
HAL Id: hal-03767400
https://hal.science/hal-03767400v1

Submitted on 1 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictive control based on stochastic disturbance
trajectories for congestion management in

sub-transmission grids
Nouha Dkhili, Sorin Olaru, Alessio Iovine, Manuel Ruiz, Jean Maeght, Patrick

Panciatici

To cite this version:
Nouha Dkhili, Sorin Olaru, Alessio Iovine, Manuel Ruiz, Jean Maeght, et al.. Predictive control based
on stochastic disturbance trajectories for congestion management in sub-transmission grids. 18th
IFAC Workshop on Control Applications of Optimization (CAO 2022), Jul 2022, GIF SUR YVETTE,
France. �10.1016/j.ifacol.2022.09.041�. �hal-03767400�

https://hal.science/hal-03767400v1
https://hal.archives-ouvertes.fr


Predictive control based on stochastic
disturbance trajectories for congestion

management in sub-transmission grids ⋆

Nouha Dkhili ∗ Sorin Olaru ∗ Alessio Iovine ∗ Manuel Ruiz ∗∗

Jean Maeght ∗∗ Patrick Panciatici ∗∗

∗ Centre National de la Recherche Scientifique (CNRS), Laboratory of
Signals and Systems (L2S), CentraleSupélec, Paris-Saclay University,

Gif-sur-Yvette, France
(email: firstname.lastname@centralesupelec.fr)

∗∗ French Transmission System Operator (TSO), Réseau de Transport
d’Electricité (RTE), Paris, France

(emails: firstname.lastname@rte-france.com)

Abstract: The energy transition of power grids is accompanied by a slew of new challenges
arising at the design, deployment and operation levels. From the control viewpoint, the integration
of renewable-energy-based power generation sources into the power grid translates into emerging
uncertainties which compromise the system’s stability and performance. In this paper, the main
goal is to propose a model-based predictive controller that incorporates the stochastic nature
of these sources into its decision-making, in order to balance upholding operational constraints
with smart power generation curtailment and energy storage strategies.
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1. INTRODUCTION

To reconcile ever-growing energy demand with the urgent
and paramount need of reducing fossil-fuel-based power
generation, power grids require fundamental changes on
both physical and cyber fronts. As a matter of fact, the
deployment of renewable-energy-based power generation
sources is a key step towards increasing their efficiency,
flexibility and, most importantly, sustainability.
In accordance with the multiplication of renewable-energy-
based power plants connected directly to transmission grids,
transmission system operators (TSO) are pursuing new
tools for congestion management. For obvious practical
reason, strategies that require minimal infrastructure
changes are preferred. As such, flexible asset management
is an increasingly popular area of interest in the literature
(?Prodan and Zio (2014); Ioakimidis et al. (2018)). It resorts
to using local levers connected to the sub-transmission grid
to minimize violations of the powers lines’ operational
power limits.
In the case study presented in this paper, several
wind power generation plants are connected to the sub-
transmission grid. A model-based predictive controller
(MPC) determines optimal setpoints for partial curtailment
⋆ This work was carried out within the CPS4EU project, which has
received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 826276. The JU receives support from the European
Union’s Horizon 2020 research and innovation program and France,
Spain, Hungary, Italy, Germany. The proposed results reflect only
the authors’ view. The JU is not responsible for any use that may be
made of the information the present work contains.

of the plants’ generation and for battery usage. Further-
more, it must take into account the stochastic nature of
the distributed generation in its decision-making.
A time-delay model describing partial power curtailment
possibilities is introduced in Iovine et al. (2021). It is based
on Power Transfer Distribution Factor (PTDF) (see Wood
et al. (2013); Xu Cheng and Overbye (2005)) and extends
previous modeling that only allowed on/off decisions on
power curtailment (see Straub et al. (2018a), Straub et al.
(2018b)). In Hoang et al. (2021), the authors provide
a controllability analysis with respect to the saturation
effects of the control inputs with respect to the considered
time-delayed model. Moreover, ad hoc strategies to ensure
problem feasibility and to correctly prioritize the available
control action are implemented.
The next step in this research focuses on the challenges
posed by uncertainties due to limited local information
and the stochastic nature of wind power generation. There
are several ways to deal with this uncertainty: the safest
approach is to use the worst disturbance trajectory in terms
of constraint violation (Lee and Yu (1997)). This approach
guarantees robustness but is extremely conservative and
significantly restricts the controller’s room for maneuver.
Also on the conservative side is a trend-based approach
where the controller assumes that the disturbance trend
observed over the last time step persists over the entire
prediction horizon. This approach is explored in Hoang
et al. (2021): results prove that the controller is able
to successfully maintain power levels within prescribed
margins. But, this robustness comes at the cost of early



triggering of power generation curtailment, which reduces
the strategy’s economic attractiveness.
There exists a plethora of control applications where the
system’s behaviour is influenced by one or several distur-
bances of stochastic nature. The well-established theory of
stochastic control tackles these problems (Åström (2012)).
Stochastic methods offer a richer description of disturbance
behaviour to the controller, at the cost of increasing
computational and memory requirements. In a model-
based predictive control (MPC) framework, dealing with
stochastic disturbances in convex optimization problems is
quite often done through scenario-based approaches (Campi
and Garatti (2011)): they provide probabilistic guarantees
that the solution to the sample problem satisfies the original
chance constrained problem (Alamo et al. (2009)). The
literature is rife with examples of sampling-based methods
(Korda et al. (2014); Lorenzen et al. (2017); Fioriti and
Poli (2019)), popular for being computationally tractable.
In a similar vein, the strategy proposed herein is a
sampling-based predictive control method. First, uncertain
disturbance trajectories are generated over a finite horizon.
Then, their weighted combination is incorporated into the
optimization problem. As opposed to the common custom
of random sampling from the set of possible trajectories,
herein we select trajectories based on a statistical analysis
of the the disturbance’s behaviour.
The paper is organised as follows: section 2 details the
control-oriented system model. Next, section 3 introduces
the control strategy proposed in this paper. Section 4
describes the case study treated in this paper. Analysis of
the simulation results is conducted in section 5. The paper
ends with a discussion of future research steps in 6.

2. MODELLING

2.1 Notations

Let us consider the following notations throughout the
paper:

• ZN is the set of nodes in the considered zone; nN

is its cardinality. PT
n is the power generated in

the transmission network flowing from the external
network to the node n ∈ ZN of the zone of interest.

• ZC ⊂ ZN is the set of nodes where the curtailment of
the generated power is allowed; nC is its cardinality.
PG

n is the generated power, while PC
n is the curtailed

one at node n ∈ ZC . PA
n is the available renewable

power that can be generated each sampling time.
• ZB ⊂ ZN is the set of nodes with a battery; nB is its

cardinality. PB
n is the power injected from the battery

on node n ∈ ZC , while EB
n describes the battery

energy at the same node.
• ZL ⊂ {(i, j) ∈ {1, ..., nN } × {1, ..., nN }} is the set

of power lines in the zone; nL is its cardinality. Fij

represents the power flow on the line ij.
The operator diag describes a diagonal matrix composed
by the considered elements. The operator col produces a
single column vector composed by the aggregation of other
vectors. That is, given m vectors si ∈ Rn, i = 1, ...,m, the
resulting vector s = col[si], i = 1, 2, . . . ,m, will be:

s = col[si] = [ sT
1 sT

2 ... sT
m ]T ∈ Rnm. (1)

2.2 State representation

The state variables of the energy transmission are: the
power flows on the lines Fij , the curtailed power PC

n , the
battery power output PB

n , the battery energy EB
n , and the

generated power PG
n . The delayed control inputs are the

power variations ∆PB
n and ∆PC

n . The disturbance ∆PT
n is

unknown, as it represents the power variations in the nodes
outside the operated zone. Finally, the variation ∆PG

n of
the generated power PG

n is known at time instant k based
on the state, control inputs and context information within
the zone (namely the available power PA

n ).
The available power PA

n at time instant k is communicated
to the TSO, but its variation along the prediction horizon
is stochastic, as a result of the intermittent nature of wind
power generation. Consequently, the values of ∆PG

n along
the prediction horizon are implicitly defined with respect
to forecasts of PA

n and ∆PA
n , and to the stored values of

PG
n with respect to computed ones of PC

n .
The dynamical model is formulated as:

Fij(k + 1) = Fij(k) +
∑

n∈ZB bn
ij∆PB

n (k − d)
+

∑
n∈ZC bn

ij

[
∆PG

n (k) − ∆PC
n (k − τ)

]
+

∑
n∈ZN bn

ij∆PT
n (k), ∀ (ij) ∈ ZL

PC
n (k + 1) = PC

n (k) + ∆PC
n (k − τ), ∀ n ∈ ZC

PB
n (k + 1) = PB

n (k) + ∆PB
n (k − d), ∀ n ∈ ZB

EB
n (k + 1) = EB

n (k) − TcB
n [PB

n (k) + ∆PB
n (k − d)],

∀ n ∈ ZB

PG
n (k + 1) = PG

n (k) + ∆PG
n (k) − ∆PC

n (k − τ),
∀ n ∈ ZC

(2)
where bn

ij are constant parameters given by PTDF com-
putations, cB

n are constant power reduction factors for
the batteries, and d ≥ 1 and τ ≥ 1 are operational time
delays due to the delayed control actions on the battery
power output and power curtailment for the generators,
respectively. We consider the batteries to act faster with
respect to the possibility to curtail renewable power, and
consequently τ ≥ d.
In particular, the term ∆PG

n (k), is defined as
∆PG

n (k) = min
(
fG

n (k), gG
n (k)

)
, (3)

with
fG

n (k) = PA
n (k) + ∆PA

n (k) − PG
n (k) + ∆P̂C

n (k − τ), (4)

gG
n (k) = P

G

n − PC
n (k) − PG

n (k). (5)

where PG

n > 0 is the maximum installed generating capacity
of the renewable power plants in the sub-transmission grid,
with ∀n ∈ ZC , and the value of ∆P̂C

n (k) is defined in the
following. Accordingly, the proposed modeling allows for
the possibility to pre-compute the term ∆PG

n (k) based on
values of PA

n (k), PG
n (k), PC

n (k), ∆PA
n (k), and ∆PC

n (k),
while maintaining the system’s linearity with respect to
the control signal ∆PC(k) via the offline computation of
the min(.). A more detailed discussion of this approach is
provided in Hoang et al. (2021).
Consequently, the computational burden of dedicated
model-based predictive control laws remains minimal
since the convex optimisation structure of the problem is
preserved. This is a key factor for real-time implementation,



the preferred setting in light of the reaction times required
by TSOs for congestion management.
To describe the model in a compact form, we define:

F = col[Fij ], ∀ (i, j) ∈ ZL; (6a)
PC = col[PC

n ], ∆PC = col[∆PC
n ], ∀ n ∈ ZC ; (6b)

PB = col[PB
n ], ∀ n ∈ ZB ; (6c)

EB = col[EB
n ], ∆PB = col[∆PB

n ], ∀ n ∈ ZB ; (6d)
∆PT = col[∆PT

n ], ∀ n ∈ ZN ; (6e)

PG = col[PG
n ], ∆PG = col[PG

n ], ∀ n ∈ ZC . (6f)

Now, let us define
x(k) = [F (k) PC(k) PB(k) EB(k) PG(k)]T , (7)
uC(k) = ∆PC(k), uB(k) = ∆PB(k), (8)
w(k) = ∆PG(k), ζ(k) = ∆PT (k). (9)

In order to deal with the known actuator delays τ ≥ 1 and
d ≥ 1, we define an extended state x̃ as
x̃(k) = [x(k) uC(k−τ) ... uC(k−1) uB(k−d) ... uB(k−1)]T .

(10)
The resulting dynamical system is as follows:

x̃(k + 1) = Ãx̃(k)+

+
[
B̃C B̃B

]
︸ ︷︷ ︸

B̃

[
uC(k)
uB(k)

]
︸ ︷︷ ︸

u(k)

+
[
D̃w D̃ζ

]
︸ ︷︷ ︸

D̃

[
w(k)
ζ(k)

]
︸ ︷︷ ︸

η(k)

(11)

The interested reader is referred to Hoang et al. (2021) for
explicit definition of Ã, B̃C , B̃B , D̃w, and D̃ζ .
We remark that reactive voltage aspects are not considered
in this work. This modeling is adapted to identify in
real-time the need for acting on curtailment or storage
charge/discharge. Alternate Current (AC) feasibility is a
consequence of online updates of cos(ϕ) from active power
and current real-time measurements, where cos(ϕ) is the
usual power/current ratio at each bus.

3. MODEL-BASED PREDICTIVE CONTROL BASED
ON UNCERTAIN TRAJECTORIES

The objective of this work is to maintain power flow on
the power lines within the regulatory bounds by managing
the flexible assets within the zone at a minimal economic
cost. In practical terms, this is done by using a storage unit
(battery) and partial curtailment of wind power generation.
The latter lever incurs economic costs in the form of under-
exploitation of the renewable energy infrastructure when
the wind parks do not generate the maximum available
power due to curtailment setpoints.
Furthermore, a working assumption is that the controller
can only increase curtailment due to the fact that a decrease
in curtailment requires the validation of a supervisory level
beyond the scope of this paper. Therefore, the controller
must walk the line between ensuring operational security
and minimizing curtailment of wind power generation.
Moreover, it must take into account the intermittence of
renewable-energy-based power generation which encom-
passes an uncertainty characterisation problem. To address
this issue, at each time step, the controller generates

possible trajectories for distributed generation over the
prediction horizon N . Then, it infuses the optimisation
problem with a combination of said trajectories, in order
to select the best control strategy over a finite horizon.
Ideally, the controller should be able to span all potential
trajectories, but this is infeasible in practice due to the
completeness of the set W of disturbance values. Indeed, if
w(k) ∈ W then the trajectory [w(k) . . . w(k +N)] ∈ WN .
For this reason, the set W is sampled so as to have a finite
number of possible disturbance values. The disturbance
trajectories and their probabilities are considered as input
data from the controller’s viewpoint. The process driving
their selection falls outside the scope of this paper.
The proposed control strategy incorporates Ns > 1 dis-
turbance trajectories w(k) into the optimisation prob-
lem and relaxes the power lines’ constraints accordingly.
The working assumption is that the Ns scenarios wj =
[wj(0)wj(1) . . . wj(N − 1)],∀j ∈ 1, . . . , Ns have associated
probabilities pj such that

∑Ns

1 pj = 1. The particular
case where Ns = 1 is presented in Hoang et al. (2021):
simulation results have shown that using an extreme
disturbance trajectory guarantees robustness but produces
very conservative control actions, namely manifesting as
preventive curtailment of wind power generation. The
objective herein is to better exploit the controller’s degrees
of freedom while robustness requirements are relaxed.
This is reflected in the introduction of a relaxation variable
εj ∈ RN such that j ∈ {1, . . . , Ns}, which serves to
relax the power lines’ boundary constraints as follows,
∀ i ∈ [1, N ], ∀ j ∈ [1, Ns]:

−Lj(k + i) ≤ F (k + i) ≤ L
j(k + i) (12)

with
L

j(k + i) = L(1 + εj(k + i)). (13)
The controller’s cost function is defined as:

J(k) =
N∑

i=1
||x̃(k + i) − x̃r||2

Q̃

+
N∑

i=0
λ(i)||uC(k + i)||2RC

+
N∑

i=0
θ(i)||uB(k + i)||2RB

+
Ns∑
j=1

N∑
i=0

ψ(i, j)pj
∥∥εj(k + i)

∥∥2
Qε

(14)

where Q̃, RC , RB , and Qε are square semi-definite positive
matrices with respect to the sizes of x̃, uC , uB, and εj ,
respectively. We consider weight functions λ(i), θ(i), and
ψ(i, j). The probability pj is associated to disturbance
trajectory j.
Now, let us formulate the following set of constraints,
∀ i ∈ [0, N − 1], ∀ j ∈ [1, Ns]:

• system dynamics, ∀ j ∈ [1, Ns]
x̃j(k + 1) = Ãx̃j(k)+

+
[
B̃C B̃B

]
︸ ︷︷ ︸

B̃

[
uC(k)
uB(k)

]
︸ ︷︷ ︸

u(k)

+
[
D̃j

w D̃ζ

]
︸ ︷︷ ︸

D̃

[
wj(k)
ζ(k)

]
︸ ︷︷ ︸

η(k)
(15)



These constraints are generated using a pre-determined
set of Ns disturbance trajectories. Disturbances origi-
nating outside the sub-transmission grid, represented
by ζ(k), are assumed null throughout this paper.

• control input bounds
0nC×1 ≤uC(k + i) ≤ P

G; (16a)

PB − P
B ≤uB(k + i) ≤ P

B − PB . (16b)
• extended state bounds

x̃min(k + i) ≤ x̃(k + i) ≤ x̃max(k + i), (17)
with
x̃min(k + i) = [−Lj

i 0nC×1 P
B EB 0nC×1 u

T
min]T

(18a)

x̃max(k + i) = [Lj

i P
G
P

B
E

B
P

G
uT

max]T (18b)

where Lj

i groups power lines’ capacities, PG
> 0 is

the maximum installed generation capacity, PB < 0
and P

B
> 0 are bounds of battery power, EB < 0

and E
B
> 0 are bounds of battery energy, and umin

and umax are lower and upper bounds of the contron
inputs, respectively.

• relaxation parameters’ bounds
0 ⩽ εj(k + i) ⩽ εmax1 (19)

1
NNs

Ns∑
j=1

N∑
i=1

εj(k + i) ⩽ εmax2 (20)

where εmax1 is the upper bound of allowed power
overshooting on each power line, during each time
step, for each trajectory, and εmax2 is the upper bound
of averaged allowed power overshooting on the power
lines, for all considered trajectories.

• weighted relaxation bounds

1
τ

Ns∑
j=1

τ−1∑
i=0

pjεj(k + i) ⩽ εmax3 (21)

1
N − τ

Ns∑
j=1

N∑
i=τ

pjεj(k + i) = 0 (22)

where τ is the curtailment setpoint delay and εmax3
is the upper bound of accumulated allowed power
overshooting on the power lines, weighted by the
trajectories’ respective probabilities.
The relaxation is only allowed in the interval [k+1, k+
τ ], to cope with the limitations imposed by the delay
on the curtailment action. Once curtailment becomes
possible ([k + τ + 1, N ]), the relaxation is no longer
allowed.

The predictive control problem under uncertainties is:
O = arg min

uC(k),uB(k),...,uC(k+N−1),uB(k+N−1)
J(k) in (14)

subject to constraints ((15) − (22)) (23)

The number of possible discrete trajectories of wind power
generation increases exponentially with the prediction
horizon. That being said, the proposed approach selects
a fixed number of those trajectories to be included in the
optimisation problem. As a result, the trajectory generation
process becomes computationally heavier as the prediction

horizon gets longer but the control problem does not. In
fact, the optimisation problem’s complexity is linear as a
function of the number of trajectories Ns.

4. CASE STUDY

The case study used in this paper, previously used in Hoang
et al. (2021), is a sub-transmission zone located near Dijon,
France. Four wind power farms are connected to nodes
2076, 2745, 4720, and 10000 of maximum power generations
66 MW, 54 MW, 10 MW, and 78 MW, respectively. A
battery of capacity 10 MW is connected to node 10000.
The following working hypotheses are considered:
(1) generators produce the maximum available renewable-

energy-based power or the maximum allowed one;
(2) only a higher-level controller can decrease the power

curtailment setpoints. For this reason, the proposed
controller deals only with curtailment increase;

(3) the state of charge (SOC) of the battery is updated
each second by a SCADA system. Together with the
considered high voltage, these short time intervals
with respect to longer ones taken here into account
for control purposes, both sampling and prediction
horizon, allow to neglect losses due to the battery
system (conversion, cooling and transformers). A
different control level is supposed to manage the SOC
with respect to longer time horizons (see Straub et al.
(2019));

(4) the loads are constant.
For the purposes of this study, disturbances due to ab-
sorbed/generated power outside the studied sub-transmission
zone are considered null. The wind power generation data
used in this study is displayed in Figure 1.
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Fig. 1. Wind power generation data used in the case study.

5. RESULTS AND ANALYSIS

In this section, the performance of the proposed controller
is analysed with respect to a conservative reference strategy
in terms of inner-zone disturbances. Simulations are run
in Matlab2021, for a period of 10 minutes, and using
the case study described in section 4. To emulate a
real power transmission network, the function runpf of
MATPOWER is used to simulate the AC power flow on
the whole transmission network of the French electricity
grid Zimmerman et al. (2011), Josz et al. (2016).
The control scheme operates over a prediction horizon of
50 s, with a time step of 5 s. The power lines’ maximum



capacities are fixed at ±45 MW. Chosen values for the
relaxation parameters introduced in section 3 are the
following: εmax1 = 0.05, εmax2 = 0.2, εmax3 = 0.2.
Per the conservative reference strategy, the wind power
generation gradient is assumed constant all along the
prediction horizon:

∆PA(k + i) = ∆PA(k),∀ i ∈ [1, N ] (24)
which leads to

PA(k +N) = PA(k) +N ∗ ∆PA(k). (25)
This assumption leads to a conservative generation curve
over the prediction horizon, which is more likely to trigger
the power lines’ boundary constraints more often. Although
such a trajectory is a low-probability one, it is in line with
the TSO’s strategy of prioritizing safety and operational
security. The most obvious drawback from the TSO’s
viewpoint is that the overestimation of the constraint
violation will lead to more aggressive curtailment strategy.
This is a double sentence since it undermines the promotion
of renewable energy and incurs an economic cost.
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Fig. 2. Battery power input Pb.
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Fig. 3. Curtailed power generation Pc for one of the
generation parks within the sub-transmission grid.

The proposed sampling-based MPC described in section 3
aims to mitigate the economic cost of the conservative strat-
egy by allowing for contained overshooting on the power
lines and considering less drastic disturbance trajectories.
In Figure 2, setpoints of the battery power input are
displayed for both strategies. Figure 3 depicts the power
generation curtailment profile for one of the wind park
generators connected to the sub-transmission grid. Figure
4 displays the extrema of power flows on the power lines of
the sub-transmission grid with respect to their capacities.
As expected, the reference strategy is more conservative:
it acts quicker and more aggressively, and on both levers
despite the prioritisation of the curtailment in the objective
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Fig. 4. Extrema of power flows with respect to powers’ lines
capacities.

function, in order to prevent overshooting on the power
lines before it appears. Nevertheless, this aggressive course
of action goes against the control strategy’s interest in two
main ways. First, it incurs irreversible economic costs as
wind power generation is curtailed and cannot be dialled
back up without supervisory level intervention. Second,
it contradicts with the broader directive of fostering the
deployment of renewable-energy-based power generation
in power grids. The sampling-based strategy moves in to
mitigate these troublesome effects. As it stands, it only
intervenes once the constraints are violated, but only within
the limits of what the relaxation parameter’s allow. This
is observed first from the beginning of the second minute
and then again during the eighth minute of the simulation.
As a consequence, it draws more on the battery, with
respect to the reference strategy, to reign in the imminent
overshooting. The delayed intervention of the sampling-
based controller is advantageous since it results in a 21.47%
decrease in curtailment levels for distributed generation
with respect to those given by the conservative controller
at reasonable constraint violation costs, for the considered
case study.
It should be noted that the overshooting on the power lines
is only allowed by the sampling-based controller within the
limits of the relaxation formulated through Equations (19),
(20), and (22). Consequently, the sampling-based controller
leans on the contained overshooting on the power lines to
optimise the operation’s economic cost without comprising
the system’s safety.
The introduction of relaxation variables as shown in Eq.
(12) is justified by the fact that small and brief overshooting
over the conservative bounds (L,L) can be handled by the
power lines without permanent damage. As a matter of
fact, the extension of these bounds to dynamic ones that
determine the amplitude and duration of ’safe overshooting’



is explored thoroughly in Pham et al. (2022). As a result,
values of relaxation bounds εmax1, εmax2, and εmax3 are
chosen to ensure that the permitted constraint violation
remains safe from an operational viewpoint.
The appraisal of the control strategy’s performance boils
down to a trade-off between minimization of constraint
violation (namely of power lines’ boundaries) and mini-
mization of wind power generation curtailment and, by
extension, optimisation of the economic cost of the wind
parks’ operation. At the implementation stage, the com-
plexity of the control strategy also comes into play, namely
the computational cost of the trajectory generation process.
In other terms, the application for which the controller
is developed dictates its priorities: the conservative trend-
based strategy is better-suited for applications with high
security imperatives, while the sampling based method
presented herein is shown to give more room for maneuver,
at reasonable computational cost, provided some liberty
can be taken with constraint violations.
It should be noted that the discussion of the controller
actions’ economic cost conducted above is focused on
the lost revenue of curtailing wind power generation but
disregards the losses due to equipment wear, namely effects
of the battery’s life span. This is especially the case in the
setting where battery use is prioritised over the curtailment.

6. CONCLUSION

A sampling-based predictive controller is developed for
congestion management in sub-transmission grids and its
performance is evaluated with respect to a conservative
trend-based strategy. Prospects of this work include analy-
sis of the risk incurred by the selection of a reduced number
of disturbance trajectories and the handling of uncertainty
due to intermittent power generation outside the considered
sub-transmission grid, optimal placement of the battery
and study of the economic cost of battery use.
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