not stop. Therefore, τ cannot be larger than the bound above
plus one. The proof is concluded by noting that N ≤ SAH .

Proof [Proof of Theorem 40] The proof simply combines Theorem 41 and Theorem 42 together with the fact that the
good event G holds with probability at least 1− δ (Lemma 25).

D.5 Auxiliary Results

Lemma 43 Let B,C ≥ 1. If k ≤ B log(k) + C, then

k ≤ B log(B2 + 2C) + C.

Proof Since log(k) ≤
√
k for any k ≥ 1, we have that k ≤ B

√
k + C. Solving this second-order inequality, we get

the crude bound
√
k ≤ B

2 +
√

B2

4 + C, which in turns yields k ≤ B2 + 2C using that (x + y)2 ≤ 2(x2 + y2) for
x, y ≥ 0. The statement follows by plugging this bound into the logarithm.

Lemma 44 Let B,C ≥ 1. If k ≤ CB + C log(1 + k), then

k ≤ CB + C log(1 + C2 + 2C(B + 1))

≤ C
(
B + log(2) + 2 log(C +

√
2CB)

)
.

Proof Since log(1 + k) ≤
√
1 + k and

√
1 + k ≤ 1 +

√
k for any k ≥ 0, we have that

k ≤ CB + C
√
1 + k ≤ C(B + 1) + C

√
k.

Solving this second-order inequality, we get the crude bound
√
k ≤ C

2 +
√

C2

4 + C(B + 1), which in turns yields
k ≤ C2 + 2C(B + 1) using that (x + y)2 ≤ 2(x2 + y2) for x, y ≥ 0. The first inequality follows by plugging this
bound into the logarithm in the righthand side. To see the second one, note that

√
k ≤ C +

√
C(B + 1) ≤ C +

√
2CB.

Thus,

k ≤ CB + C log(1 + (C +
√
2CB)2)

≤ CB + C log(2(C +
√
2CB)2)

≤ CB + C log(2) + 2C log(C +
√
2CB).

41

TIRINZONI, AL-MARJANI, AND KAUFMANN

Appendix E. Refined Results for Tree-based MDPs

In this appendix, we show that all our results can be refined for the specific class of deterministic MDPs represented by
a tree, i.e., where each reachable state has exactly one incoming arc (except for the initial state which has none). This
implies that there exists a unique path to reach each state s ∈ Sh at stage h > 1 from the root.

E.1 Instance-dependent lower bound

In the case of tree-based MDPs, one can derive a lower bound with an improved H factor. The intuition behind this
result is the following: While in general MDPs the policies going through different triplets (s, a, h) and (s′, a′, h)
may share some common state-action pairs at any further stage l ≥ h, such phenomenon does not occur in tree-based
MDPs. This makes the learning problem more difficult, as learning whether (s, a, h) is optimal or not does not gives us
side-information about (s′, a′, h). Throughout this section, we will be using the same notation as Section 3.

Theorem 45 Suppose thatM is tree-based. Then:

E[τ] ≥ max
h

∑
s∈Sh,a∈Ah(s)

(H − h+ 1) log(1/4δ)

4max(∆h(s, a),∆
h

min, ε)
2
,

where ∆
h

min := min(s′,a′):∆h(s′,a′)>0 ∆h(s
′, a′).

The proof of this theorem relies on the following lemma which is refined version of Lemmas 20, 21 and 22 in the case
of tree-based MDPs. Before we state the lemma, we define for any triplet (s, a, h) the set

E(s, a, h) =
{
(s′, a′, l) : l ∈ [|h,H|], s′ ∈ Sl, a′ ∈ Al(s), ∃π ∈ Πs,a,h, s

π
l = s′, aπl = a′

}
.

In words, E(s, a, h) is the set of triplets at stages l ≥ h that are visited by the policies in the set Πs,a,h.

Lemma 46 Suppose thatM is tree-based and fix any stage h ∈ [H]. We have:

1. For suboptimal pairs (s, a) /∈ Zε
h:∑

(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2(H − h+ 1)2

(∆h(s, a) + ε)2
log(1/2.4δ).

2. For non-unique optimal pairs (s, a) ∈ Zε
h and |Zε

h| > 1:∑
(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
(H − h+ 1)2

4ε2
log(1/4δ).

3. For unique optimal pairs (s, a) ∈ Zε
h and |Zε

h| = 1:∑
(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2(H − h+ 1)2

(∆
h

min + ε)2
log(1/4δ),

where ∆
h

min := min(s′,a′):∆h(s′,a′)>0 ∆h(s
′, a′).

Proof We distinguish four cases.

42

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Case 1: (s, a) /∈ Zε
h. Consider the alternative MDP M̃ := (S,A, {fh, ν̃h}h∈[H], s1, H) which is equivalent toM

except that the reward is modified only at the pairs (s′, a′, l) ∈ E(s, a, h) as ν̃l(s′, a′) = N (rl(s
′, a′) + ∆, 1) with

∆ > ∆h(s,a)+ε
H−h+1 , while the reward distribution remains the same on all other state-action-stage triplets. Note that the

values of policies in Π \Πs,a,h remain unchanged. On the other hand, for all π ∈ argmaxπ∈Πs,a,h
V π
1 (s1),

Ṽ π
1 (s1) = V π

1 (s1) + (H − h+ 1)∆ > V π
1 (s1) + ∆h(s, a) + ε = V ⋆

1 (s1) + ε ≥ max
π/∈Πs,a,h

Ṽ π
1 (s1) + ε,

where the first equality is because we increased the mean reward by ∆ at the pairs (sπl , a
π
l)l∈[|h,H|] and the second

equality comes from the definition of ∆h(s, a) and the fact that π ∈ argmaxπ∈Πs,a,h
V π
1 (s1). Now from the inequality

above we deduce that PM̃(π̂ ∈ Πs,a,h) ≥ 1−δ. On the other hand, since (s, a) /∈ Zε
h, PM(π̂ ∈ Πs,a,h) ≤ δ. Therefore

Lemma 1 from Kaufmann et al. (2016) implies that:∑
(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2

∆2
kl(PM(π̂ ∈ Πs,a,h),PM̃(π̂ ∈ Πs,a,h))

≥ 2

∆2
kl(δ, 1− δ) ≥ 2

∆2
log(1/2.4δ).

This holds for any ∆ > ∆h(s,a)+ε
H−h+1 and the first statement is obtained by taking the limit.

Case 2: (s, a) ∈ Zε
h, |Zε

h| > 1 and PM(π̂ ∈ Πs,a,h) ≤ 1/2. We consider the same M̃ from the previous case. We
still have that PM̃(π̂ ∈ Πs,a,h) ≥ 1− δ. Using Lemma 1 from Kaufmann et al. (2016) we get∑

(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2

∆2
kl(PM(π̂ ∈ Πs,a,h),PM̃(π̂ ∈ Πs,a,h)) ≥

2

∆2
kl(1/2, 1− δ).

By taking the limit ∆→ ∆h(s,a)+ε
H−h+1 we get:∑
(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2

(∆h(s, a) + ε)2
kl(1/2, 1− δ)

=
2(H − h+ 1)2(
∆h(s, a) + ε

)2 kl(1/2, δ)
≥ (H − h+ 1)2

4ε2
log(1/4δ),

where we used the fact that kl(x, y) = kl(1− x, 1− y), kl(x, y) ≥ x log(1/y)− log(2) and ∆h(s, a) ≤ ε.

Case 3: (s, a) ∈ Zε
h, |Zε

h| > 1 and PM(π̂ ∈ Πs,a,h) ≥ 1/2. Consider the alternative MDP M̃ := (S,A, {fh, ν̃h}h∈[H], s1, H)
which is equivalent toM except that the reward is modified only at the pairs (s′, a′, l) ∈ E(s, a, h) as ν̃l(s′, a′) =
N (rl(s

′, a′)−∆, 1) with ∆ > 2ε−∆h(s,a)
H−h+1 , while the reward distribution remains the same on all other state-action-stage

triplets. Note that the values of policies in Π \Πs,a,h remain unchanged. On the other hand, for all π ∈ Πs,a,h,

Ṽ π
1 (s1) = V π

1 (s1)− (H − h+ 1)∆

< V π
1 (s1) + ∆h(s, a)− 2ε

≤ V ⋆
1 (s1)− 2ε

≤ max
π/∈Πs,a,h

V π
1 (s1)− ε = max

π/∈Πs,a,h

Ṽ π
1 (s1)− ε,

where the first equality is because we decreased the mean reward by ∆ at the pairs (sπl , a
π
l)l∈[|h,H|] and the last

inequality is due to the fact that since |Zε
h| > 1, there exists at least one ε-optimal policy which does not visit (s, a) at

43

TIRINZONI, AL-MARJANI, AND KAUFMANN

step h (i.e., which belongs to Π \Πs,a,h). From the inequality above we deduce that PM̃(π̂ ∈ Πs,a,h) ≤ δ. Applying
Lemma 1 from Kaufmann et al. (2016) toM and M̃ gives:∑

(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2

∆2
kl(PM(π̂ ∈ Πs,a,h),PM̃(π̂ ∈ Πs,a,h))

≥ 2

∆2
kl(1/2, δ).

By taking the limit ∆→ 2ε−∆h(s,a)
H−h+1 we get:∑
(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2(H − h+ 1)2(
2ε−∆h(s, a)

)2 kl(1/2, δ)
≥ (H − h+ 1)2

4ε2
log(1/4δ),

where we used the fact that kl(x, y) ≥ x log(1/y) − log(2) and ∆h(s, a) ≤ ε. Cases 2 and 3 combined prove the
second statement of the lemma.

Case 4: (s, a) ∈ Zε
h, |Zε

h| = 1. Consider the alternative MDP M̃ := (S,A, {fh, ν̃h}h∈[H], s1, H) which is
equivalent toM except that the reward is modified only at the pairs (s′, a′, l) ∈ E(s, a, h) as ν̃l(s′, a′) = N (rl(s

′, a′)−
∆, 1) with ∆ >

ε+∆
h
min

H−h+1 , while the reward distribution remains the same on all other state-action-stage triplets. Note
that the values of policies in Π \Πs,a,h remain unchanged. On the other hand, for all π ∈ Πs,a,h,

Ṽ π
1 (s1) = V π

1 (s1)− (H − h+ 1)∆

< V π
1 (s1)−∆

h

min − ε

≤ V ⋆
1 (s1)−∆

h

min − ε
= max

π/∈Πs,a,h

V π
1 (s1)− ε = max

π/∈Πs,a,h

Ṽ π
1 (s1)− ε,

where in the last equality we used the fact that since (s, a) is the only ε-optimal pair, {(s′, a′) : ∆h(s
′, a′) = 0} =

{(s, a)} and therefore ∆
h

min = min(s′,a′) ̸=(s,a) ∆h(s
′, a′) = V ⋆

1 (s1) − maxπ/∈Πs,a,h
V π
1 (s1). From the inequality

above we deduce that PM̃(π̂ ∈ Πs,a,h) ≤ δ. On the other hand, since (s, a) is the only ε-optimal pair inM,PM(π̂ ∈
Πs,a,h) ≥ 1− δ. Using Lemma 1 from Kaufmann et al. (2016) toM and M̃ gives:∑

(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2

∆2
kl(PM(π̂ ∈ Πs,a,h),PM̃(π̂ ∈ Πs,a,h))

≥ 2

∆2
kl(1− δ, δ) ≥ 2

∆2
log(1/2.4δ).

By taking the limit ∆→ ε+∆
h
min

H−h+1 we get:∑
(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] ≥
2(H − h+ 1)2

(ε+∆
h

min)
2

log(1/2.4δ).

This proves the last statement of the lemma.

We are now ready to prove Theorem 45.

Proof [Proof of Theorem 45] Fix a stage h ∈ [H]. Since in a tree-based MDP the policies that visit different triplets
at stage h do not cross paths later, then for any (s, a, h) ̸= (s′, a′, h) : E(s, a, h) ∩ E(s′, a′, h) = ∅. Besides

44

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

⋃
s∈Sh,a∈Ah(s)

E(s, a, h) ⊂ {(s′, a′, l) : l ∈ [|h,H|], s′ ∈ Sl, a′ ∈ Al(s)}. Therefore one can write:

E[τ] =
1

H − h+ 1

H∑
l=h

∑
s′∈Sl,a′∈Al(s)

E[nτl (s′, a′)]

≥ 1

H − h+ 1

∑
s∈Sh,a∈Ah(s)

∑
(s′,a′,l)∈E(s,a,h)

E[nτl (s′, a′)] (9)

Combining inequality (9) with the bounds from Lemma 46 finishes the proof.

E.2 Sample complexity of maximum-diameter sampling

Theorem 47 With probability at least 1−δ, the sample complexity of Algorithm 1 combined with the maximum-diameter
sampling rule (Line 17 of Algorithm 1) is bounded as

τ ≤ max
h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

(
72H2

max
(
∆h(s, a),∆min, ε

)2 (log(eNδ
)
+ L

)
+ 1

)
,

where L := 2 log(2) + 2 log

(
72NH2

max(∆min,ε)
2

)
+ log log

(
eN
δ

)
.

Proof Suppose that the good event G holds and let t be any episode at which the algorithm did not stop. For any active
(s, a,H), by Lemma 9 and the same decomposition used in the proof of Theorem 41,

max

(
∆H(s, a)

4
,
∆min

4
,
ε

2

)
≤

H∑
h=1

√
β(t, δ)

nt−1
h (sπ

t

h , a
πt

h) ∨ 1
≤ H

√
β(t, δ)

nt−1
H (sπ

t

H , a
πt

H) ∨ 1
,

where the last inequality holds since in a tree-based MDP there exists a unique path to reach each leaf, which implies
that ∀h ∈ [H] : nt−1

h (sπ
t

h , a
πt

h) ≥ nt−1
H (sπ

t

H , a
πt

H). Summing this inequality over all episodes t from 1 to T where (s, a)
is visited at the final stage H ,

max

(
∆H(s, a)

4
,
∆min

4
,
ε

2

)
nTH(s, a) ≤ H

T∑
t=1

1
(
sπ

t

H = s, aπ
t

H = a
)√ β(T, δ)

nt−1
H (s, a) ∨ 1

= H
√
β(T, δ)

nT
H(s,a)∑
i=2

√
1

i− 1
+ 1

 ≤ H√β(T, δ)(2√nTH(s, a) + 1

)
.

If nTH(s, a) ≥ 1, we use 2
√
nTH(s, a) + 1 ≤ 3

√
nTH(s, a) and solve the inequality above to obtain

nTH(s, a) ≤ 144H2β(T, δ)

max
(
∆h(s, a),∆min, ε

)2 .
The same bound trivially holds if nTH(s, a) < 1. Evaluating this bound at T = τ − 1,

τ =
∑
s∈SH

∑
a∈AH(s)

nτH(s, a) ≤
∑
s∈SH

∑
a∈AH(s)

(
144H2β(τ − 1, δ)

max
(
∆h(s, a),∆min, ε

)2 + 1

)

=
∑
s∈SH

∑
a∈AH(s)

(
72H2

max
(
∆H(s, a),∆min, ε

)2 (log(eNδ
)
+ log(τ)

)
+ 1

)
.

45

TIRINZONI, AL-MARJANI, AND KAUFMANN

LetB =
∑

s∈SH

∑
a∈AH(s)

72H2

max(∆H(s,a),∆min,ε)
2 andC =

∑
s∈SH

∑
a∈AH(s)

(
72H2

max(∆H(s,a),∆min,ε)
2 log

(
eN
δ

)
+ 1

)
.

The proof is concluded by applying Lemma 43 with these values, while noting that

B2 + 2C ≤ 4

(
72NH2

max
(
∆min, ε

)2
)2

log

(
eN

δ

)
.

E.3 Sample complexity of maximum-coverage sampling

Theorem 48 With probability at least 1− δ, the sample complexity of Algorithm 1 combined with either the maximum-
coverage or the static maximum-coverage (Algorithm 3) sampling rule is bounded by

τ ≤ 2 max
h∈[H]

∑
s∈Sh

∑
a∈Ah(s)

(
8H2

max
(
∆h(s, a),∆min, ε

)2 (log(eN2

δ

)
+ Lh(s, a)

)
+ 2

)
,

where Lh(s, a) := log(2) + 4 log

(
4H

max(∆h(s,a),∆min,ε)

)
+ log log

(
eN2

δ

)
.

Before proving Theorem 48, we need to state an important result.

Lemma 49 In a tree-based MDP, when using either the maximum-coverage or the static maximum-coverage sampling
rule, the duration of any non-empty period k ∈ N can be bounded as

dk ≤ 2
∑
s∈SH

∑
a∈AH(s)

1
(
a ∈ At̄k−1

h (s)
)
.

Proof For static maximum-coverage sampling, Theorem 29 followed by Theorem 15 yields that

dk ≤ 2φ⋆(ck) = 2
∑

(s,a,h)∈E(Ck)

1
(
a ∈ At̄k−1

h (s), nt̄k−1
h (s, a) < k

)
≤ 2

∑
(s,a,h)∈E(Ck)

1
(
a ∈ At̄k−1

h (s)
)
,

where Ck is a maximum cut for the minimum flow problem with lower bounds ck. Now note that any (s, a, h) ∈ E(Ck)
such that a ∈ At̄k−1

h (s) reaches a distinct leaf (s′, a′, H) such that a′ ∈ At̄k−1
H (s′). To see why, note that, if some

active (s, a, h) ∈ E(Ck) reaches no active triplet at the last stage H , then we can recursively prove that the sub-tree with
root (s, a, h) has been eliminated, which implies that (s, a, h) has been eliminated as well. To see why these triplets are
distinct, suppose that there exist two triplets (s, a, h), (s′, a′, h′) ∈ E(Ck) that reach the same leaf (s′′, a′′, H). Since,
by definition of forward arcs of a cut, (s, a, h) and (s′, a′, h′) cannot be on the same path, this implies that there exist
two different paths to reach the same leaf from the root, which violates the tree-based assumption. This allows us to
conclude that

∑
(s,a,h)∈E(Ck) 1

(
a ∈ At̄k−1

h (s)
)
≤
∑

s∈SH

∑
a∈AH(s) 1

(
a ∈ At̄k−1

h (s)
)

, and the proof follows.

The reasoning for maximum-coverage sampling is similar. First note that, at each step of period k, the sampling rule
must play a policy visiting a distinct leaf than those previously visited in the same period. In fact, since there is a unique
path to reach each leaf, if the same leaf is visited twice, then at the second visit the value of the objective function
would be zero, which cannot happen unless the period has already terminated. Moreover, once all leaves have been
visited, by the reasoning above, we are sure that the algorithm has covered a maximum cut for the lower bound function
ck. That is, all under-sampled triplets have been visited and the period terminates. This proves the stated bound.

46

NEAR INSTANCE-OPTIMAL PAC REINFORCEMENT LEARNING FOR DETERMINISTIC MDPS

Proof [Proof of Theorem 48] Using Lemma 49 and following the same steps as in the proof of Theorem 5,

τ =

kτ∑
k=1

τ∑
t=1

1 (kt = k) =

kτ∑
k=1

dk ≤ 2

kτ∑
k=1

∑
s∈SH

∑
a∈AH(s)

1
(
a ∈ At̄k−1

h (s)
)

= 2
∑
s∈SH

∑
a∈AH(s)

kτ∑
k=1

1 (k − 1 ≤ κs,a,h)

≤ 2
∑
s∈SH

∑
a∈AH(s)

(κs,a,h + 1) ≤ 2
∑
s∈SH

∑
a∈AH(s)

(κs,a,h + 1),

where in the last inequality we applied Lemma 37.

Appendix F. Experiment Details

For the implementation, we used rl-berry Domingues et al. (2021a), an open-source python library for implementing
and performing parallel Monte-Carlo simulations of RL algorithms. The code and instructions can be found in the
supplementary material.

Computational aspects We run the experiment on an internal cluster made of 32 CPUs. To speed-up computations,
we only perform eliminations every SA episodes for maximum-diameter and at the end of each phase for maximum-
coverage. The total run time is 48 hours.

On the choice of baselines The only algorithms for PAC RL in Episodic MDPs that we are aware of are BPI-UCRL
Kaufmann et al. (2021), BPI-UCBVI Ménard et al. (2021) and MOCA Wagenmaker et al. (2022). However, we note
that BPI-UCRL and BPI-UCBVI only differ in the type of bonus that they use to build confidence regions on the
transition probabilities. This means that in our setting of deterministic MDPs, both algorithms are actually equivalent.
On the other hand, MOCA has a rather involved design with several unspecified numerical constants and we could not
find any open-source implementation of it by the authors. This is why only BPI-UCRL appears in our comparisons.

BPI-UCRL Whereas EPRL uses confidence intervals on the value of every policy, BPI-UCRL Kaufmann et al. (2021)
is based on confidence intervals for the optimal value function. Such confidence intervals were originally proposed
for stochastic MDPs with known reward function, which require a confidence region for the unknown transition
probabilities. In deterministic MDPs, one can easily build confidence intervals on the optimal values by relying on
confidence intervals for the unknown mean rewards:

Q
t,⋆

h (s, a) := r̂th(s, a) + bth(s, a) + V
t,⋆

h+1(fh(s, a)), V
t,⋆

h (s) := max
b
Q

t,⋆

h (s, b),

Qt,⋆

h
(s, a) := r̂th(s, a)− bth(s, a) + V t,⋆

h+1(fh(s, a)), V t,⋆
h (s) := max

b′
Qt,⋆

h
(s, b′) .

using the same exploration bonus as in (5). In BPI-UCRL, the (optimistic) samplig rule is

πt
h(s) = argmax

a∈Ah(s)

Q
t−1,⋆

h (s, a).

The stopping rule is

τBPI-UCRL = inf
{
t ∈ N : V

t,⋆

1 (s1)− V t,⋆
1 (s1) ≤ ε

}
,

while the recommendation rule is the greedy policy with respect to Qt,⋆

h
(s, a).

47

TIRINZONI, AL-MARJANI, AND KAUFMANN

Value-based eliminations In our implementation, we used an additional elimination rule for both EPRL and BPI-
UCRL, which we call value-based elimination: a is eliminated from At

h(s) if

Q
t−1,⋆

h (s, a) < V t−1,⋆
h (s).

It is easy to justify that on our good event, this sampling rule does not eliminate any optimal action, hence the correctness
is preserved. Moreover, adding these eliminations does not alter the sample complexity results obtained in Theorems 5
and 41 as they can only improve the sample complexity of the resulting algorithms.

Bonuses in practice The threshold β(t, δ) := 2σ2 log
(
π2t2N/3δ

)
recommended by theory can be overly conserva-

tive. In practice, we found that a smaller threshold of β(t, δ) := 2σ2 log ((t+ 1)/δ) (i.e., ignoring the union bound) is
still empirically correct.

48

	Introduction
	Preliminaries
	The Complexity of PAC RL in Deterministic MDPs
	EPRL and Max-Coverage Sampling
	Theoretical guarantees
	Experiments
	Discussion
	 Appendix
	Additional Related Work
	Minimum Flows and Maximum Cuts
	The minimum flow problem
	Layered DAGs with unlimited capacity
	Minimum flows and minimum policy covers

	Lower Bounds
	Instance-dependent lower bound
	Worst-case lower bound

	Sample Complexity Bounds (Proofs of Section 4)
	Good event
	Properties of Algorithm 1
	Correctness (Proof of Theorem 4)
	Diameter vs Gaps (Proof of Lemma 9)

	Maximum-coverage algorithm (Proof of Theorem 5)
	Static maximum-coverage sampling
	Main Theorem
	Decomposition into periods
	Elimination periods
	Sample complexity

	Maximum-diameter sampling
	Auxiliary Results

	Refined Results for Tree-based MDPs
	Instance-dependent lower bound
	Sample complexity of maximum-diameter sampling
	Sample complexity of maximum-coverage sampling

	Experiment Details

