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Abstract
Optimistic algorithms have been extensively studied for regret minimization in episodic tabular MDPs, both from a
minimax and an instance-dependent view. However, for the PAC RL problem, where the goal is to identify a near-optimal
policy with high probability, little is known about their instance-dependent sample complexity. A negative result of
Wagenmaker et al. (2022) suggests that optimistic sampling rules cannot be used to attain the (still elusive) optimal
instance-dependent sample complexity. On the positive side, we provide the first instance-dependent bound for an
optimistic algorithm for PAC RL, BPI-UCRL, for which only minimax guarantees were available (Kaufmann et al., 2021).
While our bound features some minimal visitation probabilities, it also features a refined notion of sub-optimality gap
compared to the value gaps that appear in prior work. Moreover, in MDPs with deterministic transitions, we show that
BPI-UCRL is actually near-optimal. On the technical side, our analysis is very simple thanks to a new “target trick” of
independent interest. We complement these findings with a novel hardness result explaining why the instance-dependent
complexity of PAC RL cannot be easily related to that of regret minimization, unlike in the minimax regime.

Keywords: Optimism, exploration, PAC reinforcement learning

1. Introduction

We are interested in the probably approximately correct (PAC) identification of the best policy in an episodic
Markov Decision Process (MDP) with finite state space S, action space A, and horizon H . We denote by M :=
(S,A, (ph, νh)h∈[H], s1, H) such an MDP. Each episode starts in the initial state s1 ∈ S and lasts H steps (called
stages). In each stage h ∈ [H], the agent is in some state sh ∈ S , it takes an action ah ∈ A, it receives a random reward
drawn from a distributions νh(s, a) with expectation rh(s, a), and it transitions to a next state sh+1 ∈ S with probability
ph(·|sh, ah). A (deterministic) policy π = (πh)h∈[H] is a sequence of mappings πh : S → A. The action-value
function Qπh(s, a) quantifies the expected cumulative reward when starting in state s at stage h, taking action a and
following policy π until the end of the episode. It satisfies the Bellman equations: for all h ∈ [H], s ∈ S, and a ∈ A,

Qπh(s, a) = rh(s, a) +
∑
s′∈S

ph(s′|s, a)V πh+1(s′),

where V πh (s) := Qπh(s, πh(s)) is the corresponding value function (with V πH+1 = 0). A policy π? is optimal if
V π

?

1 (s1) = maxπ V
π
1 (s1). From the theory of MDPs (Puterman, 1994), a sufficient condition is that π?h(s) ∈

arg maxa∈AQ
?
h(s, a), where the optimal Q-function satisfies Q?h(s, a) = rh(s, a) +

∑
s′∈S ph(s′|s, a)V ?h+1(s′), with

V ?h (s) = maxa∈AQ
?
h(s, a) and V ?H+1(s) = 0. This condition implies that π? maximizes the expected return at any

state and stage simultaneously, while the (weaker) optimality condition only requires so at the initial state s1.

In online episodic reinforcement learning (RL), the agent interacts with the MDPM by choosing, in each episode
t ∈ N, a policy πt and collecting a trajectory in the MDP under this policy: (sth, a

t
h, r

t
h)h∈[H] where st1 = s1 and, for

all h ∈ [H], ath = πth(sth), rth ∼ νh(sth, a
t
h), and sth+1 ∼ ph(·|sth, ath). The choice of πt based on previously observed
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trajectories is called the sampling rule. Several objectives have been studied in the literature. An agent seeking to
maximize the total reward received in T episodes equivalently aims at minimizing the (pseudo) regret

RM(T ) :=

T∑
t=1

(
V ?1 (s1)− V π

t

1 (s1)
)
.

In PAC identification (or PAC RL), the agent’s sampling rule is coupled with a (possibly adaptive) stopping rule τ after
which the agent stops collecting trajectories and returns a guess for the optimal policy π̂. Given two parameters ε, δ > 0
with δ ∈ (0, 1), the algorithm ((πt)t∈N, τ, π̂) is (ε, δ)-PAC if it returns an ε-optimal policy with high probability, i.e.,

PM
(
V π̂1 (s1) ≥ V ?1 (s1)− ε

)
≥ 1− δ.

The goal is to have (ε, δ)-PAC algorithms using a small number of exploration episodes τ (a.k.a. sample complexity).

The PAC RL framework was originally introduced by Fiechter (1994) and there exists algorithms attaining a sample
complexity O((SAH3/ε2) log(1/δ)) (Dann and Brunskill, 2015; Ménard et al., 2021), which is optimal in a minimax
sense in time-inhomogeneous MDPs (Domingues et al., 2021). These algorithms use an optimistic sampling rule
coupled with a well-chosen stopping rule. Optimistic sampling rules, in which the policy πt is the greedy policy with
respect to an upper confidence bound on the optimal Q function, have been mostly proposed for regret minimization
(see Neu and Pike-Burke (2020) for a survey). In particular, the UCBVI algorithm of Azar et al. (2017a) (with Bernstein
bonuses) attains minimax optimal regret in episodic MDPs. Recent works have provided instance-dependent upper
bounds on the regret for optimistic algorithms (Simchowitz and Jamieson, 2019; Xu et al., 2021; Dann et al., 2021).
An instance-dependent bound features some complexity term which depends on the MDP instance, typically through
some notion of sub-optimality gap. To the best of our knowledge, for PAC RL in episodic MDPs the only algorithms
with instance-dependent upper bound on their sample complexity are MOCA (Wagenmaker et al., 2022) and EPRL
(Tirinzoni et al., 2022), the latter being analyzed for MDPs with deterministic transitions. Neither of these algorithms
are based on an optimistic sampling rule.

Notably, Wagenmaker et al. (2022) proved that no-regret sampling rules (including optimistic ones) cannot achieve the
instance-optimal rate for PAC identification. The intuition is quite simple: an optimal algorithm for PAC RL must visit
every state-action pair at least a certain amount of times, and this requires playing policies that cover the whole MDP
in the minimum amount of episodes. On the other hand, a regret-minimizer focuses on playing high-reward policies
which, depending on the MDP instance, might be arbitrarily bad at visiting hard-to-reach states.

Despite not being instance-optimal, optimistic sampling rules are simple (e.g., as opposed to the complex design of
MOCA), computationally efficient, and do not require any sophisticated elimination rule (e.g., as opposed to the one
proposed by Tirinzoni et al. (2022) to obtain the optimal gap dependence in deterministic MDPs). However, it remains
an open question what instance-dependent complexity they can achieve.

Contributions Our main contribution is a new instance-dependent analysis for (a variant of) BPI-UCRL, a PAC RL
algorithm based on an optimistic sampling rule proposed by Kaufmann et al. (2021) with only a worst-case sample
complexity bound. In particular, in Theorem 2 we show that the sample complexity of BPI-UCRL can be bounded by

τ .
∑
h∈[H]

∑
s∈S

∑
a∈A

H4 log(1/δ)

pmin
h (s, a) max{∆̃h(s, a), ε}2

,

where pmin
h (s, a) is the minimum positive probability to reach (s, a) at stage h across all deterministic policies, while

∆̃h(s, a) := minπ:pπh(s,a)>0 max`∈[H] maxs′:pπ` (s′)>0(V ?` (s′) − V π` (s′)) is a new notion of sub-optimality gap that
we call the conditional return gap.1 Interestingly, we show that the gaps ∆̃h(s, a) are larger than both the value gaps
of Wagenmaker et al. (2022) and of the (deterministic) return gaps of Tirinzoni et al. (2022). Notably, we prove this
result with a remarkably simple analysis based on a new “target trick”: instead of bounding the number of times each
state-action-stage triplet (s, a, h) is visited (as it is common in the bandit literature), we control the number of times the
played policy visits (s, a, h) with positive probability with (s, a, h) being the least visited triplet so far, an event that we
refer to as (s, a, h) being “targeted”.

1. We denote by pπh(s, a) (resp. pπh(s)) the probability that π visits (s, a) (resp. s) at stage h.
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Our second contribution is to prove that, unlike what happens in the minimax setting, there is no clear relationship
between regret and sample complexity in the instance-dependent framework. Indeed, the “regret-to-PAC conversion”
often proposed to turn a regret minimizer into an (ε, δ)-PAC algorithm for PAC RL (e.g., Jin et al., 2018; Ménard et al.,
2021; Wagenmaker et al., 2022) cannot directly exploit an instance-dependent upper bound on the regret. In Theorem 4,
we construct an MDP for which the sample complexity suggested by a regret-to-PAC conversion cannot be attained by
any (ε, δ)-correct algorithm for PAC RL. In particular, this implies that one cannot take an instance-dependent regret
bound for an optimistic algorithm (e.g., Simchowitz and Jamieson, 2019) and turn it into an instance-dependent sample
complexity bound of the form above: a specific analysis for PAC RL, like the one proposed in this paper, is actually
required.

2. The BPI-UCRL Algorithm

Let nth(s, a) :=
∑t
j=1 1

(
sjh = s, ajh = a

)
be the number of times the state-action pair (s, a) has been visited at stage

h up to episode t. We introduce the maximum-likelihood estimators

r̂th(s, a) :=
1

nth(s, a)

t∑
j=1

1
(
sjh = s, ajh = a

)
rjh and p̂th(s′|s, a) :=

1

nth(s, a)

t∑
j=1

1
(
sjh = s, ajh = a, sjh+1 = s′

)
for rh(s, a) and ph(s′|s, a), respectively. As common, and without loss of generality, we shall assume that reward
distributions are supported on [0, 1]. We define inductively the following upper and lower bounds on the optimal value
function. Letting Q

t

H+1 = Qt
H+1

= 0, for all h ∈ [H] we have

Q
t

h(s, a) = min

(
H − h+ 1, r̂th(s, a) + bth(s, a) +

∑
s′∈S

p̂th(s′|s, a)V
t

h+1(s′)

)
, V

t

h(s) = max
a∈A

Q
t

h(s, a),

Qt
h
(s, a) = max

(
0, r̂th(s, a)− bth(s, a) +

∑
s′∈S

p̂th(s′|s, a)V th+1(s′)

)
, V th(s) = max

a∈A
Qt
h
(s, a),

where bth(s, a) is a confidence bonus defined as

bth(s, a) := (H − h+ 1)

(√
β(nth(s, a), δ)

nth(s, a)
∧ 1

)
for a suitable threshold β that we shall specify in the analysis. The BPI-UCRL algorithm (Kaufmann et al., 2021) can
be described as follows:2

• the sampling rule prescribes πt+1
h (s) = arg maxa∈AQ

t

h(s, a) for each t ∈ N;

• the stopping rule is τ = inf
{
t ∈ N : maxaQ

t

1(s1, a)−maxaQ
t

1
(s1, a) ≤ ε

}
;

• the recommendation rule is π̂τh(s) = arg maxa∈AQ
τ

h
(s, a).

More precisely, in episode t, BPI-UCRL uses the policy πt to generate a new trajectory (sth, a
t
h, r

t
h)h∈[H]. This

trajectory is used to update the estimates of the dynamics to p̂th(s′|s, a) and r̂th(s, a) and the bounds on the optimal
Q-values to Qt

h
and Q

t

h. At the end of the t-th episode, BPI-UCRL checks for stopping and proceeds to the next episode

if and only if maxaQ
t

1(s1, a) −maxaQ
t

1
(s1, a) > ε. Upon stopping, it outputs as the guess for the optimal policy

the greedy policy with respect to the lower confidence bounds on the optimal value, Qτ
h
(s, a), where τ denotes the

(random) number of episodes used before stopping.

2. The original BPI-UCRL algorithm uses slightly different Q-function bounds which do not feature r̂th(s, a) and p̂th(s
′|s, a)

explicitly but rather scale with KL confidence regions around them (see Appendix D of Kaufmann et al. (2021)). Here we write
the explicit version obtained by appyling Pinsker’s inequality, though our analysis also holds for the original confidence intervals.
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Note that the sampling rule of BPI-UCRL is essentially the UCBVI algorithm with Hoeffding’s bonuses proposed by
Azar et al. (2017b) for regret minimization. Such bonuses can be improved using Bernstein’s inequality, yielding either
UCBVI with Bernstein’s bonuses (Azar et al., 2017b) or EULER (Zanette and Brunskill, 2019). While this would likely
reduce the dependence on the horizon from H4 to H3 in our final sample complexity bound, we focus on Hoeffding’s
bonuses for simplicity since the extension to Bernstein’s bonuses is somewhat straightforward given existing analyses.

3. An Instance-dependent Analysis of BPI-UCRL

Before stating and proving our main result, we introduce our novel notion of sub-optimality gap. Formally, the
conditional return gap of any state-action pair (s, a) at stage h ∈ [H] is

∆̃h(s, a) := min
π∈Π:pπh(s,a)>0

max
`∈[H]

max
s′∈S:pπ` (s′)>0

(
V ?` (s′)− V π` (s′)

)
, (1)

where we recall that pπh(s) := Pπ(sh = s) and pπh(s, a) = pπh(s)1 (πh(s) = a). The intuition behind this definition
is quite simple: in order to figure out whether (s, a) is sub-optimal at stage h, the agent must learn that all policies
visiting (s, a) at stage h with positive probability are indeed sub-optimal. The complexity for detecting whether any
of such policies (say, π) is sub-optimal is proportional to the maximum gap between the optimal value function and
the one of π across all possible states visited by π itself. This is a gap between expected returns conditioned on
different starting states and stages (hence the name conditional return gap). It turns out that these gaps are larger
than both the value gaps ∆h(s, a) := V ?h (s)−Q?h(s, a) (Wagenmaker et al., 2022) and the variant of the return gaps
∆h(s, a) = V ?1 (s1)−maxπ∈Π:pπh(s,a)>0 V

π
1 (s1) introduced by Tirinzoni et al. (2022).3

Proposition 1 For all s ∈ S, a ∈ A, h ∈ [H], ∆̃h(s, a) ≥ ∆h(s, a) and ∆̃h(s, a) ≥ ∆h(s, a). Moreover, if the MDP
has deterministic transitions, ∆̃h(s, a) = ∆h(s, a).

Proof For the first inequality, we have

∆̃h(s, a) ≥ V ?h (s)− max
π:pπh(s,a)>0

V πh (s) = V ?h (s)− max
π:pπh(s,a)>0

Qπh(s, a) = V ?h (s)−Q?h(s, a) = ∆h(s, a).

The second one is trivial by lower bounding the maximum with s′ = s1 and ` = 1. To see the equality, note that
V ?h (s)− V πh (s) = Eπ

[∑H
`=h ∆`(s`, π`(s`)) | sh = s

]
. In the deterministic case, this implies that V ?h (s)− V πh (s) is

a sum of H − h+ 1 fixed (non-negative) value gaps. Therefore, the maximum in (1) must be attained at the initial stage
and state, which implies the statement.

The first return gaps were actually introduced in the regret-minimization literature by Dann et al. (2021) as

gaph(s, a) = ∆h(s, a) ∨ 1

H
min

π∈Π:P(Bπh(s,a))>0
Eπ
[

h∑
`=1

∆`(s`, a`) | Bh(s, a)

]
,

where Bπh(s, a) = {sh = s, ah = a,∃` ≤ h : ∆`(s`, a`) > 0} is the event that policy π visits (s, a) at stage h after
at least one sub-optimal action was played. We found no clear relationship between gaph(s, a) and ∆̃h(s, a) besides
the fact that the former is also comparing returns (from stage 1), as for any policy playing optimally from stage h+ 1,
V ?(s1)− V π(s1) = Eπ

[∑h
`=1 ∆`(s`, a`)

]
. We now state and prove our main result.

3. The return gaps were introduced by Tirinzoni et al. (2022) only for deterministic MDPs. Here we replace their maximum over
policies visiting (s, a, h) with probability 1 by the one over policies visiting it with positive probability.
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Theorem 2 Let β(t, δ) := (
√
βr(t, δ) +

√
2βp(t, δ))2, where βr(t, δ) := 1

2 (log(3SAH/δ) + log(e(1 + t))) and
βp(t, δ) := log(3SAH/δ) + (S − 1) log(e(1 + t/(S − 1))). With probability at least 1 − δ, BPI-UCRL outputs a
policy π̂τ satisfying V π̂

τ

1 (s1) ≥ V ?1 (s1)− ε using a number of episodes upper bounded as

τ ≤ H4
H∑
h=1

∑
s∈S

∑
a∈A

720 log 3SAH
δ + 1729S log

(
1152S

2AH5

pminε2
log 3SAH

δ

)
pmin
h (s, a) max{∆̃h(s, a), ε}2

,

where pmin
h (s, a) := minπ∈Π:pπh(s,a)>0 p

π
h(s, a) and pmin

h (s, a) = +∞ when (s, a, h) is unreachable by any policy.

Theorem 2 shows that the sample complexity of BPI-UCRL is upper bounded by a function that scales inversely with
the conditional return gaps squared multipled by the minimum visitation probabilities of each triplet (s, a, h). We
recall that BPI-UCRL also enjoys the worst-case sample complexity bound τ ≤ Õ(SAH4 log(1/δ)/ε2) proved by
Kaufmann et al. (2021), which is minimax optimal up to a factor H . Thus, one can always take the minimum between
this worst-case bound and the instance-dependent one of Theorem 2. Before proving our main theorem, we briefly
discuss how it relates to existing results.

Comparison to Wagenmaker et al. (2022) The sample complexity upper bound achieved by the MOCA algorithm
of Wagenmaker et al. (2022) is roughly

τ ≤ Õ

H2 log(1/δ)
∑
h∈[H]

∑
s∈S

∑
a∈A

min

(
1

pmax
h (s, a)∆h(s, a)2

,
pmax
h (s, a)

ε2

)
+
H4|OPT(ε)| log(1/δ)

ε2

 ,

where pmax
h (s, a) := maxπ∈Π:pπh(s,a)>0 p

π
h(s, a) and OPT(ε) is roughly the set of all ε-optimal triplets. In contrast

to the bound we obtained for BPI-UCRL, this one scales with the maximum probabilities for reaching the different
state-action pairs. This is obtained thanks to the clever exploration strategy of MOCA which focuses on efficiently
covering the whole MDP. However, the bound of Wagenmaker et al. (2022) scales with value gaps which, from
Proposition 1, are provably smaller than our conditional return gaps. Overall, the two bounds result non-comparable as
there exist MDP instances where the one of BPI-UCRL is smaller, and viceversa for the one of MOCA. While we are
able to show this improved gap dependence thanks to optimism alone, we are not sure how to achieve it with a suitable
elimination rule that could be plugged into the MOCA exploration strategy to obtain the best of these two bounds.

The dependence on pmin
h (s, a) One might be wondering whether a better dependence than pmin

h (s, a) can be achieved
with an optimistic rule like BPI-UCRL. We conjecture that this is not possible, at least in a worst-case sense. In fact,
Wagenmaker et al. (2022) already proved that there exists an MDP instance in which any no-regret sampling rule (thus
including optimistic ones) suffers a depence on the minimum visitation probabilities, while a “smart” PAC RL algorithm
does not. The intuition is that a no-regret algorithm focuses on playing high-reward policies which, depending on the
MDP instance, might be arbitrarily bad at exploring the state space. In our context, this means that, if the policy visiting
(s, a, h) with largest reward is also the one that visits it with lowest probability, an optimistic sampling rule is likely to
play such policy quite frequently and thus its sample complexity will scale inversely by pmin

h (s, a) as we show.

Deterministic MDPs (comparison to Tirinzoni et al. (2022)) If the MDP has deterministic transitions, we have
∆̃h(s, a) = ∆h(s, a) (see Proposition 1) and pmin

h (s, a) = 1 if state s is reachable by some policy at stage h, while
pmin
h (s, a) = +∞ in the opposite case. Theorem 2 then implies that

τ ≤ Õ

H4
∑
h∈[H]

∑
s∈Sh

∑
a∈A

log(1/δ) + S log log(1/δ)

max{∆h(s, a), ε}2

 ,

where Sh is the subset of states reachable at stage h. Up to the extra multiplicative H2 and S log log(1/δ) terms, this
matches the bound obtained by Tirinzoni et al. (2022) for the EPRL algorithm with a maximum-diameter sampling
rule that is informed a-priori about the MDP being deterministic. These extra terms arise because BPI-UCRL needs to
concentrate the transition probabilities to work for general stochastic MDPs. If we knew that the MDP is deterministic,

we could modify the bonuses as bth(s, a) :=
√

β(nth(s,a),δ)

nth(s,a)
∧ 1 and the thresholds as β(t, δ) := βr(t, δ). This would

5
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yield sample complexity τ ≤ Õ
(
H2
∑
h∈[H]

∑
s∈Sh

∑
a∈A log(1/δ)/max{∆h(s, a), ε}2

)
which matches exactly

the one of EPRL with maximum-diameter sampling and which is at most a factor of H3 sub-optimal w.r.t. the
instance-dependent lower bound of Tirinzoni et al. (2022). This is quite remarkable since EPRL obtains the “optimal”
dependence on the deterministic return gaps ∆h(s, a) using a clever elimination rule, while here we show optimism
alone is enough. We note, however, that reducing the sub-optimal dependence on H3 still requires smarter exploration
strategies than optimism, like the maximum-coverage one proposed by Tirinzoni et al. (2022).

3.1 Proof of Theorem 2

All lemmas and proofs not explicitly reported here can be found in Appendix A.

We carry out the proof under the “good event” E := Er ∩ Ep ∩ Ec, where

Er :=

{
∀t ∈ N>0, s ∈ S, a ∈ A, h ∈ [H] :

∣∣∣rh(s, a)− r̂th(s, a)
∣∣∣ ≤√βr(nth(s, a), δ)

nth(s, a) ∨ 1

}
,

Ep :=

{
∀t ∈ N>0, s ∈ S, a ∈ A, h ∈ [H] : KL

(
p̂th(·|s, a), ph(·|s, a)

)
≤ βp(nth(s, a), δ)

nth(s, a) ∨ 1

}
,

Ec :=

{
∀t ∈ N>0, s ∈ S, a ∈ A, h ∈ [H] : nth(s, a) ≥ 1

2
nth(s, a)− log(3SAH/δ)

}
.

Note that event Ec relates the counts nth(s, a) to the pseudo-counts nth(s, a) :=
∑t
j=1 p

πj

h (s, a). Thanks to Lemma 5,
we have P(E) ≥ 1− δ and, thus, the final result will hold with the same probability.

This good event is identical to the one used in the original (minimax) analysis of BPI-UCRL (Kaufmann et al., 2021).
On this good event, one can prove that our (slighlty different) bounds Q

t

h(s, a), Qt
h
(s, a) are respectively upper and

lower bounds on the optimal action valueQ?h(s, a), for all (s, a, h) (see Lemma 6, which justifies the choice of threshold
β). The correctness follows from this fact using the same arguments as Theorem 11 of Kaufmann et al. (2021). The
original part of our proof is the way we upper bound the sample complexity on the good event E .

Our proof is based on the following “target trick” which extends the one used by Tirinzoni et al. (2022) to MDPs with
stochastic transitions. Fix any s ∈ S , a ∈ A, and h ∈ [H]. Let us introduce the event “(s, a, h) is targeted at time t” as

Gts,a,h :=

{
pπ

t

h (s, a) > 0, (s, a, h) ∈ arg max
(s′,a′,`):pπ

t

` (s′,a′)>0

bt−1
` (s′, a′)

}
.

Intutively, (s, a, h) is targeted at time t if (1) it is visited with positive probability by πt and (2) it maximizes the
bonuses at time t− 1 (i.e., the current uncertainty) across all triplets visited by πt. Let Zτh(s, a) :=

∑τ
t=1 1

(
Gts,a,h

)
be the number of times (s, a, h) is targeted up the stopping time. Since at each time step at least one triplet is targeted,

τ ≤
H∑
h=1

∑
s∈S

∑
a∈A

Zτ−1
h (s, a) + 1. (2)

We shall now focus on bounding ZTh (s, a) for some time T > 0 at the end of which the algorithm did not stop. Thanks
to (2), this will imply a bound on the final stopping time.

We first state the following crucial result which relates confidence intervals and conditional return gaps.

Lemma 3 Under event E , for any t ∈ N>0, s ∈ S, h ∈ [H],

V ?h (s)− V π
t+1

h (s) ≤ 2

H∑
`=h

∑
s′∈S

pπ
t+1

` (s′|s, h)bt`(s
′, πt+1

` (s′)),

where pπ` (s′|s, h) := Pπ(s` = s′|sh = s).

6
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Let (s̃t, h̃t) ∈ arg max
(s′,`):pπ

t

` (s′)>0
(V ?` (s′)− V πt` (s′)). Using Lemma 3 with this couple,

max
`∈[H]

max
s′∈S:pπ

t

` (s′)>0

(
V ?` (s′)− V π

t

` (s′)
)
≤ 2

H∑
`=h̃t

∑
s′∈S

pπ
t

` (s′|s̃t, h̃t)bt−1
` (s′, πt`(s

′)).

Summing both sides for all episodes where (s, a, h) is targeted up to T and using that pπ
t

h (s, a) > 0 under Gts,a,h,

2

T∑
t=1

1
(
Gts,a,h

) H∑
`=h̃t

∑
s′∈S

pπ
t

` (s′|s̃t, h̃t)bt−1
` (s′, πt`(s

′)) ≥ ZTh (s, a)∆̃h(s, a). (3)

Note that, for each time t, since pπ
t

h̃t
(s̃t) > 0, then pπ

t

` (s′|s̃t, h̃t) > 0 implies that pπ
t

` (s′) > 0. Using that, under Gts,a,h,
(s, a, h) maximizes the bonuses at time t− 1 over all triplets visited by πt, we can upper bound the left-hand side as

T∑
t=1

1
(
Gts,a,h

) H∑
`=h̃t

∑
s′∈S

pπ
t

` (s′|s̃t, h̃t)bt−1
` (s′, πt`(s

′)) ≤ H
T∑
t=1

1
(
Gts,a,h

)
bt−1
h (s, a)

(a)

≤ 2H2
T∑
t=1

1
(
Gts,a,h

)√β(nt−1
h (s, a), δ)

nt−1
h (s, a) ∨ 1

(b)

≤ 2H2
T∑
t=1

1
(
Gts,a,h

)√ β(T, δ)

Zt−1
h (s, a)pmin

h (s, a) ∨ 1

(c)

≤ 4H2

√
β(T, δ)ZTh (s, a)

pmin
h (s, a)

.

where (a) uses Lemma 7 of Kaufmann et al. (2021) together with the definition of bt−1
h (s, a), (b) uses that nt−1

h (s, a) ≥∑t−1
j=1 1

(
Gjs,a,h

)
pπ

j

h (s, a) ≥ Zt−1
h (s, a)pmin

h (s, a), and (c) uses the pigeon-hole principle (see Lemma 8). Plugging

this into (3) and solving the resulting inequality in ZTh (s, a), we obtain

ZTh (s, a) ≤ 64H4β(T, δ)

pmin
h (s, a)∆̃h(s, a)2

.

A similar derivation using the stopping rule definition together with the fact that the algorithm did not stop at T also
allows us to prove that ZTh (s, a) ≤ 144H4β(T,δ)

pmin
h (s,a)ε2

(see Lemma 9). Plugging these two bounds into (2) with T = τ − 1,

τ ≤
H∑
h=1

∑
s∈S

∑
a∈A

144H4β(τ − 1, δ)

pmin
h (s, a) max{∆̃h(s, a), ε}2

+ 1. (4)

The proof is concluded by noting that β(τ − 1, δ) ≤ 5 log 3SAH
δ + 4S + 4S log (τ) (see Lemma 10) and by using

Lemma 11 to solve the resulting inequality in τ (see Appendix A.4). �

4. On the Regret-to-PAC Conversion

In the minimax setting, the complexity of PAC RL and that of regret minimization are very related. Indeed, Jin et al.
(2018) suggest the following regret-to-PAC conversion: one can take a regret minimizer, run it for T episodes, and
output a policy π̂ uniformly drawn from the T played. Then, by Markov’s inequality, P

(
V π̂1 (s1) < V ?1 (s1)− ε

)
≤

1
Tε

∑T
t=1 E[V ?1 (s1)− V πt1 (s1)] = 1

εE[RM(T )/T ]. Thus, choosing T such that the expected average regret is smaller
than εδ yields an ε-optimal policy with probability 1 − δ. This is why in the literature it is common to derive an
upper bound R(T ) on the expected average regret and then claim that the resulting sample complexity for PAC RL is
Tε := infT∈N

{
T : R(T ) ≤ εδ

}
. However, this claim can be misleading.

7
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Applying this regret-to-PAC conversion to the UCBVI algorithm with Bernstein bonuses (Azar et al., 2017a), we get
a sample complexity of order O(SAH3 log(1/δ)/(ε2δ2)), which is optimal in a minimax sense in all dependencies
except δ.4 However, this trick can only be perfomed when R(T ) contains quantities known by the algorithm (e.g., it
can be a worst-case bound but not an instance-dependent one). In fact, the regret minimizer is used as a sampling
rule for PAC identification coupled with a deterministic stopping rule which simply stops after Tε episodes. When
Tε is unknown, we need to use an adaptive stopping rule, in which case the claimed sample complexity Tε might
not be attainable. This is proved in the following theorem, where we show that there exist MDPs where Tε can be
exponentially (in S,A) smaller than the actual stopping time of any (ε, δ)-PAC algorithm.

Theorem 4 For any S ≥ 4, A ≥ 2 and H ≥ dlog2(S)e + 1, there exists an MDPM with S states, A actions, and
horizon H , and a regret minimization algorithm such that

Tε := inf
T∈N

{
T :

1

T

T∑
t=1

EM
[
V ?1 (s1)− V π

t

1 (s1)
]
≤ εδ

}
≤ 2

ε2δ

(
36 log(2SAH) + 16 log

17

ε2δ
+ 9ε2

)
+ 1.

Moreover, on the same instance any (ε, δ)-PAC identification algorithm must satisfy

EM[τ ] ≥ SA log(1/4δ)

16ε2
.

Our proof (see Appendix B) essentially builds an MDP instance with many optimal actions. The intuition is that, in
such MDP, it is relatively easy for a regret minimizer to start behaving near optimally (i.e., to have average regret below
εδ). However, when this occurs the regret minimizer has still not enough confidence to produce an ε-optimal policy
with probability at least 1− δ. That is, a stopping rule for identification would not trigger, hence the separation between
the two times.

The main implication is that the time Tε at which the average regret goes below εδ is not always a good proxy for the
sample complexity that a regret minimizer would take for (ε, δ)-PAC identification. In particular, one cannot simply
take an existing instance-dependent regret bound (e.g., Simchowitz and Jamieson, 2019; Dann et al., 2021; Xu et al.,
2021) and turn it into a sample complexity bound by the regret-to-PAC conversion suggested above. A specific analysis
for the PAC setting, like the one we propose in Section 3 or those of Wagenmaker et al. (2022); Tirinzoni et al. (2022),
is actually needed.

Finally, we note that this result also solves an open question left by Wagenmaker et al. (2022) in their conclusion. First,
it shows that the sample complexity stated in Equation (7.1) of Wagenmaker et al. (2022) for a regret-to-PAC conversion
from an instance-dependent regret bound cannot always be attained by a PAC RL algorithm. Second, it shows that the
extra term |OPT(ε)|/ε2 that appears in the complexity of MOCA is actually tight, at least in a worst-case sense, as our
proof essentially builds an MDP where all ε-optimal state-action pairs must be visited Ω(1/ε2) times.

5. Discussion

We derived the first instance-dependent sample complexity bound for an optimistic sampling rule (BPI-UCRL). It
features a new notion of sub-optimality gap that we call “conditional return gap” and that is tighter than existing value
gaps and (deterministic) return gaps. We proved this bound with a remarkably simple analysis based on a new “target
trick” that could be of independent interest. We complemented this result by showing that one cannot directly leverage
the standard regret-to-PAC conversion in the instance-dependent regime, thus making our novel analysis non-trivial.

In the bandit setting, it is known that optimism, when coupled with an appropriate stopping and recommendation rule, is
near instance-optimal for best-arm identification with (sub)Gaussian distributions (Jamieson et al., 2014). In this work,
we obtained a similar result for deterministic MDPs, where optimistic sampling rules are sub-optimal only by a factor
H3. This also explains the good empirical performance of BPI-UCRL observed by Tirinzoni et al. (2022) in such a
setting. However, there seems to be a large gap for general stochastic MDPs, where our sample complexity scales with
some minimal visitation probabilities that are avoided by algorithms like MOCA. This can be related to known results

4. The dependence on δ can be improved to log(1/δ)2, see Appendix F of Kaufmann et al. (2021).
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for structured bandits (Lattimore and Szepesvari, 2017), as a stochastic MDP presents a complex trade-off between
collecting rewards and gathering information (i.e., exploring the state space) for which an optimistic algorithm can be
arbitrarily sub-optimal.

Finding the right complexity (matching upper and lower bounds) for PAC RL in general stochastic MDPs remains the
main open problem. In deterministic MDPs, upper and lower bounds are nearly matching and are expressed as (complex)
functions of the (simple) deterministic return gaps (Tirinzoni et al., 2022). They were obtained by properly combining a
coverage-based exploration strategy with a suitable elimination rule. We conjecture that a similar algorithmic design
could be a good direction towards instance optimality in stochastic MDPs. This would involve the combination of
(1) a coverage-based exploration strategy like MOCA (Wagenmaker et al., 2022) that ensures scaling with the “right”
visitation probabilities, and (2) some elimination rule to avoid over-sampling that ensures scaling with the “right” notion
of gap. Unfortunately, while there exist instance-dependent lower bounds for regret minimization (Tirinzoni et al.,
2021; Dann et al., 2021), an analogous result for PAC RL is still unknown and thus it remains unclear what these “right”
notions are. In this work, we take a step forward by proposing a novel and tighter gap definition, though it remains an
open question whether our conditional return gaps can be related to an actual sample complexity lower bound.
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Appendix A. Proofs of Section 3

A.1 Additional notation

We define the following upper and lower confidence bounds over the value functions of each policy π. We initialize
V t,πH+1(s) = V

t,π

H+1(s) = 0, then we define recursively

Q
t,π

h (s, a) = min

(
H − h+ 1, r̂th(s, a) + bth(s, a) +

∑
s′∈S

p̂th(s′|s, a)V
t,π

h+1(s′)

)
, V

t,π

h (s) = Q
t,π

h (s, πh(s)),

Qt,π
h

(s, a) = max

(
0, r̂th(s, a)− bth(s, a) +

∑
s′∈S

p̂th(s′|s, a)V t,πh+1(s′)

)
, V t,πh (s) = Qt,π

h
(s, πh(s)).

A.2 Proof of Lemma 3

Using event E and the fact that πt+1 is greedy w.r.t. Q
t

h(s, a),

V ?h (s)− V π
t+1

h (s) = max
a∈A

Q?h(s, a)−Qπ
t+1

h (s, πt+1
h (s)) ≤ max

a∈A
Q
t

h(s, a)−Qπ
t+1

h (s, πt+1
h (s))

= Q
t,πt+1

h (s, πt+1
h (s))−Qπ

t+1

h (s, πt+1
h (s)).

Let a = πt+1
h (s). Expanding the last quantity using the Bellman equations,

Q
t,πt+1

h (s, a)−Qπ
t+1

h (s, a) ≤ r̂th(s, a)− rh(s, a) +
∑
s′∈S

(p̂th(s′|s, a)− ph(s′|s, a))V
t,πt+1

h+1 (s′)

+
∑
s′∈S

ph(s′|s, a)
(
V
t,πt+1

h+1 (s′)− V π
t+1

h+1 (s′)
)

+ bth(s, a)

≤

√
βr(nth(s, a), δ)

nth(s, a) ∨ 1
∧ 1 + (H − h)

√
2βp(nth(s, a), δ)

nth(s, a) ∨ 1
∧ (H − h)

+
∑
s′∈S

ph(s′|s, a)
(
V
t,πt+1

h+1 (s′)− V π
t+1

h+1 (s′)
)

+ bth(s, a)

≤ 2bth(s, a) +
∑
s′∈S

ph(s′|s, a)
(
V
t,πt+1

h+1 (s′)− V π
t+1

h+1 (s′)
)
,

where in the second inequality we used event E as in the proof of Lemma 6. The statement follows by recursively

applying this reasoning to V
t,πt+1

h+1 (s′)− V πt+1

h+1 (s′) = Q
t,πt+1

h+1 (s′, πt+1
h+1(s′))−Qπt+1

h+1 (s′, πt+1
h+1(s′)). �

A.3 Other results

Lemma 5 Using the threshold β defined in Theorem 2, P(E) ≥ 1− δ.

Proof Er and Ep hold with probability at least 1− δ/3 each by applying Proposition 1 and 2 of Jonsson et al. (2020)
together with a union bound and Pinsker’s inequality for the rewards. Ec holds with probability at least 1 − 3δ by
Lemma F.4 of Dann et al. (2017) and a union bound. Another union bound over the three events proves the statement.

Lemma 6 Using the threshold β defined in Theorem 2, under event E , for any t ∈ N>0, s ∈ S, a ∈ A, h ∈ [H],

Qt,π
h

(s, a) ≤ Qπh(s, a) ≤ Qt,πh (s, a),

Qt
h
(s, a) ≤ Q?h(s, a) ≤ Qth(s, a).
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Proof Clearly, all inequalities hold at stage H since QπH(s, a) = Q?H(s, a) = rH(s, a) and, by event Er, together with
the fact that rewards are bounded in [0, 1],

∣∣∣rH(s, a)− r̂tH(s, a)
∣∣∣ ≤√βr(nth(s, a), δ)

nth(s, a) ∨ 1
∧ 1 ≤ btH(s, a).

Now suppose the inequalities hold at stage h+ 1 ≤ H . At stage h, we have

Qπh(s, a) = rh(s, a) +
∑
s′∈S

ph(s′|s, a)V πh+1(s′)

(a)

≤ rh(s, a) +
∑
s′∈S

ph(s′|s, a)V
t,π

h+1(s′)

(b)

≤ rh(s, a) +
∑
s′∈S

p̂th(s′|s, a)V
t,π

h+1(s′) + (H − h)‖ph(s, a)− p̂th(s, a)‖1

(c)

≤ rh(s, a) +
∑
s′∈S

p̂th(s′|s, a)V
t,π

h+1(s′) + (H − h)
√

2KL(p̂th(s, a), ph(s, a))

(d)

≤ r̂th(s, a) +

√
βr(nth(s, a), δ)

nth(s, a) ∨ 1
+
∑
s′∈S

p̂th(s′|s, a)V
t,π

h+1(s′) + (H − h)

√
2βp(nth(s, a), δ)

nth(s, a) ∨ 1
,

where (a) is by assumption, (b) uses that V
t,π

h+1(s′) is bounded by H − h, (c) is from Pinsker’s inequality, and (d) uses
the event E . As before, since rewards are bounded in [0, 1] and

∑
s′∈S(ph(s′|s, a)− p̂th(s′|s, a))V

t,π

h+1(s′) ≤ H − h,
we can clip the two bonuses above to 1 and H − h, respectively. This implies that,√

βr(nth(s, a), δ)

nth(s, a) ∨ 1
∧ 1 + (H − h)

√
2βp(nth(s, a), δ)

nth(s, a) ∨ 1
∧ (H − h)

≤

√
β(nth(s, a), δ)

nth(s, a) ∨ 1
∧ 1 + (H − h)

√
β(nth(s, a), δ)

nth(s, a) ∨ 1
∧ (H − h)

≤ (H − h+ 1)

√
β(nth(s, a), δ)

nth(s, a) ∨ 1
∧ (H − h+ 1) ≤ bth(s, a).

This proves that Qπh(s, a) ≤ Qt,πh (s, a). The proofs of all other inequalities follow analogously.

Lemma 7 Under event E , for all (s, a) and h ≤ H ,

max
a

Q
t

1(s1, a)−max
a

Qt
1
(s1, a) ≤ 3

H∑
h=1

∑
s,a

pπ
t+1

h (s, a)bth(s, a),

Proof By definition of the optimistic rule, we first observe that

max
a

Q
t

1(s1, a)−max
a

Qt
1
(s1, a) = Q

t

1(s1, π
t+1
h (s1)−max

a
Qt

1
(s1, a) ≤ Dt

1(s1, π
t+1
1 (s1))

where we introduce the diameters
Dt
h(s, a) := Q

t

h(s, a)−Qt
h
(s, a).
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Using the inductive definition of the confidence bounds, we get

Dh(s, a) ≤ 2bth(s, a) +
∑
s′∈S

p̂th(s′|s, a)
(

max
a

Q
t

h+1(s, a)−max
a

Qt
h+1

(s, a)
)

≤ 2bth(s, a) +
∑
s′∈S

p̂th(s′|s, a)Dt
h+1(s′, πt+1

h+1(s′))

= 2bth(s, a) +
∑
s′∈S

(p̂th(s′|s, a)− ph(s′|s, a))Dt
h+1(s′, πt+1

h+1(s′)) +
∑
s′∈S

ph(s′|s, a))Dt
h+1(s′, πt+1

h+1(s′))

≤ 3bth(s, a) +
∑
s′∈S

ph(s′|s, a)Dt
h+1(s′, πt+1

h+1(s′)),

and the result follows by induction.

Lemma 8 For any T > 0, s ∈ S, a ∈ A, h ∈ [H],
T∑
t=1

1
(
Gts,a,h

)√ 1

Zt−1
h (s, a)pmin

h (s, a) ∨ 1
≤ 2

√
ZTh (s, a)

pmin
h (s, a)

.

Proof Using the pigeon-hole principle together with the inequality
∑n
i=1 1/

√
i ≤ 2

√
n− 1,

T∑
t=1

1
(
Gts,a,h

)√ 1

Zt−1
h (s, a)pmin

h (s, a) ∨ 1
≤ 1 +

1√
pmin
h (s, a)

ZTh (s,a)∑
j=2

√
1

j − 1

≤ 1 +
2
√
ZTh (s, a)− 1√
pmin
h (s, a)

≤ 2

√
ZTh (s, a)

pmin
h (s, a)

.

Lemma 9 For any time T > 0 at the end of which the algorithm did not stop, for any s ∈ S, a ∈ A, h ∈ [H],

ZTh (s, a) ≤ 144H4β(T, δ)

pmin
h (s, a)ε2

.

Proof If the algorithm did not stop at the end of time T , by the definition of the stopping rule and Lemma 7, for all
t ≤ T ,

ε ≤ max
a

Q
t

1(s1, a)−max
a

Qt
1
(s1, a) ≤ 3

H∑
h=1

∑
s,a

pπ
t+1

h (s, a)bth(s, a).

Summing both sides over times where (s, a, h) is targeted,

εZTh (s, a) = ε

T∑
t=1

1
(
Gts,a,h

)
≤ 3

T∑
t=1

1
(
Gts,a,h

) H∑
`=1

∑
s′,a′

pπ
t

` (s′, a′)bt−1
` (s′, a′)

≤ 3H

T∑
t=1

1
(
Gts,a,h

)
bt−1
h (s, a) ≤ 12H2

√
ZTh (s, a)β(T, δ)

pmin
h (s, a)

,

where the last inequality was already derived in the proof of Theorem 2. The statement follows by solving the resulting
inequality in ZTh (s, a).

13
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Lemma 10 Let S ≥ 2. For any time t ≥ 1, β(t− 1, δ) ≤ 5 log 3SAH
δ + 4S + 4S log (t).

Proof Starting from the definition of β and using the inequality (x+ y)2 ≤ 2x2 + 2y2,

β(t− 1, δ) =

(√
1

2

(
log

3SAH

δ
+ log(et)

)
+

√
2 log

3SAH

δ
+ 2(S − 1) log

(
e

(
1 +

t− 1

S − 1

)))2

≤ 5 log
3SAH

δ
+ log(et) + 4(S − 1) log

(
e

(
1 +

t− 1

S − 1

))
≤ 5 log

3SAH

δ
+ log(et) + 4(S − 1) log (et)

≤ 5 log
3SAH

δ
+ 4S log (et)

= 5 log
3SAH

δ
+ 4S + 4S log (t) .

Lemma 11 Let B,C ≥ 1. If k ≤ B log(k) + C, then

k ≤ B log(B2 + 2C) + C.

Proof Since log(k) ≤
√
k for any k ≥ 1, we have that k ≤ B

√
k + C. Solving this second-order inequality, we get

the crude bound
√
k ≤ B

2 +
√

B2

4 + C, which in turns yields k ≤ B2 + 2C using that (x + y)2 ≤ 2(x2 + y2) for
x, y ≥ 0. The statement follows by plugging this bound into the logarithm.

A.4 Explicit sample complexity bound

We show how to derive the sample complexity bound stated in Theorem 2 starting from the one derived in (4). Let
C(ε) :=

∑H
h=1

∑
s∈S

∑
a∈A

H4

pmin
h (s,a) max{∆̃h(s,a),ε}2

. Since β(τ − 1, δ) ≤ 5 log 3SAH
δ + 4S + 4S log (τ) from

Lemma 10, (4) implies that

τ ≤ 720C(ε) log
3SAH

δ
+ 576C(ε)S + 576C(ε)S log (τ) + 1

≤ 720C(ε) log
3SAH

δ
+ 577C(ε)S + 576C(ε)S log (τ) ,

where the second inequality holds since 1 ≤ C(ε)S. Using Lemma 11 withB = 576C(ε)S andC = 720C(ε) log 3SAH
δ +

577C(ε)S,

τ ≤ 576C(ε)S log

(
5762C(ε)2S2 + 1440C(ε) log

3SAH

δ
+ 1154C(ε)S

)
+ 720C(ε) log

3SAH

δ
+ 577C(ε)S

≤ 576C(ε)S log

(
4 · 5762C(ε)2S2 log

3SAH

δ

)
+ 720C(ε) log

3SAH

δ
+ 577C(ε)S

≤ 1152C(ε)S log

(
1152C(ε)S log

3SAH

δ

)
+ 720C(ε) log

3SAH

δ
+ 577C(ε)S

≤ 1729C(ε)S log

(
1152C(ε)S log

3SAH

δ

)
+ 720C(ε) log

3SAH

δ
,

where the inequalities use some trivial bounds to simplify the final expression. The result stated in Theorem 2 follows
from here by noting that C(ε) ≤ SAH5

pminε2
.
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s1

s2 s3

s4 s5

s5s4

s6

s6

s7

s7

a2

∆ 0

a1

s8

Figure 1: Example of the MDP instance for proving Theorem 4 where S = 8, A = 3, and H ≥ 4. The reward is
Gaussian with variance 1 and zero mean except for rH(s8, a1) = ∆ > 0. The optimal policy takes action a1

in s8 at the last stage H , while any path of length H − 1 to reach that state is optimal.

Appendix B. Proof of Theorem 4

An example of the MDP instance we build to prove Theorem 4 is shown in Figure 1. Suppose S ≥ 4, A ≥ 2 and
H ≥ dlog2(S)e+ 1. We arrange the states in a binary tree, starting from the root and adding them one by one from
left to right and top to bottom. The leaves of the binary tree have all A actions available, and so do the states at the
second-last layer which have zero children. Such actions keep the agent in the same state up to layer H − 1. In layer
H − 1, all A actions for all reachable states transition to state s8. In the latter, only two actions are available, among
which a1 is the only in the whole MDP with a positive reward of ∆ > 0.

The intuition is that this is an extremely easy instance of regret minimization. In fact, it is essentially a two-armed
bandit where the only thing that must be learned is the optimal action at stage H (i.e., a1), while the agent can behave
arbitrarily in all stages before and still suffer zero regret. On the other hand, this is an extremely hard instance for PAC
identification since, in order to return an ε-optimal policy with enough confidence, any algorithm must explore all
state-action pairs at stages from 1 to H − 1 up to an error below ε in order to assess that their rewards are all ε-close.

Proof of the sample-complexity lower bound Let us start by proving the lower bound on the sample complexity of
any (ε, δ)-PAC algorithm. Let d be the depth of the tree, i.e., the first integer such that

∑d−1
i=0 2i = 2d − 1 ≥ S − 1.

That is d = dlog2(S)e. Note that, even if the last layer is not complete (i.e., it has less than 2d−1 states), the second last
layer must be complete. Therefore, the are at least 2d−2 ≥ S/4 states with all A actions available that are reachable
at stage H − 1. Call these states s̄1, . . . , s̄m for m some integer with m ≥ S/4. Moreover, ∆H−1(s̄i, a) = 0 for all
i ∈ [m] and a ∈ [A] since all paths are optimal up to stage H − 1, where ∆ denotes the deterministic return gaps of
Tirinzoni et al. (2022). Note that the MDP is deterministic, so the lower bound of Theorem 2 by Tirinzoni et al. (2022)
holds. By applying this result, we get

∀i ∈ [m], a ∈ [A] : E[nτH−1(s̄i, a)] ≥ log(1/4δ)

4ε2
.

This directly implies that

E[τ ] =
∑

s∈SH−1

∑
a∈[A]

E[nτH−1(s, a)] ≥ SA log(1/4δ)

16ε2
.
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Proof of the regret upper bound Let us now deal with regret minimization. Let us take the UCBVI algorithm (Azar
et al., 2017a) with Hoeffding bonus (for general stochastic transitions) that we described in Section 2. We shall consider
a slightly different stage-dependent definition of the bonuses bth(s, a). All we need is that, at any time t ∈ N, they
guarantee concentration for all (s, a, h) with probability at least 1 − 1

t2 . For our proof we only need to specify the
specific form at stage H . Since at that stage we only need to concentrate rewards, using Hoeffding’s inequality for
sub-Gaussian distributions with σ2 = 1, it is easy to see that

btH(s, a) :=

√
2 log(2SAHt2)

ntH(s, a)
∧ 1

ensures Q
t

H(s, a) ≥ Q?H(s, a) for all s ∈ S, a ∈ A, t ∈ N with probability at least 1 − 1
t2 . For all stages h =

1, . . . ,H − 1, we can simply take the bonuses considered in the main paper with a decreasing schedule for δ, though
their explicit expression is not really used in our proof.

Note that, in this particular MDP, the regret is zero whenever the agent plays action a1 at stage H since all actions
played from stage 1 to H − 1 are optimal. In other words, this is equivalent to a bandit problem with two actions.
Therefore, for any T ≥ 1,

T∑
t=1

(
V ?1 (s1)− V π

t

1 (s1)
)

= ∆

T∑
t=1

1
(
atH = a2

)
= ∆nTH(sH , a2).

Under the good event Gt in which the confidence intervals are valid at t, if atH = a2, then

bt−1
H (sH , a2) ≥ ∆

2
=⇒ nt−1

H (sH , a2) ≤ 8

∆2
log(2SAHt2).

Therefore, the cumulative regret up to any time T in such good events can be bounded as∑
t≤T :Gt

(
V ?1 (s1)− V π

t

1 (s1)
)
≤ ∆

∑
t≤T :Gt

1

(
atH = a2, n

t−1
H (sH , a2) ≤ 8

∆2
log(2SAHT 2)

)
≤ 8

∆
log(2SAHT 2).

On the other hand, the expected regret under the bad events is bounded as

E

 ∑
t≤T :¬Gt

(
V ?1 (s1)− V π

t

1 (s1)
) ≤ ∆

T∑
t=1

P(¬Gt) ≤ ∆

T∑
t=1

1

t2
≤ 2∆.

Combining these two we obtain the following bound on the expected cumulative regret:

E

[
T∑
t=1

(
V ?1 (s1)− V π

t

1 (s1)
)]
≤ 8

∆
log(2SAHT 2) + 2∆.

Finally,

Tε := inf
T∈N

{
T :

1

T

T∑
t=1

E
[
V ?1 (s1)− V π

t

1 (s1)
]
≤ εδ

}
≤ inf
T∈N

{
T :

8

∆
log(2SAHT 2) + 2∆ ≤ Tεδ

}
.

To bound Tε, we need to solve the inequality on the right-hand side above. Using log(T ) ≤
√
T , it is easy to show that

a crude bound is

T ≤ 260

∆2ε2δ2

(
4 log(2SAH) + ∆2

)
.

Plugging this into the logarithm above yields

Tε ≤
2

∆εδ

(
4 log(2SAH) + 16 log

17

∆εδ
+ 8 log

(
4 log(2SAH) + ∆2

)
+ ∆2

)
+ 1.

Setting ∆ = ε and using log
(
4 log(2SAH) + ∆2

)
≤ 4 log(2SAH) + ∆2 concludes the proof. �
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