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Abstract: This paper proposes congestion management solutions based on Model Predictive
Control (MPC) principles for transmission network zones. The contribution resides in the use
of logical variables for describing the nonlinearities related to the modelling of the physical
aspects in power curtailment, or some desired control goals. This allows for the representation
of the nonlinear model of a sub-transmission zone with a storage device in a linear Mixed
Logical Dynamical (MLD) formulation, then paving the way to the utilisation of linear mixed
integer programming for the optimization problem. Moreover, part of the contribution considers
supplementary temporal specifications for the energy storage device utilisation. This is modelled
using additional temporal and logical variables as part of the system state and control signal.
Consequently, the extended model of the power network zone is formulated as a linear MLD
system and integrated to the MPC design. The proposed controllers are validated through
simulations on an industrial case-study.

1. INTRODUCTION

Due to the need to integrate renewable power, the power
congestion management problem for electrical networks is
increasing in complexity (Meyer et al. (2020)). Indeed, the
raising presence of renewable power multiplies the situa-
tions where the power production exceeds the maximum
allowed power on the transmission lines. If this excess
is not admissible in design specifications, the lines with
power congestion problems during the operation may be
disconnected from the network, which possibly leads to
a cascading lines opening or blackouts (Monforti-Ferrario
and Blanco (2021)). One of the innovative approaches
employed by Transmission System Operators (TSOs) to
manage congestion and reduce their impact on the lines
is related to the utilisation of energy storage devices and
renewable power curtailment through model-based opti-
mization. As a consequence, approaches based on Model
Predictive Control (MPC) can be used to design conges-
tion management algorithms(see Hoang et al. (2021)).

When considering renewable power curtailment, the re-
sulting models are nonlinear. In Iovine et al. (2021), the
authors propose a linear approximated model where the
variation of the produced power is described as a distur-

⋆ This work was carried out within the CPS4EU project, which has
received funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 826276. The JU receives support from the
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bance pre-estimated based on forecasted available power
without the curtailment action. Though the control design
using this model efficiently works in a specific scenario as
described in Hoang et al. (2021), the exact nonlinearity
of the network zone is not taken into account in the
MPC prediction mechanism, and is shown to affect the
effectiveness of the proposed control system. In the present
paper, we target to investigate the use of Mixed Logical
Dynamical (MLD) formalism (see Bemporad and Morari
(1999)) in order to handle nonlinearities and obtain a
not too computational demanding Mixed Integer Linear
Programming (MILP).

Moreover, we focus on the problem that the storage energy
device is used for multiple tasks and by different users;
therefore, a sharing agreement is required. In Straub et al.
(2019), the bounds of the battery power and energy are
scheduled for a day based on hourly forecasted grid states
to avoid the congestion in the zone. In Perez et al. (2016),
the sharing policy is formulated such that the economical
benefit from batteries is maximized via predefined pricing
rules for different services. However, in some situations
when the TSO is not the battery owner or the congestion
management is not prioritized, the battery availability du-
ration is strictly limited, and thus, supplementary tempo-
ral specifications must be considered. For a self-consistent
MPC design, additional temporal and logical variables are
investigated in our work as part of the state and control
signals that determine the battery power limitations. The
adopted approach represents the extended system using
the MLD formulation which results in a MILP for the
MPC optimization problem. To investigate pros and cons



of the possibility to consider a reduction of the number of
binary variables, we avoid the formalism of Signal Tempo-
ral Logic (see Raman et al. (2014)), that usually implies
the utilisation of tools which automatically generate the
needed binary variables and are not customizable.

As contributions, we consider two modelling frameworks.
In the first model, the nonlinear dynamics of the renewable
power generator with partial curtailment are considered in
a linear MLD formulation. In the second model, the nonlin-
ear zone dynamics and supplementary temporal specifica-
tions of battery availability for the congestion management
are represented using the linear MLD formalism. For the
presented models, we propose and solve receding horizon
optimal control problems based on MPC via MILP.

Notations: ZN is the set of nodes in the considered zone.
ZC is the set of nodes where the curtailment of the
generated power is allowed. ZB is the set of nodes with
a battery. ZL is the set of power lines in the zone. nN , nC ,
nB , nL are their cardinalities.

2. CONGESTION MANAGEMENT VIA MPC

2.1 Linear MLD modelling for zonal power networks

Let the state variables include the power flow Fj(t) of line
j, the curtailment of the renewable power PC

n (t) at node
n, the battery power output PB

m (t) at node m, the battery
energy EB

m(t) at node m, the available renewable power
PA
n (t) at node n and the produced power PP

n (t) at node n.
The control inputs are the power variations of PC

n (t) and
PB
m (t), i.e., ∆PC

n (t) and ∆PB
m (t). The variation ∆PA

n (t) of
the available power represents a disturbance inside of the
zone while ∆PT

l (t) describes the unknown power variation
disturbance at node l due to power flow outside of the zone.
The nonlinear dynamical equations of the zone model are,
∀(j, n,m, l) ∈ ZL ×ZC ×ZB ×ZN (Iovine et al. (2021)):

Fj(t+ 1) = Fj(t) +
∑

m∈ZB

bmj ∆PB
m (t− d)+∑

n∈ZC

bnj ∆PP
n (t) +

∑
l∈ZN

blj∆PT
l (t),

PC
n (t+ 1) = PC

n (t) + ∆PC
n (t− τ),

PB
m (t+ 1) = PB

m (t) + ∆PB
m (t− d),

EB
m(t+ 1) = EB

m(t)− TcBm[PB
m (t) + ∆PB

m (t− d)],
PP
n (t+ 1) = PP

n (t) + ∆PP
n (t),

PA
n (t+ 1) = PA

n (t) + ∆PA
n (t),

PP
n (t+ 1) = min

(
PA
n (t+ 1), P

P

n − PC
n (t+ 1)

)
,

(1)

where b
m/n/l
j are constant parameters based on the con-

cept of Power Transfer Distribution Factor (PTDF) (see
Cheng and Overbye (2005)), cBm is constant power reduc-

tion factor for the batteries, P
P

n > 0 is the maximum power
that can be produced by the renewable generator n, T
is the sampling time, d and τ are the operational time
delays of the control actions for the battery power output
and the generator power curtailment, respectively, with
τ ≥ d ≥ 1. The state and control variables respect the
following constraints, ∀(j, n,m, l) ∈ ZL ×ZC ×ZB ×ZN :

− Lj ≤ Fj(t) ≤ Lj , 0 ≤ PC
n (t) ≤ P̄P

n , (2a)

PB
m ≤ PB

m (t) ≤ P̄B
m , (2b)

EB
m ≤ EB

m(t) ≤ ĒB
m, 0 ≤ ∆PC

n (t) ≤ P̄P
n , (2c)

PB
m − P̄B

m ≤ ∆PB
m (t) ≤ P̄B

m − PB
m, (2d)

with the upper and lower bounds Lj > 0, P
P

n > 0, PB
m < 0,

P
B

m > 0, EB
m > 0, and E

B

m > 0.

In (1), the non-linearity resides in the implicit equation
describing the produced renewable power evolution PP

n (t).
As the first contribution of the present work, this is
represented in a linear MLD form as presented in the
following. Let the logical variable δPn (t) ∈ {0, 1} and the
real variable zPn (t) ∈ R+, ∀ n ∈ ZC , be defined as:

[
δPn (t) = 1

]
⇔

[
PA
n (t) + ∆PA

n (t)

≤ P
P

n − PC
n (t)−∆PC

n (t− τ)
]
,

zPn (t) = min
(
PA
n (t) + ∆PA

n (t),

P
P

n − PC
n (t)−∆PC

n (t− τ)
)
.

(3)

Hence, the system dynamics (1) is rewritten as:

Fj(t+ 1) = Fj(t) +
∑

m∈ZB

bmj ∆PB
m (t− d)+∑

n∈ZC

bnj
[
zPn (t)− PP

n (t)
]
+

∑
l∈ZN

blj∆PT
l (t),

PC
n (t+ 1) = PC

n (t) + ∆PC
n (t− τ),

PB
m (t+ 1) = PB

m (t) + ∆PB
m (t− d),

EB
m(t+ 1) = EB

m(t)− TcBm[PB
m (t) + ∆PB

m (t− d)],
PP
n (t+ 1) = zPn (t),

PA
n (t+ 1) = PA

n (t) + ∆PA
n (t).

(4)

Using big-M formulation, δPn (t) and zPn (t) defined in (3)
are embedded in the solution of the following system of
linear inequalities:

−MδPn (t) + γ ≤ PA
n (t) + ∆PA

n (t)− P
P

n + PC
n (t)

+∆PC
n (t− τ) ≤ M

(
1− δPn (t)

)
,

zPn (t) ≤ PA
n (t) + ∆PA

n (t),
zPn (t) ≥ PA

n (t) + ∆PA
n (t)−M

(
1− δPn (t)

)
,

zPn (t) ≤ P
P

n −PC
n (t)−∆PC

n (t− τ),

zPn (t) ≥ P
P

n −PC
n (t)−∆PC

n (t− τ)−MδPn (t),

(5)

where M ∈ R+ is a sufficiently large scalar, and γ ∈ R+ is
a small scalar. Notice that (4) is a standard explicit linear
MLD system, where δPn (t) and zPn (t) are determined from
the state and control variables at the instant t through
inequality constraints (5). Then, the state variables at the
next instant t+1 are computed from the state and control
variables, δPn and zPn at the previous instant t through
an explicit formula. However, for a numerically efficient
implementation, a compact mathematical model, where
PA
n (t)+∆PA

n (t), PC
n (t)+∆PC

n (t−τ) and zPn (t) in (4) - (5)
are replaced by PA

n (t+1), PC
n (t+1) and PP

n (t+1), can be
employed without changing the solvability and uniqueness
of the zonal network model.

To describe the model in a compact form, we define,
∀j ∈ ZL, ∀ n ∈ ZC , ∀m ∈ ZB , ∀l ∈ ZN :

F (t) = col[Fj(t)], ∆PT (t) = col[∆PT
l (t)], (6a)

PC(t) = col[PC
n (t)], ∆PC(t) = col[∆PC

n (t)], (6b)

PB(t) = col[PB
m (t)], ∆PB(t) = col[∆PB

m (t)], (6c)

EB(t) = col[EB
m(t)], (6d)

PA(t) = col[PA
n (t)], ∆PA(t) = col[∆PA

n (t)], (6e)



PP (t) = col[PP
n (t)], ∆PP (t) = col[∆PP

n (t)], (6f)

δP (t) = col[δPn (t)], z
P (t) = col[zPn (t)], (6g)

L = col[Lj ], P
P
= col[P

P

n ], P
B = col[PB

m], (6h)

P
B
= col[P

B

m], EB = col[EB
m], E

B
= col[E

B

m]. (6i)

To deal with the known actuator delays, the system
state disturbance and control vectors are defined as
x(t) = [F (t) PC(t) PB(t) EB(t) PP (t) PA(t) ∆PC(t −
τ) . . . ∆PC(t − 1) ∆PB(t − d) . . . ∆PB(t − 1)]⊤ ∈
RnL+(3+τ)nC+(2+d)nB

, w(t) = [∆PT (t) ∆PA(t)]⊤ ∈
RnN+nC

, u(t) = [∆PC(t) ∆PB(t)]⊤ ∈ RnC+nB

, respec-
tively. Consequently, the resulting not-delayed system dy-
namics derived from (4)-(5) are:{

x(t+ 1) = Ãx(t) + B̃u(t) + B̃zz
P (t) + D̃w(t),

aP ≥ C̃xx(t) + Czz
P (t) + Cδδ

P (t) + Cww(t),
(7)

where the matrices Ã, B̃, B̃z, D̃, C̃x, Cz, Cδ, Cw and aP

are suitable matrices. The system model (7) is used for the
control design in the next subsection.

2.2 Control design

Fig. 1 illustrates the control strategy, that is composed by
Estimation and MPC blocks. In the sequel of the paper,
the prediction horizon is N . Moreover, the predicted or
estimated value of g(.) at the sampling t + k given the
available information at the sampling t is denoted as g(k|t).

Fig. 1. Control scheme.

The Estimation block predicts the variation of the avail-
able generator power ∆PA(k|t) and the external interac-
tion ∆PT (k|t) over the prediction horizon gathered in the
disturbance w(k|t). For robustness, the profile of ∆PA(k|t)
is considered to be constant ∀ k ∈ [0, . . . , N − 1]. In the
same vein, there are multiple approaches for the prediction
of ∆PT (k|t). These choices can be integrated easily in the
present control design. The performance of the disturbance
estimation is not in the scope of the present work, and thus
we will consider the simple one such as ∆PT (k|t) = 0.

The MPC block determines the control signals u(t) using
the predicted disturbance sequences w(k|t) and the state
feedback x(t). Different from Hoang et al. (2021), this work
directly takes into account the estimation of ∆PA(k|t) in
the MPC formalism via w(k|t) without a supplementary
prediction of ∆PP (k|t) thanks to the consideration of
the nonlinear model (1). To ensure the control problem
feasibility, soft constraints are imposed to the flow on the
power lines F (k|t) for k ∈ [d+1, τ ] using the softening slack

variables ε(k|t) ∈ RnL

such as ε(k|t) > 0, ∀k ∈ [d + 1, τ ],
and ε(k|t) = 0, otherwise. Therefore, from (2) and (6), the

constraints for the state x(t) and for the control signal u(t)
are rewritten as:

xmin(k|t) ≤ Cx(k|t) ≤ xmax(k|t), ∀k ∈ [d+ 1, N ], (8a)

umin ≤ u(k|t) ≤ umax, ∀k ∈ [0, N − 1], (8b)

where C = [InL+nC+2nB 0], and

xmin(k|t) = [−L− ε(k|t) 0 PB EB ]⊤, (9a)

xmax(k|t) = [ L+ ε(k|t) P
P

P
B

E
B
]⊤, (9b)

umin = [0 PB − P
B
]⊤, (9c)

umax = [P
P

P
B − PB ]⊤. (9d)

A cost function considering actuator delays is defined as:

J(t) =

N∑
k=1

[
∥x(k|t)− xr∥2Q + ∥u(k − 1|t)∥2R

+ ∥ε(k|t)∥2β
]
, (10)

where Q and R are positive semi-definite matrices; β is a
positive scalar; xr is the state reference. Thus, the MPC
optimization problem is defined as:

O1 = argmin
{u(0|t),...,u(N−1|t)}

J(t) in (10)

s.t. (7) ∀k ∈ [0, N − 1], (8a) ∀k ∈ [d+ 1, N ],

(8b) ∀k ∈ [0, N − 1], (9). (11)

The structure of this receding horizon optimization builds
on the minimization of a convex cost, while the constraints
are related to the dynamics and the input-state limita-
tions, adequately enforced according to the delay in the
actuation. Moreover, the implementation of the optimisa-
tion problem (11) includes (nL+(4+τ)nC+(3+d)nB)N+
nL(τ − d) real and nCN binary variables. Then, the first
control actions ∆PC(0|t) and ∆PB(0|t) will be applied
to the power networks at the instants t + τ and t + d,
respectively.

3. BATTERY MANAGEMENT VIA MPC

The previously described control design supposes that the
battery is completely dedicated to the congestion manage-
ment operated by the TSO. However, in many situations,
the battery exploitation is supposed to be used for a dif-
ferent task, mainly related to energy market participation,
and TSOs are allowed to request to adapt the power
output to grid’s necessity only in few cases, as for example
pro tempore congestion management. In the subsequent
developments, we consider the above mentioned case, and
therefore suppose that in normal conditions the battery
power output will track a reference value PBr

m , ∀m ∈ ZB ,
and that the TSO is allowed to take control over the
battery power output only if needed, and to impose a
different power output only for a short period of time. As
a consequence, two following operation modes are defined
for the battery power output:

• Unavailability mode: it must track the reference value
PBr
m for at least a given duration TB

off ;
• Availability mode: it is allowed to track a different value
for a given duration TB

on, which covers the delay period τ
of renewable power curtailment, i.e., τ ≤ TB

on.

In this section, a MLD model describing the previous
specifications is introduced, thus allowing to consider



realistic time constraints on the possibility for the TSO
to use the battery for power congestion management. The
modelling is composed by two temporal variables as part
of the system state and one logical variable as control
signal. For a linear and explicit model formulation, four
supplementary auxiliary variables are considered. These
variables are then integrated in the MPC design.

3.1 Battery power specifications

For the battery at the busmth, the logical variable δum(t) ∈
{0, 1} is defined such that δum(t) = 1 if the battery is
available, and δum(t) = 0 otherwise. Hence, the constraints
(2b) of battery power are reformulated as:{

PB
m (t+ 1) ≤ PBr

m +
(
P̄B
m − PBr

m

)
δum(t),

PB
m (t+ 1) ≥ PBr

m +
(
PB

m − PBr
m

)
δum(t).

(12)

To represents the durations of Availability and Un-
availability modes, we define the temporal variables
tonm (t), toffm (t) ∈ N such as:{

tonm (t+ 1) = [tonm (t) + 1] δum(t),
toffm (t+ 1) =

[
toffm (t) + 1

]
(1− δum(t)) ,

(13)

where tonm (0) = 0 and toffm (0) = 0. The additional control
signal δum(t) respect the following implications:

1 ≤ tonm (t) ≤ TB
on − 1 ⇒ δum(t) = 1,

tonm (t) ≥ TB
on ⇒ δum(t) = 0,

1 ≤ toffm (t) ≤ TB
off − 1 ⇒ δum(t) = 0.

(14)

Let the real variable zonm (t), zoffm (t) ∈ R+ and the logical
variables δonm (t), δoffm (t) ∈ {0, 1} be defined as:

zonm (t) = [tonm (t) + 1] δum(t),
zoffm (t) =

[
toffm (t) + 1

]
(1− δum(t)) ,

δon/offm (t) = 1 ⇔
[
ton/offm (t) ≥ 1

]
.

(15)

Equation (15) implies that the unique values of z
on/off
m (t)

and δ
on/off
m (t) are determined from given values of state

t
on/off
m (t) and control signal δum(t). Using big-M formu-
lation, we replace the nonlinear relations in (15) by the
following linear inequalities:

−M1 (1− δum(t)) ≤ zonm (t)− tonm (t)− 1 ≤ M1 (1− δum(t)) ,
−M1δ

u
m(t) ≤ zonm (t) ≤ M1δ

u
m(t),

−M1δ
u
m(t) ≤ zoffm (t)− toffm (t)− 1 ≤ M1δ

u
m(t),

−M1 (1− δum(t)) ≤ zoffm (t) ≤ M1 (1− δum(t)) ,
−M1 (1− δonm (t)) ≤ tonm (t)− 1 ≤ (M1 + γ) δonm (t)− γ,

−M1

(
1− δoffm (t)

)
≤ toffm (t)− 1 ≤ (M1 + γ) δoffm (t)− γ,

(16)

where M1 ∈ R+ is a sufficiently large scalar, and γ ∈ R+ is

a small value. The utilization of z
on/off
m (t) in (15) allows

us to rewrite the nonlinear dynamics of the temporal
variables (13) in a linear form:

ton/offm (t+ 1) = zon/offm (t). (17)

Notice that the battery temporal specifications are math-
ematically represented in (14) by logical statements where
the switching of battery operation modes described by
δum(t) respects constraints on the mode durations described

by t
on/off
m (t). Thanks to big-M formulation, the battery

specifications (14) are equivalent to:

tonm (t)− TB
on + 1 +M2 (1− δonm (t))

≥γ − (M3 + γ)δum(t), (18a)

toffm (t)− TB
off + 1 +M2

(
1− δoffm (t)

)

≥γ − (M3 + γ) (1− δum(t)) , (18b)

−tonm (t) + TB
on ≥γ − (M3 + γ) (1− δum(t)) , (18c)

where M2,M3 ∈ R+ are sufficiently large scalars, and γ ∈
R+ is a sufficiently small scalar, both allowing to bound the
binary relaxations. For numerical implementation, zonm (t)
and zoffm (t) in (16) and (18) can be replaced by tonm (t +
1) and toffm (t + 1) without changing the solvability and
uniqueness of the additional dynamics. Let the vectors
tB(t), δB(t), zB(t) and δu(t) be defined as:

tB(t) =
[
col [tonm (t)]

⊤
col

[
toffm (t)

]⊤]⊤
,

δB(t) =
[
col [δonm (t)]

⊤
col

[
δoffm (t)

]⊤]⊤
,

zB(t) =
[
col [zonm (t)]

⊤
col

[
zoffm (t)

]⊤]⊤
,

δu(t) = col [δum(t)] .

(19)

Hence, we rewrite (16)-(18) in a compact form:tB(t+ 1) = zB(t),

aB ≥ CB
x tB(t) + CB

u δu(t) + CB
δ δB(t) + CB

z zB(t),

at ≥ Ct
xt

B(t) + Ct
uδ

u(t) + Ct
δδ

B(t),

(20)

where at ∈ R3nB

, Ct
x ∈ R3nB×2nB

, Ct
u ∈ R3nB×nB

,

Ct
δ ∈ R3nB×2nB

, aB ∈ R12nB

, CB
u ∈ R12nB×nB

, CB
x ,

CB
δ , CB

z ∈ R12nB×2nB

are suitable matrices. By com-
bining (7) and (20), an extended system can be de-
fined, where the state, the control and the auxiliary vari-

ables are x̂(t) =
[
x(t) tB(t)

]⊤ ∈ RnL+(3+τ)nC+(4+d)nB

,

û(t) = [u(t) δu(t)]
⊤ ∈ RnC+2nB

, δ̂(t) =
[
δP (t) δB(t)

]⊤ ∈
RnC+2nB

and ẑ(t) =
[
zP (t) zB(t)

]⊤ ∈ RnC+2nB

, respec-
tively. The linear MLD formulation for the extended sys-
tem is thus given as:{

x̂(t+ 1) = Âx̂(t) + B̂uû(t) + B̂δ δ̂(t) + B̂z ẑ(t) + D̂w(t),

a ≥ Ĉxx̂(t) + Ĉuû(t) + Ĉδ δ̂(t) + Ĉz ẑ(t) + Ĉww(t),
(21)

where Â, B̂u, B̂δ, B̂z, D̂, a, Ĉx, Ĉu, Ĉδ, Ĉz and Ĉw are
suitable matrices. This model is used for the modified
control design in the next subsection.

3.2 Modification of the MPC

Fig. 2. Control scheme with battery specifications.

Fig. 2 describes the modified control design with respect
to (11), where the additions of the variables δB(t) and
tB(t) are highlighted in red. From (8)-(9) and (12), the
constraints for the state x̂(t) and for the control signal
û(t) are rewritten as:

−L− ε(k|t) ≤C1x̂(k|t) ≤ L+ ε(k|t), ∀k ∈ [d+ 1, N ], (22a)

0 ≤C2x̂(k|t) ≤ P
P
, ∀k ∈ [τ + 1, N ], (22b)

C3û(k − 1|t) ≤C3x̂(k|t)− PBr ≤ C3û(k − 1|t), ∀k ∈ [1, N ], (22c)

EB ≤C4x̂(k|t) ≤ E
B
, ∀k ∈ [d+ 1, N ], (22d)



umin ≤C5û(k|t) ≤ umax, ∀k ∈ [0, N − 1], (22e)

where C1=[InL 0], C2=[0nC×nL InC 0], C3=
[
0nB×(nL+nC)

InB 0], C3 =
[
0nB×(nC+nB) diag

(
P

B

m − PBr
m

)]
, C3 =[

0nB×(nC+nB) diag
(
PB

m − PBr
m

)]
, C4 =

[
0nB×(nL+nC+nB)

InB 0], and C5 = [InC+nB 0]. The cost function (10) is
reformulated as:

Ĵ(t) =

N∑
k=1

[
∥x̂(k|t)− x̂r∥2Q̂ + ∥û(k − 1|t)∥2R̂

+ ∥ε(k|t)∥2β
]
, (23)

where x̂r = [xr,0]
⊤, Q̂ = blkdiag(Q,0), R̂ = blkdiag(R,0).

The modified MPC optimization problem is:

O2 = argmin
{û(0|t),...,û(N−1|t)}

Ĵ(t) in (23)

s.t. (21) ∀k ∈ [d+ 1, N ], (22). (24)

The implementation of the optimisation problem (24)
includes (nL + (4 + τ)nC + (5 + d)nB)N + nL(τ − d) real
and (nC + 3nB)N binary variables. The control design
using this optimization problem will be validated on an
industrial case study in the next section.

4. SIMULATIONS

This section presents closed-loop simulations for a sub-
transmission zone composed by six nodes, seven lines,
four generators and one battery. The renewable power
profile is based on real data, and depicted in Iovine et al.
(2021). The parameters of the model, control algorithm
and simulations are presented in Table 1. The simulations
are implemented in MATLAB; the control algorithms are
programmed by using YALMIP in Löfberg (2004); the
MPC optimization problems are solved by using CPLEX
solver. Suitable values of M and γ in (5), M1 in (16)
and M3 in (18) are chosen using the function implies in
YALMIP, while a manual choice for M2 in (18) is given in
Table 1. The real power transmission network is emulated
in these simulations through the implementation of the
function runpf in MATPOWER toolbox for the whole
French transmission network including around 6000 buses
(Josz et al. (2016)). Notice that, in this network simulator,
the assumptions on ∆PA(t) and ∆PT (t) presented in the
Estimation block are not considered. Indeed, a scenario
achieved from the historical data is used for ∆PA(t) and
the values of ∆PT (t) are derived from the simulation with
MATPOWER toolbox.

Three following simulation scenarios are implemented:

• In Scenario 1, the control designs based on the linear
zone model in Iovine et al. (2021) is employed where the
constraints and cost function in the MPC optimization
problem are similar to O1. The obtained simulation results
are named linear and represented by violet dotted curves.
• In Scenario 2, the control designs in Section 2.2 with
the optimization problem O1 in (11) is employed. The
obtained results are named nonlinear and represented by
blue solid curves.
• In Scenario 3, the control designs in Section 3.2 with the
modified optimization problem O2 in (24) is employed.
The obtained results are named battery spec and repre-
sented by black dash-dotted curves.

Table 1. Parameters.

Parameter Value

Number of nodes nN and of lines nL 6 and 7
Number of curtailed generators nC 4
Number of batteries nB 1
Line power limit Lj [MW] 45
Generators power limits P̄G [MW] [78 66 54 10]⊤

Battery power limits [PB P̄B ] [MW] [-10 10]
Battery delay d [s] 5
Curtailment actuator delay τ [s] 35
Prediction horizon N 10
State weight matrix Q diag{07×7 I4

10−3 034×34}
Input weight matrix R I5
Battery availability parameters TB

on [s] 35
Battery unavailability parameters TB

off [s] 20

Battery power reference PBr [MW] 0
Large value M2 in (18) 1000
Relaxation weight β 104

Sampling time T [s] 5
Simulation time [s] 600

The maximal durations of solving the MPC optimization
problem in these scenarios are 117 ms, 117 ms and 131 ms,
respectively.

Fig. 3 and 4 illustrate the curtailment power and its
variation, respectively, in Scenario 1 and 2. We can see
that the curtailment power action takes place earlier and
is greater in magnitude when considering the linear model,
with respect to the nonlinear model. Hence, more energy
is curtailed in the case of linear model, 1456 [MW], while
only 1414 [MW] when using the nonlinear model. Even
with nBN = 40 additional binary variables, the maximal
solving time of the optimization problem in Scenario 2 is
still approximate to the one in Scenario 1. Related to the
line power flow limit (22a) in scenario 2, the constraint
violation is predicted at 27% of simulation iterations with
the maximal value of 1.6 MW.
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Fig. 3. Allowed produced power in Scenario 1 and 2.

Fig. 5 presents the battery power and its variation in
Scenario 2 and 3. The red dash line represents the time-
varying lower bound of battery power described in (12).
Since the battery charging is preferred to the curtailment
for dealing with surplus renewable produced power (see
the weight matrix value Q in Table (1)), the battery could
be expected to be maximally charged as in Scenario 2.
However, this is not the case in Scenario 3 during [65, 85]s
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Fig. 4. Curtailment power variation in Scenario 1 and 2.

due to the difference between the real available power
PA(t) and its estimation presented in Section 2.2. Indeed,
during [50, 65]s, surplus production of renewable power
are predicted in the control design thanks to its previous
measurements and the forecasted value PA(k|t) described
in Section 2.2. Moreover, the unavailability of the battery
from t = 85s is also considered in the optimization problem
(24). Therefore, important amounts of renewable power
curtailment are decided. Consequently, since the actually
produced renewable power during [65, 85]s is smaller than
predicted in the past control mechanism and the curtail-
ment action respects the delay, the maximal battery charg-
ing is not necessary. This situation is also true for the next
battery availability periods. These countereffects, even if
undesired, are forced by the constraints on the possibility
to use the battery. However, the proposed modelling and
adopted control strategy are shown to successfully manage
the power congestion problem.
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Fig. 5. Battery power and its variation in Sce. 2 and 3.

5. CONCLUSIONS

The present paper proposed two controllers for the con-
gestion management of transmission power networks via
MPC when considering nonlinearities in the modelling of
produced renewable power and supplementary temporal
specifications of battery availability. The nonlinear model
related to the minimum operator is described as a linear

Mixed Logical Dynamical (MLD) system thanks to ad-
ditional logical and real variables. Hence, the integration
of this linear modelling in MPC design allowed an exact
consideration of the system dynamics in the optimization
problem. On the other hand, to describe the battery speci-
fications in a linear formulation, temporal and logical vari-
ables were added as system state and control signals, thus
leading to an extended linear MLD model for the global
system. The proposed MLD models are used in a receding
horizon control approach via MPC and MILP, and have
been validated through simulations on an industrial case-
study of interest. The short term future work focuses on
the signal temporal logic formulation for modelling the
overload tolerance and battery specifications.
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