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Abstract: The capability to compute a partition of a cluttered environment starting from
the obstacles that lie in it enables the construction of a route connecting an initial point to
a desired final one. In this paper, we revisit the convex lifting method for the computation of
a suitable partition of the cluttered environment with the objective to propose a systematic
procedure of reorganization of the cells within the partition in order to repel their boundaries
from the obstacles. The ultimate goal is the construction of a connecting-path between an
initial point and a final point characterized by a corridor with improved width guaranteeing the
collision avoidance. The qualities of the corridors will impact the constraints on the motion of the
controlled agent and consequently the real-time performance and robustness of the navigation
in a cluttered environment.
Keywords: obstacle avoidance, linear systems, optimization

1. INTRODUCTION

Navigation through multi-obstacle environments is a topic
of interest in several fields: autonomous road vehicles,
unmanned aerial vehicles, naval vehicles, precision agri-
culture, etc. (Graf Plessen et al., 2018; Nguyen et al.,
2020; Popescu et al., 2020). The use of agents able to au-
tonomously move in complex scenarios is particularly at-
tractive due to the different benefits they bring: increased
operations efficiency, improved safety, the possibility to
operate in environments that are not accessible by humans,
etc. (Rahiman and Zainal, 2013). Motion planning is usu-
ally divided into three tasks: (i) path planning; (ii) trajec-
tory generation; (iii) development of a low-level feedback
control (Ioan et al., 2020). Since tasks (i) and (ii) deal with
the generation of feasible trajectories taking into account
the surrounding environment, they play a central role in
the context of navigation and its certification. The main
difficulty is due to the non-convexity of the feasible space
that makes the search for collision avoiding paths non-
trivial. Motivated by these arguments, several approaches
have been proposed in the literature: from considering task
i) and ii) as decoupled problems (see e.g. (Latombe, 2012))
to methods that consider them altogether at the expense
of a higher computational complexity (see e.g (Yong-bo
et al., 2016)). On the other hand, the goal of task (iii)
is the tracking of the trajectories resulting from the first
two stages of design. Its implementation strictly depends
on the nature of the application and thus is beyond the
scope of the present paper, which aims to contribute to the

navigation in the cluttered environments with enhanced
properties of the generated paths in a generic framework.

In order to simplify the search for feasible paths in a con-
gested environment and face the non-convexity problem of
the free area, the use of corridors has been investigated
in (Liu et al., 2017) and (Ioan et al., 2020). Corridors
are used as a tool for modeling the free space between
the obstacles (generally represented by convex sets, e.g.
polyhedra) within which a feasible trajectory is to be
selected. In (Liu et al., 2017), the authors deal with the
navigation problem for Micro Aerial Vehicles (MAVs), and
they recur to the Jump Point Search (JPS) illustrated in
(Harabor and Grastien, 2011) for the path planning stage.
In (Ioan et al., 2020), the authors exploit the theory of
convex lifting (see (Nguyen et al., 2018)) to compute a
partition of the cluttered environment induced by the ob-
stacles. This allows to characterize the feasible obstacles-
free trajectories by means of a graph which is further used
to find a path connecting an initial and a target point.
Eventually, the path is associated with a feasible corridor
for navigation purposes. In the present paper, we revisit
the approach illustrated in (Ioan et al., 2020), and focus
on the possibility to improve the partition induced by the
obstacles with the target to enlarge the corridors. In a first
stage, we prove the non-uniqueness of the partition built
over the congested environment. This basic result points
to the existence of a family of partitions characterizing the
same feasible navigation space. Ultimately, the objective



is to select the partition optimizing a chosen performance
index. Since corridors with reduced width lead to tighter
constraints on the motion of the controlled agent, we
choose the width itself as the performance index to be
improved. From the algorithmic perspective, motivated by
the fact that no global performance index can be used in
the selection of the partition, we propose the use of an
iterative procedure by concentrating on the improvement
of partitions incrementally. Since the corridors are built
starting from the facets of the cells forming the parti-
tion, enlarging those cells allows to increase the distance
between the feasible paths and the obstacles. In order
to fulfill this local goal, the Extended Farkas’ Lemma
is exploited (see (Hennet, 1995)) for the scaling convex
polytopes within given constraints set. This tool allows a
virtual rearrangement of the obstacles all by covering the
initial configuration in terms of forbidden zones. Finding
the maximal copy of a polytope inside another one is not
a trivial problem when considering all three degrees of
freedom: scaling, translation and rotation (see (Agarwal
et al., 1998)). An attempt to solve this problem is given
in (Firsching, 2015), where the author proposes a mixed
approach based on the half-space representation of the
outer polytope and the vertex representation of the inner
one; then, it is stated as a quadratically constrained max-
imization problem. For the framework considered in this
paper, we are not interested in considering the possibility
for the inner polytope to rotate. Then, on the basis of the
Extended Farkas’ Lemma, we are able to derive a linear
programming optimization problem, thus offering a par-
ticularly attractive design framework. Numerical results
showing the efficacy of the proposed approach are reported
and discussed.

The rest of the paper is organized as follows: in Section
2 we recall the results illustrated in (Ioan et al., 2020); in
Section 3 we give the problem formulation; in Section 4 we
formalize our proposed approach; Section 5 illustrates the
maximal scaling of polytopes; Section 6 provides numerical
results; Section 7 reports some conclusive remarks.

Notation: The Minkowski sum of two sets is denoted as
A⊕B = {x : x = a+ b, a ∈ A, B ∈ B}. Given a compact
set S ⊂ Rd, CX(S) denotes the complement of S over
X ∈ Rd, int(S) is the interior of S, Conv(S) is the convex
hull of S, Com(S) is the space of compact subsets of S,
and V(S) is the set of its extreme points (possibly infinite
collection of points spanning Conv(S)). For a polyhedron
P ⊆ Rd, V(P ) is the (finite) set of its vertices, and Fk

i (P )
is the i-th face of the dimension k < d. Any polytope (i.e.,
a bounded polyhedron) has a dual representation in terms
of intersection of half-spaces or convex hull of extreme
points: P = {x : sT

i x ≤ ri, ∀ i} = {x :
∑

αjvj ,
∑

αj =
1, αj ≥ 0, ∀ j}. Bp,r = {x ∈ Rd : ||x − p|| ≤ r} is a ball
of radius r ≥ 0 centered in p ∈ Rd w.r.t. a given norm.
Given two sets X,Y ⊆ Rd, we define the distance function
d (X,Y ) = min

x∈X,y∈Y
∥x− y∥.

2. PATH GENERATION IN CLUTTERED
ENVIRONMENTS USING CONVEX LIFTING

In this section, we introduce the considered framework
and the convex lifting based strategy used to construct
a partition of the cluttered environment in accordance
with the distribution of the obstacles. The results revisited

(a) (b)
Fig. 1. (a): A cluttered environment in R2. (b): Convex

lifting and partitioning of the cluttered environment.

here are based on those presented in (Ioan et al., 2020);
although they apply to a general framework, for simplicity
in the examples we mainly refer to the navigation problem
in the bi-dimensional case.

2.1 Obstacles and Collision-Free Paths
We consider a finite dimensional output space Rd, d > 0,
and a finite (albeit large) number of obstacles indexed by
I = {1, . . . , No} lying in a bounded cluttered environment
X ⊂ Rd (see Fig. 1a depicting 22 obstacles, randomly
generated in terms of shape and position). The obstacles
are described by the non-overlapping and convex regions
Pi ∈ Com

(
Rd

)
, i ∈ I, the set of which is denoted by

P =

No⋃
i=1

Pi, Pi ∩ Pj = ∅, ∀i ̸= j, (1)

satisfying condition P ⊂ int(X). The obstacle-free domain
resulting from the distribution of the obstacles in X is
denoted as the navigation set, and is defined via the
complement of P: CX(P) = X\P. For navigation purposes,
CX (P) represents the feasible area for the trajectories of the
controlled agent while avoiding collision. Then, given two
points x0, xf ∈ int (CX(P)), x0 ̸= xf , the primal objective
is the construction of a route in the navigation set that
connects x0 to xf (path planning). The key difficulty in
performing this computation is the non-convexity of the
navigation set. The construction of corridors connecting
two points instead of simple paths in the navigation area
can reduce the computational complexity and enhance the
real-time control task. We remark that real-time perfor-
mances optimization is out of the scope of this paper.
Definition 1. Given the obstacles P, a corridor between
two points x0, xf ∈ int (CX(P)) is characterized by the
existence of two continuous functions

γ : [0, 1] → CX(P), ρ : [0, 1] → R>0 (2)
satisfying

γ(0) = x0, γ(1) = xf (3)
γ(θ)⊕ B0,ρ(θ) ⊂ CX(P), ∀ θ ∈ [0, 1]. (4)

Then, a corridor is defined as:
Π = {x ∈ Rd : ∃ θ ∈ [0, 1] s.t. x ∈ γ(θ)⊕ B0,ρ(θ)}. (5)

Once a corridor connecting two points has been built, a
path that lies inside it can be selected following some
predefined criteria (e.g. minimum distance to travel), re-
sulting in a simpler operation than considering the whole
cluttered area. Following the method outlined in (Ioan
et al., 2020), space partitioning has a central role in deriv-
ing a suitable corridor connecting two points. For the sake
of completeness, the following definitions are reported:



Definition 2. A family of sets {Xi}i∈I verifying

(1) X =
⋃

i∈I Xi,
(2) int (Xi) ∩ int (Xj) = ∅, ∀i ̸= j ∈ I,
(3) Pi ⊂ int (Xi), ∀i ∈ I
is called a partition of X induced by the obstacles P.
Furthermore, if sets X and Xi are polyhedral, then X is
called a polyhedral partition.

2.2 Space Partitioning via Convex Lifting
In the sequel, we show how to derive a partition induced
by the collection P lying in X by exploiting the convex
lifting method (Nguyen et al., 2018). First, the definition
of piecewise affine (PWA) lifting is recalled, followed by
the theorem lying at the foundation of the constructive
procedure.
Definition 3. Given a collection of obstacles P and a
partitioning of the cluttered environment X ⊃ P, as in
Definition 2, the function z : X → R is called a PWA
lifting if:

z(x) = aTi x+ bi, x ∈ Xi, (6)
with Xi such that int (Xi) ⊃ Pi, ∀i, ai ∈ Rd and bi ∈ R.
Theorem 1. A PWA lifting is continuous and convex iff
(ai, bi) satisfy:

aTi v + bi ≥ aTj v + bj + ϵ, ∀v ∈ V (Pi) , ∀i ̸= j, (7)

aTi v + bi ≤ M, ∀v ∈ V (Pi) , ∀i, (8)
for constants ϵ,M > 0.

In order to effectively construct a partition of X according
to Definition 2, an optimization problem for the computa-
tion of coefficients (ai, bi), ∀i ∈ I, is defined as follows:

min
ai,bi

No∑
i=1

||[ai bi]
T ||22 (9)

subject to (7) and (8).
Exploiting the solution, a d+ 1-dimensional polyhedron

P =

{[
x
z

]
∈ Rd+1 :

[
aTi − 1

] [x
z

]
≤ −bi, i ∈ I

}
(10)

is built, and its facets projected onto X, resulting in
Xi = proj

(
Fd−1

i (P),X
)
, i ∈ I. (11)

Corollary 1. The polyhedral partition {Xi}i∈I has the
following properties:

(1) Pi ⊂ int (Xi) , ∀i,
(2) Xi ∩ Pj = ∅, ∀j ̸= i.

Fig. 1b depicts the convex lifting and the corresponding
partition over the cluttered environment in Fig. 1a.

2.3 From Path to Corridors

Partition {Xi}i∈I computed over the cluttered environ-
ment X associates to each obstacle Pi a unique cell which
does not overlap with the interior of any other cell. More-
over, Corollary 1 guarantees that each obstacle is well
contained into its cell, i.e. Pi ⊂ int (Xi) , ∀i. Starting from
{Xi}i∈I , it is then possible to construct a graph Γ (N , E , f)
characterizing the feasible navigation area, where N is the
set of nodes, E is the set of edges and f is a function that
associates a weight to each edge. For the bi-dimensional
case, the graph is trivially obtained from the boundaries

of the cells: the nodes are the vertices of the polyhedral
regions Xi, N =

⋃No

i=1 V (Xi); the edges are the facets of
the regions Xi, E = F1 (Xi); function f can be chosen as
the Euclidean distance between the incident nodes of the
edges. If the starting and final points x0 and xf do not
already belong to the graph, we need to properly connect
them to the graph. For example, for each of the two points
we can compute its projection on the edges of the graph
and consider the shortest connection edge that does not in-
tersect any obstacle. By denoting the resulting graph with
Γ̃(x0, xf ), it preserves the properties of the original one Γ.
Finally, for computing the path connecting x0 and xf , a
graph search algorithm can be employed (e.g. Dijkstra’s
Algorithm, see (Cormen et al., 2009, Section 24.3)). For
further use, we denote the geometric path obtained in the
last step with Path(x0, xf ) = (x0, x1, . . . , xNc+1), where
xNc+1 = xf and Nc is the number of edges composing the
path. From Path(x0, xf ), we can determine γ(θ) and select
the width ρ(θ) of the corridor such that

ρ(θ) ≤ min
Pi∈P

d (Pi, γ(θ)) , ∀ θ ∈ [0, 1], (12)

ensuring Π ∩ P = ∅. To simplify the computation of the
corridor, we can split it by considering each segment con-
necting two consecutive nodes (xi, xi+1) in Path(x0, xf ),
and then compose the corridor as

Π =

Nc⋃
i=1

Πi (13)

with Πi =
{
x ∈ Rd : ∃θ̃ ∈ [0, 1] s.t. x ∈ γi(θ̃)⊕ B0,ρi(θ̃)

}
,

where γi(0) = xi, γi(1) = xi+1, and

ρi(θ̃) = min
Pj∈P

d (Pj , γi) , ∀ θ̃ ∈ [0, 1]. (14)

3. CORRIDOR ENLARGEMENT PROBLEM
Before referring to the problem to be solved, let us in-
troduce the following result about the multiplicity of the
partition:
Proposition 1. (Ioan et al., 2020) Consider a region
X ⊂ Rd, d > 0, and a set of obstacles P ⊂ int(X) described
by convex sets Pi. If problem (9) is feasible, then there
exists at least one polyhedral partition {Xi}i∈I induced by
the obstacles P.
The solution is not necessarily unique, due to the fact that
the constraints (7) and (8) are satisfied in case of feasibil-
ity with positive constants ϵ and M . This implies that
each of the obstacles in the collection P is located in the
strict interior of its polyhedral region {Xi}i∈I . Using the
arguments of sensitivity in the polyhedral partition (see
(Koduri et al., 2016)), for each vertex of the partition, a
(non-empty) sensitivity margin can be constructed to rep-
resent the degrees of freedom for alternative partitions.In
the bi-dimensional case, the result can be directly linked
to the arrangements within the cluttered environment.
Indeed, as long as there is room between two obstacles,
then different supporting hyperplanes describing regions
{Xi}i∈I can be perturbed such that there is no intersection
with obstacles P. However, such perturbations are not
necessarily linked to the feasibility of convex lifting, but
ensure the existence of multiple solutions for the partition.
In the same time, the LP structure of the convex lifting
allows, from a structural point of view multiple solutions



within (9). The use of different ϵ and M can enhance the
degrees of freedom in the search for alternative partitions.
Proposition 1 implies that {Xi}i∈I built upon the solution
of problem (9) belongs to a family of partitions satisfy-
ing Definition 2. In particular, this solution is the one
minimizing cost function

∑
i∈I ||[ai bi]

T ||22; with exclusive
geometrical meaning. Such a cost function does not opti-
mize with respect to a particular path-planning criterion
and does not consider the further use of the partition
for navigation purposes. By recalling the goal of feasible
corridors construction, we aim to define a performance
index quantifying the “robustness” of a corridor and to
develop a methodology for its improvement through the
computation of a suitable partition. We recall that the
construction of {Xi}i∈I and of a feasible corridor in X
are the result of a procedure composed by different steps:
(1) compute a PWA lifting for each obstacle by means
of (9); (2) define P as in (10) and project its facets
into X obtaining the set {Xi}i∈I ; (3) build a corridor on
the basis of the graph induced by the partition. Given
the projection operations and the implicit measure of the
corridors’ width, it is not straightforward to include the
objective of maximizing the chosen performance index in
the lifting procedure. The solution we envisage builds on
a iterative procedure using the three steps above.

4. PROPOSED APPROACH
4.1 Performance index
Given two points x0, xf ∈ CX (P) and a computed
Path(x0, xf ) over the graph Γ̃(x0, xf ) induced by the par-
tition, a corridor can be defined as in (13). Therefore, Π is
the composition of multiple “sub-corridors” Πi associated
to the segments of the geometric path found through the
chosen graph search algorithm, with width (14). Motivated
by the fact that a reduced width of the corridors leads
to tighter constraints on the motion of the controlled
agent, we choose the width itself as the criterion at the
basis of the performance index providing a measure of the
corridor. Since by hypothesis we are considering a bounded
cluttered environment with a finite number of obstacles,
the total number of edges in Γ̃(x0, xf ) is finite. By denoting
with Ẽ the set of edges of Γ̃(x0, xf ), with NẼ = |Ẽ | its
cardinality, and with Ẽi the i-th edge, we define

p =
1

NẼ

∑
Ẽi∈Ẽ

min
Pj∈P

d
(
Pj , Ẽi

)
. (15)

as the performance index, corresponding to the average
width of the corridors associated to a given partition. The
reason for considering an averaged value in (15) is that we
do not have any guarantee that different partitions of the
same cluttered environment have the same cardinality NẼ
of the edges composing the path.

4.2 Iterative procedure for corridors improvement
Let us denote the iteration index by k ∈ N, then Pk =⋃No

i=1 P
k
i and

{
Xk

i

}
i∈I indicate, respectively, the obstacles

distribution and its induced partition at iteration k. For
further use, we consider P0 = P. The idea at the basis of
the iterative procedure is to exploit the fact that different
arrangements of the obstacles may induce a different
partition of X. Then, starting from the initial solution{
X0

i

}
i∈I , we aim to define a new virtual distribution P1

with the objective of computing a new set
{
X1

i

}
i∈I to

which larger corridors are associated. These steps are then
repeated as long as it possible to rearrange the obstacles
to obtain a new partition. Within this procedure, it is of
paramount importance that each Pk induces a partition
that ensures the feasibility of the corridors with respect to
the original arrangement P. For this reason, we consider
only transformations ensuring P k+1

i ⊃ P k
i , with P k+1

i
convex. Let us define the quantity

dϵ
(
P k
i , X

k
i

)
= min

j∈|Fd−1
Xi,k

|
d
(
P k
i ,Fd−1

j

(
Xk

i

))
. (16)

where |Fd−1
Xi,k

| is the number of d− 1 facets of Xk
i .

Proposition 2. Consider a sequence of collections of ob-
stacles Pk inducing corridors that are feasible with respect
to P0 ∀ k ≥ 0, and such that P k+1

i ⊃ P k
i . Suppose that

dϵ
(
P k+1
i , Xk

i

)
= 0. As long as Pk is convex liftable, then

the width of the corridors monotonically increases.

Proof. Let us consider collection P0 leading to
{
X0

i

}
i∈I .

Since P 0
i ⊂ int

(
X0

i

)
holds by Corollary 1, it follows that

dϵ
(
P 0
i , X

0
i

)
> 0, ∀ i ∈ I. Now, let us consider the virtual

collection P1, that by hypothesis verifies P 1
i ⊃ P 0

i and
dϵ

(
P 1
i , X

0
i

)
= 0, ∀ i ∈ I. If P1 is convex liftable, the set{

X1
i

}
i∈I computed over P1 is such that P 1

i ⊂ int
(
X1

i

)
,

∀ i, thus dϵ
(
P 1
i , X

1
i

)
> 0. This means that dϵ

(
P 0
i , X

1
i

)
>

dϵ
(
P 0
i , X

0
i

)
, and min

i∈I
dϵ

(
P 0
i , X

1
i

)
≥ min

i∈I
dϵ

(
P 0
i , X

0
i

)
+

min
i∈I

dϵ
(
P 1
i , X

1
i

)
. As long as the new collection of obstacles

is convex liftable, by induction we get

min
i∈I

dϵ
(
P k
i , X

k+1
i

)
≥ min

i∈I
dϵ

(
P k
i , X

k
i

)
+min

i∈I
dϵ

(
P k+1
i , Xk+1

i

)
, (17)

where dϵ
(
P k
i , X

k
i

)
is a decreasing quantity due to the

boundedness of the cluttered environment.

5. A CONVEX OPTIMIZATION APPROACH FOR
OBSTACLE SCALING

In order to accomplish the goal of enlarging the cells within
a partition, we investigate the use of the Extended Farkas’
Lemma for the scaling of a convex polytope contained into
another convex polytope.

5.1 Maximal Scaling of Polytopes Q ⊂ H

Let Q and H be two non-empty convex polytopes, respec-
tively defined as in the following:

Q = {x ∈ Rd : Aqx ≤ bq}, Aq ∈ Rq×d, bq ∈ Rq, (18)

H = {x ∈ Rd : Ahx ≤ bh}, Ah ∈ Rh×d, bh ∈ Rh, (19)
with q, h ∈ N. By exploiting the duality theorem for
linear programming (LP) problems, the Extended Farkas’
Lemma proves sufficient and necessary conditions on
Aq, Ah, bq, bh under which Q ⊆ H. We now recall the
Extended Farkas’ Lemma from (Hennet, 1989):
Theorem 2. System Ahx ≤ bh describing polytopes H is
satisfied by any point of the non-empty convex polytopes Q
defined by the system Aqx ≤ bq if and only if there exists a
matrix U ∈ Rh×q with non-negative coefficients satisfying
conditions UAq = Ah and Ubq ≤ bh.



First let us consider polytopes (18) and (19), such that
Q ⊂ H. Let

Qλ = {x ∈ Rn : Aqx ≤ bλq }, bλq ∈ Rq (20)
denote the polyhedron obtained by scaling Q of a factor
λ ∈ R, λ > 0, preserving the shape of Q and such that
Q ⊆ QλM . We target to compute the maximal scaling
factor λM such that QλM ⊆ H. For the problem not to be
trivial, we do not consider the case Q = H, with respect
to the maximal scaling factor is λM = 1. To compute λM ,
we define an optimization problem based on the Extended
Farkas’ Lemma. The enlarged polyhedron that we aim to
obtain is written:

Qλ = {x ∈ Rn : Aqx ≤ λbq + (1− λ)Aqcq}, (21)
where cq ∈ Q denotes the center of scaling, namely a point
inside Q with respect to which we compute Qλ:

max
λ,cq,Û

λ (22a)

s.t. ÛAq = Ah (22b)

Û(λbq + (1− λ)Aqcq) ≤ bh (22c)
Aqcq ≤ bq (22d)

Ûi,j ≥ 0, i = 1, ..., h, j = 1, ..., q. (22e)
where constraint (22d) ensures cq ∈ Q. Since (22) is a
nonlinear problem, its solution can be a difficult task to
compute. However, taking into account that by assumption
λ > 1, it is possible to derive an equivalent linear problem
by performing some mathematical manipulations. To this
purpose, we define the following auxiliary variables

µ1 =
λ

λ− 1
, µ2 =

1

λ− 1
, Ũ = µ1Û , (23)

where µ1 and µ2 are such that
µ1 − µ2 = 1, µ1 ≥ 1, µ2 ≥ 0. (24)

By exploiting the auxiliary variables (23) and their prop-
erties (24) in (22), we get the following equivalent LP
problem:

min
cq,µ1,µ2,Ũ

µ1 (25a)

s.t. ŨAq = µ1Ah (25b)
Ũbq −Apcq ≤ µ2bh (25c)
Aqcq ≤ bq (25d)
µ1 − µ2 = 1 (25e)
µ1 ≥ 1, µ2 ≥ 0 (25f)
Ũi,j ≥ 0, i = 1, ..., h, j = 1, ..., q. (25g)

Let the solution of (25) be denoted by the apex ∗, then
the maximum scaling factor λM is

λM = 1 + 1/µ∗
2. (26)

We point out that the cases corresponding to λM = 1
induce an unbounded problem with respect to µ1 = µ2 =
+∞. We remark that the approach illustrated in this
section leads to a homothetic transformation of Q with
respect to a center cq ∈ Q, ensuring that QλM ⊃ Q. Fig. 2
shows a bi- and a three-dimensional examples of maximal
polytopes scaling exploiting (25).

5.2 Application to Corridors Improvement
In order to resume the results presented in Section 5.1
for the enlargement of the cells within a partition, we
propose an algorithmic procedure. At each iteration, we

(a) 2D case. (b) 3D case.

Fig. 2. Convex polytopes scaling: outer polytope H, inner
polytope Q, and scaled polyope QλM .

solve problem (25) with respect to each pair (P k
i , X

k
i ) to

derive the scaling pair
(
ckq,i, λ

k
M,i

)
, then we define P k+1

i =

(P k
i )

λk
M , λk

M = mini∈I λk
M,i. Since P k+1

i ⊃ P k
i ⊃ . . . P 0

i ,
for each k it is guaranteed that Pathk(x0, xf ) is feasible
with respect to P. The procedure ends when λk

M < λ̄M ,
λ̄M > 1, meaning that it is no more possible to enlarge
the obstacles of a factor greater than the chosen threshold
value. For the sake of clarity, we illustrate the iterative
procedure in Algorithm 1.

Algorithm 1 Enlargement of the partition’s cells

Input: X, P =
⋃No

i=1 Pi, ϵ,M > 0, and λ̄M .
Output: {Xi}i∈I .
1: Set P0 = P and k = 0.
2: repeat
3: Find {Xk

i }i∈I by solving (9) with respect to Pk and
projecting the facets of Pk defined as in (10) into X.

4: For each (P k
i , X

k
i ), solve the optimization problem

(25).
5: Compute λk

M,i as in (26), and find λk
M =

mini∈I λk
M,i.

6: Compute set Pk+1 by scaling each P k
i with respect

to λM and to ckq,i resulting from (10).
7: Update k = k + 1.
8: until λk

M > λ̄M

9: {Xi}i∈I = {Xk
i }i∈I

Remark 1. The use of threshold λ̄M > 1 together with
the result in Corollary 1 ensuring P k

i ⊂ int(Xk
i ) guarantee

that the case λk
M = 1 does not occur.

6. NUMERICAL RESULTS
In this section, we report numerical results that show the
efficacy of the proposed approach. The presented test was
performed with respect to the cluttered environment in
Fig. 1a, with the help of MATLAB and the use of Yalmip
(Löfberg, 2012) and MPT toolboxes (Herceg et al., 2013).
The constant parameters have been chosen as follows:
ϵ = 10−4, M = 105 and λ̄M = 1.005. The procedure
has stopped after 34 iterations. Fig. 3 shows a comparison
between

{
X0

i

}
computed with respect to P (the red

dotted lines) and the one obtained through Algorithm
1 (the black lines). From this figure, we observe marked
differences between the initial and the final partitions. In
particular, we observe a general increasing of the distance
between the edges of the cells and the obstacles. This
result is confirmed by Fig. 4, where an increasing trend
of the average corridors width over the iterations is shown



(continuous blue line). For the sake of completeness, the
evolution of λk

M is reported in the same figure (dash-
dotted orange line): after a first increasing phase, we
observe a decreasing trend until it reaches the stopping
value of λ̄ = 1.0005. As long as λk

M > 1, the sequence
of obstacles P k+1

i ⊃ P k
i is monotonically increasing and

thus satisfy the imposed theoretical requirement. However,
the sequence λk

M is not monotonic per se. This is due to
the fact that each obstacle is scaled with the minimum
admissible scaling factor for all the obstacles and not its
own optimum.

Fig. 3. Partitions comparison.
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Fig. 4. Performance index and λM .
7. CONCLUSIONS

In this paper, a novel method for enlarging a convex
polytope contained into another convex polytope has been
presented. To this purpose, the Extended Farkas’ Lemma
has been exploited to derive a linear optimization problem.
Then, an algorithm for the enlargement of the cells within
a partition of a cluttered environment has been proposed.
The target of such enlargement is to derive larger corridors
for the motion of a controlled agent that has to avoid
the collision with the obstacles lying in the cluttered
area. Finally, numerical tests to show the efficacy of the
proposed approaches have been reported. Future work will
focus on the optimization of the procedure presented in
Algorithm 1. Indeed, the procedure can be improved by
scaling each obstacle with respect to the scaling factor
λM,i computed over the corresponding cell. However, this
solution could lead to convex non-liftable scenarios due
to very close scaled obstacles. Then, methods for dealing
with these particular scenarios have to be exploited. Also,
it will be investigated the possibility to exploit partition
enlargement in the presence of moving obstacles.
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